huge_memory.c 84.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 */

6 7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

8 9
#include <linux/mm.h>
#include <linux/sched.h>
10
#include <linux/sched/mm.h>
11
#include <linux/sched/coredump.h>
12
#include <linux/sched/numa_balancing.h>
13 14 15 16 17
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
18
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
19
#include <linux/mm_inline.h>
20
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
21
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
22
#include <linux/khugepaged.h>
23
#include <linux/freezer.h>
24
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
25
#include <linux/mman.h>
26
#include <linux/memremap.h>
R
Ralf Baechle 已提交
27
#include <linux/pagemap.h>
28
#include <linux/debugfs.h>
29
#include <linux/migrate.h>
30
#include <linux/hashtable.h>
31
#include <linux/userfaultfd_k.h>
32
#include <linux/page_idle.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/oom.h>
35
#include <linux/numa.h>
36
#include <linux/page_owner.h>
37

38 39 40 41
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
42
/*
43 44 45 46
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
47 48
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
49
 */
50
unsigned long transparent_hugepage_flags __read_mostly =
51
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
52
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
53 54 55 56
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
57
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
58 59
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
60

61
static struct shrinker deferred_split_shrinker;
62

63
static atomic_t huge_zero_refcount;
64
struct page *huge_zero_page __read_mostly;
65
unsigned long huge_zero_pfn __read_mostly = ~0UL;
66

67 68 69 70 71 72 73 74
static inline bool file_thp_enabled(struct vm_area_struct *vma)
{
	return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file &&
	       !inode_is_open_for_write(vma->vm_file->f_inode) &&
	       (vma->vm_flags & VM_EXEC);
}

bool transparent_hugepage_active(struct vm_area_struct *vma)
75
{
76 77 78 79 80
	/* The addr is used to check if the vma size fits */
	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;

	if (!transhuge_vma_suitable(vma, addr))
		return false;
81 82
	if (vma_is_anonymous(vma))
		return __transparent_hugepage_enabled(vma);
83 84
	if (vma_is_shmem(vma))
		return shmem_huge_enabled(vma);
85 86
	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
		return file_thp_enabled(vma);
87 88 89 90

	return false;
}

91
static bool get_huge_zero_page(void)
92 93 94 95
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
96
		return true;
97 98

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
99
			HPAGE_PMD_ORDER);
100 101
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
102
		return false;
103 104
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
105
	preempt_disable();
106
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
107
		preempt_enable();
108
		__free_pages(zero_page, compound_order(zero_page));
109 110
		goto retry;
	}
111
	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
112 113 114 115

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
116
	return true;
117 118
}

119
static void put_huge_zero_page(void)
120
{
121 122 123 124 125
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
126 127
}

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

148 149
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
150
{
151 152 153
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
154

155 156 157
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
158
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
159 160
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
161
		WRITE_ONCE(huge_zero_pfn, ~0UL);
162
		__free_pages(zero_page, compound_order(zero_page));
163
		return HPAGE_PMD_NR;
164 165 166
	}

	return 0;
167 168
}

169
static struct shrinker huge_zero_page_shrinker = {
170 171
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
172 173 174
	.seeks = DEFAULT_SEEKS,
};

175 176 177 178
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
179 180
	const char *output;

181
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
182 183 184 185
		output = "[always] madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always [madvise] never";
186
	else
187 188 189
		output = "always madvise [never]";

	return sysfs_emit(buf, "%s\n", output);
190
}
191

192 193 194 195
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
196
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
197

198
	if (sysfs_streq(buf, "always")) {
199 200
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
201
	} else if (sysfs_streq(buf, "madvise")) {
202 203
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
204
	} else if (sysfs_streq(buf, "never")) {
205 206 207 208
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
209 210

	if (ret > 0) {
211
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
212 213 214 215
		if (err)
			ret = err;
	}
	return ret;
216 217 218 219
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

220
ssize_t single_hugepage_flag_show(struct kobject *kobj,
221 222
				  struct kobj_attribute *attr, char *buf,
				  enum transparent_hugepage_flag flag)
223
{
224 225
	return sysfs_emit(buf, "%d\n",
			  !!test_bit(flag, &transparent_hugepage_flags));
226
}
227

228
ssize_t single_hugepage_flag_store(struct kobject *kobj,
229 230 231 232
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
233 234 235 236 237 238 239 240 241 242
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
243
		set_bit(flag, &transparent_hugepage_flags);
244
	else
245 246 247 248 249 250 251 252
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
	const char *output;

	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
		     &transparent_hugepage_flags))
		output = "[always] defer defer+madvise madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
			  &transparent_hugepage_flags))
		output = "always [defer] defer+madvise madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always defer [defer+madvise] madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always defer defer+madvise [madvise] never";
	else
		output = "always defer defer+madvise madvise [never]";

	return sysfs_emit(buf, "%s\n", output);
271
}
272

273 274 275 276
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
277
	if (sysfs_streq(buf, "always")) {
278 279 280 281
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
282
	} else if (sysfs_streq(buf, "defer+madvise")) {
283 284 285 286
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
287
	} else if (sysfs_streq(buf, "defer")) {
288 289 290 291
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
292
	} else if (sysfs_streq(buf, "madvise")) {
293 294 295 296
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
297
	} else if (sysfs_streq(buf, "never")) {
298 299 300 301 302 303 304 305
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
306 307 308 309
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

310
static ssize_t use_zero_page_show(struct kobject *kobj,
311
				  struct kobj_attribute *attr, char *buf)
312
{
313
	return single_hugepage_flag_show(kobj, attr, buf,
314
					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
315 316 317 318
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
319
	return single_hugepage_flag_store(kobj, attr, buf, count,
320 321 322 323
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
324 325

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
326
				   struct kobj_attribute *attr, char *buf)
327
{
328
	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
329 330 331 332
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

333 334 335
static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
336
	&use_zero_page_attr.attr,
337
	&hpage_pmd_size_attr.attr,
338
#ifdef CONFIG_SHMEM
339
	&shmem_enabled_attr.attr,
340 341 342 343
#endif
	NULL,
};

344
static const struct attribute_group hugepage_attr_group = {
345
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
346 347
};

S
Shaohua Li 已提交
348
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
349 350 351
{
	int err;

S
Shaohua Li 已提交
352 353
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
354
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
355
		return -ENOMEM;
A
Andrea Arcangeli 已提交
356 357
	}

S
Shaohua Li 已提交
358
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
359
	if (err) {
360
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
361
		goto delete_obj;
A
Andrea Arcangeli 已提交
362 363
	}

S
Shaohua Li 已提交
364
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
365
	if (err) {
366
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
367
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
368
	}
S
Shaohua Li 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
402 403 404 405 406
		/*
		 * Hardware doesn't support hugepages, hence disable
		 * DAX PMD support.
		 */
		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
S
Shaohua Li 已提交
407 408 409
		return -EINVAL;
	}

410 411 412 413 414 415 416 417 418 419
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
420 421
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
422
		goto err_sysfs;
A
Andrea Arcangeli 已提交
423

424
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
425
	if (err)
426
		goto err_slab;
A
Andrea Arcangeli 已提交
427

428 429 430
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
431 432 433
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
434

435 436 437 438 439
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
440
	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
441
		transparent_hugepage_flags = 0;
442 443
		return 0;
	}
444

445
	err = start_stop_khugepaged();
446 447
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
448

S
Shaohua Li 已提交
449
	return 0;
450
err_khugepaged:
451 452
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
453 454
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
455
	khugepaged_destroy();
456
err_slab:
S
Shaohua Li 已提交
457
	hugepage_exit_sysfs(hugepage_kobj);
458
err_sysfs:
A
Andrea Arcangeli 已提交
459
	return err;
460
}
461
subsys_initcall(hugepage_init);
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
489
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
490 491 492 493
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

494
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
495
{
496
	if (likely(vma->vm_flags & VM_WRITE))
497 498 499 500
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

501 502
#ifdef CONFIG_MEMCG
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
503
{
504
	struct mem_cgroup *memcg = page_memcg(compound_head(page));
505 506 507 508 509 510
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	if (memcg)
		return &memcg->deferred_split_queue;
	else
		return &pgdat->deferred_split_queue;
511
}
512 513 514 515 516 517 518 519
#else
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
{
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	return &pgdat->deferred_split_queue;
}
#endif
520 521 522 523 524 525 526 527 528 529 530 531

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

532 533 534
bool is_transparent_hugepage(struct page *page)
{
	if (!PageCompound(page))
Z
Zou Wei 已提交
535
		return false;
536 537 538 539 540 541 542

	page = compound_head(page);
	return is_huge_zero_page(page) ||
	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
}
EXPORT_SYMBOL_GPL(is_transparent_hugepage);

543 544
static unsigned long __thp_get_unmapped_area(struct file *filp,
		unsigned long addr, unsigned long len,
545 546 547 548
		loff_t off, unsigned long flags, unsigned long size)
{
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
549
	unsigned long len_pad, ret;
550 551 552 553 554 555 556 557

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

558
	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
559
					      off >> PAGE_SHIFT, flags);
560 561 562 563 564 565

	/*
	 * The failure might be due to length padding. The caller will retry
	 * without the padding.
	 */
	if (IS_ERR_VALUE(ret))
566 567
		return 0;

568 569 570 571 572 573 574 575 576
	/*
	 * Do not try to align to THP boundary if allocation at the address
	 * hint succeeds.
	 */
	if (ret == addr)
		return addr;

	ret += (off - ret) & (size - 1);
	return ret;
577 578 579 580 581
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
582
	unsigned long ret;
583 584 585 586 587
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

588 589 590 591
	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
	if (ret)
		return ret;
out:
592 593 594 595
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

596 597
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
598
{
J
Jan Kara 已提交
599
	struct vm_area_struct *vma = vmf->vma;
600
	pgtable_t pgtable;
J
Jan Kara 已提交
601
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
602
	vm_fault_t ret = 0;
603

604
	VM_BUG_ON_PAGE(!PageCompound(page), page);
605

606
	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
607 608
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
609
		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
610 611
		return VM_FAULT_FALLBACK;
	}
612
	cgroup_throttle_swaprate(page, gfp);
613

614
	pgtable = pte_alloc_one(vma->vm_mm);
615
	if (unlikely(!pgtable)) {
616 617
		ret = VM_FAULT_OOM;
		goto release;
618
	}
619

620
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
621 622 623 624 625
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
626 627
	__SetPageUptodate(page);

J
Jan Kara 已提交
628 629
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
630
		goto unlock_release;
631 632
	} else {
		pmd_t entry;
633

634 635 636 637
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

638 639
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
640
			spin_unlock(vmf->ptl);
641
			put_page(page);
K
Kirill A. Shutemov 已提交
642
			pte_free(vma->vm_mm, pgtable);
643 644 645
			ret = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			return ret;
646 647
		}

648
		entry = mk_huge_pmd(page, vma->vm_page_prot);
649
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
650
		page_add_new_anon_rmap(page, vma, haddr, true);
651
		lru_cache_add_inactive_or_unevictable(page, vma);
J
Jan Kara 已提交
652 653
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
654
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
K
Kirill A. Shutemov 已提交
655
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
656
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
657
		spin_unlock(vmf->ptl);
658
		count_vm_event(THP_FAULT_ALLOC);
659
		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
660 661
	}

662
	return 0;
663 664 665 666 667 668 669 670
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	put_page(page);
	return ret;

671 672
}

673
/*
674 675 676 677 678 679 680
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
681
 */
682
gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
683
{
684
	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
685

686
	/* Always do synchronous compaction */
687 688
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
689 690

	/* Kick kcompactd and fail quickly */
691
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
692
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
693 694

	/* Synchronous compaction if madvised, otherwise kick kcompactd */
695
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
696 697 698
		return GFP_TRANSHUGE_LIGHT |
			(vma_madvised ? __GFP_DIRECT_RECLAIM :
					__GFP_KSWAPD_RECLAIM);
699 700

	/* Only do synchronous compaction if madvised */
701
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
702 703
		return GFP_TRANSHUGE_LIGHT |
		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
704

705
	return GFP_TRANSHUGE_LIGHT;
706 707
}

708
/* Caller must hold page table lock. */
709
static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
710
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
711
		struct page *zero_page)
712 713
{
	pmd_t entry;
A
Andrew Morton 已提交
714
	if (!pmd_none(*pmd))
715
		return;
716
	entry = mk_pmd(zero_page, vma->vm_page_prot);
717
	entry = pmd_mkhuge(entry);
718 719
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
720
	set_pmd_at(mm, haddr, pmd, entry);
721
	mm_inc_nr_ptes(mm);
722 723
}

724
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
725
{
J
Jan Kara 已提交
726
	struct vm_area_struct *vma = vmf->vma;
727
	gfp_t gfp;
728
	struct page *page;
J
Jan Kara 已提交
729
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
730

731
	if (!transhuge_vma_suitable(vma, haddr))
732
		return VM_FAULT_FALLBACK;
733 734
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
735
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
736
		return VM_FAULT_OOM;
J
Jan Kara 已提交
737
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
738
			!mm_forbids_zeropage(vma->vm_mm) &&
739 740 741
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
742
		vm_fault_t ret;
743
		pgtable = pte_alloc_one(vma->vm_mm);
744
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
745
			return VM_FAULT_OOM;
746
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
747
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
748
			pte_free(vma->vm_mm, pgtable);
749
			count_vm_event(THP_FAULT_FALLBACK);
750
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
751
		}
J
Jan Kara 已提交
752
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
753
		ret = 0;
J
Jan Kara 已提交
754
		if (pmd_none(*vmf->pmd)) {
755 756 757
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
758
				pte_free(vma->vm_mm, pgtable);
759
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
760
				spin_unlock(vmf->ptl);
761
				pte_free(vma->vm_mm, pgtable);
J
Jan Kara 已提交
762
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
763 764
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
765
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
766
						   haddr, vmf->pmd, zero_page);
767
				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
J
Jan Kara 已提交
768
				spin_unlock(vmf->ptl);
769
			}
770
		} else {
J
Jan Kara 已提交
771
			spin_unlock(vmf->ptl);
K
Kirill A. Shutemov 已提交
772
			pte_free(vma->vm_mm, pgtable);
773
		}
774
		return ret;
775
	}
776
	gfp = vma_thp_gfp_mask(vma);
777
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
778 779
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
780
		return VM_FAULT_FALLBACK;
781
	}
782
	prep_transhuge_page(page);
J
Jan Kara 已提交
783
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
784 785
}

786
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
787 788
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
789 790 791 792 793 794
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

810 811 812
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
813
	if (write) {
814 815
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
816
	}
817 818 819

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
820
		mm_inc_nr_ptes(mm);
821
		pgtable = NULL;
822 823
	}

824 825
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
826 827

out_unlock:
M
Matthew Wilcox 已提交
828
	spin_unlock(ptl);
829 830
	if (pgtable)
		pte_free(mm, pgtable);
M
Matthew Wilcox 已提交
831 832
}

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
/**
 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
M
Matthew Wilcox 已提交
848
{
849 850
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
851
	pgtable_t pgtable = NULL;
852

M
Matthew Wilcox 已提交
853 854 855 856 857
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
858 859
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
860 861 862 863 864 865
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
866

867
	if (arch_needs_pgtable_deposit()) {
868
		pgtable = pte_alloc_one(vma->vm_mm);
869 870 871 872
		if (!pgtable)
			return VM_FAULT_OOM;
	}

873 874
	track_pfn_insert(vma, &pgprot, pfn);

875
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
876
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
877
}
878
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
M
Matthew Wilcox 已提交
879

880
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
881
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
882
{
883
	if (likely(vma->vm_flags & VM_WRITE))
884 885 886 887 888 889 890 891 892 893 894 895
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
896 897 898 899 900 901 902 903 904 905 906 907 908 909
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

910 911 912 913
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
914 915
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
916 917 918
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
919 920

out_unlock:
921 922 923
	spin_unlock(ptl);
}

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
/**
 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
939
{
940 941 942
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;

943 944 945 946 947
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
948 949
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
950 951 952 953 954 955 956 957 958
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

959
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
960 961
	return VM_FAULT_NOPAGE;
}
962
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
963 964
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

965
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
966
		pmd_t *pmd, int flags)
967 968 969
{
	pmd_t _pmd;

970 971 972
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
973
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
974
				pmd, _pmd, flags & FOLL_WRITE))
975 976 977 978
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
979
		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
980 981 982 983 984 985 986
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

987 988 989 990 991 992
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

J
John Hubbard 已提交
993 994 995 996 997
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

998
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
999 1000 1001 1002 1003 1004 1005 1006
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1007
		touch_pmd(vma, addr, pmd, flags);
1008 1009 1010 1011 1012

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
J
John Hubbard 已提交
1013
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1014 1015 1016
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1017 1018
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1019 1020
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1021 1022
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1023 1024 1025 1026

	return page;
}

1027 1028
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1029
		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1030
{
1031
	spinlock_t *dst_ptl, *src_ptl;
1032 1033
	struct page *src_page;
	pmd_t pmd;
1034
	pgtable_t pgtable = NULL;
1035
	int ret = -ENOMEM;
1036

1037
	/* Skip if can be re-fill on fault */
1038
	if (!vma_is_anonymous(dst_vma))
1039 1040
		return 0;

1041
	pgtable = pte_alloc_one(dst_mm);
1042 1043
	if (unlikely(!pgtable))
		goto out;
1044

1045 1046 1047
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1048 1049 1050

	ret = -EAGAIN;
	pmd = *src_pmd;
1051 1052 1053 1054 1055 1056

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1057 1058 1059
		if (is_writable_migration_entry(entry)) {
			entry = make_readable_migration_entry(
							swp_offset(entry));
1060
			pmd = swp_entry_to_pmd(entry);
1061 1062
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
1063 1064
			if (pmd_swp_uffd_wp(*src_pmd))
				pmd = pmd_swp_mkuffd_wp(pmd);
1065 1066
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
1067
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1068
		mm_inc_nr_ptes(dst_mm);
1069
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1070 1071
		if (!userfaultfd_wp(dst_vma))
			pmd = pmd_swp_clear_uffd_wp(pmd);
1072 1073 1074 1075 1076 1077
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

1078
	if (unlikely(!pmd_trans_huge(pmd))) {
1079 1080 1081
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
1082
	/*
1083
	 * When page table lock is held, the huge zero pmd should not be
1084 1085 1086 1087
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
1088 1089 1090 1091 1092
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1093 1094
		mm_get_huge_zero_page(dst_mm);
		goto out_zero_page;
1095
	}
1096

1097 1098
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1099 1100 1101 1102 1103 1104 1105 1106

	/*
	 * If this page is a potentially pinned page, split and retry the fault
	 * with smaller page size.  Normally this should not happen because the
	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
	 * best effort that the pinned pages won't be replaced by another
	 * random page during the coming copy-on-write.
	 */
1107
	if (unlikely(page_needs_cow_for_dma(src_vma, src_page))) {
1108 1109 1110
		pte_free(dst_mm, pgtable);
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
1111
		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1112 1113 1114
		return -EAGAIN;
	}

1115 1116 1117
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1118
out_zero_page:
1119
	mm_inc_nr_ptes(dst_mm);
1120
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1121
	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1122 1123
	if (!userfaultfd_wp(dst_vma))
		pmd = pmd_clear_uffd_wp(pmd);
1124 1125 1126 1127 1128
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1129 1130
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1131 1132 1133 1134
out:
	return ret;
}

1135 1136
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1137
		pud_t *pud, int flags)
1138 1139 1140
{
	pud_t _pud;

1141 1142 1143
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1144
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1145
				pud, _pud, flags & FOLL_WRITE))
1146 1147 1148 1149
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1150
		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1151 1152 1153 1154 1155 1156 1157
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1158
	if (flags & FOLL_WRITE && !pud_write(*pud))
1159 1160
		return NULL;

J
John Hubbard 已提交
1161 1162 1163 1164 1165
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

1166 1167 1168 1169 1170 1171
	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1172
		touch_pud(vma, addr, pud, flags);
1173 1174 1175 1176

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
J
John Hubbard 已提交
1177 1178
	 *
	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1179
	 */
J
John Hubbard 已提交
1180
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1181 1182 1183
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1184 1185
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1186 1187
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1188 1189
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

1220
	/* Please refer to comments in copy_huge_pmd() */
1221
	if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1222 1223 1224 1225 1226 1227
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
		__split_huge_pud(vma, src_pud, addr);
		return -EAGAIN;
	}

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1261
void huge_pmd_set_accessed(struct vm_fault *vmf)
1262 1263 1264
{
	pmd_t entry;
	unsigned long haddr;
1265
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1266
	pmd_t orig_pmd = vmf->orig_pmd;
1267

J
Jan Kara 已提交
1268 1269
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1270 1271 1272
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1273 1274
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1275
	haddr = vmf->address & HPAGE_PMD_MASK;
1276
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1277
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1278 1279

unlock:
J
Jan Kara 已提交
1280
	spin_unlock(vmf->ptl);
1281 1282
}

1283
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1284
{
J
Jan Kara 已提交
1285
	struct vm_area_struct *vma = vmf->vma;
1286
	struct page *page;
J
Jan Kara 已提交
1287
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1288
	pmd_t orig_pmd = vmf->orig_pmd;
1289

J
Jan Kara 已提交
1290
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1291
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1292

1293
	if (is_huge_zero_pmd(orig_pmd))
1294 1295
		goto fallback;

J
Jan Kara 已提交
1296
	spin_lock(vmf->ptl);
1297 1298 1299 1300 1301

	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
		return 0;
	}
1302 1303

	page = pmd_page(orig_pmd);
1304
	VM_BUG_ON_PAGE(!PageHead(page), page);
1305 1306

	/* Lock page for reuse_swap_page() */
1307 1308 1309 1310 1311 1312
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1313
			spin_unlock(vmf->ptl);
1314 1315
			unlock_page(page);
			put_page(page);
1316
			return 0;
1317 1318 1319
		}
		put_page(page);
	}
1320 1321 1322 1323 1324

	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
	 * part.
	 */
1325
	if (reuse_swap_page(page)) {
1326 1327
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1328
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1329
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
J
Jan Kara 已提交
1330
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1331
		unlock_page(page);
J
Jan Kara 已提交
1332
		spin_unlock(vmf->ptl);
1333
		return VM_FAULT_WRITE;
1334
	}
1335 1336

	unlock_page(page);
J
Jan Kara 已提交
1337
	spin_unlock(vmf->ptl);
1338 1339 1340
fallback:
	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
	return VM_FAULT_FALLBACK;
1341 1342
}

1343
/*
1344 1345
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
1346 1347 1348
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1349 1350
	return pmd_write(pmd) ||
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1351 1352
}

1353
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1354 1355 1356 1357
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1358
	struct mm_struct *mm = vma->vm_mm;
1359 1360
	struct page *page = NULL;

1361
	assert_spin_locked(pmd_lockptr(mm, pmd));
1362

1363
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1364 1365
		goto out;

1366 1367 1368 1369
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1370
	/* Full NUMA hinting faults to serialise migration in fault paths */
1371
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1372 1373
		goto out;

1374
	page = pmd_page(*pmd);
1375
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
J
John Hubbard 已提交
1376 1377 1378 1379

	if (!try_grab_page(page, flags))
		return ERR_PTR(-ENOMEM);

1380
	if (flags & FOLL_TOUCH)
1381
		touch_pmd(vma, addr, pmd, flags);
J
John Hubbard 已提交
1382

1383
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1384
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1385 1386 1387 1388 1389

out:
	return page;
}

1390
/* NUMA hinting page fault entry point for trans huge pmds */
1391
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1392
{
J
Jan Kara 已提交
1393
	struct vm_area_struct *vma = vmf->vma;
Y
Yang Shi 已提交
1394 1395
	pmd_t oldpmd = vmf->orig_pmd;
	pmd_t pmd;
1396
	struct page *page;
J
Jan Kara 已提交
1397
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
Y
Yang Shi 已提交
1398
	int page_nid = NUMA_NO_NODE;
1399
	int target_nid, last_cpupid = -1;
1400
	bool migrated = false;
Y
Yang Shi 已提交
1401
	bool was_writable = pmd_savedwrite(oldpmd);
1402
	int flags = 0;
1403

J
Jan Kara 已提交
1404
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
Y
Yang Shi 已提交
1405
	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
J
Jan Kara 已提交
1406
		spin_unlock(vmf->ptl);
1407 1408 1409
		goto out;
	}

Y
Yang Shi 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
	page = vm_normal_page_pmd(vma, haddr, pmd);
	if (!page)
		goto out_map;

	/* See similar comment in do_numa_page for explanation */
	if (!was_writable)
		flags |= TNF_NO_GROUP;

	page_nid = page_to_nid(page);
	last_cpupid = page_cpupid_last(page);
	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
				       &flags);

	if (target_nid == NUMA_NO_NODE) {
		put_page(page);
		goto out_map;
	}

J
Jan Kara 已提交
1429
	spin_unlock(vmf->ptl);
1430

Y
Yang Shi 已提交
1431
	migrated = migrate_misplaced_page(page, vma, target_nid);
1432 1433
	if (migrated) {
		flags |= TNF_MIGRATED;
1434
		page_nid = target_nid;
Y
Yang Shi 已提交
1435
	} else {
1436
		flags |= TNF_MIGRATE_FAIL;
Y
Yang Shi 已提交
1437 1438 1439 1440 1441 1442 1443
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
			spin_unlock(vmf->ptl);
			goto out;
		}
		goto out_map;
	}
1444 1445

out:
1446
	if (page_nid != NUMA_NO_NODE)
J
Jan Kara 已提交
1447
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1448
				flags);
1449

1450
	return 0;
Y
Yang Shi 已提交
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461

out_map:
	/* Restore the PMD */
	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
	pmd = pmd_mkyoung(pmd);
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
	spin_unlock(vmf->ptl);
	goto out;
1462 1463
}

1464 1465 1466 1467 1468
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1469 1470 1471 1472 1473 1474
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1475
	bool ret = false;
1476

1477
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1478

1479 1480
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1481
		goto out_unlocked;
1482 1483

	orig_pmd = *pmd;
1484
	if (is_huge_zero_pmd(orig_pmd))
1485 1486
		goto out;

1487 1488 1489 1490 1491 1492
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1493 1494 1495 1496 1497
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
1498
	if (total_mapcount(page) != 1)
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1511
		split_huge_page(page);
1512
		unlock_page(page);
1513
		put_page(page);
1514 1515 1516 1517 1518 1519 1520 1521
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1522
		pmdp_invalidate(vma, addr, pmd);
1523 1524 1525 1526 1527 1528
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1529 1530

	mark_page_lazyfree(page);
1531
	ret = true;
1532 1533 1534 1535 1536 1537
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1538 1539 1540 1541 1542 1543
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1544
	mm_dec_nr_ptes(mm);
1545 1546
}

1547
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1548
		 pmd_t *pmd, unsigned long addr)
1549
{
1550
	pmd_t orig_pmd;
1551
	spinlock_t *ptl;
1552

1553
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1554

1555 1556
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1557 1558 1559 1560 1561 1562 1563
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
1564 1565
	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
						tlb->fullmm);
1566
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1567
	if (vma_is_special_huge(vma)) {
1568 1569
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1570 1571
		spin_unlock(ptl);
	} else if (is_huge_zero_pmd(orig_pmd)) {
1572
		zap_deposited_table(tlb->mm, pmd);
1573 1574
		spin_unlock(ptl);
	} else {
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
			page_remove_rmap(page, true);
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
1588
			page = pfn_swap_entry_to_page(entry);
1589 1590 1591 1592
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1593
		if (PageAnon(page)) {
1594
			zap_deposited_table(tlb->mm, pmd);
1595 1596
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1597 1598
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1599
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1600
		}
1601

1602
		spin_unlock(ptl);
1603 1604
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1605
	}
1606
	return 1;
1607 1608
}

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1635
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1636
		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1637
{
1638
	spinlock_t *old_ptl, *new_ptl;
1639 1640
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1641
	bool force_flush = false;
1642 1643 1644 1645 1646 1647 1648

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1649
		return false;
1650 1651
	}

1652 1653
	/*
	 * We don't have to worry about the ordering of src and dst
1654
	 * ptlocks because exclusive mmap_lock prevents deadlock.
1655
	 */
1656 1657
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1658 1659 1660
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1661
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1662
		if (pmd_present(pmd))
1663
			force_flush = true;
1664
		VM_BUG_ON(!pmd_none(*new_pmd));
1665

1666
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1667
			pgtable_t pgtable;
1668 1669 1670
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1671 1672
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1673 1674
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1675 1676
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1677
		spin_unlock(old_ptl);
1678
		return true;
1679
	}
1680
	return false;
1681 1682
}

1683 1684 1685
/*
 * Returns
 *  - 0 if PMD could not be locked
I
Ingo Molnar 已提交
1686
 *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1687
 *      or if prot_numa but THP migration is not supported
I
Ingo Molnar 已提交
1688
 *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1689
 */
1690
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1691
		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1692 1693
{
	struct mm_struct *mm = vma->vm_mm;
1694
	spinlock_t *ptl;
1695 1696 1697
	pmd_t entry;
	bool preserve_write;
	int ret;
1698
	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1699 1700
	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1701

1702 1703 1704
	if (prot_numa && !thp_migration_supported())
		return 1;

1705
	ptl = __pmd_trans_huge_lock(pmd, vma);
1706 1707
	if (!ptl)
		return 0;
1708

1709 1710
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1711

1712 1713 1714 1715 1716
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1717
		if (is_writable_migration_entry(entry)) {
1718 1719 1720 1721 1722
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
1723 1724
			entry = make_readable_migration_entry(
							swp_offset(entry));
1725
			newpmd = swp_entry_to_pmd(entry);
1726 1727
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1728 1729
			if (pmd_swp_uffd_wp(*pmd))
				newpmd = pmd_swp_mkuffd_wp(newpmd);
1730 1731 1732 1733 1734 1735
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1736 1737 1738 1739 1740 1741 1742
	/*
	 * Avoid trapping faults against the zero page. The read-only
	 * data is likely to be read-cached on the local CPU and
	 * local/remote hits to the zero page are not interesting.
	 */
	if (prot_numa && is_huge_zero_pmd(*pmd))
		goto unlock;
1743

1744 1745 1746
	if (prot_numa && pmd_protnone(*pmd))
		goto unlock;

1747
	/*
1748
	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1749
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1750
	 * which is also under mmap_read_lock(mm):
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
1768
	entry = pmdp_invalidate(vma, addr, pmd);
1769

1770 1771 1772
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	if (uffd_wp) {
		entry = pmd_wrprotect(entry);
		entry = pmd_mkuffd_wp(entry);
	} else if (uffd_wp_resolve) {
		/*
		 * Leave the write bit to be handled by PF interrupt
		 * handler, then things like COW could be properly
		 * handled.
		 */
		entry = pmd_clear_uffd_wp(entry);
	}
1784 1785 1786 1787 1788
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
1789 1790 1791 1792
	return ret;
}

/*
1793
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1794
 *
1795 1796
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1797
 */
1798
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1799
{
1800 1801
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1802 1803
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
1804 1805 1806
		return ptl;
	spin_unlock(ptl);
	return NULL;
1807 1808
}

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
1841
	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1842
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1843
	if (vma_is_special_huge(vma)) {
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

1861
	count_vm_event(THP_SPLIT_PUD);
1862 1863 1864 1865 1866 1867 1868 1869

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
1870
	struct mmu_notifier_range range;
1871

1872
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1873
				address & HPAGE_PUD_MASK,
1874 1875 1876
				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pud_lock(vma->vm_mm, pud);
1877 1878
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
1879
	__split_huge_pud_locked(vma, pud, range.start);
1880 1881 1882

out:
	spin_unlock(ptl);
1883 1884 1885 1886
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
1887
	mmu_notifier_invalidate_range_only_end(&range);
1888 1889 1890
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1891 1892 1893 1894 1895 1896 1897 1898
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

1899 1900 1901 1902 1903 1904
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
1905
	 * See Documentation/vm/mmu_notifier.rst
1906 1907
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1926
		unsigned long haddr, bool freeze)
1927 1928 1929 1930
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
1931
	pmd_t old_pmd, _pmd;
1932
	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
1933
	unsigned long addr;
1934 1935 1936 1937 1938
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1939 1940
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
1941 1942 1943

	count_vm_event(THP_SPLIT_PMD);

1944
	if (!vma_is_anonymous(vma)) {
1945
		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1946 1947 1948 1949 1950 1951
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
1952
		if (vma_is_special_huge(vma))
1953
			return;
1954 1955 1956 1957
		if (unlikely(is_pmd_migration_entry(old_pmd))) {
			swp_entry_t entry;

			entry = pmd_to_swp_entry(old_pmd);
1958
			page = pfn_swap_entry_to_page(entry);
1959 1960 1961 1962 1963 1964 1965 1966 1967
		} else {
			page = pmd_page(old_pmd);
			if (!PageDirty(page) && pmd_dirty(old_pmd))
				set_page_dirty(page);
			if (!PageReferenced(page) && pmd_young(old_pmd))
				SetPageReferenced(page);
			page_remove_rmap(page, true);
			put_page(page);
		}
1968
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
1969
		return;
1970 1971
	}

1972
	if (is_huge_zero_pmd(*pmd)) {
1973 1974 1975 1976 1977 1978 1979 1980 1981
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
1982 1983 1984
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

1985 1986 1987 1988 1989 1990 1991 1992
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
1993 1994
	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
	 * 383 on page 105. Intel should be safe but is also warns that it's
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2008
	if (unlikely(pmd_migration)) {
2009 2010
		swp_entry_t entry;

2011
		entry = pmd_to_swp_entry(old_pmd);
2012
		page = pfn_swap_entry_to_page(entry);
2013
		write = is_writable_migration_entry(entry);
2014 2015
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2016
		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2017
	} else {
2018
		page = pmd_page(old_pmd);
2019 2020 2021 2022 2023
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
2024
		uffd_wp = pmd_uffd_wp(old_pmd);
2025
	}
2026
	VM_BUG_ON_PAGE(!page_count(page), page);
2027
	page_ref_add(page, HPAGE_PMD_NR - 1);
2028

2029 2030 2031 2032
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2033 2034 2035
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2036
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2037 2038 2039 2040 2041 2042
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2043
		if (freeze || pmd_migration) {
2044
			swp_entry_t swp_entry;
2045 2046 2047 2048 2049 2050
			if (write)
				swp_entry = make_writable_migration_entry(
							page_to_pfn(page + i));
			else
				swp_entry = make_readable_migration_entry(
							page_to_pfn(page + i));
2051
			entry = swp_entry_to_pte(swp_entry);
2052 2053
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2054 2055
			if (uffd_wp)
				entry = pte_swp_mkuffd_wp(entry);
2056
		} else {
2057
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2058
			entry = maybe_mkwrite(entry, vma);
2059 2060 2061 2062
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2063 2064
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2065 2066
			if (uffd_wp)
				entry = pte_mkuffd_wp(entry);
2067
		}
2068
		pte = pte_offset_map(&_pmd, addr);
2069
		BUG_ON(!pte_none(*pte));
2070
		set_pte_at(mm, addr, pte, entry);
2071
		if (!pmd_migration)
2072
			atomic_inc(&page[i]._mapcount);
2073
		pte_unmap(pte);
2074 2075
	}

2076 2077 2078 2079 2080 2081 2082
	if (!pmd_migration) {
		/*
		 * Set PG_double_map before dropping compound_mapcount to avoid
		 * false-negative page_mapped().
		 */
		if (compound_mapcount(page) > 1 &&
		    !TestSetPageDoubleMap(page)) {
2083
			for (i = 0; i < HPAGE_PMD_NR; i++)
2084 2085 2086 2087 2088 2089
				atomic_inc(&page[i]._mapcount);
		}

		lock_page_memcg(page);
		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
			/* Last compound_mapcount is gone. */
2090 2091
			__mod_lruvec_page_state(page, NR_ANON_THPS,
						-HPAGE_PMD_NR);
2092 2093 2094 2095 2096
			if (TestClearPageDoubleMap(page)) {
				/* No need in mapcount reference anymore */
				for (i = 0; i < HPAGE_PMD_NR; i++)
					atomic_dec(&page[i]._mapcount);
			}
2097
		}
2098
		unlock_page_memcg(page);
2099 2100 2101 2102
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2103 2104

	if (freeze) {
2105
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2106 2107 2108 2109
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2110 2111 2112
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2113
		unsigned long address, bool freeze, struct page *page)
2114 2115
{
	spinlock_t *ptl;
2116
	struct mmu_notifier_range range;
2117
	bool do_unlock_page = false;
2118
	pmd_t _pmd;
2119

2120
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2121
				address & HPAGE_PMD_MASK,
2122 2123 2124
				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pmd_lock(vma->vm_mm, pmd);
2125 2126 2127 2128 2129 2130

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
2131 2132 2133 2134 2135
	if (page) {
		VM_WARN_ON_ONCE(!PageLocked(page));
		if (page != pmd_page(*pmd))
			goto out;
	}
2136

2137
repeat:
2138
	if (pmd_trans_huge(*pmd)) {
2139 2140
		if (!page) {
			page = pmd_page(*pmd);
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
			/*
			 * An anonymous page must be locked, to ensure that a
			 * concurrent reuse_swap_page() sees stable mapcount;
			 * but reuse_swap_page() is not used on shmem or file,
			 * and page lock must not be taken when zap_pmd_range()
			 * calls __split_huge_pmd() while i_mmap_lock is held.
			 */
			if (PageAnon(page)) {
				if (unlikely(!trylock_page(page))) {
					get_page(page);
					_pmd = *pmd;
					spin_unlock(ptl);
					lock_page(page);
					spin_lock(ptl);
					if (unlikely(!pmd_same(*pmd, _pmd))) {
						unlock_page(page);
						put_page(page);
						page = NULL;
						goto repeat;
					}
2161 2162
					put_page(page);
				}
2163
				do_unlock_page = true;
2164 2165
			}
		}
2166
		if (PageMlocked(page))
2167
			clear_page_mlock(page);
2168
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2169
		goto out;
2170
	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2171
out:
2172
	spin_unlock(ptl);
2173
	if (do_unlock_page)
2174
		unlock_page(page);
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
2188
	mmu_notifier_invalidate_range_only_end(&range);
2189 2190
}

2191 2192
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2193
{
2194
	pgd_t *pgd;
2195
	p4d_t *p4d;
2196
	pud_t *pud;
2197 2198
	pmd_t *pmd;

2199
	pgd = pgd_offset(vma->vm_mm, address);
2200 2201 2202
	if (!pgd_present(*pgd))
		return;

2203 2204 2205 2206 2207
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2208 2209 2210 2211
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2212

2213
	__split_huge_pmd(vma, pmd, address, freeze, page);
2214 2215
}

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
{
	/*
	 * If the new address isn't hpage aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
			 ALIGN(address, HPAGE_PMD_SIZE)))
		split_huge_pmd_address(vma, address, false, NULL);
}

2228
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2229 2230 2231 2232
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
2233 2234
	/* Check if we need to split start first. */
	split_huge_pmd_if_needed(vma, start);
2235

2236 2237
	/* Check if we need to split end next. */
	split_huge_pmd_if_needed(vma, end);
2238 2239

	/*
2240 2241
	 * If we're also updating the vma->vm_next->vm_start,
	 * check if we need to split it.
2242 2243 2244 2245
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
2246
		nstart += adjust_next;
2247
		split_huge_pmd_if_needed(next, nstart);
2248 2249
	}
}
2250

2251
static void unmap_page(struct page *page)
2252
{
2253 2254
	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
		TTU_SYNC;
2255 2256 2257

	VM_BUG_ON_PAGE(!PageHead(page), page);

2258 2259 2260 2261 2262
	/*
	 * Anon pages need migration entries to preserve them, but file
	 * pages can simply be left unmapped, then faulted back on demand.
	 * If that is ever changed (perhaps for mlock), update remap_page().
	 */
2263
	if (PageAnon(page))
2264 2265 2266
		try_to_migrate(page, ttu_flags);
	else
		try_to_unmap(page, ttu_flags | TTU_IGNORE_MLOCK);
2267 2268

	VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
2269 2270
}

2271
static void remap_page(struct page *page, unsigned int nr)
2272
{
2273
	int i;
2274

2275
	/* If unmap_page() uses try_to_migrate() on file, remove this check */
2276 2277
	if (!PageAnon(page))
		return;
2278 2279 2280
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
2281
		for (i = 0; i < nr; i++)
2282 2283
			remove_migration_ptes(page + i, page + i, true);
	}
2284 2285
}

2286
static void lru_add_page_tail(struct page *head, struct page *tail,
2287 2288
		struct lruvec *lruvec, struct list_head *list)
{
2289 2290 2291
	VM_BUG_ON_PAGE(!PageHead(head), head);
	VM_BUG_ON_PAGE(PageCompound(tail), head);
	VM_BUG_ON_PAGE(PageLRU(tail), head);
2292
	lockdep_assert_held(&lruvec->lru_lock);
2293

A
Alex Shi 已提交
2294
	if (list) {
2295
		/* page reclaim is reclaiming a huge page */
A
Alex Shi 已提交
2296
		VM_WARN_ON(PageLRU(head));
2297 2298
		get_page(tail);
		list_add_tail(&tail->lru, list);
2299
	} else {
A
Alex Shi 已提交
2300 2301 2302 2303
		/* head is still on lru (and we have it frozen) */
		VM_WARN_ON(!PageLRU(head));
		SetPageLRU(tail);
		list_add_tail(&tail->lru, &head->lru);
2304 2305 2306
	}
}

2307
static void __split_huge_page_tail(struct page *head, int tail,
2308 2309 2310 2311
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2312
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2313 2314

	/*
2315 2316 2317
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
2318
	 * for example lock_page() which set PG_waiters.
2319 2320 2321 2322 2323
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2324
			 (1L << PG_swapcache) |
2325 2326 2327
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2328
			 (1L << PG_workingset) |
2329
			 (1L << PG_locked) |
2330
			 (1L << PG_unevictable) |
2331 2332 2333
#ifdef CONFIG_64BIT
			 (1L << PG_arch_2) |
#endif
2334
			 (1L << PG_dirty)));
2335

2336 2337 2338 2339 2340 2341
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2342
	/* Page flags must be visible before we make the page non-compound. */
2343 2344
	smp_wmb();

2345 2346 2347 2348 2349 2350
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2351 2352
	clear_compound_head(page_tail);

2353 2354 2355 2356
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2357 2358 2359 2360 2361 2362
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2363 2364 2365 2366 2367 2368

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2369 2370 2371
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2372
static void __split_huge_page(struct page *page, struct list_head *list,
A
Alex Shi 已提交
2373
		pgoff_t end)
2374
{
2375 2376
	struct folio *folio = page_folio(page);
	struct page *head = &folio->page;
2377
	struct lruvec *lruvec;
2378 2379
	struct address_space *swap_cache = NULL;
	unsigned long offset = 0;
2380
	unsigned int nr = thp_nr_pages(head);
2381
	int i;
2382 2383

	/* complete memcg works before add pages to LRU */
2384
	split_page_memcg(head, nr);
2385

2386 2387 2388 2389 2390 2391 2392 2393
	if (PageAnon(head) && PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		offset = swp_offset(entry);
		swap_cache = swap_address_space(entry);
		xa_lock(&swap_cache->i_pages);
	}

I
Ingo Molnar 已提交
2394
	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2395
	lruvec = folio_lruvec_lock(folio);
A
Alex Shi 已提交
2396

2397 2398
	ClearPageHasHWPoisoned(head);

2399
	for (i = nr - 1; i >= 1; i--) {
2400
		__split_huge_page_tail(head, i, lruvec, list);
2401
		/* Some pages can be beyond EOF: drop them from page cache */
2402
		if (head[i].index >= end) {
2403
			ClearPageDirty(head + i);
2404
			__delete_from_page_cache(head + i, NULL);
2405
			if (shmem_mapping(head->mapping))
2406
				shmem_uncharge(head->mapping->host, 1);
2407
			put_page(head + i);
2408 2409 2410 2411 2412 2413
		} else if (!PageAnon(page)) {
			__xa_store(&head->mapping->i_pages, head[i].index,
					head + i, 0);
		} else if (swap_cache) {
			__xa_store(&swap_cache->i_pages, offset + i,
					head + i, 0);
2414 2415
		}
	}
2416 2417

	ClearPageCompound(head);
2418
	unlock_page_lruvec(lruvec);
A
Alex Shi 已提交
2419
	/* Caller disabled irqs, so they are still disabled here */
2420

2421
	split_page_owner(head, nr);
2422

2423 2424
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
M
Matthew Wilcox 已提交
2425
		/* Additional pin to swap cache */
2426
		if (PageSwapCache(head)) {
2427
			page_ref_add(head, 2);
2428 2429
			xa_unlock(&swap_cache->i_pages);
		} else {
2430
			page_ref_inc(head);
2431
		}
2432
	} else {
M
Matthew Wilcox 已提交
2433
		/* Additional pin to page cache */
2434
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2435
		xa_unlock(&head->mapping->i_pages);
2436
	}
A
Alex Shi 已提交
2437
	local_irq_enable();
2438

2439
	remap_page(head, nr);
2440

H
Huang Ying 已提交
2441 2442 2443 2444 2445 2446
	if (PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		split_swap_cluster(entry);
	}

2447
	for (i = 0; i < nr; i++) {
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2464 2465
int total_mapcount(struct page *page)
{
2466
	int i, compound, nr, ret;
2467 2468 2469 2470 2471 2472

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
2473
	compound = compound_mapcount(page);
2474
	nr = compound_nr(page);
2475
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2476 2477
		return compound;
	ret = compound;
2478
	for (i = 0; i < nr; i++)
2479
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2480 2481
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
2482
		return ret - compound * nr;
2483
	if (PageDoubleMap(page))
2484
		ret -= nr;
2485 2486 2487
	return ret;
}

2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
2512
int page_trans_huge_mapcount(struct page *page)
2513
{
2514
	int i, ret;
2515 2516 2517 2518

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

2519 2520
	if (likely(!PageTransCompound(page)))
		return atomic_read(&page->_mapcount) + 1;
2521 2522 2523

	page = compound_head(page);

2524
	ret = 0;
2525
	for (i = 0; i < thp_nr_pages(page); i++) {
2526
		int mapcount = atomic_read(&page[i]._mapcount) + 1;
2527 2528
		ret = max(ret, mapcount);
	}
2529 2530

	if (PageDoubleMap(page))
2531
		ret -= 1;
2532 2533

	return ret + compound_mapcount(page);
2534 2535
}

2536 2537 2538 2539 2540
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
	int extra_pins;

M
Matthew Wilcox 已提交
2541
	/* Additional pins from page cache */
2542
	if (PageAnon(page))
2543
		extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2544
	else
2545
		extra_pins = thp_nr_pages(page);
2546 2547 2548 2549 2550
	if (pextra_pins)
		*pextra_pins = extra_pins;
	return total_mapcount(page) == page_count(page) - extra_pins - 1;
}

2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2573
	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2574
	XA_STATE(xas, &head->mapping->i_pages, head->index);
2575 2576
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
2577
	int extra_pins, ret;
2578
	pgoff_t end;
2579

2580
	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2581 2582
	VM_BUG_ON_PAGE(!PageLocked(head), head);
	VM_BUG_ON_PAGE(!PageCompound(head), head);
2583

2584
	if (PageWriteback(head))
2585 2586
		return -EBUSY;

2587 2588
	if (PageAnon(head)) {
		/*
2589
		 * The caller does not necessarily hold an mmap_lock that would
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2601
		end = -1;
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

2613 2614 2615 2616 2617 2618 2619
		xas_split_alloc(&xas, head, compound_order(head),
				mapping_gfp_mask(mapping) & GFP_RECLAIM_MASK);
		if (xas_error(&xas)) {
			ret = xas_error(&xas);
			goto out;
		}

2620 2621
		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2622 2623 2624 2625 2626 2627 2628 2629 2630

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2631 2632
		if (shmem_mapping(mapping))
			end = shmem_fallocend(mapping->host, end);
2633 2634 2635
	}

	/*
2636
	 * Racy check if we can split the page, before unmap_page() will
2637 2638
	 * split PMDs
	 */
2639
	if (!can_split_huge_page(head, &extra_pins)) {
2640 2641 2642 2643
		ret = -EBUSY;
		goto out_unlock;
	}

2644
	unmap_page(head);
2645

A
Alex Shi 已提交
2646 2647
	/* block interrupt reentry in xa_lock and spinlock */
	local_irq_disable();
2648 2649
	if (mapping) {
		/*
M
Matthew Wilcox 已提交
2650
		 * Check if the head page is present in page cache.
2651 2652
		 * We assume all tail are present too, if head is there.
		 */
2653 2654
		xas_lock(&xas);
		xas_reset(&xas);
M
Matthew Wilcox 已提交
2655
		if (xas_load(&xas) != head)
2656 2657 2658
			goto fail;
	}

2659
	/* Prevent deferred_split_scan() touching ->_refcount */
2660
	spin_lock(&ds_queue->split_queue_lock);
2661
	if (page_ref_freeze(head, 1 + extra_pins)) {
2662
		if (!list_empty(page_deferred_list(head))) {
2663
			ds_queue->split_queue_len--;
2664 2665
			list_del(page_deferred_list(head));
		}
2666
		spin_unlock(&ds_queue->split_queue_lock);
2667
		if (mapping) {
2668 2669
			int nr = thp_nr_pages(head);

2670
			xas_split(&xas, head, thp_order(head));
2671
			if (PageSwapBacked(head)) {
2672 2673
				__mod_lruvec_page_state(head, NR_SHMEM_THPS,
							-nr);
2674
			} else {
2675 2676
				__mod_lruvec_page_state(head, NR_FILE_THPS,
							-nr);
2677 2678
				filemap_nr_thps_dec(mapping);
			}
2679 2680
		}

A
Alex Shi 已提交
2681
		__split_huge_page(page, list, end);
H
Huang Ying 已提交
2682
		ret = 0;
2683
	} else {
2684
		spin_unlock(&ds_queue->split_queue_lock);
2685 2686
fail:
		if (mapping)
2687
			xas_unlock(&xas);
A
Alex Shi 已提交
2688
		local_irq_enable();
2689
		remap_page(head, thp_nr_pages(head));
2690 2691 2692 2693
		ret = -EBUSY;
	}

out_unlock:
2694 2695 2696 2697 2698 2699
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2700
out:
2701 2702
	/* Free any memory we didn't use */
	xas_nomem(&xas, 0);
2703 2704 2705
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2706 2707 2708

void free_transhuge_page(struct page *page)
{
2709
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2710 2711
	unsigned long flags;

2712
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2713
	if (!list_empty(page_deferred_list(page))) {
2714
		ds_queue->split_queue_len--;
2715 2716
		list_del(page_deferred_list(page));
	}
2717
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2718 2719 2720 2721 2722
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2723 2724
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
#ifdef CONFIG_MEMCG
2725
	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2726
#endif
2727 2728 2729 2730
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
	/*
	 * The try_to_unmap() in page reclaim path might reach here too,
	 * this may cause a race condition to corrupt deferred split queue.
	 * And, if page reclaim is already handling the same page, it is
	 * unnecessary to handle it again in shrinker.
	 *
	 * Check PageSwapCache to determine if the page is being
	 * handled by page reclaim since THP swap would add the page into
	 * swap cache before calling try_to_unmap().
	 */
	if (PageSwapCache(page))
		return;

2744
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2745
	if (list_empty(page_deferred_list(page))) {
2746
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2747 2748
		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
		ds_queue->split_queue_len++;
2749 2750
#ifdef CONFIG_MEMCG
		if (memcg)
2751 2752
			set_shrinker_bit(memcg, page_to_nid(page),
					 deferred_split_shrinker.id);
2753
#endif
2754
	}
2755
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2756 2757 2758 2759 2760
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2761
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2762
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2763 2764 2765 2766 2767

#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif
2768
	return READ_ONCE(ds_queue->split_queue_len);
2769 2770 2771 2772 2773
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2774
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2775
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2776 2777 2778 2779 2780
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2781 2782 2783 2784 2785
#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif

2786
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2787
	/* Take pin on all head pages to avoid freeing them under us */
2788
	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2789
		page = list_entry((void *)pos, struct page, deferred_list);
2790
		page = compound_head(page);
2791 2792 2793 2794
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2795
			list_del_init(page_deferred_list(page));
2796
			ds_queue->split_queue_len--;
2797
		}
2798 2799
		if (!--sc->nr_to_scan)
			break;
2800
	}
2801
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2802 2803

	list_for_each_safe(pos, next, &list) {
2804
		page = list_entry((void *)pos, struct page, deferred_list);
2805 2806
		if (!trylock_page(page))
			goto next;
2807 2808 2809 2810
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2811
next:
2812 2813 2814
		put_page(page);
	}

2815 2816 2817
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
	list_splice_tail(&list, &ds_queue->split_queue);
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2818

2819 2820 2821 2822
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
2823
	if (!split && list_empty(&ds_queue->split_queue))
2824 2825
		return SHRINK_STOP;
	return split;
2826 2827 2828 2829 2830 2831
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2832 2833
	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
		 SHRINKER_NONSLAB,
2834
};
2835 2836

#ifdef CONFIG_DEBUG_FS
2837
static void split_huge_pages_all(void)
2838 2839 2840 2841 2842 2843
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

2844
	pr_debug("Split all THPs\n");
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2858
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2859 2860 2861 2862 2863 2864 2865 2866 2867
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
2868
			cond_resched();
2869 2870 2871
		}
	}

2872 2873
	pr_debug("%lu of %lu THP split\n", split, total);
}
2874

2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
{
	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
		    is_vm_hugetlb_page(vma);
}

static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
				unsigned long vaddr_end)
{
	int ret = 0;
	struct task_struct *task;
	struct mm_struct *mm;
	unsigned long total = 0, split = 0;
	unsigned long addr;

	vaddr_start &= PAGE_MASK;
	vaddr_end &= PAGE_MASK;

	/* Find the task_struct from pid */
	rcu_read_lock();
	task = find_task_by_vpid(pid);
	if (!task) {
		rcu_read_unlock();
		ret = -ESRCH;
		goto out;
	}
	get_task_struct(task);
	rcu_read_unlock();

	/* Find the mm_struct */
	mm = get_task_mm(task);
	put_task_struct(task);

	if (!mm) {
		ret = -EINVAL;
		goto out;
	}

	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
		 pid, vaddr_start, vaddr_end);

	mmap_read_lock(mm);
	/*
	 * always increase addr by PAGE_SIZE, since we could have a PTE page
	 * table filled with PTE-mapped THPs, each of which is distinct.
	 */
	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
		struct vm_area_struct *vma = find_vma(mm, addr);
		unsigned int follflags;
		struct page *page;

		if (!vma || addr < vma->vm_start)
			break;

		/* skip special VMA and hugetlb VMA */
		if (vma_not_suitable_for_thp_split(vma)) {
			addr = vma->vm_end;
			continue;
		}

		/* FOLL_DUMP to ignore special (like zero) pages */
		follflags = FOLL_GET | FOLL_DUMP;
		page = follow_page(vma, addr, follflags);

		if (IS_ERR(page))
			continue;
		if (!page)
			continue;

		if (!is_transparent_hugepage(page))
			goto next;

		total++;
		if (!can_split_huge_page(compound_head(page), NULL))
			goto next;

		if (!trylock_page(page))
			goto next;

		if (!split_huge_page(page))
			split++;

		unlock_page(page);
next:
		put_page(page);
		cond_resched();
	}
	mmap_read_unlock(mm);
	mmput(mm);

	pr_debug("%lu of %lu THP split\n", split, total);

out:
	return ret;
2969
}
2970

2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
				pgoff_t off_end)
{
	struct filename *file;
	struct file *candidate;
	struct address_space *mapping;
	int ret = -EINVAL;
	pgoff_t index;
	int nr_pages = 1;
	unsigned long total = 0, split = 0;

	file = getname_kernel(file_path);
	if (IS_ERR(file))
		return ret;

	candidate = file_open_name(file, O_RDONLY, 0);
	if (IS_ERR(candidate))
		goto out;

	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
		 file_path, off_start, off_end);

	mapping = candidate->f_mapping;

	for (index = off_start; index < off_end; index += nr_pages) {
		struct page *fpage = pagecache_get_page(mapping, index,
						FGP_ENTRY | FGP_HEAD, 0);

		nr_pages = 1;
		if (xa_is_value(fpage) || !fpage)
			continue;

		if (!is_transparent_hugepage(fpage))
			goto next;

		total++;
		nr_pages = thp_nr_pages(fpage);

		if (!trylock_page(fpage))
			goto next;

		if (!split_huge_page(fpage))
			split++;

		unlock_page(fpage);
next:
		put_page(fpage);
		cond_resched();
	}

	filp_close(candidate, NULL);
	ret = 0;

	pr_debug("%lu of %lu file-backed THP split\n", split, total);
out:
	putname(file);
	return ret;
}

3030 3031 3032 3033 3034 3035 3036
#define MAX_INPUT_BUF_SZ 255

static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
				size_t count, loff_t *ppops)
{
	static DEFINE_MUTEX(split_debug_mutex);
	ssize_t ret;
3037 3038
	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
	char input_buf[MAX_INPUT_BUF_SZ];
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
	int pid;
	unsigned long vaddr_start, vaddr_end;

	ret = mutex_lock_interruptible(&split_debug_mutex);
	if (ret)
		return ret;

	ret = -EFAULT;

	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
		goto out;

	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062

	if (input_buf[0] == '/') {
		char *tok;
		char *buf = input_buf;
		char file_path[MAX_INPUT_BUF_SZ];
		pgoff_t off_start = 0, off_end = 0;
		size_t input_len = strlen(input_buf);

		tok = strsep(&buf, ",");
		if (tok) {
3063
			strcpy(file_path, tok);
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
		} else {
			ret = -EINVAL;
			goto out;
		}

		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
		if (ret != 2) {
			ret = -EINVAL;
			goto out;
		}
		ret = split_huge_pages_in_file(file_path, off_start, off_end);
		if (!ret)
			ret = input_len;

		goto out;
	}

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
	if (ret == 1 && pid == 1) {
		split_huge_pages_all();
		ret = strlen(input_buf);
		goto out;
	} else if (ret != 3) {
		ret = -EINVAL;
		goto out;
	}

	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
	if (!ret)
		ret = strlen(input_buf);
out:
	mutex_unlock(&split_debug_mutex);
	return ret;

}

static const struct file_operations split_huge_pages_fops = {
	.owner	 = THIS_MODULE,
	.write	 = split_huge_pages_write,
	.llseek  = no_llseek,
};
3105 3106 3107

static int __init split_huge_pages_debugfs(void)
{
3108 3109
	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
			    &split_huge_pages_fops);
3110 3111 3112 3113
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
3124
	pmd_t pmdswp;
3125 3126 3127 3128 3129

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3130
	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3131 3132
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
3133 3134 3135 3136
	if (pmd_write(pmdval))
		entry = make_writable_migration_entry(page_to_pfn(page));
	else
		entry = make_readable_migration_entry(page_to_pfn(page));
3137 3138 3139 3140
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
	page_remove_rmap(page, true);
	put_page(page);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3160 3161
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
3162
	if (is_writable_migration_entry(entry))
3163
		pmde = maybe_pmd_mkwrite(pmde, vma);
3164 3165
	if (pmd_swp_uffd_wp(*pvmw->pmd))
		pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3166 3167

	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3168 3169 3170 3171
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
		page_add_file_rmap(new, true);
3172
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3173
	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3174 3175 3176 3177
		mlock_vma_page(new);
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif