huge_memory.c 86.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 */

6 7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

8 9
#include <linux/mm.h>
#include <linux/sched.h>
10
#include <linux/sched/mm.h>
11
#include <linux/sched/coredump.h>
12
#include <linux/sched/numa_balancing.h>
13 14 15 16 17
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
18
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
19
#include <linux/mm_inline.h>
20
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
21
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
22
#include <linux/khugepaged.h>
23
#include <linux/freezer.h>
24
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
25
#include <linux/mman.h>
26
#include <linux/memremap.h>
R
Ralf Baechle 已提交
27
#include <linux/pagemap.h>
28
#include <linux/debugfs.h>
29
#include <linux/migrate.h>
30
#include <linux/hashtable.h>
31
#include <linux/userfaultfd_k.h>
32
#include <linux/page_idle.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/oom.h>
35
#include <linux/numa.h>
36
#include <linux/page_owner.h>
37

38 39 40 41
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
42
/*
43 44 45 46
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
47 48
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
49
 */
50
unsigned long transparent_hugepage_flags __read_mostly =
51
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
52
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
53 54 55 56
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
57
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
58 59
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
60

61
static struct shrinker deferred_split_shrinker;
62

63
static atomic_t huge_zero_refcount;
64
struct page *huge_zero_page __read_mostly;
65
unsigned long huge_zero_pfn __read_mostly = ~0UL;
66

67 68 69 70 71 72 73 74
static inline bool file_thp_enabled(struct vm_area_struct *vma)
{
	return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file &&
	       !inode_is_open_for_write(vma->vm_file->f_inode) &&
	       (vma->vm_flags & VM_EXEC);
}

bool transparent_hugepage_active(struct vm_area_struct *vma)
75
{
76 77 78 79 80
	/* The addr is used to check if the vma size fits */
	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;

	if (!transhuge_vma_suitable(vma, addr))
		return false;
81 82
	if (vma_is_anonymous(vma))
		return __transparent_hugepage_enabled(vma);
83 84
	if (vma_is_shmem(vma))
		return shmem_huge_enabled(vma);
85 86
	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
		return file_thp_enabled(vma);
87 88 89 90

	return false;
}

91
static bool get_huge_zero_page(void)
92 93 94 95
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
96
		return true;
97 98

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
99
			HPAGE_PMD_ORDER);
100 101
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
102
		return false;
103 104
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
105
	preempt_disable();
106
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
107
		preempt_enable();
108
		__free_pages(zero_page, compound_order(zero_page));
109 110
		goto retry;
	}
111
	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
112 113 114 115

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
116
	return true;
117 118
}

119
static void put_huge_zero_page(void)
120
{
121 122 123 124 125
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
126 127
}

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

148 149
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
150
{
151 152 153
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
154

155 156 157
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
158
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
159 160
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
161
		WRITE_ONCE(huge_zero_pfn, ~0UL);
162
		__free_pages(zero_page, compound_order(zero_page));
163
		return HPAGE_PMD_NR;
164 165 166
	}

	return 0;
167 168
}

169
static struct shrinker huge_zero_page_shrinker = {
170 171
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
172 173 174
	.seeks = DEFAULT_SEEKS,
};

175 176 177 178
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
179 180
	const char *output;

181
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
182 183 184 185
		output = "[always] madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always [madvise] never";
186
	else
187 188 189
		output = "always madvise [never]";

	return sysfs_emit(buf, "%s\n", output);
190
}
191

192 193 194 195
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
196
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
197

198
	if (sysfs_streq(buf, "always")) {
199 200
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
201
	} else if (sysfs_streq(buf, "madvise")) {
202 203
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
204
	} else if (sysfs_streq(buf, "never")) {
205 206 207 208
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
209 210

	if (ret > 0) {
211
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
212 213 214 215
		if (err)
			ret = err;
	}
	return ret;
216 217 218 219
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

220
ssize_t single_hugepage_flag_show(struct kobject *kobj,
221 222
				  struct kobj_attribute *attr, char *buf,
				  enum transparent_hugepage_flag flag)
223
{
224 225
	return sysfs_emit(buf, "%d\n",
			  !!test_bit(flag, &transparent_hugepage_flags));
226
}
227

228
ssize_t single_hugepage_flag_store(struct kobject *kobj,
229 230 231 232
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
233 234 235 236 237 238 239 240 241 242
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
243
		set_bit(flag, &transparent_hugepage_flags);
244
	else
245 246 247 248 249 250 251 252
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
	const char *output;

	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
		     &transparent_hugepage_flags))
		output = "[always] defer defer+madvise madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
			  &transparent_hugepage_flags))
		output = "always [defer] defer+madvise madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always defer [defer+madvise] madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always defer defer+madvise [madvise] never";
	else
		output = "always defer defer+madvise madvise [never]";

	return sysfs_emit(buf, "%s\n", output);
271
}
272

273 274 275 276
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
277
	if (sysfs_streq(buf, "always")) {
278 279 280 281
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
282
	} else if (sysfs_streq(buf, "defer+madvise")) {
283 284 285 286
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
287
	} else if (sysfs_streq(buf, "defer")) {
288 289 290 291
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
292
	} else if (sysfs_streq(buf, "madvise")) {
293 294 295 296
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
297
	} else if (sysfs_streq(buf, "never")) {
298 299 300 301 302 303 304 305
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
306 307 308 309
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

310
static ssize_t use_zero_page_show(struct kobject *kobj,
311
				  struct kobj_attribute *attr, char *buf)
312
{
313
	return single_hugepage_flag_show(kobj, attr, buf,
314
					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
315 316 317 318
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
319
	return single_hugepage_flag_store(kobj, attr, buf, count,
320 321 322 323
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
324 325

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
326
				   struct kobj_attribute *attr, char *buf)
327
{
328
	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
329 330 331 332
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

333 334 335
static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
336
	&use_zero_page_attr.attr,
337
	&hpage_pmd_size_attr.attr,
338
#ifdef CONFIG_SHMEM
339
	&shmem_enabled_attr.attr,
340 341 342 343
#endif
	NULL,
};

344
static const struct attribute_group hugepage_attr_group = {
345
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
346 347
};

S
Shaohua Li 已提交
348
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
349 350 351
{
	int err;

S
Shaohua Li 已提交
352 353
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
354
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
355
		return -ENOMEM;
A
Andrea Arcangeli 已提交
356 357
	}

S
Shaohua Li 已提交
358
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
359
	if (err) {
360
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
361
		goto delete_obj;
A
Andrea Arcangeli 已提交
362 363
	}

S
Shaohua Li 已提交
364
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
365
	if (err) {
366
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
367
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
368
	}
S
Shaohua Li 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
402 403 404 405 406
		/*
		 * Hardware doesn't support hugepages, hence disable
		 * DAX PMD support.
		 */
		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
S
Shaohua Li 已提交
407 408 409
		return -EINVAL;
	}

410 411 412 413 414 415 416 417 418 419
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
420 421
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
422
		goto err_sysfs;
A
Andrea Arcangeli 已提交
423

424
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
425
	if (err)
426
		goto err_slab;
A
Andrea Arcangeli 已提交
427

428 429 430
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
431 432 433
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
434

435 436 437 438 439
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
440
	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
441
		transparent_hugepage_flags = 0;
442 443
		return 0;
	}
444

445
	err = start_stop_khugepaged();
446 447
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
448

S
Shaohua Li 已提交
449
	return 0;
450
err_khugepaged:
451 452
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
453 454
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
455
	khugepaged_destroy();
456
err_slab:
S
Shaohua Li 已提交
457
	hugepage_exit_sysfs(hugepage_kobj);
458
err_sysfs:
A
Andrea Arcangeli 已提交
459
	return err;
460
}
461
subsys_initcall(hugepage_init);
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
489
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
490 491 492 493
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

494
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
495
{
496
	if (likely(vma->vm_flags & VM_WRITE))
497 498 499 500
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

501 502
#ifdef CONFIG_MEMCG
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
503
{
504
	struct mem_cgroup *memcg = page_memcg(compound_head(page));
505 506 507 508 509 510
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	if (memcg)
		return &memcg->deferred_split_queue;
	else
		return &pgdat->deferred_split_queue;
511
}
512 513 514 515 516 517 518 519
#else
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
{
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	return &pgdat->deferred_split_queue;
}
#endif
520 521 522 523 524 525 526 527 528 529 530 531

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

532 533 534
bool is_transparent_hugepage(struct page *page)
{
	if (!PageCompound(page))
Z
Zou Wei 已提交
535
		return false;
536 537 538 539 540 541 542

	page = compound_head(page);
	return is_huge_zero_page(page) ||
	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
}
EXPORT_SYMBOL_GPL(is_transparent_hugepage);

543 544
static unsigned long __thp_get_unmapped_area(struct file *filp,
		unsigned long addr, unsigned long len,
545 546 547 548
		loff_t off, unsigned long flags, unsigned long size)
{
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
549
	unsigned long len_pad, ret;
550 551 552 553 554 555 556 557

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

558
	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
559
					      off >> PAGE_SHIFT, flags);
560 561 562 563 564 565

	/*
	 * The failure might be due to length padding. The caller will retry
	 * without the padding.
	 */
	if (IS_ERR_VALUE(ret))
566 567
		return 0;

568 569 570 571 572 573 574 575 576
	/*
	 * Do not try to align to THP boundary if allocation at the address
	 * hint succeeds.
	 */
	if (ret == addr)
		return addr;

	ret += (off - ret) & (size - 1);
	return ret;
577 578 579 580 581
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
582
	unsigned long ret;
583 584 585 586 587
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

588 589 590 591
	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
	if (ret)
		return ret;
out:
592 593 594 595
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

596 597
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
598
{
J
Jan Kara 已提交
599
	struct vm_area_struct *vma = vmf->vma;
600
	pgtable_t pgtable;
J
Jan Kara 已提交
601
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
602
	vm_fault_t ret = 0;
603

604
	VM_BUG_ON_PAGE(!PageCompound(page), page);
605

606
	if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
607 608
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
609
		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
610 611
		return VM_FAULT_FALLBACK;
	}
612
	cgroup_throttle_swaprate(page, gfp);
613

614
	pgtable = pte_alloc_one(vma->vm_mm);
615
	if (unlikely(!pgtable)) {
616 617
		ret = VM_FAULT_OOM;
		goto release;
618
	}
619

620
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
621 622 623 624 625
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
626 627
	__SetPageUptodate(page);

J
Jan Kara 已提交
628 629
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
630
		goto unlock_release;
631 632
	} else {
		pmd_t entry;
633

634 635 636 637
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

638 639
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
640
			spin_unlock(vmf->ptl);
641
			put_page(page);
K
Kirill A. Shutemov 已提交
642
			pte_free(vma->vm_mm, pgtable);
643 644 645
			ret = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			return ret;
646 647
		}

648
		entry = mk_huge_pmd(page, vma->vm_page_prot);
649
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
650
		page_add_new_anon_rmap(page, vma, haddr, true);
651
		lru_cache_add_inactive_or_unevictable(page, vma);
J
Jan Kara 已提交
652 653
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
654
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
K
Kirill A. Shutemov 已提交
655
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
656
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
657
		spin_unlock(vmf->ptl);
658
		count_vm_event(THP_FAULT_ALLOC);
659
		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
660 661
	}

662
	return 0;
663 664 665 666 667 668 669 670
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	put_page(page);
	return ret;

671 672
}

673
/*
674 675 676 677 678 679 680
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
681
 */
682
gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
683
{
684
	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
685

686
	/* Always do synchronous compaction */
687 688
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
689 690

	/* Kick kcompactd and fail quickly */
691
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
692
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
693 694

	/* Synchronous compaction if madvised, otherwise kick kcompactd */
695
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
696 697 698
		return GFP_TRANSHUGE_LIGHT |
			(vma_madvised ? __GFP_DIRECT_RECLAIM :
					__GFP_KSWAPD_RECLAIM);
699 700

	/* Only do synchronous compaction if madvised */
701
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
702 703
		return GFP_TRANSHUGE_LIGHT |
		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
704

705
	return GFP_TRANSHUGE_LIGHT;
706 707
}

708
/* Caller must hold page table lock. */
709
static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
710
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
711
		struct page *zero_page)
712 713
{
	pmd_t entry;
A
Andrew Morton 已提交
714
	if (!pmd_none(*pmd))
715
		return;
716
	entry = mk_pmd(zero_page, vma->vm_page_prot);
717
	entry = pmd_mkhuge(entry);
718 719
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
720
	set_pmd_at(mm, haddr, pmd, entry);
721
	mm_inc_nr_ptes(mm);
722 723
}

724
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
725
{
J
Jan Kara 已提交
726
	struct vm_area_struct *vma = vmf->vma;
727
	gfp_t gfp;
728
	struct page *page;
J
Jan Kara 已提交
729
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
730

731
	if (!transhuge_vma_suitable(vma, haddr))
732
		return VM_FAULT_FALLBACK;
733 734
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
735
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
736
		return VM_FAULT_OOM;
J
Jan Kara 已提交
737
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
738
			!mm_forbids_zeropage(vma->vm_mm) &&
739 740 741
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
742
		vm_fault_t ret;
743
		pgtable = pte_alloc_one(vma->vm_mm);
744
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
745
			return VM_FAULT_OOM;
746
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
747
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
748
			pte_free(vma->vm_mm, pgtable);
749
			count_vm_event(THP_FAULT_FALLBACK);
750
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
751
		}
J
Jan Kara 已提交
752
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
753
		ret = 0;
J
Jan Kara 已提交
754
		if (pmd_none(*vmf->pmd)) {
755 756 757
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
758
				pte_free(vma->vm_mm, pgtable);
759
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
760
				spin_unlock(vmf->ptl);
761
				pte_free(vma->vm_mm, pgtable);
J
Jan Kara 已提交
762
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
763 764
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
765
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
766
						   haddr, vmf->pmd, zero_page);
767
				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
J
Jan Kara 已提交
768
				spin_unlock(vmf->ptl);
769
			}
770
		} else {
J
Jan Kara 已提交
771
			spin_unlock(vmf->ptl);
K
Kirill A. Shutemov 已提交
772
			pte_free(vma->vm_mm, pgtable);
773
		}
774
		return ret;
775
	}
776
	gfp = vma_thp_gfp_mask(vma);
777
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
778 779
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
780
		return VM_FAULT_FALLBACK;
781
	}
782
	prep_transhuge_page(page);
J
Jan Kara 已提交
783
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
784 785
}

786
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
787 788
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
789 790 791 792 793 794
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

810 811 812
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
813
	if (write) {
814 815
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
816
	}
817 818 819

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
820
		mm_inc_nr_ptes(mm);
821
		pgtable = NULL;
822 823
	}

824 825
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
826 827

out_unlock:
M
Matthew Wilcox 已提交
828
	spin_unlock(ptl);
829 830
	if (pgtable)
		pte_free(mm, pgtable);
M
Matthew Wilcox 已提交
831 832
}

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
/**
 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
M
Matthew Wilcox 已提交
848
{
849 850
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
851
	pgtable_t pgtable = NULL;
852

M
Matthew Wilcox 已提交
853 854 855 856 857
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
858 859
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
860 861 862 863 864 865
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
866

867
	if (arch_needs_pgtable_deposit()) {
868
		pgtable = pte_alloc_one(vma->vm_mm);
869 870 871 872
		if (!pgtable)
			return VM_FAULT_OOM;
	}

873 874
	track_pfn_insert(vma, &pgprot, pfn);

875
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
876
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
877
}
878
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
M
Matthew Wilcox 已提交
879

880
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
881
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
882
{
883
	if (likely(vma->vm_flags & VM_WRITE))
884 885 886 887 888 889 890 891 892 893 894 895
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
896 897 898 899 900 901 902 903 904 905 906 907 908 909
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

910 911 912 913
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
914 915
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
916 917 918
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
919 920

out_unlock:
921 922 923
	spin_unlock(ptl);
}

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
/**
 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
939
{
940 941 942
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;

943 944 945 946 947
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
948 949
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
950 951 952 953 954 955 956 957 958
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

959
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
960 961
	return VM_FAULT_NOPAGE;
}
962
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
963 964
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

965
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
966
		pmd_t *pmd, int flags)
967 968 969
{
	pmd_t _pmd;

970 971 972
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
973
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
974
				pmd, _pmd, flags & FOLL_WRITE))
975 976 977 978
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
979
		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
980 981 982 983 984 985 986
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

987 988 989 990 991 992
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

J
John Hubbard 已提交
993 994 995 996 997
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

998
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
999 1000 1001 1002 1003 1004 1005 1006
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1007
		touch_pmd(vma, addr, pmd, flags);
1008 1009 1010 1011 1012

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
J
John Hubbard 已提交
1013
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1014 1015 1016
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1017 1018
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1019 1020
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1021 1022
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1023 1024 1025 1026

	return page;
}

1027 1028
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1029
		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1030
{
1031
	spinlock_t *dst_ptl, *src_ptl;
1032 1033
	struct page *src_page;
	pmd_t pmd;
1034
	pgtable_t pgtable = NULL;
1035
	int ret = -ENOMEM;
1036

1037
	/* Skip if can be re-fill on fault */
1038
	if (!vma_is_anonymous(dst_vma))
1039 1040
		return 0;

1041
	pgtable = pte_alloc_one(dst_mm);
1042 1043
	if (unlikely(!pgtable))
		goto out;
1044

1045 1046 1047
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1048 1049 1050

	ret = -EAGAIN;
	pmd = *src_pmd;
1051 1052 1053 1054 1055 1056 1057 1058 1059

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
		if (is_write_migration_entry(entry)) {
			make_migration_entry_read(&entry);
			pmd = swp_entry_to_pmd(entry);
1060 1061
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
1062 1063
			if (pmd_swp_uffd_wp(*src_pmd))
				pmd = pmd_swp_mkuffd_wp(pmd);
1064 1065
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
1066
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1067
		mm_inc_nr_ptes(dst_mm);
1068
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1069 1070
		if (!userfaultfd_wp(dst_vma))
			pmd = pmd_swp_clear_uffd_wp(pmd);
1071 1072 1073 1074 1075 1076
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

1077
	if (unlikely(!pmd_trans_huge(pmd))) {
1078 1079 1080
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
1081
	/*
1082
	 * When page table lock is held, the huge zero pmd should not be
1083 1084 1085 1086
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
1087 1088 1089 1090 1091
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1092 1093
		mm_get_huge_zero_page(dst_mm);
		goto out_zero_page;
1094
	}
1095

1096 1097
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1098 1099 1100 1101 1102 1103 1104 1105

	/*
	 * If this page is a potentially pinned page, split and retry the fault
	 * with smaller page size.  Normally this should not happen because the
	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
	 * best effort that the pinned pages won't be replaced by another
	 * random page during the coming copy-on-write.
	 */
1106
	if (unlikely(page_needs_cow_for_dma(src_vma, src_page))) {
1107 1108 1109
		pte_free(dst_mm, pgtable);
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
1110
		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1111 1112 1113
		return -EAGAIN;
	}

1114 1115 1116
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1117
out_zero_page:
1118
	mm_inc_nr_ptes(dst_mm);
1119
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1120
	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1121 1122
	if (!userfaultfd_wp(dst_vma))
		pmd = pmd_clear_uffd_wp(pmd);
1123 1124 1125 1126 1127
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1128 1129
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1130 1131 1132 1133
out:
	return ret;
}

1134 1135
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1136
		pud_t *pud, int flags)
1137 1138 1139
{
	pud_t _pud;

1140 1141 1142
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1143
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1144
				pud, _pud, flags & FOLL_WRITE))
1145 1146 1147 1148
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1149
		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1150 1151 1152 1153 1154 1155 1156
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1157
	if (flags & FOLL_WRITE && !pud_write(*pud))
1158 1159
		return NULL;

J
John Hubbard 已提交
1160 1161 1162 1163 1164
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

1165 1166 1167 1168 1169 1170
	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1171
		touch_pud(vma, addr, pud, flags);
1172 1173 1174 1175

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
J
John Hubbard 已提交
1176 1177
	 *
	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1178
	 */
J
John Hubbard 已提交
1179
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1180 1181 1182
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1183 1184
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1185 1186
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1187 1188
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

1219
	/* Please refer to comments in copy_huge_pmd() */
1220
	if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1221 1222 1223 1224 1225 1226
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
		__split_huge_pud(vma, src_pud, addr);
		return -EAGAIN;
	}

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1260
void huge_pmd_set_accessed(struct vm_fault *vmf)
1261 1262 1263
{
	pmd_t entry;
	unsigned long haddr;
1264
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1265
	pmd_t orig_pmd = vmf->orig_pmd;
1266

J
Jan Kara 已提交
1267 1268
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1269 1270 1271
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1272 1273
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1274
	haddr = vmf->address & HPAGE_PMD_MASK;
1275
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1276
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1277 1278

unlock:
J
Jan Kara 已提交
1279
	spin_unlock(vmf->ptl);
1280 1281
}

1282
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1283
{
J
Jan Kara 已提交
1284
	struct vm_area_struct *vma = vmf->vma;
1285
	struct page *page;
J
Jan Kara 已提交
1286
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1287
	pmd_t orig_pmd = vmf->orig_pmd;
1288

J
Jan Kara 已提交
1289
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1290
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1291

1292
	if (is_huge_zero_pmd(orig_pmd))
1293 1294
		goto fallback;

J
Jan Kara 已提交
1295
	spin_lock(vmf->ptl);
1296 1297 1298 1299 1300

	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
		return 0;
	}
1301 1302

	page = pmd_page(orig_pmd);
1303
	VM_BUG_ON_PAGE(!PageHead(page), page);
1304 1305

	/* Lock page for reuse_swap_page() */
1306 1307 1308 1309 1310 1311
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1312
			spin_unlock(vmf->ptl);
1313 1314
			unlock_page(page);
			put_page(page);
1315
			return 0;
1316 1317 1318
		}
		put_page(page);
	}
1319 1320 1321 1322 1323

	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
	 * part.
	 */
1324
	if (reuse_swap_page(page, NULL)) {
1325 1326
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1327
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1328
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
J
Jan Kara 已提交
1329
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1330
		unlock_page(page);
J
Jan Kara 已提交
1331
		spin_unlock(vmf->ptl);
1332
		return VM_FAULT_WRITE;
1333
	}
1334 1335

	unlock_page(page);
J
Jan Kara 已提交
1336
	spin_unlock(vmf->ptl);
1337 1338 1339
fallback:
	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
	return VM_FAULT_FALLBACK;
1340 1341
}

1342
/*
1343 1344
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
1345 1346 1347
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1348 1349
	return pmd_write(pmd) ||
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1350 1351
}

1352
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1353 1354 1355 1356
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1357
	struct mm_struct *mm = vma->vm_mm;
1358 1359
	struct page *page = NULL;

1360
	assert_spin_locked(pmd_lockptr(mm, pmd));
1361

1362
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1363 1364
		goto out;

1365 1366 1367 1368
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1369
	/* Full NUMA hinting faults to serialise migration in fault paths */
1370
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1371 1372
		goto out;

1373
	page = pmd_page(*pmd);
1374
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
J
John Hubbard 已提交
1375 1376 1377 1378

	if (!try_grab_page(page, flags))
		return ERR_PTR(-ENOMEM);

1379
	if (flags & FOLL_TOUCH)
1380
		touch_pmd(vma, addr, pmd, flags);
J
John Hubbard 已提交
1381

E
Eric B Munson 已提交
1382
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1383 1384 1385 1386
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1387 1388
		 * For anon THP:
		 *
1389 1390 1391 1392 1393 1394 1395
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1396 1397 1398 1399 1400 1401
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1402
		 */
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1413
	}
1414
skip_mlock:
1415
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1416
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1417 1418 1419 1420 1421

out:
	return page;
}

1422
/* NUMA hinting page fault entry point for trans huge pmds */
1423
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1424
{
J
Jan Kara 已提交
1425
	struct vm_area_struct *vma = vmf->vma;
Y
Yang Shi 已提交
1426 1427
	pmd_t oldpmd = vmf->orig_pmd;
	pmd_t pmd;
1428
	struct page *page;
J
Jan Kara 已提交
1429
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
Y
Yang Shi 已提交
1430
	int page_nid = NUMA_NO_NODE;
1431
	int target_nid, last_cpupid = -1;
1432
	bool migrated = false;
Y
Yang Shi 已提交
1433
	bool was_writable = pmd_savedwrite(oldpmd);
1434
	int flags = 0;
1435

J
Jan Kara 已提交
1436
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
Y
Yang Shi 已提交
1437
	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
J
Jan Kara 已提交
1438
		spin_unlock(vmf->ptl);
1439 1440 1441
		goto out;
	}

1442 1443 1444 1445 1446 1447
	/*
	 * Since we took the NUMA fault, we must have observed the !accessible
	 * bit. Make sure all other CPUs agree with that, to avoid them
	 * modifying the page we're about to migrate.
	 *
	 * Must be done under PTL such that we'll observe the relevant
1448 1449 1450 1451
	 * inc_tlb_flush_pending().
	 *
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
1452
	 */
1453
	if (mm_tlb_flush_pending(vma->vm_mm)) {
1454
		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
		/*
		 * change_huge_pmd() released the pmd lock before
		 * invalidating the secondary MMUs sharing the primary
		 * MMU pagetables (with ->invalidate_range()). The
		 * mmu_notifier_invalidate_range_end() (which
		 * internally calls ->invalidate_range()) in
		 * change_pmd_range() will run after us, so we can't
		 * rely on it here and we need an explicit invalidate.
		 */
		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
					      haddr + HPAGE_PMD_SIZE);
	}
1467

Y
Yang Shi 已提交
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
	page = vm_normal_page_pmd(vma, haddr, pmd);
	if (!page)
		goto out_map;

	/* See similar comment in do_numa_page for explanation */
	if (!was_writable)
		flags |= TNF_NO_GROUP;

	page_nid = page_to_nid(page);
	last_cpupid = page_cpupid_last(page);
	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
				       &flags);

	if (target_nid == NUMA_NO_NODE) {
		put_page(page);
		goto out_map;
	}

J
Jan Kara 已提交
1487
	spin_unlock(vmf->ptl);
1488

Y
Yang Shi 已提交
1489
	migrated = migrate_misplaced_page(page, vma, target_nid);
1490 1491
	if (migrated) {
		flags |= TNF_MIGRATED;
1492
		page_nid = target_nid;
Y
Yang Shi 已提交
1493
	} else {
1494
		flags |= TNF_MIGRATE_FAIL;
Y
Yang Shi 已提交
1495 1496 1497 1498 1499 1500 1501
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
			spin_unlock(vmf->ptl);
			goto out;
		}
		goto out_map;
	}
1502 1503

out:
1504
	if (page_nid != NUMA_NO_NODE)
J
Jan Kara 已提交
1505
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1506
				flags);
1507

1508
	return 0;
Y
Yang Shi 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519

out_map:
	/* Restore the PMD */
	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
	pmd = pmd_mkyoung(pmd);
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
	spin_unlock(vmf->ptl);
	goto out;
1520 1521
}

1522 1523 1524 1525 1526
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1527 1528 1529 1530 1531 1532
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1533
	bool ret = false;
1534

1535
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1536

1537 1538
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1539
		goto out_unlocked;
1540 1541

	orig_pmd = *pmd;
1542
	if (is_huge_zero_pmd(orig_pmd))
1543 1544
		goto out;

1545 1546 1547 1548 1549 1550
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1551 1552 1553 1554 1555
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
1556
	if (total_mapcount(page) != 1)
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1569
		split_huge_page(page);
1570
		unlock_page(page);
1571
		put_page(page);
1572 1573 1574 1575 1576 1577 1578 1579
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1580
		pmdp_invalidate(vma, addr, pmd);
1581 1582 1583 1584 1585 1586
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1587 1588

	mark_page_lazyfree(page);
1589
	ret = true;
1590 1591 1592 1593 1594 1595
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1596 1597 1598 1599 1600 1601
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1602
	mm_dec_nr_ptes(mm);
1603 1604
}

1605
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1606
		 pmd_t *pmd, unsigned long addr)
1607
{
1608
	pmd_t orig_pmd;
1609
	spinlock_t *ptl;
1610

1611
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1612

1613 1614
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1615 1616 1617 1618 1619 1620 1621
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
1622 1623
	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
						tlb->fullmm);
1624
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1625
	if (vma_is_special_huge(vma)) {
1626 1627
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1628 1629
		spin_unlock(ptl);
	} else if (is_huge_zero_pmd(orig_pmd)) {
1630
		zap_deposited_table(tlb->mm, pmd);
1631 1632
		spin_unlock(ptl);
	} else {
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
			page_remove_rmap(page, true);
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
1646
			page = pfn_swap_entry_to_page(entry);
1647 1648 1649 1650
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1651
		if (PageAnon(page)) {
1652
			zap_deposited_table(tlb->mm, pmd);
1653 1654
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1655 1656
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1657
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1658
		}
1659

1660
		spin_unlock(ptl);
1661 1662
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1663
	}
1664
	return 1;
1665 1666
}

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1693
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1694
		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1695
{
1696
	spinlock_t *old_ptl, *new_ptl;
1697 1698
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1699
	bool force_flush = false;
1700 1701 1702 1703 1704 1705 1706

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1707
		return false;
1708 1709
	}

1710 1711
	/*
	 * We don't have to worry about the ordering of src and dst
1712
	 * ptlocks because exclusive mmap_lock prevents deadlock.
1713
	 */
1714 1715
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1716 1717 1718
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1719
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1720
		if (pmd_present(pmd))
1721
			force_flush = true;
1722
		VM_BUG_ON(!pmd_none(*new_pmd));
1723

1724
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1725
			pgtable_t pgtable;
1726 1727 1728
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1729 1730
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1731 1732
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1733 1734
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1735
		spin_unlock(old_ptl);
1736
		return true;
1737
	}
1738
	return false;
1739 1740
}

1741 1742 1743
/*
 * Returns
 *  - 0 if PMD could not be locked
I
Ingo Molnar 已提交
1744
 *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1745
 *      or if prot_numa but THP migration is not supported
I
Ingo Molnar 已提交
1746
 *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1747
 */
1748
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1749
		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1750 1751
{
	struct mm_struct *mm = vma->vm_mm;
1752
	spinlock_t *ptl;
1753 1754 1755
	pmd_t entry;
	bool preserve_write;
	int ret;
1756
	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1757 1758
	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1759

1760 1761 1762
	if (prot_numa && !thp_migration_supported())
		return 1;

1763
	ptl = __pmd_trans_huge_lock(pmd, vma);
1764 1765
	if (!ptl)
		return 0;
1766

1767 1768
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1769

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
		if (is_write_migration_entry(entry)) {
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
			make_migration_entry_read(&entry);
			newpmd = swp_entry_to_pmd(entry);
1783 1784
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1785 1786
			if (pmd_swp_uffd_wp(*pmd))
				newpmd = pmd_swp_mkuffd_wp(newpmd);
1787 1788 1789 1790 1791 1792
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1793 1794 1795 1796 1797 1798 1799
	/*
	 * Avoid trapping faults against the zero page. The read-only
	 * data is likely to be read-cached on the local CPU and
	 * local/remote hits to the zero page are not interesting.
	 */
	if (prot_numa && is_huge_zero_pmd(*pmd))
		goto unlock;
1800

1801 1802 1803
	if (prot_numa && pmd_protnone(*pmd))
		goto unlock;

1804
	/*
1805
	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1806
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1807
	 * which is also under mmap_read_lock(mm):
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
1825
	entry = pmdp_invalidate(vma, addr, pmd);
1826

1827 1828 1829
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
	if (uffd_wp) {
		entry = pmd_wrprotect(entry);
		entry = pmd_mkuffd_wp(entry);
	} else if (uffd_wp_resolve) {
		/*
		 * Leave the write bit to be handled by PF interrupt
		 * handler, then things like COW could be properly
		 * handled.
		 */
		entry = pmd_clear_uffd_wp(entry);
	}
1841 1842 1843 1844 1845
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
1846 1847 1848 1849
	return ret;
}

/*
1850
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1851
 *
1852 1853
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1854
 */
1855
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1856
{
1857 1858
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1859 1860
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
1861 1862 1863
		return ptl;
	spin_unlock(ptl);
	return NULL;
1864 1865
}

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
1898
	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1899
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1900
	if (vma_is_special_huge(vma)) {
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

1918
	count_vm_event(THP_SPLIT_PUD);
1919 1920 1921 1922 1923 1924 1925 1926

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
1927
	struct mmu_notifier_range range;
1928

1929
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1930
				address & HPAGE_PUD_MASK,
1931 1932 1933
				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pud_lock(vma->vm_mm, pud);
1934 1935
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
1936
	__split_huge_pud_locked(vma, pud, range.start);
1937 1938 1939

out:
	spin_unlock(ptl);
1940 1941 1942 1943
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
1944
	mmu_notifier_invalidate_range_only_end(&range);
1945 1946 1947
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1948 1949 1950 1951 1952 1953 1954 1955
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

1956 1957 1958 1959 1960 1961
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
1962
	 * See Documentation/vm/mmu_notifier.rst
1963 1964
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1983
		unsigned long haddr, bool freeze)
1984 1985 1986 1987
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
1988
	pmd_t old_pmd, _pmd;
1989
	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
1990
	unsigned long addr;
1991 1992 1993 1994 1995
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1996 1997
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
1998 1999 2000

	count_vm_event(THP_SPLIT_PMD);

2001
	if (!vma_is_anonymous(vma)) {
2002
		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2003 2004 2005 2006 2007 2008
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
2009
		if (vma_is_special_huge(vma))
2010
			return;
2011 2012 2013 2014
		if (unlikely(is_pmd_migration_entry(old_pmd))) {
			swp_entry_t entry;

			entry = pmd_to_swp_entry(old_pmd);
2015
			page = pfn_swap_entry_to_page(entry);
2016 2017 2018 2019 2020 2021 2022 2023 2024
		} else {
			page = pmd_page(old_pmd);
			if (!PageDirty(page) && pmd_dirty(old_pmd))
				set_page_dirty(page);
			if (!PageReferenced(page) && pmd_young(old_pmd))
				SetPageReferenced(page);
			page_remove_rmap(page, true);
			put_page(page);
		}
2025
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2026
		return;
2027 2028
	}

2029
	if (is_huge_zero_pmd(*pmd)) {
2030 2031 2032 2033 2034 2035 2036 2037 2038
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2039 2040 2041
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2042 2043 2044 2045 2046 2047 2048 2049
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
2050 2051
	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
	 * 383 on page 105. Intel should be safe but is also warns that it's
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2065
	if (unlikely(pmd_migration)) {
2066 2067
		swp_entry_t entry;

2068
		entry = pmd_to_swp_entry(old_pmd);
2069
		page = pfn_swap_entry_to_page(entry);
2070 2071 2072
		write = is_write_migration_entry(entry);
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2073
		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2074
	} else {
2075
		page = pmd_page(old_pmd);
2076 2077 2078 2079 2080
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
2081
		uffd_wp = pmd_uffd_wp(old_pmd);
2082
	}
2083
	VM_BUG_ON_PAGE(!page_count(page), page);
2084
	page_ref_add(page, HPAGE_PMD_NR - 1);
2085

2086 2087 2088 2089
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2090 2091 2092
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2093
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2094 2095 2096 2097 2098 2099
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2100
		if (freeze || pmd_migration) {
2101 2102 2103
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
2104 2105
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2106 2107
			if (uffd_wp)
				entry = pte_swp_mkuffd_wp(entry);
2108
		} else {
2109
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2110
			entry = maybe_mkwrite(entry, vma);
2111 2112 2113 2114
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2115 2116
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2117 2118
			if (uffd_wp)
				entry = pte_mkuffd_wp(entry);
2119
		}
2120
		pte = pte_offset_map(&_pmd, addr);
2121
		BUG_ON(!pte_none(*pte));
2122
		set_pte_at(mm, addr, pte, entry);
2123
		if (!pmd_migration)
2124
			atomic_inc(&page[i]._mapcount);
2125
		pte_unmap(pte);
2126 2127
	}

2128 2129 2130 2131 2132 2133 2134
	if (!pmd_migration) {
		/*
		 * Set PG_double_map before dropping compound_mapcount to avoid
		 * false-negative page_mapped().
		 */
		if (compound_mapcount(page) > 1 &&
		    !TestSetPageDoubleMap(page)) {
2135
			for (i = 0; i < HPAGE_PMD_NR; i++)
2136 2137 2138 2139 2140 2141
				atomic_inc(&page[i]._mapcount);
		}

		lock_page_memcg(page);
		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
			/* Last compound_mapcount is gone. */
2142 2143
			__mod_lruvec_page_state(page, NR_ANON_THPS,
						-HPAGE_PMD_NR);
2144 2145 2146 2147 2148
			if (TestClearPageDoubleMap(page)) {
				/* No need in mapcount reference anymore */
				for (i = 0; i < HPAGE_PMD_NR; i++)
					atomic_dec(&page[i]._mapcount);
			}
2149
		}
2150
		unlock_page_memcg(page);
2151 2152 2153 2154
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2155 2156

	if (freeze) {
2157
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2158 2159 2160 2161
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2162 2163 2164
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2165
		unsigned long address, bool freeze, struct page *page)
2166 2167
{
	spinlock_t *ptl;
2168
	struct mmu_notifier_range range;
2169
	bool do_unlock_page = false;
2170
	pmd_t _pmd;
2171

2172
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2173
				address & HPAGE_PMD_MASK,
2174 2175 2176
				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pmd_lock(vma->vm_mm, pmd);
2177 2178 2179 2180 2181 2182

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
2183 2184 2185 2186 2187
	if (page) {
		VM_WARN_ON_ONCE(!PageLocked(page));
		if (page != pmd_page(*pmd))
			goto out;
	}
2188

2189
repeat:
2190
	if (pmd_trans_huge(*pmd)) {
2191 2192
		if (!page) {
			page = pmd_page(*pmd);
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
			/*
			 * An anonymous page must be locked, to ensure that a
			 * concurrent reuse_swap_page() sees stable mapcount;
			 * but reuse_swap_page() is not used on shmem or file,
			 * and page lock must not be taken when zap_pmd_range()
			 * calls __split_huge_pmd() while i_mmap_lock is held.
			 */
			if (PageAnon(page)) {
				if (unlikely(!trylock_page(page))) {
					get_page(page);
					_pmd = *pmd;
					spin_unlock(ptl);
					lock_page(page);
					spin_lock(ptl);
					if (unlikely(!pmd_same(*pmd, _pmd))) {
						unlock_page(page);
						put_page(page);
						page = NULL;
						goto repeat;
					}
2213 2214
					put_page(page);
				}
2215
				do_unlock_page = true;
2216 2217
			}
		}
2218
		if (PageMlocked(page))
2219
			clear_page_mlock(page);
2220
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2221
		goto out;
2222
	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2223
out:
2224
	spin_unlock(ptl);
2225
	if (do_unlock_page)
2226
		unlock_page(page);
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
2240
	mmu_notifier_invalidate_range_only_end(&range);
2241 2242
}

2243 2244
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2245
{
2246
	pgd_t *pgd;
2247
	p4d_t *p4d;
2248
	pud_t *pud;
2249 2250
	pmd_t *pmd;

2251
	pgd = pgd_offset(vma->vm_mm, address);
2252 2253 2254
	if (!pgd_present(*pgd))
		return;

2255 2256 2257 2258 2259
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2260 2261 2262 2263
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2264

2265
	__split_huge_pmd(vma, pmd, address, freeze, page);
2266 2267
}

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
{
	/*
	 * If the new address isn't hpage aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
			 ALIGN(address, HPAGE_PMD_SIZE)))
		split_huge_pmd_address(vma, address, false, NULL);
}

2280
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2281 2282 2283 2284
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
2285 2286
	/* Check if we need to split start first. */
	split_huge_pmd_if_needed(vma, start);
2287

2288 2289
	/* Check if we need to split end next. */
	split_huge_pmd_if_needed(vma, end);
2290 2291

	/*
2292 2293
	 * If we're also updating the vma->vm_next->vm_start,
	 * check if we need to split it.
2294 2295 2296 2297
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
2298
		nstart += adjust_next;
2299
		split_huge_pmd_if_needed(next, nstart);
2300 2301
	}
}
2302

2303
static void unmap_page(struct page *page)
2304
{
2305
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_SYNC |
2306
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2307 2308 2309

	VM_BUG_ON_PAGE(!PageHead(page), page);

2310
	/* If TTU_SPLIT_FREEZE is ever extended to file, update remap_page() */
2311
	if (PageAnon(page))
2312
		ttu_flags |= TTU_SPLIT_FREEZE;
2313

2314 2315 2316
	try_to_unmap(page, ttu_flags);

	VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
2317 2318
}

2319
static void remap_page(struct page *page, unsigned int nr)
2320
{
2321
	int i;
2322 2323 2324 2325

	/* If TTU_SPLIT_FREEZE is ever extended to file, remove this check */
	if (!PageAnon(page))
		return;
2326 2327 2328
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
2329
		for (i = 0; i < nr; i++)
2330 2331
			remove_migration_ptes(page + i, page + i, true);
	}
2332 2333
}

2334
static void lru_add_page_tail(struct page *head, struct page *tail,
2335 2336
		struct lruvec *lruvec, struct list_head *list)
{
2337 2338 2339
	VM_BUG_ON_PAGE(!PageHead(head), head);
	VM_BUG_ON_PAGE(PageCompound(tail), head);
	VM_BUG_ON_PAGE(PageLRU(tail), head);
2340
	lockdep_assert_held(&lruvec->lru_lock);
2341

A
Alex Shi 已提交
2342
	if (list) {
2343
		/* page reclaim is reclaiming a huge page */
A
Alex Shi 已提交
2344
		VM_WARN_ON(PageLRU(head));
2345 2346
		get_page(tail);
		list_add_tail(&tail->lru, list);
2347
	} else {
A
Alex Shi 已提交
2348 2349 2350 2351
		/* head is still on lru (and we have it frozen) */
		VM_WARN_ON(!PageLRU(head));
		SetPageLRU(tail);
		list_add_tail(&tail->lru, &head->lru);
2352 2353 2354
	}
}

2355
static void __split_huge_page_tail(struct page *head, int tail,
2356 2357 2358 2359
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2360
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2361 2362

	/*
2363 2364 2365
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
2366
	 * for example lock_page() which set PG_waiters.
2367 2368 2369 2370 2371
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2372
			 (1L << PG_swapcache) |
2373 2374 2375
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2376
			 (1L << PG_workingset) |
2377
			 (1L << PG_locked) |
2378
			 (1L << PG_unevictable) |
2379 2380 2381
#ifdef CONFIG_64BIT
			 (1L << PG_arch_2) |
#endif
2382
			 (1L << PG_dirty)));
2383

2384 2385 2386 2387 2388 2389
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2390
	/* Page flags must be visible before we make the page non-compound. */
2391 2392
	smp_wmb();

2393 2394 2395 2396 2397 2398
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2399 2400
	clear_compound_head(page_tail);

2401 2402 2403 2404
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2405 2406 2407 2408 2409 2410
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2411 2412 2413 2414 2415 2416

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2417 2418 2419
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2420
static void __split_huge_page(struct page *page, struct list_head *list,
A
Alex Shi 已提交
2421
		pgoff_t end)
2422 2423 2424
{
	struct page *head = compound_head(page);
	struct lruvec *lruvec;
2425 2426
	struct address_space *swap_cache = NULL;
	unsigned long offset = 0;
2427
	unsigned int nr = thp_nr_pages(head);
2428
	int i;
2429 2430

	/* complete memcg works before add pages to LRU */
2431
	split_page_memcg(head, nr);
2432

2433 2434 2435 2436 2437 2438 2439 2440
	if (PageAnon(head) && PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		offset = swp_offset(entry);
		swap_cache = swap_address_space(entry);
		xa_lock(&swap_cache->i_pages);
	}

I
Ingo Molnar 已提交
2441
	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2442
	lruvec = lock_page_lruvec(head);
A
Alex Shi 已提交
2443

2444
	for (i = nr - 1; i >= 1; i--) {
2445
		__split_huge_page_tail(head, i, lruvec, list);
2446 2447
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
2448
			ClearPageDirty(head + i);
2449
			__delete_from_page_cache(head + i, NULL);
2450 2451
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2452
			put_page(head + i);
2453 2454 2455 2456 2457 2458
		} else if (!PageAnon(page)) {
			__xa_store(&head->mapping->i_pages, head[i].index,
					head + i, 0);
		} else if (swap_cache) {
			__xa_store(&swap_cache->i_pages, offset + i,
					head + i, 0);
2459 2460
		}
	}
2461 2462

	ClearPageCompound(head);
2463
	unlock_page_lruvec(lruvec);
A
Alex Shi 已提交
2464
	/* Caller disabled irqs, so they are still disabled here */
2465

2466
	split_page_owner(head, nr);
2467

2468 2469
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
M
Matthew Wilcox 已提交
2470
		/* Additional pin to swap cache */
2471
		if (PageSwapCache(head)) {
2472
			page_ref_add(head, 2);
2473 2474
			xa_unlock(&swap_cache->i_pages);
		} else {
2475
			page_ref_inc(head);
2476
		}
2477
	} else {
M
Matthew Wilcox 已提交
2478
		/* Additional pin to page cache */
2479
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2480
		xa_unlock(&head->mapping->i_pages);
2481
	}
A
Alex Shi 已提交
2482
	local_irq_enable();
2483

2484
	remap_page(head, nr);
2485

H
Huang Ying 已提交
2486 2487 2488 2489 2490 2491
	if (PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		split_swap_cluster(entry);
	}

2492
	for (i = 0; i < nr; i++) {
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2509 2510
int total_mapcount(struct page *page)
{
2511
	int i, compound, nr, ret;
2512 2513 2514 2515 2516 2517

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
2518
	compound = compound_mapcount(page);
2519
	nr = compound_nr(page);
2520
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2521 2522
		return compound;
	ret = compound;
2523
	for (i = 0; i < nr; i++)
2524
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2525 2526
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
2527
		return ret - compound * nr;
2528
	if (PageDoubleMap(page))
2529
		ret -= nr;
2530 2531 2532
	return ret;
}

2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
2574
	for (i = 0; i < thp_nr_pages(page); i++) {
2575 2576 2577 2578 2579 2580
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
2581
		_total_mapcount -= thp_nr_pages(page);
2582 2583 2584 2585 2586 2587 2588 2589 2590
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2591 2592 2593 2594 2595
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
	int extra_pins;

M
Matthew Wilcox 已提交
2596
	/* Additional pins from page cache */
2597
	if (PageAnon(page))
2598
		extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2599
	else
2600
		extra_pins = thp_nr_pages(page);
2601 2602 2603 2604 2605
	if (pextra_pins)
		*pextra_pins = extra_pins;
	return total_mapcount(page) == page_count(page) - extra_pins - 1;
}

2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2628
	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2629 2630
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
2631
	int extra_pins, ret;
2632
	pgoff_t end;
2633

2634
	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2635 2636
	VM_BUG_ON_PAGE(!PageLocked(head), head);
	VM_BUG_ON_PAGE(!PageCompound(head), head);
2637

2638
	if (PageWriteback(head))
2639 2640
		return -EBUSY;

2641 2642
	if (PageAnon(head)) {
		/*
2643
		 * The caller does not necessarily hold an mmap_lock that would
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2655
		end = -1;
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2669 2670 2671 2672 2673 2674 2675 2676 2677

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2678 2679 2680
	}

	/*
2681
	 * Racy check if we can split the page, before unmap_page() will
2682 2683
	 * split PMDs
	 */
2684
	if (!can_split_huge_page(head, &extra_pins)) {
2685 2686 2687 2688
		ret = -EBUSY;
		goto out_unlock;
	}

2689
	unmap_page(head);
2690

A
Alex Shi 已提交
2691 2692
	/* block interrupt reentry in xa_lock and spinlock */
	local_irq_disable();
2693
	if (mapping) {
M
Matthew Wilcox 已提交
2694
		XA_STATE(xas, &mapping->i_pages, page_index(head));
2695 2696

		/*
M
Matthew Wilcox 已提交
2697
		 * Check if the head page is present in page cache.
2698 2699
		 * We assume all tail are present too, if head is there.
		 */
M
Matthew Wilcox 已提交
2700 2701
		xa_lock(&mapping->i_pages);
		if (xas_load(&xas) != head)
2702 2703 2704
			goto fail;
	}

2705
	/* Prevent deferred_split_scan() touching ->_refcount */
2706
	spin_lock(&ds_queue->split_queue_lock);
2707
	if (page_ref_freeze(head, 1 + extra_pins)) {
2708
		if (!list_empty(page_deferred_list(head))) {
2709
			ds_queue->split_queue_len--;
2710 2711
			list_del(page_deferred_list(head));
		}
2712
		spin_unlock(&ds_queue->split_queue_lock);
2713
		if (mapping) {
2714 2715
			int nr = thp_nr_pages(head);

2716
			if (PageSwapBacked(head))
2717 2718
				__mod_lruvec_page_state(head, NR_SHMEM_THPS,
							-nr);
2719
			else
2720 2721
				__mod_lruvec_page_state(head, NR_FILE_THPS,
							-nr);
2722 2723
		}

A
Alex Shi 已提交
2724
		__split_huge_page(page, list, end);
H
Huang Ying 已提交
2725
		ret = 0;
2726
	} else {
2727
		spin_unlock(&ds_queue->split_queue_lock);
2728 2729
fail:
		if (mapping)
M
Matthew Wilcox 已提交
2730
			xa_unlock(&mapping->i_pages);
A
Alex Shi 已提交
2731
		local_irq_enable();
2732
		remap_page(head, thp_nr_pages(head));
2733 2734 2735 2736
		ret = -EBUSY;
	}

out_unlock:
2737 2738 2739 2740 2741 2742
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2743 2744 2745 2746
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2747 2748 2749

void free_transhuge_page(struct page *page)
{
2750
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2751 2752
	unsigned long flags;

2753
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2754
	if (!list_empty(page_deferred_list(page))) {
2755
		ds_queue->split_queue_len--;
2756 2757
		list_del(page_deferred_list(page));
	}
2758
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2759 2760 2761 2762 2763
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2764 2765
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
#ifdef CONFIG_MEMCG
2766
	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2767
#endif
2768 2769 2770 2771
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
	/*
	 * The try_to_unmap() in page reclaim path might reach here too,
	 * this may cause a race condition to corrupt deferred split queue.
	 * And, if page reclaim is already handling the same page, it is
	 * unnecessary to handle it again in shrinker.
	 *
	 * Check PageSwapCache to determine if the page is being
	 * handled by page reclaim since THP swap would add the page into
	 * swap cache before calling try_to_unmap().
	 */
	if (PageSwapCache(page))
		return;

2785
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2786
	if (list_empty(page_deferred_list(page))) {
2787
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2788 2789
		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
		ds_queue->split_queue_len++;
2790 2791
#ifdef CONFIG_MEMCG
		if (memcg)
2792 2793
			set_shrinker_bit(memcg, page_to_nid(page),
					 deferred_split_shrinker.id);
2794
#endif
2795
	}
2796
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2797 2798 2799 2800 2801
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2802
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2803
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2804 2805 2806 2807 2808

#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif
2809
	return READ_ONCE(ds_queue->split_queue_len);
2810 2811 2812 2813 2814
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2815
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2816
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2817 2818 2819 2820 2821
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2822 2823 2824 2825 2826
#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif

2827
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2828
	/* Take pin on all head pages to avoid freeing them under us */
2829
	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2830
		page = list_entry((void *)pos, struct page, deferred_list);
2831
		page = compound_head(page);
2832 2833 2834 2835
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2836
			list_del_init(page_deferred_list(page));
2837
			ds_queue->split_queue_len--;
2838
		}
2839 2840
		if (!--sc->nr_to_scan)
			break;
2841
	}
2842
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2843 2844

	list_for_each_safe(pos, next, &list) {
2845
		page = list_entry((void *)pos, struct page, deferred_list);
2846 2847
		if (!trylock_page(page))
			goto next;
2848 2849 2850 2851
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2852
next:
2853 2854 2855
		put_page(page);
	}

2856 2857 2858
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
	list_splice_tail(&list, &ds_queue->split_queue);
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2859

2860 2861 2862 2863
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
2864
	if (!split && list_empty(&ds_queue->split_queue))
2865 2866
		return SHRINK_STOP;
	return split;
2867 2868 2869 2870 2871 2872
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2873 2874
	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
		 SHRINKER_NONSLAB,
2875
};
2876 2877

#ifdef CONFIG_DEBUG_FS
2878
static void split_huge_pages_all(void)
2879 2880 2881 2882 2883 2884
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

2885
	pr_debug("Split all THPs\n");
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2899
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2900 2901 2902 2903 2904 2905 2906 2907 2908
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
2909
			cond_resched();
2910 2911 2912
		}
	}

2913 2914
	pr_debug("%lu of %lu THP split\n", split, total);
}
2915

2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
{
	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
		    is_vm_hugetlb_page(vma);
}

static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
				unsigned long vaddr_end)
{
	int ret = 0;
	struct task_struct *task;
	struct mm_struct *mm;
	unsigned long total = 0, split = 0;
	unsigned long addr;

	vaddr_start &= PAGE_MASK;
	vaddr_end &= PAGE_MASK;

	/* Find the task_struct from pid */
	rcu_read_lock();
	task = find_task_by_vpid(pid);
	if (!task) {
		rcu_read_unlock();
		ret = -ESRCH;
		goto out;
	}
	get_task_struct(task);
	rcu_read_unlock();

	/* Find the mm_struct */
	mm = get_task_mm(task);
	put_task_struct(task);

	if (!mm) {
		ret = -EINVAL;
		goto out;
	}

	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
		 pid, vaddr_start, vaddr_end);

	mmap_read_lock(mm);
	/*
	 * always increase addr by PAGE_SIZE, since we could have a PTE page
	 * table filled with PTE-mapped THPs, each of which is distinct.
	 */
	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
		struct vm_area_struct *vma = find_vma(mm, addr);
		unsigned int follflags;
		struct page *page;

		if (!vma || addr < vma->vm_start)
			break;

		/* skip special VMA and hugetlb VMA */
		if (vma_not_suitable_for_thp_split(vma)) {
			addr = vma->vm_end;
			continue;
		}

		/* FOLL_DUMP to ignore special (like zero) pages */
		follflags = FOLL_GET | FOLL_DUMP;
		page = follow_page(vma, addr, follflags);

		if (IS_ERR(page))
			continue;
		if (!page)
			continue;

		if (!is_transparent_hugepage(page))
			goto next;

		total++;
		if (!can_split_huge_page(compound_head(page), NULL))
			goto next;

		if (!trylock_page(page))
			goto next;

		if (!split_huge_page(page))
			split++;

		unlock_page(page);
next:
		put_page(page);
		cond_resched();
	}
	mmap_read_unlock(mm);
	mmput(mm);

	pr_debug("%lu of %lu THP split\n", split, total);

out:
	return ret;
3010
}
3011

3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
				pgoff_t off_end)
{
	struct filename *file;
	struct file *candidate;
	struct address_space *mapping;
	int ret = -EINVAL;
	pgoff_t index;
	int nr_pages = 1;
	unsigned long total = 0, split = 0;

	file = getname_kernel(file_path);
	if (IS_ERR(file))
		return ret;

	candidate = file_open_name(file, O_RDONLY, 0);
	if (IS_ERR(candidate))
		goto out;

	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
		 file_path, off_start, off_end);

	mapping = candidate->f_mapping;

	for (index = off_start; index < off_end; index += nr_pages) {
		struct page *fpage = pagecache_get_page(mapping, index,
						FGP_ENTRY | FGP_HEAD, 0);

		nr_pages = 1;
		if (xa_is_value(fpage) || !fpage)
			continue;

		if (!is_transparent_hugepage(fpage))
			goto next;

		total++;
		nr_pages = thp_nr_pages(fpage);

		if (!trylock_page(fpage))
			goto next;

		if (!split_huge_page(fpage))
			split++;

		unlock_page(fpage);
next:
		put_page(fpage);
		cond_resched();
	}

	filp_close(candidate, NULL);
	ret = 0;

	pr_debug("%lu of %lu file-backed THP split\n", split, total);
out:
	putname(file);
	return ret;
}

3071 3072 3073 3074 3075 3076 3077
#define MAX_INPUT_BUF_SZ 255

static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
				size_t count, loff_t *ppops)
{
	static DEFINE_MUTEX(split_debug_mutex);
	ssize_t ret;
3078 3079
	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
	char input_buf[MAX_INPUT_BUF_SZ];
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
	int pid;
	unsigned long vaddr_start, vaddr_end;

	ret = mutex_lock_interruptible(&split_debug_mutex);
	if (ret)
		return ret;

	ret = -EFAULT;

	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
		goto out;

	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103

	if (input_buf[0] == '/') {
		char *tok;
		char *buf = input_buf;
		char file_path[MAX_INPUT_BUF_SZ];
		pgoff_t off_start = 0, off_end = 0;
		size_t input_len = strlen(input_buf);

		tok = strsep(&buf, ",");
		if (tok) {
3104
			strcpy(file_path, tok);
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
		} else {
			ret = -EINVAL;
			goto out;
		}

		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
		if (ret != 2) {
			ret = -EINVAL;
			goto out;
		}
		ret = split_huge_pages_in_file(file_path, off_start, off_end);
		if (!ret)
			ret = input_len;

		goto out;
	}

3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
	if (ret == 1 && pid == 1) {
		split_huge_pages_all();
		ret = strlen(input_buf);
		goto out;
	} else if (ret != 3) {
		ret = -EINVAL;
		goto out;
	}

	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
	if (!ret)
		ret = strlen(input_buf);
out:
	mutex_unlock(&split_debug_mutex);
	return ret;

}

static const struct file_operations split_huge_pages_fops = {
	.owner	 = THIS_MODULE,
	.write	 = split_huge_pages_write,
	.llseek  = no_llseek,
};
3146 3147 3148

static int __init split_huge_pages_debugfs(void)
{
3149 3150
	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
			    &split_huge_pages_fops);
3151 3152 3153 3154
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
3165
	pmd_t pmdswp;
3166 3167 3168 3169 3170

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3171
	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3172 3173 3174
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
	entry = make_migration_entry(page, pmd_write(pmdval));
3175 3176 3177 3178
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
	page_remove_rmap(page, true);
	put_page(page);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3198 3199
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
3200
	if (is_write_migration_entry(entry))
3201
		pmde = maybe_pmd_mkwrite(pmde, vma);
3202 3203
	if (pmd_swp_uffd_wp(*pvmw->pmd))
		pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3204 3205

	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3206 3207 3208 3209
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
		page_add_file_rmap(new, true);
3210
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3211
	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3212 3213 3214 3215
		mlock_vma_page(new);
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif