huge_memory.c 85.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 */

6 7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

8 9
#include <linux/mm.h>
#include <linux/sched.h>
10
#include <linux/sched/coredump.h>
11
#include <linux/sched/numa_balancing.h>
12 13 14 15 16
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
17
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
18
#include <linux/mm_inline.h>
19
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
20
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
21
#include <linux/khugepaged.h>
22
#include <linux/freezer.h>
23
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
24
#include <linux/mman.h>
25
#include <linux/memremap.h>
R
Ralf Baechle 已提交
26
#include <linux/pagemap.h>
27
#include <linux/debugfs.h>
28
#include <linux/migrate.h>
29
#include <linux/hashtable.h>
30
#include <linux/userfaultfd_k.h>
31
#include <linux/page_idle.h>
32
#include <linux/shmem_fs.h>
33
#include <linux/oom.h>
34
#include <linux/numa.h>
35
#include <linux/page_owner.h>
36

37 38 39 40
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
41
/*
42 43 44 45
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 47
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
48
 */
49
unsigned long transparent_hugepage_flags __read_mostly =
50
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
51
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 53 54 55
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
56
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 58
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
59

60
static struct shrinker deferred_split_shrinker;
61

62
static atomic_t huge_zero_refcount;
63
struct page *huge_zero_page __read_mostly;
64

65 66
bool transparent_hugepage_enabled(struct vm_area_struct *vma)
{
67 68 69 70 71
	/* The addr is used to check if the vma size fits */
	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;

	if (!transhuge_vma_suitable(vma, addr))
		return false;
72 73
	if (vma_is_anonymous(vma))
		return __transparent_hugepage_enabled(vma);
74 75
	if (vma_is_shmem(vma))
		return shmem_huge_enabled(vma);
76 77 78 79

	return false;
}

80
static struct page *get_huge_zero_page(void)
81 82 83 84
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85
		return READ_ONCE(huge_zero_page);
86 87

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88
			HPAGE_PMD_ORDER);
89 90
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91
		return NULL;
92 93
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
94
	preempt_disable();
95
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96
		preempt_enable();
97
		__free_pages(zero_page, compound_order(zero_page));
98 99 100 101 102 103
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
104
	return READ_ONCE(huge_zero_page);
105 106
}

107
static void put_huge_zero_page(void)
108
{
109 110 111 112 113
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 115
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

136 137
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
138
{
139 140 141
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
142

143 144 145
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
146
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 148
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
149
		__free_pages(zero_page, compound_order(zero_page));
150
		return HPAGE_PMD_NR;
151 152 153
	}

	return 0;
154 155
}

156
static struct shrinker huge_zero_page_shrinker = {
157 158
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
159 160 161
	.seeks = DEFAULT_SEEKS,
};

162 163 164 165
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
166 167 168 169 170 171
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [madvise] never\n");
	else
		return sprintf(buf, "always madvise [never]\n");
172
}
173

174 175 176 177
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
178
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
179

180
	if (sysfs_streq(buf, "always")) {
181 182
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183
	} else if (sysfs_streq(buf, "madvise")) {
184 185
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
186
	} else if (sysfs_streq(buf, "never")) {
187 188 189 190
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
191 192

	if (ret > 0) {
193
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
194 195 196 197
		if (err)
			ret = err;
	}
	return ret;
198 199 200 201
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

202
ssize_t single_hugepage_flag_show(struct kobject *kobj,
203 204 205
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
206 207
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
208
}
209

210
ssize_t single_hugepage_flag_store(struct kobject *kobj,
211 212 213 214
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
215 216 217 218 219 220 221 222 223 224
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
225
		set_bit(flag, &transparent_hugepage_flags);
226
	else
227 228 229 230 231 232 233 234
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
235
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
236
		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
237
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
238 239 240 241 242 243
		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
244
}
245

246 247 248 249
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
250
	if (sysfs_streq(buf, "always")) {
251 252 253 254
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255
	} else if (sysfs_streq(buf, "defer+madvise")) {
256 257 258 259
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260
	} else if (sysfs_streq(buf, "defer")) {
261 262 263 264
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
265
	} else if (sysfs_streq(buf, "madvise")) {
266 267 268 269
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270
	} else if (sysfs_streq(buf, "never")) {
271 272 273 274 275 276 277 278
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
279 280 281 282
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

283 284 285
static ssize_t use_zero_page_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
286
	return single_hugepage_flag_show(kobj, attr, buf,
287 288 289 290 291
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
292
	return single_hugepage_flag_store(kobj, attr, buf, count,
293 294 295 296
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
297 298 299 300 301 302 303 304 305

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

306 307 308 309
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
				struct kobj_attribute *attr, char *buf)
{
310
	return single_hugepage_flag_show(kobj, attr, buf,
311 312 313 314 315 316
				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       const char *buf, size_t count)
{
317
	return single_hugepage_flag_store(kobj, attr, buf, count,
318 319 320 321 322 323 324 325 326
				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */

static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
327
	&use_zero_page_attr.attr,
328
	&hpage_pmd_size_attr.attr,
329
#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
330 331
	&shmem_enabled_attr.attr,
#endif
332 333 334 335 336 337
#ifdef CONFIG_DEBUG_VM
	&debug_cow_attr.attr,
#endif
	NULL,
};

338
static const struct attribute_group hugepage_attr_group = {
339
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
340 341
};

S
Shaohua Li 已提交
342
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
343 344 345
{
	int err;

S
Shaohua Li 已提交
346 347
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
348
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
349
		return -ENOMEM;
A
Andrea Arcangeli 已提交
350 351
	}

S
Shaohua Li 已提交
352
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
353
	if (err) {
354
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
355
		goto delete_obj;
A
Andrea Arcangeli 已提交
356 357
	}

S
Shaohua Li 已提交
358
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
359
	if (err) {
360
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
361
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
362
	}
S
Shaohua Li 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

400 401 402 403 404 405 406 407 408 409
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
410 411
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
412
		goto err_sysfs;
A
Andrea Arcangeli 已提交
413

414
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
415
	if (err)
416
		goto err_slab;
A
Andrea Arcangeli 已提交
417

418 419 420
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
421 422 423
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
424

425 426 427 428 429
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
430
	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
431
		transparent_hugepage_flags = 0;
432 433
		return 0;
	}
434

435
	err = start_stop_khugepaged();
436 437
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
438

S
Shaohua Li 已提交
439
	return 0;
440
err_khugepaged:
441 442
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
443 444
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
445
	khugepaged_destroy();
446
err_slab:
S
Shaohua Li 已提交
447
	hugepage_exit_sysfs(hugepage_kobj);
448
err_sysfs:
A
Andrea Arcangeli 已提交
449
	return err;
450
}
451
subsys_initcall(hugepage_init);
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
479
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
480 481 482 483
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

484
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
485
{
486
	if (likely(vma->vm_flags & VM_WRITE))
487 488 489 490
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

491 492
#ifdef CONFIG_MEMCG
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
493
{
494 495 496 497 498 499 500
	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	if (memcg)
		return &memcg->deferred_split_queue;
	else
		return &pgdat->deferred_split_queue;
501
}
502 503 504 505 506 507 508 509
#else
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
{
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	return &pgdat->deferred_split_queue;
}
#endif
510 511 512 513 514 515 516 517 518 519 520 521

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

522 523 524 525 526 527 528 529 530 531 532
bool is_transparent_hugepage(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	return is_huge_zero_page(page) ||
	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
}
EXPORT_SYMBOL_GPL(is_transparent_hugepage);

533 534
static unsigned long __thp_get_unmapped_area(struct file *filp,
		unsigned long addr, unsigned long len,
535 536 537 538
		loff_t off, unsigned long flags, unsigned long size)
{
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
539
	unsigned long len_pad, ret;
540 541 542 543 544 545 546 547

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

548
	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
549
					      off >> PAGE_SHIFT, flags);
550 551 552 553 554 555

	/*
	 * The failure might be due to length padding. The caller will retry
	 * without the padding.
	 */
	if (IS_ERR_VALUE(ret))
556 557
		return 0;

558 559 560 561 562 563 564 565 566
	/*
	 * Do not try to align to THP boundary if allocation at the address
	 * hint succeeds.
	 */
	if (ret == addr)
		return addr;

	ret += (off - ret) & (size - 1);
	return ret;
567 568 569 570 571
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
572
	unsigned long ret;
573 574 575 576 577
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

578 579 580 581
	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
	if (ret)
		return ret;
out:
582 583 584 585
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

586 587
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
588
{
J
Jan Kara 已提交
589
	struct vm_area_struct *vma = vmf->vma;
590
	struct mem_cgroup *memcg;
591
	pgtable_t pgtable;
J
Jan Kara 已提交
592
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
593
	vm_fault_t ret = 0;
594

595
	VM_BUG_ON_PAGE(!PageCompound(page), page);
596

597
	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
598 599 600 601
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
		return VM_FAULT_FALLBACK;
	}
602

603
	pgtable = pte_alloc_one(vma->vm_mm);
604
	if (unlikely(!pgtable)) {
605 606
		ret = VM_FAULT_OOM;
		goto release;
607
	}
608

609
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
610 611 612 613 614
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
615 616
	__SetPageUptodate(page);

J
Jan Kara 已提交
617 618
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
619
		goto unlock_release;
620 621
	} else {
		pmd_t entry;
622

623 624 625 626
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

627 628
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
629
			vm_fault_t ret2;
630

J
Jan Kara 已提交
631
			spin_unlock(vmf->ptl);
632
			mem_cgroup_cancel_charge(page, memcg, true);
633
			put_page(page);
K
Kirill A. Shutemov 已提交
634
			pte_free(vma->vm_mm, pgtable);
635 636 637
			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
			return ret2;
638 639
		}

640
		entry = mk_huge_pmd(page, vma->vm_page_prot);
641
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
642
		page_add_new_anon_rmap(page, vma, haddr, true);
643
		mem_cgroup_commit_charge(page, memcg, false, true);
644
		lru_cache_add_active_or_unevictable(page, vma);
J
Jan Kara 已提交
645 646
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
K
Kirill A. Shutemov 已提交
647
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
648
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
649
		spin_unlock(vmf->ptl);
650
		count_vm_event(THP_FAULT_ALLOC);
651
		count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
652 653
	}

654
	return 0;
655 656 657 658 659 660 661 662 663
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	mem_cgroup_cancel_charge(page, memcg, true);
	put_page(page);
	return ret;

664 665
}

666
/*
667 668 669 670 671 672 673
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
674
 */
675
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
676
{
677
	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
678

679
	/* Always do synchronous compaction */
680 681
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
682 683

	/* Kick kcompactd and fail quickly */
684
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
685
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
686 687

	/* Synchronous compaction if madvised, otherwise kick kcompactd */
688
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
689 690 691
		return GFP_TRANSHUGE_LIGHT |
			(vma_madvised ? __GFP_DIRECT_RECLAIM :
					__GFP_KSWAPD_RECLAIM);
692 693

	/* Only do synchronous compaction if madvised */
694
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
695 696
		return GFP_TRANSHUGE_LIGHT |
		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
697

698
	return GFP_TRANSHUGE_LIGHT;
699 700
}

701
/* Caller must hold page table lock. */
702
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
703
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
704
		struct page *zero_page)
705 706
{
	pmd_t entry;
A
Andrew Morton 已提交
707 708
	if (!pmd_none(*pmd))
		return false;
709
	entry = mk_pmd(zero_page, vma->vm_page_prot);
710
	entry = pmd_mkhuge(entry);
711 712
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
713
	set_pmd_at(mm, haddr, pmd, entry);
714
	mm_inc_nr_ptes(mm);
A
Andrew Morton 已提交
715
	return true;
716 717
}

718
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
719
{
J
Jan Kara 已提交
720
	struct vm_area_struct *vma = vmf->vma;
721
	gfp_t gfp;
722
	struct page *page;
J
Jan Kara 已提交
723
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
724

725
	if (!transhuge_vma_suitable(vma, haddr))
726
		return VM_FAULT_FALLBACK;
727 728
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
729
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
730
		return VM_FAULT_OOM;
J
Jan Kara 已提交
731
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
732
			!mm_forbids_zeropage(vma->vm_mm) &&
733 734 735 736
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
		bool set;
737
		vm_fault_t ret;
738
		pgtable = pte_alloc_one(vma->vm_mm);
739
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
740
			return VM_FAULT_OOM;
741
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
742
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
743
			pte_free(vma->vm_mm, pgtable);
744
			count_vm_event(THP_FAULT_FALLBACK);
745
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
746
		}
J
Jan Kara 已提交
747
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
748 749
		ret = 0;
		set = false;
J
Jan Kara 已提交
750
		if (pmd_none(*vmf->pmd)) {
751 752 753 754
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
755 756
				spin_unlock(vmf->ptl);
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
757 758
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
759
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
760 761
						   haddr, vmf->pmd, zero_page);
				spin_unlock(vmf->ptl);
762 763 764
				set = true;
			}
		} else
J
Jan Kara 已提交
765
			spin_unlock(vmf->ptl);
766
		if (!set)
K
Kirill A. Shutemov 已提交
767
			pte_free(vma->vm_mm, pgtable);
768
		return ret;
769
	}
770 771
	gfp = alloc_hugepage_direct_gfpmask(vma);
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
772 773
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
774
		return VM_FAULT_FALLBACK;
775
	}
776
	prep_transhuge_page(page);
J
Jan Kara 已提交
777
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
778 779
}

780
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
781 782
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
783 784 785 786 787 788
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

804 805 806
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
807
	if (write) {
808 809
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
810
	}
811 812 813

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
814
		mm_inc_nr_ptes(mm);
815
		pgtable = NULL;
816 817
	}

818 819
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
820 821

out_unlock:
M
Matthew Wilcox 已提交
822
	spin_unlock(ptl);
823 824
	if (pgtable)
		pte_free(mm, pgtable);
M
Matthew Wilcox 已提交
825 826
}

827
vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
M
Matthew Wilcox 已提交
828
{
829 830
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
M
Matthew Wilcox 已提交
831
	pgprot_t pgprot = vma->vm_page_prot;
832
	pgtable_t pgtable = NULL;
833

M
Matthew Wilcox 已提交
834 835 836 837 838
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
839 840
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
841 842 843 844 845 846
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
847

848
	if (arch_needs_pgtable_deposit()) {
849
		pgtable = pte_alloc_one(vma->vm_mm);
850 851 852 853
		if (!pgtable)
			return VM_FAULT_OOM;
	}

854 855
	track_pfn_insert(vma, &pgprot, pfn);

856
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
857
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
858
}
859
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
M
Matthew Wilcox 已提交
860

861
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
862
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
863
{
864
	if (likely(vma->vm_flags & VM_WRITE))
865 866 867 868 869 870 871 872 873 874 875 876
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
877 878 879 880 881 882 883 884 885 886 887 888 889 890
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

891 892 893 894
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
895 896
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
897 898 899
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
900 901

out_unlock:
902 903 904
	spin_unlock(ptl);
}

905
vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
906
{
907 908
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;
909
	pgprot_t pgprot = vma->vm_page_prot;
910

911 912 913 914 915
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
916 917
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
918 919 920 921 922 923 924 925 926
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

927
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
928 929 930 931 932
	return VM_FAULT_NOPAGE;
}
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

933
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
934
		pmd_t *pmd, int flags)
935 936 937
{
	pmd_t _pmd;

938 939 940
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
941
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
942
				pmd, _pmd, flags & FOLL_WRITE))
943 944 945 946
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
947
		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
948 949 950 951 952 953 954
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

955 956 957 958 959 960
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

961
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
962 963 964 965 966 967 968 969
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
970
		touch_pmd(vma, addr, pmd, flags);
971 972 973 974 975 976 977 978 979

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
980 981
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
982 983 984 985 986 987 988
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);

	return page;
}

989 990 991 992
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
993
	spinlock_t *dst_ptl, *src_ptl;
994 995
	struct page *src_page;
	pmd_t pmd;
996
	pgtable_t pgtable = NULL;
997
	int ret = -ENOMEM;
998

999 1000 1001 1002
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

1003
	pgtable = pte_alloc_one(dst_mm);
1004 1005
	if (unlikely(!pgtable))
		goto out;
1006

1007 1008 1009
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1010 1011 1012

	ret = -EAGAIN;
	pmd = *src_pmd;
1013 1014 1015 1016 1017 1018 1019 1020 1021

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
		if (is_write_migration_entry(entry)) {
			make_migration_entry_read(&entry);
			pmd = swp_entry_to_pmd(entry);
1022 1023
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
1024 1025
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
1026
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1027
		mm_inc_nr_ptes(dst_mm);
1028
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1029 1030 1031 1032 1033 1034
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

1035
	if (unlikely(!pmd_trans_huge(pmd))) {
1036 1037 1038
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
1039
	/*
1040
	 * When page table lock is held, the huge zero pmd should not be
1041 1042 1043 1044
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
1045
		struct page *zero_page;
1046 1047 1048 1049 1050
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1051
		zero_page = mm_get_huge_zero_page(dst_mm);
1052
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1053
				zero_page);
1054 1055 1056
		ret = 0;
		goto out_unlock;
	}
1057

1058 1059 1060 1061 1062
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1063
	mm_inc_nr_ptes(dst_mm);
1064
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1065 1066 1067 1068 1069 1070 1071

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1072 1073
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1074 1075 1076 1077
out:
	return ret;
}

1078 1079
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1080
		pud_t *pud, int flags)
1081 1082 1083
{
	pud_t _pud;

1084 1085 1086
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1087
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1088
				pud, _pud, flags & FOLL_WRITE))
1089 1090 1091 1092
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1093
		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1094 1095 1096 1097 1098 1099 1100
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1101
	if (flags & FOLL_WRITE && !pud_write(*pud))
1102 1103 1104 1105 1106 1107 1108 1109
		return NULL;

	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1110
		touch_pud(vma, addr, pud, flags);
1111 1112 1113 1114 1115 1116 1117 1118 1119

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1120 1121
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

J
Jan Kara 已提交
1188
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1189 1190 1191
{
	pmd_t entry;
	unsigned long haddr;
1192
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1193

J
Jan Kara 已提交
1194 1195
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1196 1197 1198
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1199 1200
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1201
	haddr = vmf->address & HPAGE_PMD_MASK;
1202
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1203
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1204 1205

unlock:
J
Jan Kara 已提交
1206
	spin_unlock(vmf->ptl);
1207 1208
}

1209 1210
static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
			pmd_t orig_pmd, struct page *page)
1211
{
J
Jan Kara 已提交
1212 1213
	struct vm_area_struct *vma = vmf->vma;
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1214
	struct mem_cgroup *memcg;
1215 1216
	pgtable_t pgtable;
	pmd_t _pmd;
1217 1218
	int i;
	vm_fault_t ret = 0;
1219
	struct page **pages;
1220
	struct mmu_notifier_range range;
1221

1222 1223
	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
			      GFP_KERNEL);
1224 1225 1226 1227 1228 1229
	if (unlikely(!pages)) {
		ret |= VM_FAULT_OOM;
		goto out;
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
M
Michal Hocko 已提交
1230
		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
J
Jan Kara 已提交
1231
					       vmf->address, page_to_nid(page));
A
Andrea Arcangeli 已提交
1232
		if (unlikely(!pages[i] ||
1233
			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
K
Kirill A. Shutemov 已提交
1234
				     GFP_KERNEL, &memcg, false))) {
A
Andrea Arcangeli 已提交
1235
			if (pages[i])
1236
				put_page(pages[i]);
A
Andrea Arcangeli 已提交
1237
			while (--i >= 0) {
1238 1239
				memcg = (void *)page_private(pages[i]);
				set_page_private(pages[i], 0);
1240 1241
				mem_cgroup_cancel_charge(pages[i], memcg,
						false);
A
Andrea Arcangeli 已提交
1242 1243
				put_page(pages[i]);
			}
1244 1245 1246 1247
			kfree(pages);
			ret |= VM_FAULT_OOM;
			goto out;
		}
1248
		set_page_private(pages[i], (unsigned long)memcg);
1249 1250 1251 1252
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		copy_user_highpage(pages[i], page + i,
1253
				   haddr + PAGE_SIZE * i, vma);
1254 1255 1256 1257
		__SetPageUptodate(pages[i]);
		cond_resched();
	}

1258 1259
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
				haddr, haddr + HPAGE_PMD_SIZE);
1260
	mmu_notifier_invalidate_range_start(&range);
1261

J
Jan Kara 已提交
1262 1263
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1264
		goto out_free_pages;
1265
	VM_BUG_ON_PAGE(!PageHead(page), page);
1266

1267 1268 1269 1270 1271 1272
	/*
	 * Leave pmd empty until pte is filled note we must notify here as
	 * concurrent CPU thread might write to new page before the call to
	 * mmu_notifier_invalidate_range_end() happens which can lead to a
	 * device seeing memory write in different order than CPU.
	 *
1273
	 * See Documentation/vm/mmu_notifier.rst
1274
	 */
J
Jan Kara 已提交
1275
	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1276

J
Jan Kara 已提交
1277
	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
K
Kirill A. Shutemov 已提交
1278
	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1279 1280

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
K
Kirill A. Shutemov 已提交
1281
		pte_t entry;
1282 1283
		entry = mk_pte(pages[i], vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1284 1285
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
J
Jan Kara 已提交
1286
		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1287
		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1288
		lru_cache_add_active_or_unevictable(pages[i], vma);
J
Jan Kara 已提交
1289 1290 1291 1292
		vmf->pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*vmf->pte));
		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
		pte_unmap(vmf->pte);
1293 1294 1295 1296
	}
	kfree(pages);

	smp_wmb(); /* make pte visible before pmd */
J
Jan Kara 已提交
1297
	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1298
	page_remove_rmap(page, true);
J
Jan Kara 已提交
1299
	spin_unlock(vmf->ptl);
1300

1301 1302 1303 1304
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
1305
	mmu_notifier_invalidate_range_only_end(&range);
1306

1307 1308 1309 1310 1311 1312 1313
	ret |= VM_FAULT_WRITE;
	put_page(page);

out:
	return ret;

out_free_pages:
J
Jan Kara 已提交
1314
	spin_unlock(vmf->ptl);
1315
	mmu_notifier_invalidate_range_end(&range);
A
Andrea Arcangeli 已提交
1316
	for (i = 0; i < HPAGE_PMD_NR; i++) {
1317 1318
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
1319
		mem_cgroup_cancel_charge(pages[i], memcg, false);
1320
		put_page(pages[i]);
A
Andrea Arcangeli 已提交
1321
	}
1322 1323 1324 1325
	kfree(pages);
	goto out;
}

1326
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1327
{
J
Jan Kara 已提交
1328
	struct vm_area_struct *vma = vmf->vma;
1329
	struct page *page = NULL, *new_page;
1330
	struct mem_cgroup *memcg;
J
Jan Kara 已提交
1331
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1332
	struct mmu_notifier_range range;
1333
	gfp_t huge_gfp;			/* for allocation and charge */
1334
	vm_fault_t ret = 0;
1335

J
Jan Kara 已提交
1336
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1337
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1338 1339
	if (is_huge_zero_pmd(orig_pmd))
		goto alloc;
J
Jan Kara 已提交
1340 1341
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1342 1343 1344
		goto out_unlock;

	page = pmd_page(orig_pmd);
1345
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1346 1347
	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
1348
	 * part.
1349
	 */
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
			unlock_page(page);
			put_page(page);
			goto out_unlock;
		}
		put_page(page);
	}
	if (reuse_swap_page(page, NULL)) {
1363 1364
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1365
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1366 1367
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1368
		ret |= VM_FAULT_WRITE;
1369
		unlock_page(page);
1370 1371
		goto out_unlock;
	}
1372
	unlock_page(page);
1373
	get_page(page);
J
Jan Kara 已提交
1374
	spin_unlock(vmf->ptl);
1375
alloc:
1376
	if (__transparent_hugepage_enabled(vma) &&
1377
	    !transparent_hugepage_debug_cow()) {
1378 1379
		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1380
	} else
1381 1382
		new_page = NULL;

1383 1384 1385
	if (likely(new_page)) {
		prep_transhuge_page(new_page);
	} else {
1386
		if (!page) {
J
Jan Kara 已提交
1387
			split_huge_pmd(vma, vmf->pmd, vmf->address);
1388
			ret |= VM_FAULT_FALLBACK;
1389
		} else {
J
Jan Kara 已提交
1390
			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1391
			if (ret & VM_FAULT_OOM) {
J
Jan Kara 已提交
1392
				split_huge_pmd(vma, vmf->pmd, vmf->address);
1393 1394
				ret |= VM_FAULT_FALLBACK;
			}
1395
			put_page(page);
1396
		}
1397
		count_vm_event(THP_FAULT_FALLBACK);
1398 1399 1400
		goto out;
	}

1401
	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1402
					huge_gfp, &memcg, true))) {
A
Andrea Arcangeli 已提交
1403
		put_page(new_page);
J
Jan Kara 已提交
1404
		split_huge_pmd(vma, vmf->pmd, vmf->address);
K
Kirill A. Shutemov 已提交
1405
		if (page)
1406
			put_page(page);
1407
		ret |= VM_FAULT_FALLBACK;
1408
		count_vm_event(THP_FAULT_FALLBACK);
A
Andrea Arcangeli 已提交
1409 1410 1411
		goto out;
	}

1412
	count_vm_event(THP_FAULT_ALLOC);
1413
	count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1414

1415
	if (!page)
1416
		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1417
	else
1418 1419
		copy_user_huge_page(new_page, page, vmf->address,
				    vma, HPAGE_PMD_NR);
1420 1421
	__SetPageUptodate(new_page);

1422 1423
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
				haddr, haddr + HPAGE_PMD_SIZE);
1424
	mmu_notifier_invalidate_range_start(&range);
1425

J
Jan Kara 已提交
1426
	spin_lock(vmf->ptl);
1427
	if (page)
1428
		put_page(page);
J
Jan Kara 已提交
1429 1430
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
1431
		mem_cgroup_cancel_charge(new_page, memcg, true);
1432
		put_page(new_page);
1433
		goto out_mn;
A
Andrea Arcangeli 已提交
1434
	} else {
1435
		pmd_t entry;
1436
		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1437
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1438
		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1439
		page_add_new_anon_rmap(new_page, vma, haddr, true);
1440
		mem_cgroup_commit_charge(new_page, memcg, false, true);
1441
		lru_cache_add_active_or_unevictable(new_page, vma);
J
Jan Kara 已提交
1442 1443
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1444
		if (!page) {
K
Kirill A. Shutemov 已提交
1445
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1446
		} else {
1447
			VM_BUG_ON_PAGE(!PageHead(page), page);
1448
			page_remove_rmap(page, true);
1449 1450
			put_page(page);
		}
1451 1452
		ret |= VM_FAULT_WRITE;
	}
J
Jan Kara 已提交
1453
	spin_unlock(vmf->ptl);
1454
out_mn:
1455 1456 1457 1458
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
1459
	mmu_notifier_invalidate_range_only_end(&range);
1460 1461
out:
	return ret;
1462
out_unlock:
J
Jan Kara 已提交
1463
	spin_unlock(vmf->ptl);
1464
	return ret;
1465 1466
}

1467 1468 1469 1470 1471 1472
/*
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1473
	return pmd_write(pmd) ||
1474 1475 1476
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
}

1477
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1478 1479 1480 1481
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1482
	struct mm_struct *mm = vma->vm_mm;
1483 1484
	struct page *page = NULL;

1485
	assert_spin_locked(pmd_lockptr(mm, pmd));
1486

1487
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1488 1489
		goto out;

1490 1491 1492 1493
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1494
	/* Full NUMA hinting faults to serialise migration in fault paths */
1495
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1496 1497
		goto out;

1498
	page = pmd_page(*pmd);
1499
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1500
	if (flags & FOLL_TOUCH)
1501
		touch_pmd(vma, addr, pmd, flags);
E
Eric B Munson 已提交
1502
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1503 1504 1505 1506
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1507 1508
		 * For anon THP:
		 *
1509 1510 1511 1512 1513 1514 1515
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1516 1517 1518 1519 1520 1521
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1522
		 */
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		lru_add_drain();
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1534
	}
1535
skip_mlock:
1536
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1537
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1538
	if (flags & FOLL_GET)
1539
		get_page(page);
1540 1541 1542 1543 1544

out:
	return page;
}

1545
/* NUMA hinting page fault entry point for trans huge pmds */
1546
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1547
{
J
Jan Kara 已提交
1548
	struct vm_area_struct *vma = vmf->vma;
1549
	struct anon_vma *anon_vma = NULL;
1550
	struct page *page;
J
Jan Kara 已提交
1551
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1552
	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1553
	int target_nid, last_cpupid = -1;
1554 1555
	bool page_locked;
	bool migrated = false;
1556
	bool was_writable;
1557
	int flags = 0;
1558

J
Jan Kara 已提交
1559 1560
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1561 1562
		goto out_unlock;

1563 1564 1565 1566 1567
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
J
Jan Kara 已提交
1568 1569
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
1570 1571
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1572
		spin_unlock(vmf->ptl);
1573
		put_and_wait_on_page_locked(page);
1574 1575 1576
		goto out;
	}

1577
	page = pmd_page(pmd);
1578
	BUG_ON(is_huge_zero_page(page));
1579
	page_nid = page_to_nid(page);
1580
	last_cpupid = page_cpupid_last(page);
1581
	count_vm_numa_event(NUMA_HINT_FAULTS);
1582
	if (page_nid == this_nid) {
1583
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1584 1585
		flags |= TNF_FAULT_LOCAL;
	}
1586

1587
	/* See similar comment in do_numa_page for explanation */
1588
	if (!pmd_savedwrite(pmd))
1589 1590
		flags |= TNF_NO_GROUP;

1591 1592 1593 1594
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1595 1596
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
1597
	if (target_nid == NUMA_NO_NODE) {
1598
		/* If the page was locked, there are no parallel migrations */
1599
		if (page_locked)
1600
			goto clear_pmdnuma;
1601
	}
1602

1603
	/* Migration could have started since the pmd_trans_migrating check */
1604
	if (!page_locked) {
1605
		page_nid = NUMA_NO_NODE;
1606 1607
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1608
		spin_unlock(vmf->ptl);
1609
		put_and_wait_on_page_locked(page);
1610 1611 1612
		goto out;
	}

1613 1614 1615 1616
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1617
	get_page(page);
J
Jan Kara 已提交
1618
	spin_unlock(vmf->ptl);
1619
	anon_vma = page_lock_anon_vma_read(page);
1620

P
Peter Zijlstra 已提交
1621
	/* Confirm the PMD did not change while page_table_lock was released */
J
Jan Kara 已提交
1622 1623
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1624 1625
		unlock_page(page);
		put_page(page);
1626
		page_nid = NUMA_NO_NODE;
1627
		goto out_unlock;
1628
	}
1629

1630 1631 1632
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
1633
		page_nid = NUMA_NO_NODE;
1634 1635 1636
		goto clear_pmdnuma;
	}

1637 1638 1639 1640 1641 1642
	/*
	 * Since we took the NUMA fault, we must have observed the !accessible
	 * bit. Make sure all other CPUs agree with that, to avoid them
	 * modifying the page we're about to migrate.
	 *
	 * Must be done under PTL such that we'll observe the relevant
1643 1644 1645 1646
	 * inc_tlb_flush_pending().
	 *
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
1647
	 */
1648
	if (mm_tlb_flush_pending(vma->vm_mm)) {
1649
		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
		/*
		 * change_huge_pmd() released the pmd lock before
		 * invalidating the secondary MMUs sharing the primary
		 * MMU pagetables (with ->invalidate_range()). The
		 * mmu_notifier_invalidate_range_end() (which
		 * internally calls ->invalidate_range()) in
		 * change_pmd_range() will run after us, so we can't
		 * rely on it here and we need an explicit invalidate.
		 */
		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
					      haddr + HPAGE_PMD_SIZE);
	}
1662

1663 1664
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1665
	 * and access rights restored.
1666
	 */
J
Jan Kara 已提交
1667
	spin_unlock(vmf->ptl);
1668

K
Kirill A. Shutemov 已提交
1669
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
J
Jan Kara 已提交
1670
				vmf->pmd, pmd, vmf->address, page, target_nid);
1671 1672
	if (migrated) {
		flags |= TNF_MIGRATED;
1673
		page_nid = target_nid;
1674 1675
	} else
		flags |= TNF_MIGRATE_FAIL;
1676

1677
	goto out;
1678
clear_pmdnuma:
1679
	BUG_ON(!PageLocked(page));
1680
	was_writable = pmd_savedwrite(pmd);
1681
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1682
	pmd = pmd_mkyoung(pmd);
1683 1684
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
J
Jan Kara 已提交
1685 1686
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1687
	unlock_page(page);
1688
out_unlock:
J
Jan Kara 已提交
1689
	spin_unlock(vmf->ptl);
1690 1691 1692 1693 1694

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1695
	if (page_nid != NUMA_NO_NODE)
J
Jan Kara 已提交
1696
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1697
				flags);
1698

1699 1700 1701
	return 0;
}

1702 1703 1704 1705 1706
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1707 1708 1709 1710 1711 1712
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1713
	bool ret = false;
1714

1715
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1716

1717 1718
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1719
		goto out_unlocked;
1720 1721

	orig_pmd = *pmd;
1722
	if (is_huge_zero_pmd(orig_pmd))
1723 1724
		goto out;

1725 1726 1727 1728 1729 1730
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1749
		split_huge_page(page);
1750
		unlock_page(page);
1751
		put_page(page);
1752 1753 1754 1755 1756 1757 1758 1759
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1760
		pmdp_invalidate(vma, addr, pmd);
1761 1762 1763 1764 1765 1766
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1767 1768

	mark_page_lazyfree(page);
1769
	ret = true;
1770 1771 1772 1773 1774 1775
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1776 1777 1778 1779 1780 1781
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1782
	mm_dec_nr_ptes(mm);
1783 1784
}

1785
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1786
		 pmd_t *pmd, unsigned long addr)
1787
{
1788
	pmd_t orig_pmd;
1789
	spinlock_t *ptl;
1790

1791
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1792

1793 1794
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1805
	if (vma_is_special_huge(vma)) {
1806 1807
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1808 1809
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1810
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1811
	} else if (is_huge_zero_pmd(orig_pmd)) {
1812
		zap_deposited_table(tlb->mm, pmd);
1813
		spin_unlock(ptl);
1814
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1815
	} else {
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
			page_remove_rmap(page, true);
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
			page = pfn_to_page(swp_offset(entry));
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1834
		if (PageAnon(page)) {
1835
			zap_deposited_table(tlb->mm, pmd);
1836 1837
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1838 1839
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1840
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1841
		}
1842

1843
		spin_unlock(ptl);
1844 1845
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1846
	}
1847
	return 1;
1848 1849
}

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1876
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1877
		  unsigned long new_addr, unsigned long old_end,
1878
		  pmd_t *old_pmd, pmd_t *new_pmd)
1879
{
1880
	spinlock_t *old_ptl, *new_ptl;
1881 1882
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1883
	bool force_flush = false;
1884 1885 1886

	if ((old_addr & ~HPAGE_PMD_MASK) ||
	    (new_addr & ~HPAGE_PMD_MASK) ||
1887
	    old_end - old_addr < HPAGE_PMD_SIZE)
1888
		return false;
1889 1890 1891 1892 1893 1894 1895

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1896
		return false;
1897 1898
	}

1899 1900 1901 1902
	/*
	 * We don't have to worry about the ordering of src and dst
	 * ptlocks because exclusive mmap_sem prevents deadlock.
	 */
1903 1904
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1905 1906 1907
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1908
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1909
		if (pmd_present(pmd))
1910
			force_flush = true;
1911
		VM_BUG_ON(!pmd_none(*new_pmd));
1912

1913
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1914
			pgtable_t pgtable;
1915 1916 1917
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1918 1919
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1920 1921
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1922 1923
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1924
		spin_unlock(old_ptl);
1925
		return true;
1926
	}
1927
	return false;
1928 1929
}

1930 1931 1932 1933 1934 1935
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1936
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1937
		unsigned long addr, pgprot_t newprot, int prot_numa)
1938 1939
{
	struct mm_struct *mm = vma->vm_mm;
1940
	spinlock_t *ptl;
1941 1942 1943
	pmd_t entry;
	bool preserve_write;
	int ret;
1944

1945
	ptl = __pmd_trans_huge_lock(pmd, vma);
1946 1947
	if (!ptl)
		return 0;
1948

1949 1950
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1951

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
		if (is_write_migration_entry(entry)) {
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
			make_migration_entry_read(&entry);
			newpmd = swp_entry_to_pmd(entry);
1965 1966
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1967 1968 1969 1970 1971 1972
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1973 1974 1975 1976 1977 1978 1979
	/*
	 * Avoid trapping faults against the zero page. The read-only
	 * data is likely to be read-cached on the local CPU and
	 * local/remote hits to the zero page are not interesting.
	 */
	if (prot_numa && is_huge_zero_pmd(*pmd))
		goto unlock;
1980

1981 1982 1983
	if (prot_numa && pmd_protnone(*pmd))
		goto unlock;

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
	/*
	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
	 * which is also under down_read(mmap_sem):
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
2005
	entry = pmdp_invalidate(vma, addr, pmd);
2006

2007 2008 2009 2010 2011 2012 2013 2014
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
2015 2016 2017 2018
	return ret;
}

/*
2019
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2020
 *
2021 2022
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
2023
 */
2024
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2025
{
2026 2027
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
2028 2029
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
2030 2031 2032
		return ptl;
	spin_unlock(ptl);
	return NULL;
2033 2034
}

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
2067
	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2068
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2069
	if (vma_is_special_huge(vma)) {
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

2087
	count_vm_event(THP_SPLIT_PUD);
2088 2089 2090 2091 2092 2093 2094 2095

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
2096
	struct mmu_notifier_range range;
2097

2098
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2099
				address & HPAGE_PUD_MASK,
2100 2101 2102
				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pud_lock(vma->vm_mm, pud);
2103 2104
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
2105
	__split_huge_pud_locked(vma, pud, range.start);
2106 2107 2108

out:
	spin_unlock(ptl);
2109 2110 2111 2112
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
2113
	mmu_notifier_invalidate_range_only_end(&range);
2114 2115 2116
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

2117 2118 2119 2120 2121 2122 2123 2124
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

2125 2126 2127 2128 2129 2130
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
2131
	 * See Documentation/vm/mmu_notifier.rst
2132 2133
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2152
		unsigned long haddr, bool freeze)
2153 2154 2155 2156
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
2157
	pmd_t old_pmd, _pmd;
2158
	bool young, write, soft_dirty, pmd_migration = false;
2159
	unsigned long addr;
2160 2161 2162 2163 2164
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2165 2166
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
2167 2168 2169

	count_vm_event(THP_SPLIT_PMD);

2170 2171
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2172 2173 2174 2175 2176 2177
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
2178
		if (vma_is_special_huge(vma))
2179 2180
			return;
		page = pmd_page(_pmd);
2181 2182
		if (!PageDirty(page) && pmd_dirty(_pmd))
			set_page_dirty(page);
2183 2184 2185 2186
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
2187
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2188 2189
		return;
	} else if (is_huge_zero_pmd(*pmd)) {
2190 2191 2192 2193 2194 2195 2196 2197 2198
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2199 2200 2201
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
	 * 383 on page 93. Intel should be safe but is also warns that it's
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2225
	if (unlikely(pmd_migration)) {
2226 2227
		swp_entry_t entry;

2228
		entry = pmd_to_swp_entry(old_pmd);
2229
		page = pfn_to_page(swp_offset(entry));
2230 2231 2232 2233
		write = is_write_migration_entry(entry);
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
	} else {
2234
		page = pmd_page(old_pmd);
2235 2236 2237 2238 2239 2240
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
	}
2241
	VM_BUG_ON_PAGE(!page_count(page), page);
2242
	page_ref_add(page, HPAGE_PMD_NR - 1);
2243

2244 2245 2246 2247
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2248 2249 2250
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2251
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2252 2253 2254 2255 2256 2257
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2258
		if (freeze || pmd_migration) {
2259 2260 2261
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
2262 2263
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2264
		} else {
2265
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2266
			entry = maybe_mkwrite(entry, vma);
2267 2268 2269 2270
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2271 2272
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2273
		}
2274
		pte = pte_offset_map(&_pmd, addr);
2275
		BUG_ON(!pte_none(*pte));
2276
		set_pte_at(mm, addr, pte, entry);
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
		atomic_inc(&page[i]._mapcount);
		pte_unmap(pte);
	}

	/*
	 * Set PG_double_map before dropping compound_mapcount to avoid
	 * false-negative page_mapped().
	 */
	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			atomic_inc(&page[i]._mapcount);
	}

	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
		/* Last compound_mapcount is gone. */
2292
		__dec_node_page_state(page, NR_ANON_THPS);
2293 2294 2295 2296 2297 2298 2299 2300 2301
		if (TestClearPageDoubleMap(page)) {
			/* No need in mapcount reference anymore */
			for (i = 0; i < HPAGE_PMD_NR; i++)
				atomic_dec(&page[i]._mapcount);
		}
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2302 2303

	if (freeze) {
2304
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2305 2306 2307 2308
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2309 2310 2311
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2312
		unsigned long address, bool freeze, struct page *page)
2313 2314
{
	spinlock_t *ptl;
2315
	struct mmu_notifier_range range;
2316

2317
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2318
				address & HPAGE_PMD_MASK,
2319 2320 2321
				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pmd_lock(vma->vm_mm, pmd);
2322 2323 2324 2325 2326 2327 2328 2329 2330

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
	if (page && page != pmd_page(*pmd))
	        goto out;

2331
	if (pmd_trans_huge(*pmd)) {
2332
		page = pmd_page(*pmd);
2333
		if (PageMlocked(page))
2334
			clear_page_mlock(page);
2335
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2336
		goto out;
2337
	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2338
out:
2339
	spin_unlock(ptl);
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
2353
	mmu_notifier_invalidate_range_only_end(&range);
2354 2355
}

2356 2357
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2358
{
2359
	pgd_t *pgd;
2360
	p4d_t *p4d;
2361
	pud_t *pud;
2362 2363
	pmd_t *pmd;

2364
	pgd = pgd_offset(vma->vm_mm, address);
2365 2366 2367
	if (!pgd_present(*pgd))
		return;

2368 2369 2370 2371 2372
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2373 2374 2375 2376
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2377

2378
	__split_huge_pmd(vma, pmd, address, freeze, page);
2379 2380
}

2381
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2394
		split_huge_pmd_address(vma, start, false, NULL);
2395 2396 2397 2398 2399 2400 2401 2402 2403

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2404
		split_huge_pmd_address(vma, end, false, NULL);
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
	 * vm_next->vm_start isn't page aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
		nstart += adjust_next << PAGE_SHIFT;
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2418
			split_huge_pmd_address(next, nstart, false, NULL);
2419 2420
	}
}
2421

2422
static void unmap_page(struct page *page)
2423
{
2424
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2425
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
M
Minchan Kim 已提交
2426
	bool unmap_success;
2427 2428 2429

	VM_BUG_ON_PAGE(!PageHead(page), page);

2430
	if (PageAnon(page))
2431
		ttu_flags |= TTU_SPLIT_FREEZE;
2432

M
Minchan Kim 已提交
2433 2434
	unmap_success = try_to_unmap(page, ttu_flags);
	VM_BUG_ON_PAGE(!unmap_success, page);
2435 2436
}

2437
static void remap_page(struct page *page)
2438
{
2439
	int i;
2440 2441 2442 2443 2444 2445
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			remove_migration_ptes(page + i, page + i, true);
	}
2446 2447
}

2448
static void __split_huge_page_tail(struct page *head, int tail,
2449 2450 2451 2452
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2453
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2454 2455

	/*
2456 2457 2458 2459
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
	 * for exmaple lock_page() which set PG_waiters.
2460 2461 2462 2463 2464
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2465
			 (1L << PG_swapcache) |
2466 2467 2468
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2469
			 (1L << PG_workingset) |
2470
			 (1L << PG_locked) |
2471 2472
			 (1L << PG_unevictable) |
			 (1L << PG_dirty)));
2473

2474 2475 2476 2477 2478 2479
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2480
	/* Page flags must be visible before we make the page non-compound. */
2481 2482
	smp_wmb();

2483 2484 2485 2486 2487 2488
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2489 2490
	clear_compound_head(page_tail);

2491 2492 2493 2494
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2495 2496 2497 2498 2499 2500
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2501 2502 2503 2504 2505 2506

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2507 2508 2509
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2510
static void __split_huge_page(struct page *page, struct list_head *list,
2511
		pgoff_t end, unsigned long flags)
2512 2513
{
	struct page *head = compound_head(page);
2514
	pg_data_t *pgdat = page_pgdat(head);
2515
	struct lruvec *lruvec;
2516 2517
	struct address_space *swap_cache = NULL;
	unsigned long offset = 0;
2518
	int i;
2519

2520
	lruvec = mem_cgroup_page_lruvec(head, pgdat);
2521 2522 2523 2524

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

2525 2526 2527 2528 2529 2530 2531 2532
	if (PageAnon(head) && PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		offset = swp_offset(entry);
		swap_cache = swap_address_space(entry);
		xa_lock(&swap_cache->i_pages);
	}

2533
	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2534
		__split_huge_page_tail(head, i, lruvec, list);
2535 2536
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
2537
			ClearPageDirty(head + i);
2538
			__delete_from_page_cache(head + i, NULL);
2539 2540
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2541
			put_page(head + i);
2542 2543 2544 2545 2546 2547
		} else if (!PageAnon(page)) {
			__xa_store(&head->mapping->i_pages, head[i].index,
					head + i, 0);
		} else if (swap_cache) {
			__xa_store(&swap_cache->i_pages, offset + i,
					head + i, 0);
2548 2549
		}
	}
2550 2551

	ClearPageCompound(head);
2552 2553 2554

	split_page_owner(head, HPAGE_PMD_ORDER);

2555 2556
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
M
Matthew Wilcox 已提交
2557
		/* Additional pin to swap cache */
2558
		if (PageSwapCache(head)) {
2559
			page_ref_add(head, 2);
2560 2561
			xa_unlock(&swap_cache->i_pages);
		} else {
2562
			page_ref_inc(head);
2563
		}
2564
	} else {
M
Matthew Wilcox 已提交
2565
		/* Additional pin to page cache */
2566
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2567
		xa_unlock(&head->mapping->i_pages);
2568 2569
	}

2570
	spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2571

2572
	remap_page(head);
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2591 2592
int total_mapcount(struct page *page)
{
K
Kirill A. Shutemov 已提交
2593
	int i, compound, ret;
2594 2595 2596 2597 2598 2599

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
2600
	compound = compound_mapcount(page);
2601
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2602 2603
		return compound;
	ret = compound;
2604 2605
	for (i = 0; i < HPAGE_PMD_NR; i++)
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2606 2607 2608
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
		return ret - compound * HPAGE_PMD_NR;
2609 2610 2611 2612 2613
	if (PageDoubleMap(page))
		ret -= HPAGE_PMD_NR;
	return ret;
}

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
		_total_mapcount -= HPAGE_PMD_NR;
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2672 2673 2674 2675 2676
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
	int extra_pins;

M
Matthew Wilcox 已提交
2677
	/* Additional pins from page cache */
2678 2679 2680 2681 2682 2683 2684 2685 2686
	if (PageAnon(page))
		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
	else
		extra_pins = HPAGE_PMD_NR;
	if (pextra_pins)
		*pextra_pins = extra_pins;
	return total_mapcount(page) == page_count(page) - extra_pins - 1;
}

2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2709
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2710
	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2711 2712 2713
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2714
	bool mlocked;
2715
	unsigned long flags;
2716
	pgoff_t end;
2717

2718
	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2719 2720
	VM_BUG_ON_PAGE(!PageLocked(head), head);
	VM_BUG_ON_PAGE(!PageCompound(head), head);
2721

2722
	if (PageWriteback(head))
2723 2724
		return -EBUSY;

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
	if (PageAnon(head)) {
		/*
		 * The caller does not necessarily hold an mmap_sem that would
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2739
		end = -1;
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2753 2754 2755 2756 2757 2758 2759 2760 2761

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2762 2763 2764
	}

	/*
2765
	 * Racy check if we can split the page, before unmap_page() will
2766 2767
	 * split PMDs
	 */
2768
	if (!can_split_huge_page(head, &extra_pins)) {
2769 2770 2771 2772
		ret = -EBUSY;
		goto out_unlock;
	}

2773
	mlocked = PageMlocked(head);
2774
	unmap_page(head);
2775 2776
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2777 2778 2779 2780
	/* Make sure the page is not on per-CPU pagevec as it takes pin */
	if (mlocked)
		lru_add_drain();

2781
	/* prevent PageLRU to go away from under us, and freeze lru stats */
2782
	spin_lock_irqsave(&pgdata->lru_lock, flags);
2783 2784

	if (mapping) {
M
Matthew Wilcox 已提交
2785
		XA_STATE(xas, &mapping->i_pages, page_index(head));
2786 2787

		/*
M
Matthew Wilcox 已提交
2788
		 * Check if the head page is present in page cache.
2789 2790
		 * We assume all tail are present too, if head is there.
		 */
M
Matthew Wilcox 已提交
2791 2792
		xa_lock(&mapping->i_pages);
		if (xas_load(&xas) != head)
2793 2794 2795
			goto fail;
	}

2796
	/* Prevent deferred_split_scan() touching ->_refcount */
2797
	spin_lock(&ds_queue->split_queue_lock);
2798 2799
	count = page_count(head);
	mapcount = total_mapcount(head);
2800
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2801
		if (!list_empty(page_deferred_list(head))) {
2802
			ds_queue->split_queue_len--;
2803 2804
			list_del(page_deferred_list(head));
		}
2805
		spin_unlock(&ds_queue->split_queue_lock);
2806
		if (mapping) {
2807 2808
			if (PageSwapBacked(head))
				__dec_node_page_state(head, NR_SHMEM_THPS);
2809
			else
2810
				__dec_node_page_state(head, NR_FILE_THPS);
2811 2812
		}

2813
		__split_huge_page(page, list, end, flags);
2814 2815 2816 2817 2818 2819
		if (PageSwapCache(head)) {
			swp_entry_t entry = { .val = page_private(head) };

			ret = split_swap_cluster(entry);
		} else
			ret = 0;
2820
	} else {
2821 2822 2823 2824 2825 2826 2827 2828
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
2829
		spin_unlock(&ds_queue->split_queue_lock);
2830
fail:		if (mapping)
M
Matthew Wilcox 已提交
2831
			xa_unlock(&mapping->i_pages);
2832
		spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2833
		remap_page(head);
2834 2835 2836 2837
		ret = -EBUSY;
	}

out_unlock:
2838 2839 2840 2841 2842 2843
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2844 2845 2846 2847
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2848 2849 2850

void free_transhuge_page(struct page *page)
{
2851
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2852 2853
	unsigned long flags;

2854
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2855
	if (!list_empty(page_deferred_list(page))) {
2856
		ds_queue->split_queue_len--;
2857 2858
		list_del(page_deferred_list(page));
	}
2859
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2860 2861 2862 2863 2864
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2865 2866 2867 2868
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
#ifdef CONFIG_MEMCG
	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
#endif
2869 2870 2871 2872
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
	/*
	 * The try_to_unmap() in page reclaim path might reach here too,
	 * this may cause a race condition to corrupt deferred split queue.
	 * And, if page reclaim is already handling the same page, it is
	 * unnecessary to handle it again in shrinker.
	 *
	 * Check PageSwapCache to determine if the page is being
	 * handled by page reclaim since THP swap would add the page into
	 * swap cache before calling try_to_unmap().
	 */
	if (PageSwapCache(page))
		return;

2886
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2887
	if (list_empty(page_deferred_list(page))) {
2888
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2889 2890
		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
		ds_queue->split_queue_len++;
2891 2892 2893 2894 2895
#ifdef CONFIG_MEMCG
		if (memcg)
			memcg_set_shrinker_bit(memcg, page_to_nid(page),
					       deferred_split_shrinker.id);
#endif
2896
	}
2897
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2898 2899 2900 2901 2902
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2903
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2904
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2905 2906 2907 2908 2909

#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif
2910
	return READ_ONCE(ds_queue->split_queue_len);
2911 2912 2913 2914 2915
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2916
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2917
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2918 2919 2920 2921 2922
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2923 2924 2925 2926 2927
#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif

2928
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2929
	/* Take pin on all head pages to avoid freeing them under us */
2930
	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2931 2932
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2933 2934 2935 2936
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2937
			list_del_init(page_deferred_list(page));
2938
			ds_queue->split_queue_len--;
2939
		}
2940 2941
		if (!--sc->nr_to_scan)
			break;
2942
	}
2943
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2944 2945 2946

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
2947 2948
		if (!trylock_page(page))
			goto next;
2949 2950 2951 2952
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2953
next:
2954 2955 2956
		put_page(page);
	}

2957 2958 2959
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
	list_splice_tail(&list, &ds_queue->split_queue);
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2960

2961 2962 2963 2964
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
2965
	if (!split && list_empty(&ds_queue->split_queue))
2966 2967
		return SHRINK_STOP;
	return split;
2968 2969 2970 2971 2972 2973
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2974 2975
	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
		 SHRINKER_NONSLAB,
2976
};
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

3002
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

3015
	pr_info("%lu of %lu THP split\n", split, total);
3016 3017 3018

	return 0;
}
3019
DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3020 3021 3022 3023
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
3024 3025
	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
			    &split_huge_pages_fops);
3026 3027 3028 3029
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
3040
	pmd_t pmdswp;
3041 3042 3043 3044 3045

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3046
	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3047 3048 3049
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
	entry = make_migration_entry(page, pmd_write(pmdval));
3050 3051 3052 3053
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
	page_remove_rmap(page, true);
	put_page(page);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3073 3074
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
3075
	if (is_write_migration_entry(entry))
3076
		pmde = maybe_pmd_mkwrite(pmde, vma);
3077 3078

	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3079 3080 3081 3082
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
		page_add_file_rmap(new, true);
3083
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3084
	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3085 3086 3087 3088
		mlock_vma_page(new);
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif