huge_memory.c 82.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 */

6 7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

8 9
#include <linux/mm.h>
#include <linux/sched.h>
10
#include <linux/sched/coredump.h>
11
#include <linux/sched/numa_balancing.h>
12 13 14 15 16
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
17
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
18
#include <linux/mm_inline.h>
19
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
20
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
21
#include <linux/khugepaged.h>
22
#include <linux/freezer.h>
23
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
24
#include <linux/mman.h>
25
#include <linux/memremap.h>
R
Ralf Baechle 已提交
26
#include <linux/pagemap.h>
27
#include <linux/debugfs.h>
28
#include <linux/migrate.h>
29
#include <linux/hashtable.h>
30
#include <linux/userfaultfd_k.h>
31
#include <linux/page_idle.h>
32
#include <linux/shmem_fs.h>
33
#include <linux/oom.h>
34
#include <linux/numa.h>
35
#include <linux/page_owner.h>
36

37 38 39 40
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
41
/*
42 43 44 45
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 47
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
48
 */
49
unsigned long transparent_hugepage_flags __read_mostly =
50
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
51
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 53 54 55
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
56
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 58
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
59

60
static struct shrinker deferred_split_shrinker;
61

62
static atomic_t huge_zero_refcount;
63
struct page *huge_zero_page __read_mostly;
64

65 66
bool transparent_hugepage_enabled(struct vm_area_struct *vma)
{
67 68 69 70 71
	/* The addr is used to check if the vma size fits */
	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;

	if (!transhuge_vma_suitable(vma, addr))
		return false;
72 73
	if (vma_is_anonymous(vma))
		return __transparent_hugepage_enabled(vma);
74 75
	if (vma_is_shmem(vma))
		return shmem_huge_enabled(vma);
76 77 78 79

	return false;
}

80
static struct page *get_huge_zero_page(void)
81 82 83 84
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85
		return READ_ONCE(huge_zero_page);
86 87

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88
			HPAGE_PMD_ORDER);
89 90
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91
		return NULL;
92 93
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
94
	preempt_disable();
95
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96
		preempt_enable();
97
		__free_pages(zero_page, compound_order(zero_page));
98 99 100 101 102 103
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
104
	return READ_ONCE(huge_zero_page);
105 106
}

107
static void put_huge_zero_page(void)
108
{
109 110 111 112 113
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 115
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

136 137
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
138
{
139 140 141
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
142

143 144 145
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
146
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 148
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
149
		__free_pages(zero_page, compound_order(zero_page));
150
		return HPAGE_PMD_NR;
151 152 153
	}

	return 0;
154 155
}

156
static struct shrinker huge_zero_page_shrinker = {
157 158
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
159 160 161
	.seeks = DEFAULT_SEEKS,
};

162 163 164 165
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
166
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167
		return sysfs_emit(buf, "[always] madvise never\n");
168
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169
		return sysfs_emit(buf, "always [madvise] never\n");
170
	else
171
		return sysfs_emit(buf, "always madvise [never]\n");
172
}
173

174 175 176 177
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
178
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
179

180
	if (sysfs_streq(buf, "always")) {
181 182
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183
	} else if (sysfs_streq(buf, "madvise")) {
184 185
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
186
	} else if (sysfs_streq(buf, "never")) {
187 188 189 190
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
191 192

	if (ret > 0) {
193
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
194 195 196 197
		if (err)
			ret = err;
	}
	return ret;
198 199 200 201
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

202
ssize_t single_hugepage_flag_show(struct kobject *kobj,
203 204 205
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
206 207
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
208
}
209

210
ssize_t single_hugepage_flag_store(struct kobject *kobj,
211 212 213 214
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
215 216 217 218 219 220 221 222 223 224
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
225
		set_bit(flag, &transparent_hugepage_flags);
226
	else
227 228 229 230 231 232 233 234
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
235
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
236 237
		return sysfs_emit(buf,
				  "[always] defer defer+madvise madvise never\n");
238
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
239 240
		return sysfs_emit(buf,
				  "always [defer] defer+madvise madvise never\n");
241
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
242 243
		return sysfs_emit(buf,
				  "always defer [defer+madvise] madvise never\n");
244
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
245 246 247
		return sysfs_emit(buf,
				  "always defer defer+madvise [madvise] never\n");
	return sysfs_emit(buf, "always defer defer+madvise madvise [never]\n");
248
}
249

250 251 252 253
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
254
	if (sysfs_streq(buf, "always")) {
255 256 257 258
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259
	} else if (sysfs_streq(buf, "defer+madvise")) {
260 261 262 263
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
264
	} else if (sysfs_streq(buf, "defer")) {
265 266 267 268
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
269
	} else if (sysfs_streq(buf, "madvise")) {
270 271 272 273
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
274
	} else if (sysfs_streq(buf, "never")) {
275 276 277 278 279 280 281 282
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
283 284 285 286
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

287
static ssize_t use_zero_page_show(struct kobject *kobj,
288
				  struct kobj_attribute *attr, char *buf)
289
{
290
	return single_hugepage_flag_show(kobj, attr, buf,
291
					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
292 293 294 295
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
296
	return single_hugepage_flag_store(kobj, attr, buf, count,
297 298 299 300
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
301 302

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
303
				   struct kobj_attribute *attr, char *buf)
304
{
305
	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
306 307 308 309
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

310 311 312
static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
313
	&use_zero_page_attr.attr,
314
	&hpage_pmd_size_attr.attr,
315
#ifdef CONFIG_SHMEM
316
	&shmem_enabled_attr.attr,
317 318 319 320
#endif
	NULL,
};

321
static const struct attribute_group hugepage_attr_group = {
322
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
323 324
};

S
Shaohua Li 已提交
325
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
326 327 328
{
	int err;

S
Shaohua Li 已提交
329 330
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
331
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
332
		return -ENOMEM;
A
Andrea Arcangeli 已提交
333 334
	}

S
Shaohua Li 已提交
335
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
336
	if (err) {
337
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
338
		goto delete_obj;
A
Andrea Arcangeli 已提交
339 340
	}

S
Shaohua Li 已提交
341
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
342
	if (err) {
343
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
344
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
345
	}
S
Shaohua Li 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

383 384 385 386 387 388 389 390 391 392
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
393 394
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
395
		goto err_sysfs;
A
Andrea Arcangeli 已提交
396

397
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
398
	if (err)
399
		goto err_slab;
A
Andrea Arcangeli 已提交
400

401 402 403
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
404 405 406
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
407

408 409 410 411 412
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
413
	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
414
		transparent_hugepage_flags = 0;
415 416
		return 0;
	}
417

418
	err = start_stop_khugepaged();
419 420
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
421

S
Shaohua Li 已提交
422
	return 0;
423
err_khugepaged:
424 425
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
426 427
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
428
	khugepaged_destroy();
429
err_slab:
S
Shaohua Li 已提交
430
	hugepage_exit_sysfs(hugepage_kobj);
431
err_sysfs:
A
Andrea Arcangeli 已提交
432
	return err;
433
}
434
subsys_initcall(hugepage_init);
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
462
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
463 464 465 466
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

467
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
468
{
469
	if (likely(vma->vm_flags & VM_WRITE))
470 471 472 473
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

474 475
#ifdef CONFIG_MEMCG
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
476
{
477 478 479 480 481 482 483
	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	if (memcg)
		return &memcg->deferred_split_queue;
	else
		return &pgdat->deferred_split_queue;
484
}
485 486 487 488 489 490 491 492
#else
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
{
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	return &pgdat->deferred_split_queue;
}
#endif
493 494 495 496 497 498 499 500 501 502 503 504

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

505 506 507
bool is_transparent_hugepage(struct page *page)
{
	if (!PageCompound(page))
Z
Zou Wei 已提交
508
		return false;
509 510 511 512 513 514 515

	page = compound_head(page);
	return is_huge_zero_page(page) ||
	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
}
EXPORT_SYMBOL_GPL(is_transparent_hugepage);

516 517
static unsigned long __thp_get_unmapped_area(struct file *filp,
		unsigned long addr, unsigned long len,
518 519 520 521
		loff_t off, unsigned long flags, unsigned long size)
{
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
522
	unsigned long len_pad, ret;
523 524 525 526 527 528 529 530

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

531
	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
532
					      off >> PAGE_SHIFT, flags);
533 534 535 536 537 538

	/*
	 * The failure might be due to length padding. The caller will retry
	 * without the padding.
	 */
	if (IS_ERR_VALUE(ret))
539 540
		return 0;

541 542 543 544 545 546 547 548 549
	/*
	 * Do not try to align to THP boundary if allocation at the address
	 * hint succeeds.
	 */
	if (ret == addr)
		return addr;

	ret += (off - ret) & (size - 1);
	return ret;
550 551 552 553 554
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
555
	unsigned long ret;
556 557 558 559 560
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

561 562 563 564
	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
	if (ret)
		return ret;
out:
565 566 567 568
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

569 570
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
571
{
J
Jan Kara 已提交
572
	struct vm_area_struct *vma = vmf->vma;
573
	pgtable_t pgtable;
J
Jan Kara 已提交
574
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
575
	vm_fault_t ret = 0;
576

577
	VM_BUG_ON_PAGE(!PageCompound(page), page);
578

579
	if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
580 581
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
582
		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
583 584
		return VM_FAULT_FALLBACK;
	}
585
	cgroup_throttle_swaprate(page, gfp);
586

587
	pgtable = pte_alloc_one(vma->vm_mm);
588
	if (unlikely(!pgtable)) {
589 590
		ret = VM_FAULT_OOM;
		goto release;
591
	}
592

593
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
594 595 596 597 598
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
599 600
	__SetPageUptodate(page);

J
Jan Kara 已提交
601 602
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
603
		goto unlock_release;
604 605
	} else {
		pmd_t entry;
606

607 608 609 610
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

611 612
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
613
			vm_fault_t ret2;
614

J
Jan Kara 已提交
615
			spin_unlock(vmf->ptl);
616
			put_page(page);
K
Kirill A. Shutemov 已提交
617
			pte_free(vma->vm_mm, pgtable);
618 619 620
			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
			return ret2;
621 622
		}

623
		entry = mk_huge_pmd(page, vma->vm_page_prot);
624
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
625
		page_add_new_anon_rmap(page, vma, haddr, true);
626
		lru_cache_add_inactive_or_unevictable(page, vma);
J
Jan Kara 已提交
627 628
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
K
Kirill A. Shutemov 已提交
629
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
630
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
631
		spin_unlock(vmf->ptl);
632
		count_vm_event(THP_FAULT_ALLOC);
633
		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
634 635
	}

636
	return 0;
637 638 639 640 641 642 643 644
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	put_page(page);
	return ret;

645 646
}

647
/*
648 649 650 651 652 653 654
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
655
 */
656
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
657
{
658
	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
659

660
	/* Always do synchronous compaction */
661 662
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
663 664

	/* Kick kcompactd and fail quickly */
665
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
666
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
667 668

	/* Synchronous compaction if madvised, otherwise kick kcompactd */
669
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
670 671 672
		return GFP_TRANSHUGE_LIGHT |
			(vma_madvised ? __GFP_DIRECT_RECLAIM :
					__GFP_KSWAPD_RECLAIM);
673 674

	/* Only do synchronous compaction if madvised */
675
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
676 677
		return GFP_TRANSHUGE_LIGHT |
		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
678

679
	return GFP_TRANSHUGE_LIGHT;
680 681
}

682
/* Caller must hold page table lock. */
683
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
684
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
685
		struct page *zero_page)
686 687
{
	pmd_t entry;
A
Andrew Morton 已提交
688 689
	if (!pmd_none(*pmd))
		return false;
690
	entry = mk_pmd(zero_page, vma->vm_page_prot);
691
	entry = pmd_mkhuge(entry);
692 693
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
694
	set_pmd_at(mm, haddr, pmd, entry);
695
	mm_inc_nr_ptes(mm);
A
Andrew Morton 已提交
696
	return true;
697 698
}

699
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
700
{
J
Jan Kara 已提交
701
	struct vm_area_struct *vma = vmf->vma;
702
	gfp_t gfp;
703
	struct page *page;
J
Jan Kara 已提交
704
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
705

706
	if (!transhuge_vma_suitable(vma, haddr))
707
		return VM_FAULT_FALLBACK;
708 709
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
710
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
711
		return VM_FAULT_OOM;
J
Jan Kara 已提交
712
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
713
			!mm_forbids_zeropage(vma->vm_mm) &&
714 715 716
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
717
		vm_fault_t ret;
718
		pgtable = pte_alloc_one(vma->vm_mm);
719
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
720
			return VM_FAULT_OOM;
721
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
722
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
723
			pte_free(vma->vm_mm, pgtable);
724
			count_vm_event(THP_FAULT_FALLBACK);
725
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
726
		}
J
Jan Kara 已提交
727
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
728
		ret = 0;
J
Jan Kara 已提交
729
		if (pmd_none(*vmf->pmd)) {
730 731 732
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
733
				pte_free(vma->vm_mm, pgtable);
734
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
735
				spin_unlock(vmf->ptl);
736
				pte_free(vma->vm_mm, pgtable);
J
Jan Kara 已提交
737
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
738 739
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
740
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
741 742
						   haddr, vmf->pmd, zero_page);
				spin_unlock(vmf->ptl);
743
			}
744
		} else {
J
Jan Kara 已提交
745
			spin_unlock(vmf->ptl);
K
Kirill A. Shutemov 已提交
746
			pte_free(vma->vm_mm, pgtable);
747
		}
748
		return ret;
749
	}
750 751
	gfp = alloc_hugepage_direct_gfpmask(vma);
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
752 753
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
754
		return VM_FAULT_FALLBACK;
755
	}
756
	prep_transhuge_page(page);
J
Jan Kara 已提交
757
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
758 759
}

760
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
761 762
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
763 764 765 766 767 768
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

784 785 786
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
787
	if (write) {
788 789
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
790
	}
791 792 793

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
794
		mm_inc_nr_ptes(mm);
795
		pgtable = NULL;
796 797
	}

798 799
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
800 801

out_unlock:
M
Matthew Wilcox 已提交
802
	spin_unlock(ptl);
803 804
	if (pgtable)
		pte_free(mm, pgtable);
M
Matthew Wilcox 已提交
805 806
}

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
/**
 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
M
Matthew Wilcox 已提交
822
{
823 824
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
825
	pgtable_t pgtable = NULL;
826

M
Matthew Wilcox 已提交
827 828 829 830 831
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
832 833
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
834 835 836 837 838 839
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
840

841
	if (arch_needs_pgtable_deposit()) {
842
		pgtable = pte_alloc_one(vma->vm_mm);
843 844 845 846
		if (!pgtable)
			return VM_FAULT_OOM;
	}

847 848
	track_pfn_insert(vma, &pgprot, pfn);

849
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
850
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
851
}
852
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
M
Matthew Wilcox 已提交
853

854
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
855
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
856
{
857
	if (likely(vma->vm_flags & VM_WRITE))
858 859 860 861 862 863 864 865 866 867 868 869
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
870 871 872 873 874 875 876 877 878 879 880 881 882 883
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

884 885 886 887
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
888 889
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
890 891 892
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
893 894

out_unlock:
895 896 897
	spin_unlock(ptl);
}

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
/**
 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
913
{
914 915 916
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;

917 918 919 920 921
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
922 923
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
924 925 926 927 928 929 930 931 932
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

933
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
934 935
	return VM_FAULT_NOPAGE;
}
936
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
937 938
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

939
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
940
		pmd_t *pmd, int flags)
941 942 943
{
	pmd_t _pmd;

944 945 946
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
947
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
948
				pmd, _pmd, flags & FOLL_WRITE))
949 950 951 952
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
953
		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
954 955 956 957 958 959 960
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

961 962 963 964 965 966
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

J
John Hubbard 已提交
967 968 969 970 971
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

972
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
973 974 975 976 977 978 979 980
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
981
		touch_pmd(vma, addr, pmd, flags);
982 983 984 985 986

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
J
John Hubbard 已提交
987
	if (!(flags & (FOLL_GET | FOLL_PIN)))
988 989 990
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
991 992
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
993 994
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
995 996
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
997 998 999 1000

	return page;
}

1001 1002 1003 1004
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
1005
	spinlock_t *dst_ptl, *src_ptl;
1006 1007
	struct page *src_page;
	pmd_t pmd;
1008
	pgtable_t pgtable = NULL;
1009
	int ret = -ENOMEM;
1010

1011 1012 1013 1014
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

1015
	pgtable = pte_alloc_one(dst_mm);
1016 1017
	if (unlikely(!pgtable))
		goto out;
1018

1019 1020 1021
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1022 1023 1024

	ret = -EAGAIN;
	pmd = *src_pmd;
1025

1026 1027 1028 1029 1030 1031 1032 1033
	/*
	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
	 * does not have the VM_UFFD_WP, which means that the uffd
	 * fork event is not enabled.
	 */
	if (!(vma->vm_flags & VM_UFFD_WP))
		pmd = pmd_clear_uffd_wp(pmd);

1034 1035 1036 1037 1038 1039 1040 1041
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
		if (is_write_migration_entry(entry)) {
			make_migration_entry_read(&entry);
			pmd = swp_entry_to_pmd(entry);
1042 1043
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
1044 1045
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
1046
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1047
		mm_inc_nr_ptes(dst_mm);
1048
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1049 1050 1051 1052 1053 1054
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

1055
	if (unlikely(!pmd_trans_huge(pmd))) {
1056 1057 1058
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
1059
	/*
1060
	 * When page table lock is held, the huge zero pmd should not be
1061 1062 1063 1064
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
1065
		struct page *zero_page;
1066 1067 1068 1069 1070
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1071
		zero_page = mm_get_huge_zero_page(dst_mm);
1072
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1073
				zero_page);
1074 1075 1076
		ret = 0;
		goto out_unlock;
	}
1077

1078 1079
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097

	/*
	 * If this page is a potentially pinned page, split and retry the fault
	 * with smaller page size.  Normally this should not happen because the
	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
	 * best effort that the pinned pages won't be replaced by another
	 * random page during the coming copy-on-write.
	 */
	if (unlikely(is_cow_mapping(vma->vm_flags) &&
		     atomic_read(&src_mm->has_pinned) &&
		     page_maybe_dma_pinned(src_page))) {
		pte_free(dst_mm, pgtable);
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
		__split_huge_pmd(vma, src_pmd, addr, false, NULL);
		return -EAGAIN;
	}

1098 1099 1100
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1101
	mm_inc_nr_ptes(dst_mm);
1102
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1103 1104 1105 1106 1107 1108 1109

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1110 1111
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1112 1113 1114 1115
out:
	return ret;
}

1116 1117
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1118
		pud_t *pud, int flags)
1119 1120 1121
{
	pud_t _pud;

1122 1123 1124
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1125
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1126
				pud, _pud, flags & FOLL_WRITE))
1127 1128 1129 1130
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1131
		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1132 1133 1134 1135 1136 1137 1138
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1139
	if (flags & FOLL_WRITE && !pud_write(*pud))
1140 1141
		return NULL;

J
John Hubbard 已提交
1142 1143 1144 1145 1146
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

1147 1148 1149 1150 1151 1152
	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1153
		touch_pud(vma, addr, pud, flags);
1154 1155 1156 1157

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
J
John Hubbard 已提交
1158 1159
	 *
	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1160
	 */
J
John Hubbard 已提交
1161
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1162 1163 1164
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1165 1166
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1167 1168
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1169 1170
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	/* Please refer to comments in copy_huge_pmd() */
	if (unlikely(is_cow_mapping(vma->vm_flags) &&
		     atomic_read(&src_mm->has_pinned) &&
		     page_maybe_dma_pinned(pud_page(pud)))) {
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
		__split_huge_pud(vma, src_pud, addr);
		return -EAGAIN;
	}

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

J
Jan Kara 已提交
1244
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1245 1246 1247
{
	pmd_t entry;
	unsigned long haddr;
1248
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1249

J
Jan Kara 已提交
1250 1251
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1252 1253 1254
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1255 1256
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1257
	haddr = vmf->address & HPAGE_PMD_MASK;
1258
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1259
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1260 1261

unlock:
J
Jan Kara 已提交
1262
	spin_unlock(vmf->ptl);
1263 1264
}

1265
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1266
{
J
Jan Kara 已提交
1267
	struct vm_area_struct *vma = vmf->vma;
1268
	struct page *page;
J
Jan Kara 已提交
1269
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1270

J
Jan Kara 已提交
1271
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1272
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1273

1274
	if (is_huge_zero_pmd(orig_pmd))
1275 1276
		goto fallback;

J
Jan Kara 已提交
1277
	spin_lock(vmf->ptl);
1278 1279 1280 1281 1282

	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
		return 0;
	}
1283 1284

	page = pmd_page(orig_pmd);
1285
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1286 1287

	/* Lock page for reuse_swap_page() */
1288 1289 1290 1291 1292 1293
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1294
			spin_unlock(vmf->ptl);
1295 1296
			unlock_page(page);
			put_page(page);
1297
			return 0;
1298 1299 1300
		}
		put_page(page);
	}
1301 1302 1303 1304 1305

	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
	 * part.
	 */
1306
	if (reuse_swap_page(page, NULL)) {
1307 1308
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1309
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1310
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
J
Jan Kara 已提交
1311
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1312
		unlock_page(page);
J
Jan Kara 已提交
1313
		spin_unlock(vmf->ptl);
1314
		return VM_FAULT_WRITE;
1315
	}
1316 1317

	unlock_page(page);
J
Jan Kara 已提交
1318
	spin_unlock(vmf->ptl);
1319 1320 1321
fallback:
	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
	return VM_FAULT_FALLBACK;
1322 1323
}

1324
/*
1325 1326
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
1327 1328 1329
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1330 1331
	return pmd_write(pmd) ||
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1332 1333
}

1334
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1335 1336 1337 1338
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1339
	struct mm_struct *mm = vma->vm_mm;
1340 1341
	struct page *page = NULL;

1342
	assert_spin_locked(pmd_lockptr(mm, pmd));
1343

1344
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1345 1346
		goto out;

1347 1348 1349 1350
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1351
	/* Full NUMA hinting faults to serialise migration in fault paths */
1352
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1353 1354
		goto out;

1355
	page = pmd_page(*pmd);
1356
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
J
John Hubbard 已提交
1357 1358 1359 1360

	if (!try_grab_page(page, flags))
		return ERR_PTR(-ENOMEM);

1361
	if (flags & FOLL_TOUCH)
1362
		touch_pmd(vma, addr, pmd, flags);
J
John Hubbard 已提交
1363

E
Eric B Munson 已提交
1364
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1365 1366 1367 1368
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1369 1370
		 * For anon THP:
		 *
1371 1372 1373 1374 1375 1376 1377
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1378 1379 1380 1381 1382 1383
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1384
		 */
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1395
	}
1396
skip_mlock:
1397
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1398
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1399 1400 1401 1402 1403

out:
	return page;
}

1404
/* NUMA hinting page fault entry point for trans huge pmds */
1405
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1406
{
J
Jan Kara 已提交
1407
	struct vm_area_struct *vma = vmf->vma;
1408
	struct anon_vma *anon_vma = NULL;
1409
	struct page *page;
J
Jan Kara 已提交
1410
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1411
	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1412
	int target_nid, last_cpupid = -1;
1413 1414
	bool page_locked;
	bool migrated = false;
1415
	bool was_writable;
1416
	int flags = 0;
1417

J
Jan Kara 已提交
1418 1419
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1420 1421
		goto out_unlock;

1422 1423 1424 1425 1426
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
J
Jan Kara 已提交
1427 1428
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
1429 1430
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1431
		spin_unlock(vmf->ptl);
1432
		put_and_wait_on_page_locked(page);
1433 1434 1435
		goto out;
	}

1436
	page = pmd_page(pmd);
1437
	BUG_ON(is_huge_zero_page(page));
1438
	page_nid = page_to_nid(page);
1439
	last_cpupid = page_cpupid_last(page);
1440
	count_vm_numa_event(NUMA_HINT_FAULTS);
1441
	if (page_nid == this_nid) {
1442
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1443 1444
		flags |= TNF_FAULT_LOCAL;
	}
1445

1446
	/* See similar comment in do_numa_page for explanation */
1447
	if (!pmd_savedwrite(pmd))
1448 1449
		flags |= TNF_NO_GROUP;

1450 1451 1452 1453
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1454 1455
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
1456
	if (target_nid == NUMA_NO_NODE) {
1457
		/* If the page was locked, there are no parallel migrations */
1458
		if (page_locked)
1459
			goto clear_pmdnuma;
1460
	}
1461

1462
	/* Migration could have started since the pmd_trans_migrating check */
1463
	if (!page_locked) {
1464
		page_nid = NUMA_NO_NODE;
1465 1466
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1467
		spin_unlock(vmf->ptl);
1468
		put_and_wait_on_page_locked(page);
1469 1470 1471
		goto out;
	}

1472 1473 1474 1475
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1476
	get_page(page);
J
Jan Kara 已提交
1477
	spin_unlock(vmf->ptl);
1478
	anon_vma = page_lock_anon_vma_read(page);
1479

P
Peter Zijlstra 已提交
1480
	/* Confirm the PMD did not change while page_table_lock was released */
J
Jan Kara 已提交
1481 1482
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1483 1484
		unlock_page(page);
		put_page(page);
1485
		page_nid = NUMA_NO_NODE;
1486
		goto out_unlock;
1487
	}
1488

1489 1490 1491
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
1492
		page_nid = NUMA_NO_NODE;
1493 1494 1495
		goto clear_pmdnuma;
	}

1496 1497 1498 1499 1500 1501
	/*
	 * Since we took the NUMA fault, we must have observed the !accessible
	 * bit. Make sure all other CPUs agree with that, to avoid them
	 * modifying the page we're about to migrate.
	 *
	 * Must be done under PTL such that we'll observe the relevant
1502 1503 1504 1505
	 * inc_tlb_flush_pending().
	 *
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
1506
	 */
1507
	if (mm_tlb_flush_pending(vma->vm_mm)) {
1508
		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
		/*
		 * change_huge_pmd() released the pmd lock before
		 * invalidating the secondary MMUs sharing the primary
		 * MMU pagetables (with ->invalidate_range()). The
		 * mmu_notifier_invalidate_range_end() (which
		 * internally calls ->invalidate_range()) in
		 * change_pmd_range() will run after us, so we can't
		 * rely on it here and we need an explicit invalidate.
		 */
		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
					      haddr + HPAGE_PMD_SIZE);
	}
1521

1522 1523
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1524
	 * and access rights restored.
1525
	 */
J
Jan Kara 已提交
1526
	spin_unlock(vmf->ptl);
1527

K
Kirill A. Shutemov 已提交
1528
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
J
Jan Kara 已提交
1529
				vmf->pmd, pmd, vmf->address, page, target_nid);
1530 1531
	if (migrated) {
		flags |= TNF_MIGRATED;
1532
		page_nid = target_nid;
1533 1534
	} else
		flags |= TNF_MIGRATE_FAIL;
1535

1536
	goto out;
1537
clear_pmdnuma:
1538
	BUG_ON(!PageLocked(page));
1539
	was_writable = pmd_savedwrite(pmd);
1540
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1541
	pmd = pmd_mkyoung(pmd);
1542 1543
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
J
Jan Kara 已提交
1544 1545
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1546
	unlock_page(page);
1547
out_unlock:
J
Jan Kara 已提交
1548
	spin_unlock(vmf->ptl);
1549 1550 1551 1552 1553

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1554
	if (page_nid != NUMA_NO_NODE)
J
Jan Kara 已提交
1555
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1556
				flags);
1557

1558 1559 1560
	return 0;
}

1561 1562 1563 1564 1565
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1566 1567 1568 1569 1570 1571
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1572
	bool ret = false;
1573

1574
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1575

1576 1577
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1578
		goto out_unlocked;
1579 1580

	orig_pmd = *pmd;
1581
	if (is_huge_zero_pmd(orig_pmd))
1582 1583
		goto out;

1584 1585 1586 1587 1588 1589
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1608
		split_huge_page(page);
1609
		unlock_page(page);
1610
		put_page(page);
1611 1612 1613 1614 1615 1616 1617 1618
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1619
		pmdp_invalidate(vma, addr, pmd);
1620 1621 1622 1623 1624 1625
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1626 1627

	mark_page_lazyfree(page);
1628
	ret = true;
1629 1630 1631 1632 1633 1634
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1635 1636 1637 1638 1639 1640
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1641
	mm_dec_nr_ptes(mm);
1642 1643
}

1644
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1645
		 pmd_t *pmd, unsigned long addr)
1646
{
1647
	pmd_t orig_pmd;
1648
	spinlock_t *ptl;
1649

1650
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1651

1652 1653
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1654 1655 1656 1657 1658 1659 1660
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
1661 1662
	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
						tlb->fullmm);
1663
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1664
	if (vma_is_special_huge(vma)) {
1665 1666
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1667 1668
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1669
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1670
	} else if (is_huge_zero_pmd(orig_pmd)) {
1671
		zap_deposited_table(tlb->mm, pmd);
1672
		spin_unlock(ptl);
1673
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1674
	} else {
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
			page_remove_rmap(page, true);
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
			page = pfn_to_page(swp_offset(entry));
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1693
		if (PageAnon(page)) {
1694
			zap_deposited_table(tlb->mm, pmd);
1695 1696
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1697 1698
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1699
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1700
		}
1701

1702
		spin_unlock(ptl);
1703 1704
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1705
	}
1706
	return 1;
1707 1708
}

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1735
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1736
		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1737
{
1738
	spinlock_t *old_ptl, *new_ptl;
1739 1740
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1741
	bool force_flush = false;
1742 1743 1744 1745 1746 1747 1748

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1749
		return false;
1750 1751
	}

1752 1753
	/*
	 * We don't have to worry about the ordering of src and dst
1754
	 * ptlocks because exclusive mmap_lock prevents deadlock.
1755
	 */
1756 1757
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1758 1759 1760
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1761
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1762
		if (pmd_present(pmd))
1763
			force_flush = true;
1764
		VM_BUG_ON(!pmd_none(*new_pmd));
1765

1766
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1767
			pgtable_t pgtable;
1768 1769 1770
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1771 1772
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1773 1774
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1775 1776
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1777
		spin_unlock(old_ptl);
1778
		return true;
1779
	}
1780
	return false;
1781 1782
}

1783 1784 1785 1786 1787 1788
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1789
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1790
		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1791 1792
{
	struct mm_struct *mm = vma->vm_mm;
1793
	spinlock_t *ptl;
1794 1795 1796
	pmd_t entry;
	bool preserve_write;
	int ret;
1797
	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1798 1799
	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1800

1801
	ptl = __pmd_trans_huge_lock(pmd, vma);
1802 1803
	if (!ptl)
		return 0;
1804

1805 1806
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1807

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
		if (is_write_migration_entry(entry)) {
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
			make_migration_entry_read(&entry);
			newpmd = swp_entry_to_pmd(entry);
1821 1822
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1823 1824 1825 1826 1827 1828
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1829 1830 1831 1832 1833 1834 1835
	/*
	 * Avoid trapping faults against the zero page. The read-only
	 * data is likely to be read-cached on the local CPU and
	 * local/remote hits to the zero page are not interesting.
	 */
	if (prot_numa && is_huge_zero_pmd(*pmd))
		goto unlock;
1836

1837 1838 1839
	if (prot_numa && pmd_protnone(*pmd))
		goto unlock;

1840
	/*
1841
	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1842
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1843
	 * which is also under mmap_read_lock(mm):
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
1861
	entry = pmdp_invalidate(vma, addr, pmd);
1862

1863 1864 1865
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
	if (uffd_wp) {
		entry = pmd_wrprotect(entry);
		entry = pmd_mkuffd_wp(entry);
	} else if (uffd_wp_resolve) {
		/*
		 * Leave the write bit to be handled by PF interrupt
		 * handler, then things like COW could be properly
		 * handled.
		 */
		entry = pmd_clear_uffd_wp(entry);
	}
1877 1878 1879 1880 1881
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
1882 1883 1884 1885
	return ret;
}

/*
1886
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1887
 *
1888 1889
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1890
 */
1891
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1892
{
1893 1894
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1895 1896
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
1897 1898 1899
		return ptl;
	spin_unlock(ptl);
	return NULL;
1900 1901
}

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
1934
	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1935
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1936
	if (vma_is_special_huge(vma)) {
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

1954
	count_vm_event(THP_SPLIT_PUD);
1955 1956 1957 1958 1959 1960 1961 1962

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
1963
	struct mmu_notifier_range range;
1964

1965
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1966
				address & HPAGE_PUD_MASK,
1967 1968 1969
				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pud_lock(vma->vm_mm, pud);
1970 1971
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
1972
	__split_huge_pud_locked(vma, pud, range.start);
1973 1974 1975

out:
	spin_unlock(ptl);
1976 1977 1978 1979
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
1980
	mmu_notifier_invalidate_range_only_end(&range);
1981 1982 1983
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1984 1985 1986 1987 1988 1989 1990 1991
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

1992 1993 1994 1995 1996 1997
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
1998
	 * See Documentation/vm/mmu_notifier.rst
1999 2000
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2019
		unsigned long haddr, bool freeze)
2020 2021 2022 2023
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
2024
	pmd_t old_pmd, _pmd;
2025
	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2026
	unsigned long addr;
2027 2028 2029 2030 2031
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2032 2033
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
2034 2035 2036

	count_vm_event(THP_SPLIT_PMD);

2037 2038
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2039 2040 2041 2042 2043 2044
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
2045
		if (vma_is_special_huge(vma))
2046 2047
			return;
		page = pmd_page(_pmd);
2048 2049
		if (!PageDirty(page) && pmd_dirty(_pmd))
			set_page_dirty(page);
2050 2051 2052 2053
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
2054
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2055
		return;
2056
	} else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
2057 2058 2059 2060 2061 2062 2063 2064 2065
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2066 2067 2068
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2069 2070 2071 2072 2073 2074 2075 2076
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
2077 2078
	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
	 * 383 on page 105. Intel should be safe but is also warns that it's
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2092
	if (unlikely(pmd_migration)) {
2093 2094
		swp_entry_t entry;

2095
		entry = pmd_to_swp_entry(old_pmd);
2096
		page = pfn_to_page(swp_offset(entry));
2097 2098 2099
		write = is_write_migration_entry(entry);
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2100
		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2101
	} else {
2102
		page = pmd_page(old_pmd);
2103 2104 2105 2106 2107
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
2108
		uffd_wp = pmd_uffd_wp(old_pmd);
2109
	}
2110
	VM_BUG_ON_PAGE(!page_count(page), page);
2111
	page_ref_add(page, HPAGE_PMD_NR - 1);
2112

2113 2114 2115 2116
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2117 2118 2119
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2120
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2121 2122 2123 2124 2125 2126
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2127
		if (freeze || pmd_migration) {
2128 2129 2130
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
2131 2132
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2133 2134
			if (uffd_wp)
				entry = pte_swp_mkuffd_wp(entry);
2135
		} else {
2136
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2137
			entry = maybe_mkwrite(entry, vma);
2138 2139 2140 2141
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2142 2143
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2144 2145
			if (uffd_wp)
				entry = pte_mkuffd_wp(entry);
2146
		}
2147
		pte = pte_offset_map(&_pmd, addr);
2148
		BUG_ON(!pte_none(*pte));
2149
		set_pte_at(mm, addr, pte, entry);
2150
		if (!pmd_migration)
2151
			atomic_inc(&page[i]._mapcount);
2152
		pte_unmap(pte);
2153 2154
	}

2155 2156 2157 2158 2159 2160 2161
	if (!pmd_migration) {
		/*
		 * Set PG_double_map before dropping compound_mapcount to avoid
		 * false-negative page_mapped().
		 */
		if (compound_mapcount(page) > 1 &&
		    !TestSetPageDoubleMap(page)) {
2162
			for (i = 0; i < HPAGE_PMD_NR; i++)
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
				atomic_inc(&page[i]._mapcount);
		}

		lock_page_memcg(page);
		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
			/* Last compound_mapcount is gone. */
			__dec_lruvec_page_state(page, NR_ANON_THPS);
			if (TestClearPageDoubleMap(page)) {
				/* No need in mapcount reference anymore */
				for (i = 0; i < HPAGE_PMD_NR; i++)
					atomic_dec(&page[i]._mapcount);
			}
2175
		}
2176
		unlock_page_memcg(page);
2177 2178 2179 2180
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2181 2182

	if (freeze) {
2183
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2184 2185 2186 2187
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2188 2189 2190
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2191
		unsigned long address, bool freeze, struct page *page)
2192 2193
{
	spinlock_t *ptl;
2194
	struct mmu_notifier_range range;
2195 2196
	bool was_locked = false;
	pmd_t _pmd;
2197

2198
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2199
				address & HPAGE_PMD_MASK,
2200 2201 2202
				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pmd_lock(vma->vm_mm, pmd);
2203 2204 2205 2206 2207 2208

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
2209 2210 2211 2212 2213 2214
	if (page) {
		VM_WARN_ON_ONCE(!PageLocked(page));
		was_locked = true;
		if (page != pmd_page(*pmd))
			goto out;
	}
2215

2216
repeat:
2217
	if (pmd_trans_huge(*pmd)) {
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
		if (!page) {
			page = pmd_page(*pmd);
			if (unlikely(!trylock_page(page))) {
				get_page(page);
				_pmd = *pmd;
				spin_unlock(ptl);
				lock_page(page);
				spin_lock(ptl);
				if (unlikely(!pmd_same(*pmd, _pmd))) {
					unlock_page(page);
					put_page(page);
					page = NULL;
					goto repeat;
				}
				put_page(page);
			}
		}
2235
		if (PageMlocked(page))
2236
			clear_page_mlock(page);
2237
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2238
		goto out;
2239
	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2240
out:
2241
	spin_unlock(ptl);
2242 2243
	if (!was_locked && page)
		unlock_page(page);
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
2257
	mmu_notifier_invalidate_range_only_end(&range);
2258 2259
}

2260 2261
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2262
{
2263
	pgd_t *pgd;
2264
	p4d_t *p4d;
2265
	pud_t *pud;
2266 2267
	pmd_t *pmd;

2268
	pgd = pgd_offset(vma->vm_mm, address);
2269 2270 2271
	if (!pgd_present(*pgd))
		return;

2272 2273 2274 2275 2276
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2277 2278 2279 2280
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2281

2282
	__split_huge_pmd(vma, pmd, address, freeze, page);
2283 2284
}

2285
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2298
		split_huge_pmd_address(vma, start, false, NULL);
2299 2300 2301 2302 2303 2304 2305 2306 2307

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2308
		split_huge_pmd_address(vma, end, false, NULL);
2309 2310 2311

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
2312
	 * vm_next->vm_start isn't hpage aligned and it could previously
2313 2314 2315 2316 2317
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
2318
		nstart += adjust_next;
2319 2320 2321
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2322
			split_huge_pmd_address(next, nstart, false, NULL);
2323 2324
	}
}
2325

2326
static void unmap_page(struct page *page)
2327
{
2328
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK |
2329
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
M
Minchan Kim 已提交
2330
	bool unmap_success;
2331 2332 2333

	VM_BUG_ON_PAGE(!PageHead(page), page);

2334
	if (PageAnon(page))
2335
		ttu_flags |= TTU_SPLIT_FREEZE;
2336

M
Minchan Kim 已提交
2337 2338
	unmap_success = try_to_unmap(page, ttu_flags);
	VM_BUG_ON_PAGE(!unmap_success, page);
2339 2340
}

2341
static void remap_page(struct page *page, unsigned int nr)
2342
{
2343
	int i;
2344 2345 2346
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
2347
		for (i = 0; i < nr; i++)
2348 2349
			remove_migration_ptes(page + i, page + i, true);
	}
2350 2351
}

2352
static void __split_huge_page_tail(struct page *head, int tail,
2353 2354 2355 2356
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2357
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2358 2359

	/*
2360 2361 2362 2363
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
	 * for exmaple lock_page() which set PG_waiters.
2364 2365 2366 2367 2368
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2369
			 (1L << PG_swapcache) |
2370 2371 2372
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2373
			 (1L << PG_workingset) |
2374
			 (1L << PG_locked) |
2375
			 (1L << PG_unevictable) |
2376 2377 2378
#ifdef CONFIG_64BIT
			 (1L << PG_arch_2) |
#endif
2379
			 (1L << PG_dirty)));
2380

2381 2382 2383 2384 2385 2386
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2387
	/* Page flags must be visible before we make the page non-compound. */
2388 2389
	smp_wmb();

2390 2391 2392 2393 2394 2395
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2396 2397
	clear_compound_head(page_tail);

2398 2399 2400 2401
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2402 2403 2404 2405 2406 2407
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2408 2409 2410 2411 2412 2413

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2414 2415 2416
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2417
static void __split_huge_page(struct page *page, struct list_head *list,
2418
		pgoff_t end, unsigned long flags)
2419 2420
{
	struct page *head = compound_head(page);
2421
	pg_data_t *pgdat = page_pgdat(head);
2422
	struct lruvec *lruvec;
2423 2424
	struct address_space *swap_cache = NULL;
	unsigned long offset = 0;
2425
	unsigned int nr = thp_nr_pages(head);
2426
	int i;
2427

2428
	lruvec = mem_cgroup_page_lruvec(head, pgdat);
2429 2430 2431 2432

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

2433 2434 2435 2436 2437 2438 2439 2440
	if (PageAnon(head) && PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		offset = swp_offset(entry);
		swap_cache = swap_address_space(entry);
		xa_lock(&swap_cache->i_pages);
	}

2441
	for (i = nr - 1; i >= 1; i--) {
2442
		__split_huge_page_tail(head, i, lruvec, list);
2443 2444
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
2445
			ClearPageDirty(head + i);
2446
			__delete_from_page_cache(head + i, NULL);
2447 2448
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2449
			put_page(head + i);
2450 2451 2452 2453 2454 2455
		} else if (!PageAnon(page)) {
			__xa_store(&head->mapping->i_pages, head[i].index,
					head + i, 0);
		} else if (swap_cache) {
			__xa_store(&swap_cache->i_pages, offset + i,
					head + i, 0);
2456 2457
		}
	}
2458 2459

	ClearPageCompound(head);
2460

2461
	split_page_owner(head, nr);
2462

2463 2464
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
M
Matthew Wilcox 已提交
2465
		/* Additional pin to swap cache */
2466
		if (PageSwapCache(head)) {
2467
			page_ref_add(head, 2);
2468 2469
			xa_unlock(&swap_cache->i_pages);
		} else {
2470
			page_ref_inc(head);
2471
		}
2472
	} else {
M
Matthew Wilcox 已提交
2473
		/* Additional pin to page cache */
2474
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2475
		xa_unlock(&head->mapping->i_pages);
2476 2477
	}

2478
	spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2479

2480
	remap_page(head, nr);
2481

H
Huang Ying 已提交
2482 2483 2484 2485 2486 2487
	if (PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		split_swap_cluster(entry);
	}

2488
	for (i = 0; i < nr; i++) {
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2505 2506
int total_mapcount(struct page *page)
{
2507
	int i, compound, nr, ret;
2508 2509 2510 2511 2512 2513

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
2514
	compound = compound_mapcount(page);
2515
	nr = compound_nr(page);
2516
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2517 2518
		return compound;
	ret = compound;
2519
	for (i = 0; i < nr; i++)
2520
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2521 2522
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
2523
		return ret - compound * nr;
2524
	if (PageDoubleMap(page))
2525
		ret -= nr;
2526 2527 2528
	return ret;
}

2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
2570
	for (i = 0; i < thp_nr_pages(page); i++) {
2571 2572 2573 2574 2575 2576
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
2577
		_total_mapcount -= thp_nr_pages(page);
2578 2579 2580 2581 2582 2583 2584 2585 2586
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2587 2588 2589 2590 2591
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
	int extra_pins;

M
Matthew Wilcox 已提交
2592
	/* Additional pins from page cache */
2593
	if (PageAnon(page))
2594
		extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2595
	else
2596
		extra_pins = thp_nr_pages(page);
2597 2598 2599 2600 2601
	if (pextra_pins)
		*pextra_pins = extra_pins;
	return total_mapcount(page) == page_count(page) - extra_pins - 1;
}

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2624
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2625
	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2626 2627 2628
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2629
	unsigned long flags;
2630
	pgoff_t end;
2631

2632
	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2633 2634
	VM_BUG_ON_PAGE(!PageLocked(head), head);
	VM_BUG_ON_PAGE(!PageCompound(head), head);
2635

2636
	if (PageWriteback(head))
2637 2638
		return -EBUSY;

2639 2640
	if (PageAnon(head)) {
		/*
2641
		 * The caller does not necessarily hold an mmap_lock that would
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2653
		end = -1;
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2667 2668 2669 2670 2671 2672 2673 2674 2675

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2676 2677 2678
	}

	/*
2679
	 * Racy check if we can split the page, before unmap_page() will
2680 2681
	 * split PMDs
	 */
2682
	if (!can_split_huge_page(head, &extra_pins)) {
2683 2684 2685 2686
		ret = -EBUSY;
		goto out_unlock;
	}

2687
	unmap_page(head);
2688 2689
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2690
	/* prevent PageLRU to go away from under us, and freeze lru stats */
2691
	spin_lock_irqsave(&pgdata->lru_lock, flags);
2692 2693

	if (mapping) {
M
Matthew Wilcox 已提交
2694
		XA_STATE(xas, &mapping->i_pages, page_index(head));
2695 2696

		/*
M
Matthew Wilcox 已提交
2697
		 * Check if the head page is present in page cache.
2698 2699
		 * We assume all tail are present too, if head is there.
		 */
M
Matthew Wilcox 已提交
2700 2701
		xa_lock(&mapping->i_pages);
		if (xas_load(&xas) != head)
2702 2703 2704
			goto fail;
	}

2705
	/* Prevent deferred_split_scan() touching ->_refcount */
2706
	spin_lock(&ds_queue->split_queue_lock);
2707 2708
	count = page_count(head);
	mapcount = total_mapcount(head);
2709
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2710
		if (!list_empty(page_deferred_list(head))) {
2711
			ds_queue->split_queue_len--;
2712 2713
			list_del(page_deferred_list(head));
		}
2714
		spin_unlock(&ds_queue->split_queue_lock);
2715
		if (mapping) {
2716
			if (PageSwapBacked(head))
2717
				__dec_lruvec_page_state(head, NR_SHMEM_THPS);
2718
			else
2719
				__dec_lruvec_page_state(head, NR_FILE_THPS);
2720 2721
		}

2722
		__split_huge_page(page, list, end, flags);
H
Huang Ying 已提交
2723
		ret = 0;
2724
	} else {
2725 2726 2727 2728 2729 2730 2731 2732
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
2733
		spin_unlock(&ds_queue->split_queue_lock);
2734
fail:		if (mapping)
M
Matthew Wilcox 已提交
2735
			xa_unlock(&mapping->i_pages);
2736
		spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2737
		remap_page(head, thp_nr_pages(head));
2738 2739 2740 2741
		ret = -EBUSY;
	}

out_unlock:
2742 2743 2744 2745 2746 2747
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2748 2749 2750 2751
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2752 2753 2754

void free_transhuge_page(struct page *page)
{
2755
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2756 2757
	unsigned long flags;

2758
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2759
	if (!list_empty(page_deferred_list(page))) {
2760
		ds_queue->split_queue_len--;
2761 2762
		list_del(page_deferred_list(page));
	}
2763
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2764 2765 2766 2767 2768
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2769 2770 2771 2772
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
#ifdef CONFIG_MEMCG
	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
#endif
2773 2774 2775 2776
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
	/*
	 * The try_to_unmap() in page reclaim path might reach here too,
	 * this may cause a race condition to corrupt deferred split queue.
	 * And, if page reclaim is already handling the same page, it is
	 * unnecessary to handle it again in shrinker.
	 *
	 * Check PageSwapCache to determine if the page is being
	 * handled by page reclaim since THP swap would add the page into
	 * swap cache before calling try_to_unmap().
	 */
	if (PageSwapCache(page))
		return;

2790
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2791
	if (list_empty(page_deferred_list(page))) {
2792
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2793 2794
		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
		ds_queue->split_queue_len++;
2795 2796 2797 2798 2799
#ifdef CONFIG_MEMCG
		if (memcg)
			memcg_set_shrinker_bit(memcg, page_to_nid(page),
					       deferred_split_shrinker.id);
#endif
2800
	}
2801
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2802 2803 2804 2805 2806
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2807
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2808
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2809 2810 2811 2812 2813

#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif
2814
	return READ_ONCE(ds_queue->split_queue_len);
2815 2816 2817 2818 2819
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2820
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2821
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2822 2823 2824 2825 2826
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2827 2828 2829 2830 2831
#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif

2832
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2833
	/* Take pin on all head pages to avoid freeing them under us */
2834
	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2835 2836
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2837 2838 2839 2840
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2841
			list_del_init(page_deferred_list(page));
2842
			ds_queue->split_queue_len--;
2843
		}
2844 2845
		if (!--sc->nr_to_scan)
			break;
2846
	}
2847
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2848 2849 2850

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
2851 2852
		if (!trylock_page(page))
			goto next;
2853 2854 2855 2856
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2857
next:
2858 2859 2860
		put_page(page);
	}

2861 2862 2863
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
	list_splice_tail(&list, &ds_queue->split_queue);
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2864

2865 2866 2867 2868
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
2869
	if (!split && list_empty(&ds_queue->split_queue))
2870 2871
		return SHRINK_STOP;
	return split;
2872 2873 2874 2875 2876 2877
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2878 2879
	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
		 SHRINKER_NONSLAB,
2880
};
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2906
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

2919
	pr_info("%lu of %lu THP split\n", split, total);
2920 2921 2922

	return 0;
}
2923
DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2924 2925 2926 2927
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
2928 2929
	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
			    &split_huge_pages_fops);
2930 2931 2932 2933
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
2944
	pmd_t pmdswp;
2945 2946 2947 2948 2949

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2950
	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2951 2952 2953
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
	entry = make_migration_entry(page, pmd_write(pmdval));
2954 2955 2956 2957
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
	page_remove_rmap(page, true);
	put_page(page);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2977 2978
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
2979
	if (is_write_migration_entry(entry))
2980
		pmde = maybe_pmd_mkwrite(pmde, vma);
2981 2982

	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2983 2984 2985 2986
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
		page_add_file_rmap(new, true);
2987
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2988
	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2989 2990 2991 2992
		mlock_vma_page(new);
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif