huge_memory.c 83.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 */

6 7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

8 9
#include <linux/mm.h>
#include <linux/sched.h>
10
#include <linux/sched/coredump.h>
11
#include <linux/sched/numa_balancing.h>
12 13 14 15 16
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
17
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
18
#include <linux/mm_inline.h>
19
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
20
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
21
#include <linux/khugepaged.h>
22
#include <linux/freezer.h>
23
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
24
#include <linux/mman.h>
25
#include <linux/memremap.h>
R
Ralf Baechle 已提交
26
#include <linux/pagemap.h>
27
#include <linux/debugfs.h>
28
#include <linux/migrate.h>
29
#include <linux/hashtable.h>
30
#include <linux/userfaultfd_k.h>
31
#include <linux/page_idle.h>
32
#include <linux/shmem_fs.h>
33
#include <linux/oom.h>
34
#include <linux/numa.h>
35
#include <linux/page_owner.h>
36

37 38 39 40
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
41
/*
42 43 44 45
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 47
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
48
 */
49
unsigned long transparent_hugepage_flags __read_mostly =
50
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
51
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 53 54 55
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
56
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 58
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
59

60
static struct shrinker deferred_split_shrinker;
61

62
static atomic_t huge_zero_refcount;
63
struct page *huge_zero_page __read_mostly;
64

65 66
bool transparent_hugepage_enabled(struct vm_area_struct *vma)
{
67 68 69 70 71
	/* The addr is used to check if the vma size fits */
	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;

	if (!transhuge_vma_suitable(vma, addr))
		return false;
72 73
	if (vma_is_anonymous(vma))
		return __transparent_hugepage_enabled(vma);
74 75
	if (vma_is_shmem(vma))
		return shmem_huge_enabled(vma);
76 77 78 79

	return false;
}

80
static struct page *get_huge_zero_page(void)
81 82 83 84
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85
		return READ_ONCE(huge_zero_page);
86 87

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88
			HPAGE_PMD_ORDER);
89 90
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91
		return NULL;
92 93
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
94
	preempt_disable();
95
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96
		preempt_enable();
97
		__free_pages(zero_page, compound_order(zero_page));
98 99 100 101 102 103
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
104
	return READ_ONCE(huge_zero_page);
105 106
}

107
static void put_huge_zero_page(void)
108
{
109 110 111 112 113
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 115
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

136 137
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
138
{
139 140 141
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
142

143 144 145
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
146
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 148
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
149
		__free_pages(zero_page, compound_order(zero_page));
150
		return HPAGE_PMD_NR;
151 152 153
	}

	return 0;
154 155
}

156
static struct shrinker huge_zero_page_shrinker = {
157 158
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
159 160 161
	.seeks = DEFAULT_SEEKS,
};

162 163 164 165
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
166 167
	const char *output;

168
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
169 170 171 172
		output = "[always] madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always [madvise] never";
173
	else
174 175 176
		output = "always madvise [never]";

	return sysfs_emit(buf, "%s\n", output);
177
}
178

179 180 181 182
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
183
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
184

185
	if (sysfs_streq(buf, "always")) {
186 187
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188
	} else if (sysfs_streq(buf, "madvise")) {
189 190
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
191
	} else if (sysfs_streq(buf, "never")) {
192 193 194 195
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
196 197

	if (ret > 0) {
198
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
199 200 201 202
		if (err)
			ret = err;
	}
	return ret;
203 204 205 206
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

207
ssize_t single_hugepage_flag_show(struct kobject *kobj,
208 209
				  struct kobj_attribute *attr, char *buf,
				  enum transparent_hugepage_flag flag)
210
{
211 212
	return sysfs_emit(buf, "%d\n",
			  !!test_bit(flag, &transparent_hugepage_flags));
213
}
214

215
ssize_t single_hugepage_flag_store(struct kobject *kobj,
216 217 218 219
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
220 221 222 223 224 225 226 227 228 229
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
230
		set_bit(flag, &transparent_hugepage_flags);
231
	else
232 233 234 235 236 237 238 239
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	const char *output;

	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
		     &transparent_hugepage_flags))
		output = "[always] defer defer+madvise madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
			  &transparent_hugepage_flags))
		output = "always [defer] defer+madvise madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always defer [defer+madvise] madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always defer defer+madvise [madvise] never";
	else
		output = "always defer defer+madvise madvise [never]";

	return sysfs_emit(buf, "%s\n", output);
258
}
259

260 261 262 263
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
264
	if (sysfs_streq(buf, "always")) {
265 266 267 268
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
269
	} else if (sysfs_streq(buf, "defer+madvise")) {
270 271 272 273
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274
	} else if (sysfs_streq(buf, "defer")) {
275 276 277 278
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
279
	} else if (sysfs_streq(buf, "madvise")) {
280 281 282 283
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
284
	} else if (sysfs_streq(buf, "never")) {
285 286 287 288 289 290 291 292
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
293 294 295 296
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

297
static ssize_t use_zero_page_show(struct kobject *kobj,
298
				  struct kobj_attribute *attr, char *buf)
299
{
300
	return single_hugepage_flag_show(kobj, attr, buf,
301
					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
302 303 304 305
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
306
	return single_hugepage_flag_store(kobj, attr, buf, count,
307 308 309 310
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
311 312

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
313
				   struct kobj_attribute *attr, char *buf)
314
{
315
	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
316 317 318 319
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

320 321 322
static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
323
	&use_zero_page_attr.attr,
324
	&hpage_pmd_size_attr.attr,
325
#ifdef CONFIG_SHMEM
326
	&shmem_enabled_attr.attr,
327 328 329 330
#endif
	NULL,
};

331
static const struct attribute_group hugepage_attr_group = {
332
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
333 334
};

S
Shaohua Li 已提交
335
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 337 338
{
	int err;

S
Shaohua Li 已提交
339 340
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
341
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
342
		return -ENOMEM;
A
Andrea Arcangeli 已提交
343 344
	}

S
Shaohua Li 已提交
345
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
346
	if (err) {
347
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
348
		goto delete_obj;
A
Andrea Arcangeli 已提交
349 350
	}

S
Shaohua Li 已提交
351
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
352
	if (err) {
353
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
354
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
355
	}
S
Shaohua Li 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
389 390 391 392 393
		/*
		 * Hardware doesn't support hugepages, hence disable
		 * DAX PMD support.
		 */
		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
S
Shaohua Li 已提交
394 395 396
		return -EINVAL;
	}

397 398 399 400 401 402 403 404 405 406
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
407 408
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
409
		goto err_sysfs;
A
Andrea Arcangeli 已提交
410

411
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
412
	if (err)
413
		goto err_slab;
A
Andrea Arcangeli 已提交
414

415 416 417
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
418 419 420
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
421

422 423 424 425 426
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
427
	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
428
		transparent_hugepage_flags = 0;
429 430
		return 0;
	}
431

432
	err = start_stop_khugepaged();
433 434
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
435

S
Shaohua Li 已提交
436
	return 0;
437
err_khugepaged:
438 439
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
440 441
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
442
	khugepaged_destroy();
443
err_slab:
S
Shaohua Li 已提交
444
	hugepage_exit_sysfs(hugepage_kobj);
445
err_sysfs:
A
Andrea Arcangeli 已提交
446
	return err;
447
}
448
subsys_initcall(hugepage_init);
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
476
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
477 478 479 480
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

481
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
482
{
483
	if (likely(vma->vm_flags & VM_WRITE))
484 485 486 487
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

488 489
#ifdef CONFIG_MEMCG
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
490
{
491
	struct mem_cgroup *memcg = page_memcg(compound_head(page));
492 493 494 495 496 497
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	if (memcg)
		return &memcg->deferred_split_queue;
	else
		return &pgdat->deferred_split_queue;
498
}
499 500 501 502 503 504 505 506
#else
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
{
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	return &pgdat->deferred_split_queue;
}
#endif
507 508 509 510 511 512 513 514 515 516 517 518

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

519 520 521
bool is_transparent_hugepage(struct page *page)
{
	if (!PageCompound(page))
Z
Zou Wei 已提交
522
		return false;
523 524 525 526 527 528 529

	page = compound_head(page);
	return is_huge_zero_page(page) ||
	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
}
EXPORT_SYMBOL_GPL(is_transparent_hugepage);

530 531
static unsigned long __thp_get_unmapped_area(struct file *filp,
		unsigned long addr, unsigned long len,
532 533 534 535
		loff_t off, unsigned long flags, unsigned long size)
{
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
536
	unsigned long len_pad, ret;
537 538 539 540 541 542 543 544

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

545
	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
546
					      off >> PAGE_SHIFT, flags);
547 548 549 550 551 552

	/*
	 * The failure might be due to length padding. The caller will retry
	 * without the padding.
	 */
	if (IS_ERR_VALUE(ret))
553 554
		return 0;

555 556 557 558 559 560 561 562 563
	/*
	 * Do not try to align to THP boundary if allocation at the address
	 * hint succeeds.
	 */
	if (ret == addr)
		return addr;

	ret += (off - ret) & (size - 1);
	return ret;
564 565 566 567 568
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
569
	unsigned long ret;
570 571 572 573 574
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

575 576 577 578
	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
	if (ret)
		return ret;
out:
579 580 581 582
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

583 584
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
585
{
J
Jan Kara 已提交
586
	struct vm_area_struct *vma = vmf->vma;
587
	pgtable_t pgtable;
J
Jan Kara 已提交
588
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
589
	vm_fault_t ret = 0;
590

591
	VM_BUG_ON_PAGE(!PageCompound(page), page);
592

593
	if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
594 595
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
596
		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
597 598
		return VM_FAULT_FALLBACK;
	}
599
	cgroup_throttle_swaprate(page, gfp);
600

601
	pgtable = pte_alloc_one(vma->vm_mm);
602
	if (unlikely(!pgtable)) {
603 604
		ret = VM_FAULT_OOM;
		goto release;
605
	}
606

607
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
608 609 610 611 612
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
613 614
	__SetPageUptodate(page);

J
Jan Kara 已提交
615 616
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
617
		goto unlock_release;
618 619
	} else {
		pmd_t entry;
620

621 622 623 624
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

625 626
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
627
			vm_fault_t ret2;
628

J
Jan Kara 已提交
629
			spin_unlock(vmf->ptl);
630
			put_page(page);
K
Kirill A. Shutemov 已提交
631
			pte_free(vma->vm_mm, pgtable);
632 633 634
			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
			return ret2;
635 636
		}

637
		entry = mk_huge_pmd(page, vma->vm_page_prot);
638
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
639
		page_add_new_anon_rmap(page, vma, haddr, true);
640
		lru_cache_add_inactive_or_unevictable(page, vma);
J
Jan Kara 已提交
641 642
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
643
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
K
Kirill A. Shutemov 已提交
644
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
645
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
646
		spin_unlock(vmf->ptl);
647
		count_vm_event(THP_FAULT_ALLOC);
648
		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
649 650
	}

651
	return 0;
652 653 654 655 656 657 658 659
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	put_page(page);
	return ret;

660 661
}

662
/*
663 664 665 666 667 668 669
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
670
 */
671
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
672
{
673
	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
674

675
	/* Always do synchronous compaction */
676 677
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
678 679

	/* Kick kcompactd and fail quickly */
680
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
681
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
682 683

	/* Synchronous compaction if madvised, otherwise kick kcompactd */
684
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
685 686 687
		return GFP_TRANSHUGE_LIGHT |
			(vma_madvised ? __GFP_DIRECT_RECLAIM :
					__GFP_KSWAPD_RECLAIM);
688 689

	/* Only do synchronous compaction if madvised */
690
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
691 692
		return GFP_TRANSHUGE_LIGHT |
		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
693

694
	return GFP_TRANSHUGE_LIGHT;
695 696
}

697
/* Caller must hold page table lock. */
698
static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
699
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
700
		struct page *zero_page)
701 702
{
	pmd_t entry;
A
Andrew Morton 已提交
703
	if (!pmd_none(*pmd))
704
		return;
705
	entry = mk_pmd(zero_page, vma->vm_page_prot);
706
	entry = pmd_mkhuge(entry);
707 708
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
709
	set_pmd_at(mm, haddr, pmd, entry);
710
	mm_inc_nr_ptes(mm);
711 712
}

713
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
714
{
J
Jan Kara 已提交
715
	struct vm_area_struct *vma = vmf->vma;
716
	gfp_t gfp;
717
	struct page *page;
J
Jan Kara 已提交
718
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
719

720
	if (!transhuge_vma_suitable(vma, haddr))
721
		return VM_FAULT_FALLBACK;
722 723
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
724
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
725
		return VM_FAULT_OOM;
J
Jan Kara 已提交
726
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
727
			!mm_forbids_zeropage(vma->vm_mm) &&
728 729 730
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
731
		vm_fault_t ret;
732
		pgtable = pte_alloc_one(vma->vm_mm);
733
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
734
			return VM_FAULT_OOM;
735
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
736
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
737
			pte_free(vma->vm_mm, pgtable);
738
			count_vm_event(THP_FAULT_FALLBACK);
739
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
740
		}
J
Jan Kara 已提交
741
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
742
		ret = 0;
J
Jan Kara 已提交
743
		if (pmd_none(*vmf->pmd)) {
744 745 746
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
747
				pte_free(vma->vm_mm, pgtable);
748
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
749
				spin_unlock(vmf->ptl);
750
				pte_free(vma->vm_mm, pgtable);
J
Jan Kara 已提交
751
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
752 753
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
754
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
755
						   haddr, vmf->pmd, zero_page);
756
				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
J
Jan Kara 已提交
757
				spin_unlock(vmf->ptl);
758
			}
759
		} else {
J
Jan Kara 已提交
760
			spin_unlock(vmf->ptl);
K
Kirill A. Shutemov 已提交
761
			pte_free(vma->vm_mm, pgtable);
762
		}
763
		return ret;
764
	}
765 766
	gfp = alloc_hugepage_direct_gfpmask(vma);
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
767 768
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
769
		return VM_FAULT_FALLBACK;
770
	}
771
	prep_transhuge_page(page);
J
Jan Kara 已提交
772
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
773 774
}

775
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
776 777
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
778 779 780 781 782 783
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

799 800 801
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
802
	if (write) {
803 804
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
805
	}
806 807 808

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
809
		mm_inc_nr_ptes(mm);
810
		pgtable = NULL;
811 812
	}

813 814
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
815 816

out_unlock:
M
Matthew Wilcox 已提交
817
	spin_unlock(ptl);
818 819
	if (pgtable)
		pte_free(mm, pgtable);
M
Matthew Wilcox 已提交
820 821
}

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
/**
 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
M
Matthew Wilcox 已提交
837
{
838 839
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
840
	pgtable_t pgtable = NULL;
841

M
Matthew Wilcox 已提交
842 843 844 845 846
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
847 848
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
849 850 851 852 853 854
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
855

856
	if (arch_needs_pgtable_deposit()) {
857
		pgtable = pte_alloc_one(vma->vm_mm);
858 859 860 861
		if (!pgtable)
			return VM_FAULT_OOM;
	}

862 863
	track_pfn_insert(vma, &pgprot, pfn);

864
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
865
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
866
}
867
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
M
Matthew Wilcox 已提交
868

869
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
870
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
871
{
872
	if (likely(vma->vm_flags & VM_WRITE))
873 874 875 876 877 878 879 880 881 882 883 884
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
885 886 887 888 889 890 891 892 893 894 895 896 897 898
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

899 900 901 902
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
903 904
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
905 906 907
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
908 909

out_unlock:
910 911 912
	spin_unlock(ptl);
}

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
/**
 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
928
{
929 930 931
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;

932 933 934 935 936
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
937 938
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
939 940 941 942 943 944 945 946 947
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

948
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
949 950
	return VM_FAULT_NOPAGE;
}
951
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
952 953
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

954
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
955
		pmd_t *pmd, int flags)
956 957 958
{
	pmd_t _pmd;

959 960 961
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
962
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
963
				pmd, _pmd, flags & FOLL_WRITE))
964 965 966 967
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
968
		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
969 970 971 972 973 974 975
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

976 977 978 979 980 981
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

J
John Hubbard 已提交
982 983 984 985 986
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

987
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
988 989 990 991 992 993 994 995
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
996
		touch_pmd(vma, addr, pmd, flags);
997 998 999 1000 1001

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
J
John Hubbard 已提交
1002
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1003 1004 1005
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1006 1007
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1008 1009
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1010 1011
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1012 1013 1014 1015

	return page;
}

1016 1017 1018 1019
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
1020
	spinlock_t *dst_ptl, *src_ptl;
1021 1022
	struct page *src_page;
	pmd_t pmd;
1023
	pgtable_t pgtable = NULL;
1024
	int ret = -ENOMEM;
1025

1026 1027 1028 1029
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

1030
	pgtable = pte_alloc_one(dst_mm);
1031 1032
	if (unlikely(!pgtable))
		goto out;
1033

1034 1035 1036
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1037 1038 1039

	ret = -EAGAIN;
	pmd = *src_pmd;
1040

1041 1042 1043 1044 1045 1046 1047 1048
	/*
	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
	 * does not have the VM_UFFD_WP, which means that the uffd
	 * fork event is not enabled.
	 */
	if (!(vma->vm_flags & VM_UFFD_WP))
		pmd = pmd_clear_uffd_wp(pmd);

1049 1050 1051 1052 1053 1054 1055 1056
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
		if (is_write_migration_entry(entry)) {
			make_migration_entry_read(&entry);
			pmd = swp_entry_to_pmd(entry);
1057 1058
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
1059 1060
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
1061
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1062
		mm_inc_nr_ptes(dst_mm);
1063
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1064 1065 1066 1067 1068 1069
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

1070
	if (unlikely(!pmd_trans_huge(pmd))) {
1071 1072 1073
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
1074
	/*
1075
	 * When page table lock is held, the huge zero pmd should not be
1076 1077 1078 1079
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
1080
		struct page *zero_page;
1081 1082 1083 1084 1085
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1086
		zero_page = mm_get_huge_zero_page(dst_mm);
1087
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1088
				zero_page);
1089 1090 1091
		ret = 0;
		goto out_unlock;
	}
1092

1093 1094
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

	/*
	 * If this page is a potentially pinned page, split and retry the fault
	 * with smaller page size.  Normally this should not happen because the
	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
	 * best effort that the pinned pages won't be replaced by another
	 * random page during the coming copy-on-write.
	 */
	if (unlikely(is_cow_mapping(vma->vm_flags) &&
		     atomic_read(&src_mm->has_pinned) &&
		     page_maybe_dma_pinned(src_page))) {
		pte_free(dst_mm, pgtable);
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
		__split_huge_pmd(vma, src_pmd, addr, false, NULL);
		return -EAGAIN;
	}

1113 1114 1115
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1116
	mm_inc_nr_ptes(dst_mm);
1117
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1118 1119 1120 1121 1122 1123 1124

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1125 1126
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1127 1128 1129 1130
out:
	return ret;
}

1131 1132
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1133
		pud_t *pud, int flags)
1134 1135 1136
{
	pud_t _pud;

1137 1138 1139
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1140
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1141
				pud, _pud, flags & FOLL_WRITE))
1142 1143 1144 1145
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1146
		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1147 1148 1149 1150 1151 1152 1153
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1154
	if (flags & FOLL_WRITE && !pud_write(*pud))
1155 1156
		return NULL;

J
John Hubbard 已提交
1157 1158 1159 1160 1161
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

1162 1163 1164 1165 1166 1167
	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1168
		touch_pud(vma, addr, pud, flags);
1169 1170 1171 1172

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
J
John Hubbard 已提交
1173 1174
	 *
	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1175
	 */
J
John Hubbard 已提交
1176
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1177 1178 1179
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1180 1181
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1182 1183
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1184 1185
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	/* Please refer to comments in copy_huge_pmd() */
	if (unlikely(is_cow_mapping(vma->vm_flags) &&
		     atomic_read(&src_mm->has_pinned) &&
		     page_maybe_dma_pinned(pud_page(pud)))) {
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
		__split_huge_pud(vma, src_pud, addr);
		return -EAGAIN;
	}

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

J
Jan Kara 已提交
1259
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1260 1261 1262
{
	pmd_t entry;
	unsigned long haddr;
1263
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1264

J
Jan Kara 已提交
1265 1266
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1267 1268 1269
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1270 1271
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1272
	haddr = vmf->address & HPAGE_PMD_MASK;
1273
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1274
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1275 1276

unlock:
J
Jan Kara 已提交
1277
	spin_unlock(vmf->ptl);
1278 1279
}

1280
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1281
{
J
Jan Kara 已提交
1282
	struct vm_area_struct *vma = vmf->vma;
1283
	struct page *page;
J
Jan Kara 已提交
1284
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1285

J
Jan Kara 已提交
1286
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1287
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1288

1289
	if (is_huge_zero_pmd(orig_pmd))
1290 1291
		goto fallback;

J
Jan Kara 已提交
1292
	spin_lock(vmf->ptl);
1293 1294 1295 1296 1297

	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
		return 0;
	}
1298 1299

	page = pmd_page(orig_pmd);
1300
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1301 1302

	/* Lock page for reuse_swap_page() */
1303 1304 1305 1306 1307 1308
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1309
			spin_unlock(vmf->ptl);
1310 1311
			unlock_page(page);
			put_page(page);
1312
			return 0;
1313 1314 1315
		}
		put_page(page);
	}
1316 1317 1318 1319 1320

	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
	 * part.
	 */
1321
	if (reuse_swap_page(page, NULL)) {
1322 1323
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1324
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1325
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
J
Jan Kara 已提交
1326
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1327
		unlock_page(page);
J
Jan Kara 已提交
1328
		spin_unlock(vmf->ptl);
1329
		return VM_FAULT_WRITE;
1330
	}
1331 1332

	unlock_page(page);
J
Jan Kara 已提交
1333
	spin_unlock(vmf->ptl);
1334 1335 1336
fallback:
	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
	return VM_FAULT_FALLBACK;
1337 1338
}

1339
/*
1340 1341
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
1342 1343 1344
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1345 1346
	return pmd_write(pmd) ||
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1347 1348
}

1349
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1350 1351 1352 1353
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1354
	struct mm_struct *mm = vma->vm_mm;
1355 1356
	struct page *page = NULL;

1357
	assert_spin_locked(pmd_lockptr(mm, pmd));
1358

1359
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1360 1361
		goto out;

1362 1363 1364 1365
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1366
	/* Full NUMA hinting faults to serialise migration in fault paths */
1367
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1368 1369
		goto out;

1370
	page = pmd_page(*pmd);
1371
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
J
John Hubbard 已提交
1372 1373 1374 1375

	if (!try_grab_page(page, flags))
		return ERR_PTR(-ENOMEM);

1376
	if (flags & FOLL_TOUCH)
1377
		touch_pmd(vma, addr, pmd, flags);
J
John Hubbard 已提交
1378

E
Eric B Munson 已提交
1379
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1380 1381 1382 1383
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1384 1385
		 * For anon THP:
		 *
1386 1387 1388 1389 1390 1391 1392
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1393 1394 1395 1396 1397 1398
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1399
		 */
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1410
	}
1411
skip_mlock:
1412
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1413
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1414 1415 1416 1417 1418

out:
	return page;
}

1419
/* NUMA hinting page fault entry point for trans huge pmds */
1420
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1421
{
J
Jan Kara 已提交
1422
	struct vm_area_struct *vma = vmf->vma;
1423
	struct anon_vma *anon_vma = NULL;
1424
	struct page *page;
J
Jan Kara 已提交
1425
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1426
	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1427
	int target_nid, last_cpupid = -1;
1428 1429
	bool page_locked;
	bool migrated = false;
1430
	bool was_writable;
1431
	int flags = 0;
1432

J
Jan Kara 已提交
1433 1434
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1435 1436
		goto out_unlock;

1437 1438 1439 1440 1441
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
J
Jan Kara 已提交
1442 1443
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
1444 1445
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1446
		spin_unlock(vmf->ptl);
1447
		put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1448 1449 1450
		goto out;
	}

1451
	page = pmd_page(pmd);
1452
	BUG_ON(is_huge_zero_page(page));
1453
	page_nid = page_to_nid(page);
1454
	last_cpupid = page_cpupid_last(page);
1455
	count_vm_numa_event(NUMA_HINT_FAULTS);
1456
	if (page_nid == this_nid) {
1457
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1458 1459
		flags |= TNF_FAULT_LOCAL;
	}
1460

1461
	/* See similar comment in do_numa_page for explanation */
1462
	if (!pmd_savedwrite(pmd))
1463 1464
		flags |= TNF_NO_GROUP;

1465 1466 1467 1468
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1469 1470
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
1471
	if (target_nid == NUMA_NO_NODE) {
1472
		/* If the page was locked, there are no parallel migrations */
1473
		if (page_locked)
1474
			goto clear_pmdnuma;
1475
	}
1476

1477
	/* Migration could have started since the pmd_trans_migrating check */
1478
	if (!page_locked) {
1479
		page_nid = NUMA_NO_NODE;
1480 1481
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1482
		spin_unlock(vmf->ptl);
1483
		put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1484 1485 1486
		goto out;
	}

1487 1488 1489 1490
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1491
	get_page(page);
J
Jan Kara 已提交
1492
	spin_unlock(vmf->ptl);
1493
	anon_vma = page_lock_anon_vma_read(page);
1494

P
Peter Zijlstra 已提交
1495
	/* Confirm the PMD did not change while page_table_lock was released */
J
Jan Kara 已提交
1496 1497
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1498 1499
		unlock_page(page);
		put_page(page);
1500
		page_nid = NUMA_NO_NODE;
1501
		goto out_unlock;
1502
	}
1503

1504 1505 1506
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
1507
		page_nid = NUMA_NO_NODE;
1508 1509 1510
		goto clear_pmdnuma;
	}

1511 1512 1513 1514 1515 1516
	/*
	 * Since we took the NUMA fault, we must have observed the !accessible
	 * bit. Make sure all other CPUs agree with that, to avoid them
	 * modifying the page we're about to migrate.
	 *
	 * Must be done under PTL such that we'll observe the relevant
1517 1518 1519 1520
	 * inc_tlb_flush_pending().
	 *
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
1521
	 */
1522
	if (mm_tlb_flush_pending(vma->vm_mm)) {
1523
		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
		/*
		 * change_huge_pmd() released the pmd lock before
		 * invalidating the secondary MMUs sharing the primary
		 * MMU pagetables (with ->invalidate_range()). The
		 * mmu_notifier_invalidate_range_end() (which
		 * internally calls ->invalidate_range()) in
		 * change_pmd_range() will run after us, so we can't
		 * rely on it here and we need an explicit invalidate.
		 */
		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
					      haddr + HPAGE_PMD_SIZE);
	}
1536

1537 1538
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1539
	 * and access rights restored.
1540
	 */
J
Jan Kara 已提交
1541
	spin_unlock(vmf->ptl);
1542

K
Kirill A. Shutemov 已提交
1543
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
J
Jan Kara 已提交
1544
				vmf->pmd, pmd, vmf->address, page, target_nid);
1545 1546
	if (migrated) {
		flags |= TNF_MIGRATED;
1547
		page_nid = target_nid;
1548 1549
	} else
		flags |= TNF_MIGRATE_FAIL;
1550

1551
	goto out;
1552
clear_pmdnuma:
1553
	BUG_ON(!PageLocked(page));
1554
	was_writable = pmd_savedwrite(pmd);
1555
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1556
	pmd = pmd_mkyoung(pmd);
1557 1558
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
J
Jan Kara 已提交
1559 1560
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1561
	unlock_page(page);
1562
out_unlock:
J
Jan Kara 已提交
1563
	spin_unlock(vmf->ptl);
1564 1565 1566 1567 1568

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1569
	if (page_nid != NUMA_NO_NODE)
J
Jan Kara 已提交
1570
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1571
				flags);
1572

1573 1574 1575
	return 0;
}

1576 1577 1578 1579 1580
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1581 1582 1583 1584 1585 1586
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1587
	bool ret = false;
1588

1589
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1590

1591 1592
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1593
		goto out_unlocked;
1594 1595

	orig_pmd = *pmd;
1596
	if (is_huge_zero_pmd(orig_pmd))
1597 1598
		goto out;

1599 1600 1601 1602 1603 1604
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1623
		split_huge_page(page);
1624
		unlock_page(page);
1625
		put_page(page);
1626 1627 1628 1629 1630 1631 1632 1633
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1634
		pmdp_invalidate(vma, addr, pmd);
1635 1636 1637 1638 1639 1640
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1641 1642

	mark_page_lazyfree(page);
1643
	ret = true;
1644 1645 1646 1647 1648 1649
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1650 1651 1652 1653 1654 1655
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1656
	mm_dec_nr_ptes(mm);
1657 1658
}

1659
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1660
		 pmd_t *pmd, unsigned long addr)
1661
{
1662
	pmd_t orig_pmd;
1663
	spinlock_t *ptl;
1664

1665
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1666

1667 1668
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1669 1670 1671 1672 1673 1674 1675
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
1676 1677
	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
						tlb->fullmm);
1678
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1679
	if (vma_is_special_huge(vma)) {
1680 1681
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1682 1683
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1684
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1685
	} else if (is_huge_zero_pmd(orig_pmd)) {
1686
		zap_deposited_table(tlb->mm, pmd);
1687
		spin_unlock(ptl);
1688
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1689
	} else {
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
			page_remove_rmap(page, true);
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
			page = pfn_to_page(swp_offset(entry));
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1708
		if (PageAnon(page)) {
1709
			zap_deposited_table(tlb->mm, pmd);
1710 1711
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1712 1713
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1714
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1715
		}
1716

1717
		spin_unlock(ptl);
1718 1719
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1720
	}
1721
	return 1;
1722 1723
}

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1750
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1751
		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1752
{
1753
	spinlock_t *old_ptl, *new_ptl;
1754 1755
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1756
	bool force_flush = false;
1757 1758 1759 1760 1761 1762 1763

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1764
		return false;
1765 1766
	}

1767 1768
	/*
	 * We don't have to worry about the ordering of src and dst
1769
	 * ptlocks because exclusive mmap_lock prevents deadlock.
1770
	 */
1771 1772
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1773 1774 1775
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1776
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1777
		if (pmd_present(pmd))
1778
			force_flush = true;
1779
		VM_BUG_ON(!pmd_none(*new_pmd));
1780

1781
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1782
			pgtable_t pgtable;
1783 1784 1785
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1786 1787
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1788 1789
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1790 1791
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1792
		spin_unlock(old_ptl);
1793
		return true;
1794
	}
1795
	return false;
1796 1797
}

1798 1799 1800 1801 1802 1803
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1804
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1805
		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1806 1807
{
	struct mm_struct *mm = vma->vm_mm;
1808
	spinlock_t *ptl;
1809 1810 1811
	pmd_t entry;
	bool preserve_write;
	int ret;
1812
	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1813 1814
	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1815

1816
	ptl = __pmd_trans_huge_lock(pmd, vma);
1817 1818
	if (!ptl)
		return 0;
1819

1820 1821
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1822

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
		if (is_write_migration_entry(entry)) {
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
			make_migration_entry_read(&entry);
			newpmd = swp_entry_to_pmd(entry);
1836 1837
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1838 1839 1840 1841 1842 1843
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1844 1845 1846 1847 1848 1849 1850
	/*
	 * Avoid trapping faults against the zero page. The read-only
	 * data is likely to be read-cached on the local CPU and
	 * local/remote hits to the zero page are not interesting.
	 */
	if (prot_numa && is_huge_zero_pmd(*pmd))
		goto unlock;
1851

1852 1853 1854
	if (prot_numa && pmd_protnone(*pmd))
		goto unlock;

1855
	/*
1856
	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1857
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1858
	 * which is also under mmap_read_lock(mm):
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
1876
	entry = pmdp_invalidate(vma, addr, pmd);
1877

1878 1879 1880
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
	if (uffd_wp) {
		entry = pmd_wrprotect(entry);
		entry = pmd_mkuffd_wp(entry);
	} else if (uffd_wp_resolve) {
		/*
		 * Leave the write bit to be handled by PF interrupt
		 * handler, then things like COW could be properly
		 * handled.
		 */
		entry = pmd_clear_uffd_wp(entry);
	}
1892 1893 1894 1895 1896
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
1897 1898 1899 1900
	return ret;
}

/*
1901
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1902
 *
1903 1904
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1905
 */
1906
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1907
{
1908 1909
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1910 1911
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
1912 1913 1914
		return ptl;
	spin_unlock(ptl);
	return NULL;
1915 1916
}

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
1949
	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1950
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1951
	if (vma_is_special_huge(vma)) {
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

1969
	count_vm_event(THP_SPLIT_PUD);
1970 1971 1972 1973 1974 1975 1976 1977

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
1978
	struct mmu_notifier_range range;
1979

1980
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1981
				address & HPAGE_PUD_MASK,
1982 1983 1984
				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pud_lock(vma->vm_mm, pud);
1985 1986
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
1987
	__split_huge_pud_locked(vma, pud, range.start);
1988 1989 1990

out:
	spin_unlock(ptl);
1991 1992 1993 1994
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
1995
	mmu_notifier_invalidate_range_only_end(&range);
1996 1997 1998
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1999 2000 2001 2002 2003 2004 2005 2006
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

2007 2008 2009 2010 2011 2012
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
2013
	 * See Documentation/vm/mmu_notifier.rst
2014 2015
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2034
		unsigned long haddr, bool freeze)
2035 2036 2037 2038
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
2039
	pmd_t old_pmd, _pmd;
2040
	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2041
	unsigned long addr;
2042 2043 2044 2045 2046
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2047 2048
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
2049 2050 2051

	count_vm_event(THP_SPLIT_PMD);

2052 2053
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2054 2055 2056 2057 2058 2059
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
2060
		if (vma_is_special_huge(vma))
2061 2062
			return;
		page = pmd_page(_pmd);
2063 2064
		if (!PageDirty(page) && pmd_dirty(_pmd))
			set_page_dirty(page);
2065 2066 2067 2068
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
2069
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2070
		return;
2071
	} else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
2072 2073 2074 2075 2076 2077 2078 2079 2080
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2081 2082 2083
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2084 2085 2086 2087 2088 2089 2090 2091
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
2092 2093
	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
	 * 383 on page 105. Intel should be safe but is also warns that it's
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2107
	if (unlikely(pmd_migration)) {
2108 2109
		swp_entry_t entry;

2110
		entry = pmd_to_swp_entry(old_pmd);
2111
		page = pfn_to_page(swp_offset(entry));
2112 2113 2114
		write = is_write_migration_entry(entry);
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2115
		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2116
	} else {
2117
		page = pmd_page(old_pmd);
2118 2119 2120 2121 2122
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
2123
		uffd_wp = pmd_uffd_wp(old_pmd);
2124
	}
2125
	VM_BUG_ON_PAGE(!page_count(page), page);
2126
	page_ref_add(page, HPAGE_PMD_NR - 1);
2127

2128 2129 2130 2131
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2132 2133 2134
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2135
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2136 2137 2138 2139 2140 2141
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2142
		if (freeze || pmd_migration) {
2143 2144 2145
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
2146 2147
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2148 2149
			if (uffd_wp)
				entry = pte_swp_mkuffd_wp(entry);
2150
		} else {
2151
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2152
			entry = maybe_mkwrite(entry, vma);
2153 2154 2155 2156
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2157 2158
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2159 2160
			if (uffd_wp)
				entry = pte_mkuffd_wp(entry);
2161
		}
2162
		pte = pte_offset_map(&_pmd, addr);
2163
		BUG_ON(!pte_none(*pte));
2164
		set_pte_at(mm, addr, pte, entry);
2165
		if (!pmd_migration)
2166
			atomic_inc(&page[i]._mapcount);
2167
		pte_unmap(pte);
2168 2169
	}

2170 2171 2172 2173 2174 2175 2176
	if (!pmd_migration) {
		/*
		 * Set PG_double_map before dropping compound_mapcount to avoid
		 * false-negative page_mapped().
		 */
		if (compound_mapcount(page) > 1 &&
		    !TestSetPageDoubleMap(page)) {
2177
			for (i = 0; i < HPAGE_PMD_NR; i++)
2178 2179 2180 2181 2182 2183
				atomic_inc(&page[i]._mapcount);
		}

		lock_page_memcg(page);
		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
			/* Last compound_mapcount is gone. */
2184 2185
			__mod_lruvec_page_state(page, NR_ANON_THPS,
						-HPAGE_PMD_NR);
2186 2187 2188 2189 2190
			if (TestClearPageDoubleMap(page)) {
				/* No need in mapcount reference anymore */
				for (i = 0; i < HPAGE_PMD_NR; i++)
					atomic_dec(&page[i]._mapcount);
			}
2191
		}
2192
		unlock_page_memcg(page);
2193 2194 2195 2196
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2197 2198

	if (freeze) {
2199
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2200 2201 2202 2203
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2204 2205 2206
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2207
		unsigned long address, bool freeze, struct page *page)
2208 2209
{
	spinlock_t *ptl;
2210
	struct mmu_notifier_range range;
2211
	bool do_unlock_page = false;
2212
	pmd_t _pmd;
2213

2214
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2215
				address & HPAGE_PMD_MASK,
2216 2217 2218
				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pmd_lock(vma->vm_mm, pmd);
2219 2220 2221 2222 2223 2224

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
2225 2226 2227 2228 2229
	if (page) {
		VM_WARN_ON_ONCE(!PageLocked(page));
		if (page != pmd_page(*pmd))
			goto out;
	}
2230

2231
repeat:
2232
	if (pmd_trans_huge(*pmd)) {
2233 2234
		if (!page) {
			page = pmd_page(*pmd);
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
			/*
			 * An anonymous page must be locked, to ensure that a
			 * concurrent reuse_swap_page() sees stable mapcount;
			 * but reuse_swap_page() is not used on shmem or file,
			 * and page lock must not be taken when zap_pmd_range()
			 * calls __split_huge_pmd() while i_mmap_lock is held.
			 */
			if (PageAnon(page)) {
				if (unlikely(!trylock_page(page))) {
					get_page(page);
					_pmd = *pmd;
					spin_unlock(ptl);
					lock_page(page);
					spin_lock(ptl);
					if (unlikely(!pmd_same(*pmd, _pmd))) {
						unlock_page(page);
						put_page(page);
						page = NULL;
						goto repeat;
					}
2255 2256
					put_page(page);
				}
2257
				do_unlock_page = true;
2258 2259
			}
		}
2260
		if (PageMlocked(page))
2261
			clear_page_mlock(page);
2262
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2263
		goto out;
2264
	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2265
out:
2266
	spin_unlock(ptl);
2267
	if (do_unlock_page)
2268
		unlock_page(page);
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
2282
	mmu_notifier_invalidate_range_only_end(&range);
2283 2284
}

2285 2286
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2287
{
2288
	pgd_t *pgd;
2289
	p4d_t *p4d;
2290
	pud_t *pud;
2291 2292
	pmd_t *pmd;

2293
	pgd = pgd_offset(vma->vm_mm, address);
2294 2295 2296
	if (!pgd_present(*pgd))
		return;

2297 2298 2299 2300 2301
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2302 2303 2304 2305
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2306

2307
	__split_huge_pmd(vma, pmd, address, freeze, page);
2308 2309
}

2310
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2323
		split_huge_pmd_address(vma, start, false, NULL);
2324 2325 2326 2327 2328 2329 2330 2331 2332

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2333
		split_huge_pmd_address(vma, end, false, NULL);
2334 2335 2336

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
2337
	 * vm_next->vm_start isn't hpage aligned and it could previously
2338 2339 2340 2341 2342
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
2343
		nstart += adjust_next;
2344 2345 2346
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2347
			split_huge_pmd_address(next, nstart, false, NULL);
2348 2349
	}
}
2350

2351
static void unmap_page(struct page *page)
2352
{
2353
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK |
2354
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
M
Minchan Kim 已提交
2355
	bool unmap_success;
2356 2357 2358

	VM_BUG_ON_PAGE(!PageHead(page), page);

2359
	if (PageAnon(page))
2360
		ttu_flags |= TTU_SPLIT_FREEZE;
2361

M
Minchan Kim 已提交
2362 2363
	unmap_success = try_to_unmap(page, ttu_flags);
	VM_BUG_ON_PAGE(!unmap_success, page);
2364 2365
}

2366
static void remap_page(struct page *page, unsigned int nr)
2367
{
2368
	int i;
2369 2370 2371
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
2372
		for (i = 0; i < nr; i++)
2373 2374
			remove_migration_ptes(page + i, page + i, true);
	}
2375 2376
}

2377
static void lru_add_page_tail(struct page *head, struct page *tail,
2378 2379
		struct lruvec *lruvec, struct list_head *list)
{
2380 2381 2382
	VM_BUG_ON_PAGE(!PageHead(head), head);
	VM_BUG_ON_PAGE(PageCompound(tail), head);
	VM_BUG_ON_PAGE(PageLRU(tail), head);
2383
	lockdep_assert_held(&lruvec->lru_lock);
2384

A
Alex Shi 已提交
2385
	if (list) {
2386
		/* page reclaim is reclaiming a huge page */
A
Alex Shi 已提交
2387
		VM_WARN_ON(PageLRU(head));
2388 2389
		get_page(tail);
		list_add_tail(&tail->lru, list);
2390
	} else {
A
Alex Shi 已提交
2391 2392 2393 2394
		/* head is still on lru (and we have it frozen) */
		VM_WARN_ON(!PageLRU(head));
		SetPageLRU(tail);
		list_add_tail(&tail->lru, &head->lru);
2395 2396 2397
	}
}

2398
static void __split_huge_page_tail(struct page *head, int tail,
2399 2400 2401 2402
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2403
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2404 2405

	/*
2406 2407 2408
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
2409
	 * for example lock_page() which set PG_waiters.
2410 2411 2412 2413 2414
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2415
			 (1L << PG_swapcache) |
2416 2417 2418
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2419
			 (1L << PG_workingset) |
2420
			 (1L << PG_locked) |
2421
			 (1L << PG_unevictable) |
2422 2423 2424
#ifdef CONFIG_64BIT
			 (1L << PG_arch_2) |
#endif
2425
			 (1L << PG_dirty)));
2426

2427 2428 2429 2430 2431 2432
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2433
	/* Page flags must be visible before we make the page non-compound. */
2434 2435
	smp_wmb();

2436 2437 2438 2439 2440 2441
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2442 2443
	clear_compound_head(page_tail);

2444 2445 2446 2447
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2448 2449 2450 2451 2452 2453
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2454 2455 2456 2457 2458 2459

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2460 2461 2462
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2463
static void __split_huge_page(struct page *page, struct list_head *list,
A
Alex Shi 已提交
2464
		pgoff_t end)
2465 2466 2467
{
	struct page *head = compound_head(page);
	struct lruvec *lruvec;
2468 2469
	struct address_space *swap_cache = NULL;
	unsigned long offset = 0;
2470
	unsigned int nr = thp_nr_pages(head);
2471
	int i;
2472 2473 2474 2475

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

2476 2477 2478 2479 2480 2481 2482 2483
	if (PageAnon(head) && PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		offset = swp_offset(entry);
		swap_cache = swap_address_space(entry);
		xa_lock(&swap_cache->i_pages);
	}

2484 2485
	/* lock lru list/PageCompound, ref freezed by page_ref_freeze */
	lruvec = lock_page_lruvec(head);
A
Alex Shi 已提交
2486

2487
	for (i = nr - 1; i >= 1; i--) {
2488
		__split_huge_page_tail(head, i, lruvec, list);
2489 2490
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
2491
			ClearPageDirty(head + i);
2492
			__delete_from_page_cache(head + i, NULL);
2493 2494
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2495
			put_page(head + i);
2496 2497 2498 2499 2500 2501
		} else if (!PageAnon(page)) {
			__xa_store(&head->mapping->i_pages, head[i].index,
					head + i, 0);
		} else if (swap_cache) {
			__xa_store(&swap_cache->i_pages, offset + i,
					head + i, 0);
2502 2503
		}
	}
2504 2505

	ClearPageCompound(head);
2506
	unlock_page_lruvec(lruvec);
A
Alex Shi 已提交
2507
	/* Caller disabled irqs, so they are still disabled here */
2508

2509
	split_page_owner(head, nr);
2510

2511 2512
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
M
Matthew Wilcox 已提交
2513
		/* Additional pin to swap cache */
2514
		if (PageSwapCache(head)) {
2515
			page_ref_add(head, 2);
2516 2517
			xa_unlock(&swap_cache->i_pages);
		} else {
2518
			page_ref_inc(head);
2519
		}
2520
	} else {
M
Matthew Wilcox 已提交
2521
		/* Additional pin to page cache */
2522
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2523
		xa_unlock(&head->mapping->i_pages);
2524
	}
A
Alex Shi 已提交
2525
	local_irq_enable();
2526

2527
	remap_page(head, nr);
2528

H
Huang Ying 已提交
2529 2530 2531 2532 2533 2534
	if (PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		split_swap_cluster(entry);
	}

2535
	for (i = 0; i < nr; i++) {
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2552 2553
int total_mapcount(struct page *page)
{
2554
	int i, compound, nr, ret;
2555 2556 2557 2558 2559 2560

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
2561
	compound = compound_mapcount(page);
2562
	nr = compound_nr(page);
2563
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2564 2565
		return compound;
	ret = compound;
2566
	for (i = 0; i < nr; i++)
2567
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2568 2569
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
2570
		return ret - compound * nr;
2571
	if (PageDoubleMap(page))
2572
		ret -= nr;
2573 2574 2575
	return ret;
}

2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
2617
	for (i = 0; i < thp_nr_pages(page); i++) {
2618 2619 2620 2621 2622 2623
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
2624
		_total_mapcount -= thp_nr_pages(page);
2625 2626 2627 2628 2629 2630 2631 2632 2633
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2634 2635 2636 2637 2638
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
	int extra_pins;

M
Matthew Wilcox 已提交
2639
	/* Additional pins from page cache */
2640
	if (PageAnon(page))
2641
		extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2642
	else
2643
		extra_pins = thp_nr_pages(page);
2644 2645 2646 2647 2648
	if (pextra_pins)
		*pextra_pins = extra_pins;
	return total_mapcount(page) == page_count(page) - extra_pins - 1;
}

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2671
	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2672 2673 2674
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2675
	pgoff_t end;
2676

2677
	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2678 2679
	VM_BUG_ON_PAGE(!PageLocked(head), head);
	VM_BUG_ON_PAGE(!PageCompound(head), head);
2680

2681
	if (PageWriteback(head))
2682 2683
		return -EBUSY;

2684 2685
	if (PageAnon(head)) {
		/*
2686
		 * The caller does not necessarily hold an mmap_lock that would
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2698
		end = -1;
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2712 2713 2714 2715 2716 2717 2718 2719 2720

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2721 2722 2723
	}

	/*
2724
	 * Racy check if we can split the page, before unmap_page() will
2725 2726
	 * split PMDs
	 */
2727
	if (!can_split_huge_page(head, &extra_pins)) {
2728 2729 2730 2731
		ret = -EBUSY;
		goto out_unlock;
	}

2732
	unmap_page(head);
2733 2734
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

A
Alex Shi 已提交
2735 2736
	/* block interrupt reentry in xa_lock and spinlock */
	local_irq_disable();
2737
	if (mapping) {
M
Matthew Wilcox 已提交
2738
		XA_STATE(xas, &mapping->i_pages, page_index(head));
2739 2740

		/*
M
Matthew Wilcox 已提交
2741
		 * Check if the head page is present in page cache.
2742 2743
		 * We assume all tail are present too, if head is there.
		 */
M
Matthew Wilcox 已提交
2744 2745
		xa_lock(&mapping->i_pages);
		if (xas_load(&xas) != head)
2746 2747 2748
			goto fail;
	}

2749
	/* Prevent deferred_split_scan() touching ->_refcount */
2750
	spin_lock(&ds_queue->split_queue_lock);
2751 2752
	count = page_count(head);
	mapcount = total_mapcount(head);
2753
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2754
		if (!list_empty(page_deferred_list(head))) {
2755
			ds_queue->split_queue_len--;
2756 2757
			list_del(page_deferred_list(head));
		}
2758
		spin_unlock(&ds_queue->split_queue_lock);
2759
		if (mapping) {
2760 2761
			int nr = thp_nr_pages(head);

2762
			if (PageSwapBacked(head))
2763 2764
				__mod_lruvec_page_state(head, NR_SHMEM_THPS,
							-nr);
2765
			else
2766 2767
				__mod_lruvec_page_state(head, NR_FILE_THPS,
							-nr);
2768 2769
		}

A
Alex Shi 已提交
2770
		__split_huge_page(page, list, end);
H
Huang Ying 已提交
2771
		ret = 0;
2772
	} else {
2773 2774 2775 2776 2777 2778 2779 2780
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
2781
		spin_unlock(&ds_queue->split_queue_lock);
2782
fail:		if (mapping)
M
Matthew Wilcox 已提交
2783
			xa_unlock(&mapping->i_pages);
A
Alex Shi 已提交
2784
		local_irq_enable();
2785
		remap_page(head, thp_nr_pages(head));
2786 2787 2788 2789
		ret = -EBUSY;
	}

out_unlock:
2790 2791 2792 2793 2794 2795
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2796 2797 2798 2799
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2800 2801 2802

void free_transhuge_page(struct page *page)
{
2803
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2804 2805
	unsigned long flags;

2806
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2807
	if (!list_empty(page_deferred_list(page))) {
2808
		ds_queue->split_queue_len--;
2809 2810
		list_del(page_deferred_list(page));
	}
2811
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2812 2813 2814 2815 2816
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2817 2818
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
#ifdef CONFIG_MEMCG
2819
	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2820
#endif
2821 2822 2823 2824
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
	/*
	 * The try_to_unmap() in page reclaim path might reach here too,
	 * this may cause a race condition to corrupt deferred split queue.
	 * And, if page reclaim is already handling the same page, it is
	 * unnecessary to handle it again in shrinker.
	 *
	 * Check PageSwapCache to determine if the page is being
	 * handled by page reclaim since THP swap would add the page into
	 * swap cache before calling try_to_unmap().
	 */
	if (PageSwapCache(page))
		return;

2838
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2839
	if (list_empty(page_deferred_list(page))) {
2840
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2841 2842
		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
		ds_queue->split_queue_len++;
2843 2844 2845 2846 2847
#ifdef CONFIG_MEMCG
		if (memcg)
			memcg_set_shrinker_bit(memcg, page_to_nid(page),
					       deferred_split_shrinker.id);
#endif
2848
	}
2849
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2850 2851 2852 2853 2854
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2855
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2856
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2857 2858 2859 2860 2861

#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif
2862
	return READ_ONCE(ds_queue->split_queue_len);
2863 2864 2865 2866 2867
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2868
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2869
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2870 2871 2872 2873 2874
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2875 2876 2877 2878 2879
#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif

2880
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2881
	/* Take pin on all head pages to avoid freeing them under us */
2882
	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2883 2884
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2885 2886 2887 2888
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2889
			list_del_init(page_deferred_list(page));
2890
			ds_queue->split_queue_len--;
2891
		}
2892 2893
		if (!--sc->nr_to_scan)
			break;
2894
	}
2895
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2896 2897 2898

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
2899 2900
		if (!trylock_page(page))
			goto next;
2901 2902 2903 2904
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2905
next:
2906 2907 2908
		put_page(page);
	}

2909 2910 2911
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
	list_splice_tail(&list, &ds_queue->split_queue);
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2912

2913 2914 2915 2916
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
2917
	if (!split && list_empty(&ds_queue->split_queue))
2918 2919
		return SHRINK_STOP;
	return split;
2920 2921 2922 2923 2924 2925
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2926 2927
	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
		 SHRINKER_NONSLAB,
2928
};
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2954
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

2967
	pr_info("%lu of %lu THP split\n", split, total);
2968 2969 2970

	return 0;
}
2971
DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2972 2973 2974 2975
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
2976 2977
	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
			    &split_huge_pages_fops);
2978 2979 2980 2981
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
2992
	pmd_t pmdswp;
2993 2994 2995 2996 2997

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2998
	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2999 3000 3001
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
	entry = make_migration_entry(page, pmd_write(pmdval));
3002 3003 3004 3005
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
	page_remove_rmap(page, true);
	put_page(page);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3025 3026
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
3027
	if (is_write_migration_entry(entry))
3028
		pmde = maybe_pmd_mkwrite(pmde, vma);
3029 3030

	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3031 3032 3033 3034
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
		page_add_file_rmap(new, true);
3035
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3036
	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3037 3038 3039 3040
		mlock_vma_page(new);
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif