huge_memory.c 83.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 */

6 7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

8 9
#include <linux/mm.h>
#include <linux/sched.h>
10
#include <linux/sched/coredump.h>
11
#include <linux/sched/numa_balancing.h>
12 13 14 15 16
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
17
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
18
#include <linux/mm_inline.h>
19
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
20
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
21
#include <linux/khugepaged.h>
22
#include <linux/freezer.h>
23
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
24
#include <linux/mman.h>
25
#include <linux/memremap.h>
R
Ralf Baechle 已提交
26
#include <linux/pagemap.h>
27
#include <linux/debugfs.h>
28
#include <linux/migrate.h>
29
#include <linux/hashtable.h>
30
#include <linux/userfaultfd_k.h>
31
#include <linux/page_idle.h>
32
#include <linux/shmem_fs.h>
33
#include <linux/oom.h>
34
#include <linux/numa.h>
35
#include <linux/page_owner.h>
36

37 38 39 40
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
41
/*
42 43 44 45
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 47
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
48
 */
49
unsigned long transparent_hugepage_flags __read_mostly =
50
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
51
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 53 54 55
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
56
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 58
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
59

60
static struct shrinker deferred_split_shrinker;
61

62
static atomic_t huge_zero_refcount;
63
struct page *huge_zero_page __read_mostly;
64

65 66
bool transparent_hugepage_enabled(struct vm_area_struct *vma)
{
67 68 69 70 71
	/* The addr is used to check if the vma size fits */
	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;

	if (!transhuge_vma_suitable(vma, addr))
		return false;
72 73
	if (vma_is_anonymous(vma))
		return __transparent_hugepage_enabled(vma);
74 75
	if (vma_is_shmem(vma))
		return shmem_huge_enabled(vma);
76 77 78 79

	return false;
}

80
static struct page *get_huge_zero_page(void)
81 82 83 84
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85
		return READ_ONCE(huge_zero_page);
86 87

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88
			HPAGE_PMD_ORDER);
89 90
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91
		return NULL;
92 93
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
94
	preempt_disable();
95
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96
		preempt_enable();
97
		__free_pages(zero_page, compound_order(zero_page));
98 99 100 101 102 103
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
104
	return READ_ONCE(huge_zero_page);
105 106
}

107
static void put_huge_zero_page(void)
108
{
109 110 111 112 113
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 115
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

136 137
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
138
{
139 140 141
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
142

143 144 145
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
146
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 148
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
149
		__free_pages(zero_page, compound_order(zero_page));
150
		return HPAGE_PMD_NR;
151 152 153
	}

	return 0;
154 155
}

156
static struct shrinker huge_zero_page_shrinker = {
157 158
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
159 160 161
	.seeks = DEFAULT_SEEKS,
};

162 163 164 165
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
166 167
	const char *output;

168
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
169 170 171 172
		output = "[always] madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always [madvise] never";
173
	else
174 175 176
		output = "always madvise [never]";

	return sysfs_emit(buf, "%s\n", output);
177
}
178

179 180 181 182
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
183
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
184

185
	if (sysfs_streq(buf, "always")) {
186 187
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188
	} else if (sysfs_streq(buf, "madvise")) {
189 190
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
191
	} else if (sysfs_streq(buf, "never")) {
192 193 194 195
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
196 197

	if (ret > 0) {
198
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
199 200 201 202
		if (err)
			ret = err;
	}
	return ret;
203 204 205 206
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

207
ssize_t single_hugepage_flag_show(struct kobject *kobj,
208 209
				  struct kobj_attribute *attr, char *buf,
				  enum transparent_hugepage_flag flag)
210
{
211 212
	return sysfs_emit(buf, "%d\n",
			  !!test_bit(flag, &transparent_hugepage_flags));
213
}
214

215
ssize_t single_hugepage_flag_store(struct kobject *kobj,
216 217 218 219
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
220 221 222 223 224 225 226 227 228 229
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
230
		set_bit(flag, &transparent_hugepage_flags);
231
	else
232 233 234 235 236 237 238 239
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	const char *output;

	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
		     &transparent_hugepage_flags))
		output = "[always] defer defer+madvise madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
			  &transparent_hugepage_flags))
		output = "always [defer] defer+madvise madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always defer [defer+madvise] madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always defer defer+madvise [madvise] never";
	else
		output = "always defer defer+madvise madvise [never]";

	return sysfs_emit(buf, "%s\n", output);
258
}
259

260 261 262 263
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
264
	if (sysfs_streq(buf, "always")) {
265 266 267 268
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
269
	} else if (sysfs_streq(buf, "defer+madvise")) {
270 271 272 273
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274
	} else if (sysfs_streq(buf, "defer")) {
275 276 277 278
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
279
	} else if (sysfs_streq(buf, "madvise")) {
280 281 282 283
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
284
	} else if (sysfs_streq(buf, "never")) {
285 286 287 288 289 290 291 292
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
293 294 295 296
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

297
static ssize_t use_zero_page_show(struct kobject *kobj,
298
				  struct kobj_attribute *attr, char *buf)
299
{
300
	return single_hugepage_flag_show(kobj, attr, buf,
301
					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
302 303 304 305
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
306
	return single_hugepage_flag_store(kobj, attr, buf, count,
307 308 309 310
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
311 312

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
313
				   struct kobj_attribute *attr, char *buf)
314
{
315
	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
316 317 318 319
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

320 321 322
static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
323
	&use_zero_page_attr.attr,
324
	&hpage_pmd_size_attr.attr,
325
#ifdef CONFIG_SHMEM
326
	&shmem_enabled_attr.attr,
327 328 329 330
#endif
	NULL,
};

331
static const struct attribute_group hugepage_attr_group = {
332
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
333 334
};

S
Shaohua Li 已提交
335
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 337 338
{
	int err;

S
Shaohua Li 已提交
339 340
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
341
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
342
		return -ENOMEM;
A
Andrea Arcangeli 已提交
343 344
	}

S
Shaohua Li 已提交
345
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
346
	if (err) {
347
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
348
		goto delete_obj;
A
Andrea Arcangeli 已提交
349 350
	}

S
Shaohua Li 已提交
351
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
352
	if (err) {
353
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
354
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
355
	}
S
Shaohua Li 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
389 390 391 392 393
		/*
		 * Hardware doesn't support hugepages, hence disable
		 * DAX PMD support.
		 */
		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
S
Shaohua Li 已提交
394 395 396
		return -EINVAL;
	}

397 398 399 400 401 402 403 404 405 406
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
407 408
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
409
		goto err_sysfs;
A
Andrea Arcangeli 已提交
410

411
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
412
	if (err)
413
		goto err_slab;
A
Andrea Arcangeli 已提交
414

415 416 417
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
418 419 420
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
421

422 423 424 425 426
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
427
	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
428
		transparent_hugepage_flags = 0;
429 430
		return 0;
	}
431

432
	err = start_stop_khugepaged();
433 434
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
435

S
Shaohua Li 已提交
436
	return 0;
437
err_khugepaged:
438 439
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
440 441
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
442
	khugepaged_destroy();
443
err_slab:
S
Shaohua Li 已提交
444
	hugepage_exit_sysfs(hugepage_kobj);
445
err_sysfs:
A
Andrea Arcangeli 已提交
446
	return err;
447
}
448
subsys_initcall(hugepage_init);
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
476
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
477 478 479 480
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

481
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
482
{
483
	if (likely(vma->vm_flags & VM_WRITE))
484 485 486 487
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

488 489
#ifdef CONFIG_MEMCG
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
490
{
491
	struct mem_cgroup *memcg = page_memcg(compound_head(page));
492 493 494 495 496 497
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	if (memcg)
		return &memcg->deferred_split_queue;
	else
		return &pgdat->deferred_split_queue;
498
}
499 500 501 502 503 504 505 506
#else
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
{
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	return &pgdat->deferred_split_queue;
}
#endif
507 508 509 510 511 512 513 514 515 516 517 518

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

519 520 521
bool is_transparent_hugepage(struct page *page)
{
	if (!PageCompound(page))
Z
Zou Wei 已提交
522
		return false;
523 524 525 526 527 528 529

	page = compound_head(page);
	return is_huge_zero_page(page) ||
	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
}
EXPORT_SYMBOL_GPL(is_transparent_hugepage);

530 531
static unsigned long __thp_get_unmapped_area(struct file *filp,
		unsigned long addr, unsigned long len,
532 533 534 535
		loff_t off, unsigned long flags, unsigned long size)
{
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
536
	unsigned long len_pad, ret;
537 538 539 540 541 542 543 544

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

545
	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
546
					      off >> PAGE_SHIFT, flags);
547 548 549 550 551 552

	/*
	 * The failure might be due to length padding. The caller will retry
	 * without the padding.
	 */
	if (IS_ERR_VALUE(ret))
553 554
		return 0;

555 556 557 558 559 560 561 562 563
	/*
	 * Do not try to align to THP boundary if allocation at the address
	 * hint succeeds.
	 */
	if (ret == addr)
		return addr;

	ret += (off - ret) & (size - 1);
	return ret;
564 565 566 567 568
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
569
	unsigned long ret;
570 571 572 573 574
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

575 576 577 578
	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
	if (ret)
		return ret;
out:
579 580 581 582
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

583 584
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
585
{
J
Jan Kara 已提交
586
	struct vm_area_struct *vma = vmf->vma;
587
	pgtable_t pgtable;
J
Jan Kara 已提交
588
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
589
	vm_fault_t ret = 0;
590

591
	VM_BUG_ON_PAGE(!PageCompound(page), page);
592

593
	if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
594 595
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
596
		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
597 598
		return VM_FAULT_FALLBACK;
	}
599
	cgroup_throttle_swaprate(page, gfp);
600

601
	pgtable = pte_alloc_one(vma->vm_mm);
602
	if (unlikely(!pgtable)) {
603 604
		ret = VM_FAULT_OOM;
		goto release;
605
	}
606

607
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
608 609 610 611 612
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
613 614
	__SetPageUptodate(page);

J
Jan Kara 已提交
615 616
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
617
		goto unlock_release;
618 619
	} else {
		pmd_t entry;
620

621 622 623 624
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

625 626
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
627
			vm_fault_t ret2;
628

J
Jan Kara 已提交
629
			spin_unlock(vmf->ptl);
630
			put_page(page);
K
Kirill A. Shutemov 已提交
631
			pte_free(vma->vm_mm, pgtable);
632 633 634
			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
			return ret2;
635 636
		}

637
		entry = mk_huge_pmd(page, vma->vm_page_prot);
638
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
639
		page_add_new_anon_rmap(page, vma, haddr, true);
640
		lru_cache_add_inactive_or_unevictable(page, vma);
J
Jan Kara 已提交
641 642
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
643
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
K
Kirill A. Shutemov 已提交
644
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
645
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
646
		spin_unlock(vmf->ptl);
647
		count_vm_event(THP_FAULT_ALLOC);
648
		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
649 650
	}

651
	return 0;
652 653 654 655 656 657 658 659
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	put_page(page);
	return ret;

660 661
}

662
/*
663 664 665 666 667 668 669
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
670
 */
671
gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
672
{
673
	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
674

675
	/* Always do synchronous compaction */
676 677
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
678 679

	/* Kick kcompactd and fail quickly */
680
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
681
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
682 683

	/* Synchronous compaction if madvised, otherwise kick kcompactd */
684
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
685 686 687
		return GFP_TRANSHUGE_LIGHT |
			(vma_madvised ? __GFP_DIRECT_RECLAIM :
					__GFP_KSWAPD_RECLAIM);
688 689

	/* Only do synchronous compaction if madvised */
690
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
691 692
		return GFP_TRANSHUGE_LIGHT |
		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
693

694
	return GFP_TRANSHUGE_LIGHT;
695 696
}

697
/* Caller must hold page table lock. */
698
static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
699
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
700
		struct page *zero_page)
701 702
{
	pmd_t entry;
A
Andrew Morton 已提交
703
	if (!pmd_none(*pmd))
704
		return;
705
	entry = mk_pmd(zero_page, vma->vm_page_prot);
706
	entry = pmd_mkhuge(entry);
707 708
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
709
	set_pmd_at(mm, haddr, pmd, entry);
710
	mm_inc_nr_ptes(mm);
711 712
}

713
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
714
{
J
Jan Kara 已提交
715
	struct vm_area_struct *vma = vmf->vma;
716
	gfp_t gfp;
717
	struct page *page;
J
Jan Kara 已提交
718
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
719

720
	if (!transhuge_vma_suitable(vma, haddr))
721
		return VM_FAULT_FALLBACK;
722 723
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
724
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
725
		return VM_FAULT_OOM;
J
Jan Kara 已提交
726
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
727
			!mm_forbids_zeropage(vma->vm_mm) &&
728 729 730
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
731
		vm_fault_t ret;
732
		pgtable = pte_alloc_one(vma->vm_mm);
733
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
734
			return VM_FAULT_OOM;
735
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
736
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
737
			pte_free(vma->vm_mm, pgtable);
738
			count_vm_event(THP_FAULT_FALLBACK);
739
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
740
		}
J
Jan Kara 已提交
741
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
742
		ret = 0;
J
Jan Kara 已提交
743
		if (pmd_none(*vmf->pmd)) {
744 745 746
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
747
				pte_free(vma->vm_mm, pgtable);
748
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
749
				spin_unlock(vmf->ptl);
750
				pte_free(vma->vm_mm, pgtable);
J
Jan Kara 已提交
751
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
752 753
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
754
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
755
						   haddr, vmf->pmd, zero_page);
756
				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
J
Jan Kara 已提交
757
				spin_unlock(vmf->ptl);
758
			}
759
		} else {
J
Jan Kara 已提交
760
			spin_unlock(vmf->ptl);
K
Kirill A. Shutemov 已提交
761
			pte_free(vma->vm_mm, pgtable);
762
		}
763
		return ret;
764
	}
765
	gfp = vma_thp_gfp_mask(vma);
766
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
767 768
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
769
		return VM_FAULT_FALLBACK;
770
	}
771
	prep_transhuge_page(page);
J
Jan Kara 已提交
772
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
773 774
}

775
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
776 777
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
778 779 780 781 782 783
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

799 800 801
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
802
	if (write) {
803 804
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
805
	}
806 807 808

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
809
		mm_inc_nr_ptes(mm);
810
		pgtable = NULL;
811 812
	}

813 814
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
815 816

out_unlock:
M
Matthew Wilcox 已提交
817
	spin_unlock(ptl);
818 819
	if (pgtable)
		pte_free(mm, pgtable);
M
Matthew Wilcox 已提交
820 821
}

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
/**
 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
M
Matthew Wilcox 已提交
837
{
838 839
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
840
	pgtable_t pgtable = NULL;
841

M
Matthew Wilcox 已提交
842 843 844 845 846
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
847 848
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
849 850 851 852 853 854
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
855

856
	if (arch_needs_pgtable_deposit()) {
857
		pgtable = pte_alloc_one(vma->vm_mm);
858 859 860 861
		if (!pgtable)
			return VM_FAULT_OOM;
	}

862 863
	track_pfn_insert(vma, &pgprot, pfn);

864
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
865
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
866
}
867
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
M
Matthew Wilcox 已提交
868

869
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
870
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
871
{
872
	if (likely(vma->vm_flags & VM_WRITE))
873 874 875 876 877 878 879 880 881 882 883 884
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
885 886 887 888 889 890 891 892 893 894 895 896 897 898
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

899 900 901 902
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
903 904
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
905 906 907
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
908 909

out_unlock:
910 911 912
	spin_unlock(ptl);
}

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
/**
 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
928
{
929 930 931
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;

932 933 934 935 936
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
937 938
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
939 940 941 942 943 944 945 946 947
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

948
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
949 950
	return VM_FAULT_NOPAGE;
}
951
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
952 953
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

954
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
955
		pmd_t *pmd, int flags)
956 957 958
{
	pmd_t _pmd;

959 960 961
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
962
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
963
				pmd, _pmd, flags & FOLL_WRITE))
964 965 966 967
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
968
		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
969 970 971 972 973 974 975
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

976 977 978 979 980 981
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

J
John Hubbard 已提交
982 983 984 985 986
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

987
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
988 989 990 991 992 993 994 995
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
996
		touch_pmd(vma, addr, pmd, flags);
997 998 999 1000 1001

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
J
John Hubbard 已提交
1002
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1003 1004 1005
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1006 1007
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1008 1009
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1010 1011
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1012 1013 1014 1015

	return page;
}

1016 1017 1018 1019
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
1020
	spinlock_t *dst_ptl, *src_ptl;
1021 1022
	struct page *src_page;
	pmd_t pmd;
1023
	pgtable_t pgtable = NULL;
1024
	int ret = -ENOMEM;
1025

1026 1027 1028 1029
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

1030
	pgtable = pte_alloc_one(dst_mm);
1031 1032
	if (unlikely(!pgtable))
		goto out;
1033

1034 1035 1036
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1037 1038 1039

	ret = -EAGAIN;
	pmd = *src_pmd;
1040

1041 1042 1043 1044 1045 1046 1047 1048
	/*
	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
	 * does not have the VM_UFFD_WP, which means that the uffd
	 * fork event is not enabled.
	 */
	if (!(vma->vm_flags & VM_UFFD_WP))
		pmd = pmd_clear_uffd_wp(pmd);

1049 1050 1051 1052 1053 1054 1055 1056
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
		if (is_write_migration_entry(entry)) {
			make_migration_entry_read(&entry);
			pmd = swp_entry_to_pmd(entry);
1057 1058
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
1059 1060
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
1061
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1062
		mm_inc_nr_ptes(dst_mm);
1063
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1064 1065 1066 1067 1068 1069
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

1070
	if (unlikely(!pmd_trans_huge(pmd))) {
1071 1072 1073
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
1074
	/*
1075
	 * When page table lock is held, the huge zero pmd should not be
1076 1077 1078 1079
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
1080
		struct page *zero_page;
1081 1082 1083 1084 1085
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1086
		zero_page = mm_get_huge_zero_page(dst_mm);
1087
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1088
				zero_page);
1089 1090 1091
		ret = 0;
		goto out_unlock;
	}
1092

1093 1094
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1095 1096 1097 1098 1099 1100 1101 1102

	/*
	 * If this page is a potentially pinned page, split and retry the fault
	 * with smaller page size.  Normally this should not happen because the
	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
	 * best effort that the pinned pages won't be replaced by another
	 * random page during the coming copy-on-write.
	 */
1103
	if (unlikely(page_needs_cow_for_dma(vma, src_page))) {
1104 1105 1106 1107 1108 1109 1110
		pte_free(dst_mm, pgtable);
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
		__split_huge_pmd(vma, src_pmd, addr, false, NULL);
		return -EAGAIN;
	}

1111 1112 1113
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1114
	mm_inc_nr_ptes(dst_mm);
1115
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1116 1117 1118 1119 1120 1121 1122

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1123 1124
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1125 1126 1127 1128
out:
	return ret;
}

1129 1130
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1131
		pud_t *pud, int flags)
1132 1133 1134
{
	pud_t _pud;

1135 1136 1137
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1138
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1139
				pud, _pud, flags & FOLL_WRITE))
1140 1141 1142 1143
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1144
		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1145 1146 1147 1148 1149 1150 1151
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1152
	if (flags & FOLL_WRITE && !pud_write(*pud))
1153 1154
		return NULL;

J
John Hubbard 已提交
1155 1156 1157 1158 1159
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

1160 1161 1162 1163 1164 1165
	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1166
		touch_pud(vma, addr, pud, flags);
1167 1168 1169 1170

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
J
John Hubbard 已提交
1171 1172
	 *
	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1173
	 */
J
John Hubbard 已提交
1174
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1175 1176 1177
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1178 1179
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1180 1181
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1182 1183
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

1214
	/* Please refer to comments in copy_huge_pmd() */
1215
	if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1216 1217 1218 1219 1220 1221
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
		__split_huge_pud(vma, src_pud, addr);
		return -EAGAIN;
	}

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

J
Jan Kara 已提交
1255
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1256 1257 1258
{
	pmd_t entry;
	unsigned long haddr;
1259
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1260

J
Jan Kara 已提交
1261 1262
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1263 1264 1265
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1266 1267
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1268
	haddr = vmf->address & HPAGE_PMD_MASK;
1269
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1270
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1271 1272

unlock:
J
Jan Kara 已提交
1273
	spin_unlock(vmf->ptl);
1274 1275
}

1276
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1277
{
J
Jan Kara 已提交
1278
	struct vm_area_struct *vma = vmf->vma;
1279
	struct page *page;
J
Jan Kara 已提交
1280
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1281

J
Jan Kara 已提交
1282
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1283
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1284

1285
	if (is_huge_zero_pmd(orig_pmd))
1286 1287
		goto fallback;

J
Jan Kara 已提交
1288
	spin_lock(vmf->ptl);
1289 1290 1291 1292 1293

	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
		return 0;
	}
1294 1295

	page = pmd_page(orig_pmd);
1296
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1297 1298

	/* Lock page for reuse_swap_page() */
1299 1300 1301 1302 1303 1304
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1305
			spin_unlock(vmf->ptl);
1306 1307
			unlock_page(page);
			put_page(page);
1308
			return 0;
1309 1310 1311
		}
		put_page(page);
	}
1312 1313 1314 1315 1316

	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
	 * part.
	 */
1317
	if (reuse_swap_page(page, NULL)) {
1318 1319
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1320
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1321
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
J
Jan Kara 已提交
1322
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1323
		unlock_page(page);
J
Jan Kara 已提交
1324
		spin_unlock(vmf->ptl);
1325
		return VM_FAULT_WRITE;
1326
	}
1327 1328

	unlock_page(page);
J
Jan Kara 已提交
1329
	spin_unlock(vmf->ptl);
1330 1331 1332
fallback:
	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
	return VM_FAULT_FALLBACK;
1333 1334
}

1335
/*
1336 1337
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
1338 1339 1340
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1341 1342
	return pmd_write(pmd) ||
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1343 1344
}

1345
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1346 1347 1348 1349
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1350
	struct mm_struct *mm = vma->vm_mm;
1351 1352
	struct page *page = NULL;

1353
	assert_spin_locked(pmd_lockptr(mm, pmd));
1354

1355
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1356 1357
		goto out;

1358 1359 1360 1361
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1362
	/* Full NUMA hinting faults to serialise migration in fault paths */
1363
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1364 1365
		goto out;

1366
	page = pmd_page(*pmd);
1367
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
J
John Hubbard 已提交
1368 1369 1370 1371

	if (!try_grab_page(page, flags))
		return ERR_PTR(-ENOMEM);

1372
	if (flags & FOLL_TOUCH)
1373
		touch_pmd(vma, addr, pmd, flags);
J
John Hubbard 已提交
1374

E
Eric B Munson 已提交
1375
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1376 1377 1378 1379
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1380 1381
		 * For anon THP:
		 *
1382 1383 1384 1385 1386 1387 1388
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1389 1390 1391 1392 1393 1394
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1395
		 */
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1406
	}
1407
skip_mlock:
1408
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1409
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1410 1411 1412 1413 1414

out:
	return page;
}

1415
/* NUMA hinting page fault entry point for trans huge pmds */
1416
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1417
{
J
Jan Kara 已提交
1418
	struct vm_area_struct *vma = vmf->vma;
1419
	struct anon_vma *anon_vma = NULL;
1420
	struct page *page;
J
Jan Kara 已提交
1421
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1422
	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1423
	int target_nid, last_cpupid = -1;
1424 1425
	bool page_locked;
	bool migrated = false;
1426
	bool was_writable;
1427
	int flags = 0;
1428

J
Jan Kara 已提交
1429 1430
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1431 1432
		goto out_unlock;

1433 1434 1435 1436 1437
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
J
Jan Kara 已提交
1438 1439
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
1440 1441
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1442
		spin_unlock(vmf->ptl);
1443
		put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1444 1445 1446
		goto out;
	}

1447
	page = pmd_page(pmd);
1448
	BUG_ON(is_huge_zero_page(page));
1449
	page_nid = page_to_nid(page);
1450
	last_cpupid = page_cpupid_last(page);
1451
	count_vm_numa_event(NUMA_HINT_FAULTS);
1452
	if (page_nid == this_nid) {
1453
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1454 1455
		flags |= TNF_FAULT_LOCAL;
	}
1456

1457
	/* See similar comment in do_numa_page for explanation */
1458
	if (!pmd_savedwrite(pmd))
1459 1460
		flags |= TNF_NO_GROUP;

1461 1462 1463 1464
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1465 1466
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
1467
	if (target_nid == NUMA_NO_NODE) {
1468
		/* If the page was locked, there are no parallel migrations */
1469
		if (page_locked)
1470
			goto clear_pmdnuma;
1471
	}
1472

1473
	/* Migration could have started since the pmd_trans_migrating check */
1474
	if (!page_locked) {
1475
		page_nid = NUMA_NO_NODE;
1476 1477
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1478
		spin_unlock(vmf->ptl);
1479
		put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1480 1481 1482
		goto out;
	}

1483 1484 1485 1486
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1487
	get_page(page);
J
Jan Kara 已提交
1488
	spin_unlock(vmf->ptl);
1489
	anon_vma = page_lock_anon_vma_read(page);
1490

P
Peter Zijlstra 已提交
1491
	/* Confirm the PMD did not change while page_table_lock was released */
J
Jan Kara 已提交
1492 1493
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1494 1495
		unlock_page(page);
		put_page(page);
1496
		page_nid = NUMA_NO_NODE;
1497
		goto out_unlock;
1498
	}
1499

1500 1501 1502
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
1503
		page_nid = NUMA_NO_NODE;
1504 1505 1506
		goto clear_pmdnuma;
	}

1507 1508 1509 1510 1511 1512
	/*
	 * Since we took the NUMA fault, we must have observed the !accessible
	 * bit. Make sure all other CPUs agree with that, to avoid them
	 * modifying the page we're about to migrate.
	 *
	 * Must be done under PTL such that we'll observe the relevant
1513 1514 1515 1516
	 * inc_tlb_flush_pending().
	 *
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
1517
	 */
1518
	if (mm_tlb_flush_pending(vma->vm_mm)) {
1519
		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
		/*
		 * change_huge_pmd() released the pmd lock before
		 * invalidating the secondary MMUs sharing the primary
		 * MMU pagetables (with ->invalidate_range()). The
		 * mmu_notifier_invalidate_range_end() (which
		 * internally calls ->invalidate_range()) in
		 * change_pmd_range() will run after us, so we can't
		 * rely on it here and we need an explicit invalidate.
		 */
		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
					      haddr + HPAGE_PMD_SIZE);
	}
1532

1533 1534
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1535
	 * and access rights restored.
1536
	 */
J
Jan Kara 已提交
1537
	spin_unlock(vmf->ptl);
1538

K
Kirill A. Shutemov 已提交
1539
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
J
Jan Kara 已提交
1540
				vmf->pmd, pmd, vmf->address, page, target_nid);
1541 1542
	if (migrated) {
		flags |= TNF_MIGRATED;
1543
		page_nid = target_nid;
1544 1545
	} else
		flags |= TNF_MIGRATE_FAIL;
1546

1547
	goto out;
1548
clear_pmdnuma:
1549
	BUG_ON(!PageLocked(page));
1550
	was_writable = pmd_savedwrite(pmd);
1551
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1552
	pmd = pmd_mkyoung(pmd);
1553 1554
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
J
Jan Kara 已提交
1555 1556
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1557
	unlock_page(page);
1558
out_unlock:
J
Jan Kara 已提交
1559
	spin_unlock(vmf->ptl);
1560 1561 1562 1563 1564

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1565
	if (page_nid != NUMA_NO_NODE)
J
Jan Kara 已提交
1566
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1567
				flags);
1568

1569 1570 1571
	return 0;
}

1572 1573 1574 1575 1576
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1577 1578 1579 1580 1581 1582
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1583
	bool ret = false;
1584

1585
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1586

1587 1588
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1589
		goto out_unlocked;
1590 1591

	orig_pmd = *pmd;
1592
	if (is_huge_zero_pmd(orig_pmd))
1593 1594
		goto out;

1595 1596 1597 1598 1599 1600
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1619
		split_huge_page(page);
1620
		unlock_page(page);
1621
		put_page(page);
1622 1623 1624 1625 1626 1627 1628 1629
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1630
		pmdp_invalidate(vma, addr, pmd);
1631 1632 1633 1634 1635 1636
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1637 1638

	mark_page_lazyfree(page);
1639
	ret = true;
1640 1641 1642 1643 1644 1645
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1646 1647 1648 1649 1650 1651
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1652
	mm_dec_nr_ptes(mm);
1653 1654
}

1655
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1656
		 pmd_t *pmd, unsigned long addr)
1657
{
1658
	pmd_t orig_pmd;
1659
	spinlock_t *ptl;
1660

1661
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1662

1663 1664
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1665 1666 1667 1668 1669 1670 1671
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
1672 1673
	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
						tlb->fullmm);
1674
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1675
	if (vma_is_special_huge(vma)) {
1676 1677
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1678 1679
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1680
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1681
	} else if (is_huge_zero_pmd(orig_pmd)) {
1682
		zap_deposited_table(tlb->mm, pmd);
1683
		spin_unlock(ptl);
1684
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1685
	} else {
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
			page_remove_rmap(page, true);
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
			page = pfn_to_page(swp_offset(entry));
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1704
		if (PageAnon(page)) {
1705
			zap_deposited_table(tlb->mm, pmd);
1706 1707
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1708 1709
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1710
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1711
		}
1712

1713
		spin_unlock(ptl);
1714 1715
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1716
	}
1717
	return 1;
1718 1719
}

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1746
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1747
		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1748
{
1749
	spinlock_t *old_ptl, *new_ptl;
1750 1751
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1752
	bool force_flush = false;
1753 1754 1755 1756 1757 1758 1759

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1760
		return false;
1761 1762
	}

1763 1764
	/*
	 * We don't have to worry about the ordering of src and dst
1765
	 * ptlocks because exclusive mmap_lock prevents deadlock.
1766
	 */
1767 1768
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1769 1770 1771
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1772
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1773
		if (pmd_present(pmd))
1774
			force_flush = true;
1775
		VM_BUG_ON(!pmd_none(*new_pmd));
1776

1777
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1778
			pgtable_t pgtable;
1779 1780 1781
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1782 1783
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1784 1785
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1786 1787
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1788
		spin_unlock(old_ptl);
1789
		return true;
1790
	}
1791
	return false;
1792 1793
}

1794 1795 1796 1797 1798 1799
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1800
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1801
		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1802 1803
{
	struct mm_struct *mm = vma->vm_mm;
1804
	spinlock_t *ptl;
1805 1806 1807
	pmd_t entry;
	bool preserve_write;
	int ret;
1808
	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1809 1810
	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1811

1812
	ptl = __pmd_trans_huge_lock(pmd, vma);
1813 1814
	if (!ptl)
		return 0;
1815

1816 1817
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1818

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
		if (is_write_migration_entry(entry)) {
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
			make_migration_entry_read(&entry);
			newpmd = swp_entry_to_pmd(entry);
1832 1833
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1834 1835 1836 1837 1838 1839
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1840 1841 1842 1843 1844 1845 1846
	/*
	 * Avoid trapping faults against the zero page. The read-only
	 * data is likely to be read-cached on the local CPU and
	 * local/remote hits to the zero page are not interesting.
	 */
	if (prot_numa && is_huge_zero_pmd(*pmd))
		goto unlock;
1847

1848 1849 1850
	if (prot_numa && pmd_protnone(*pmd))
		goto unlock;

1851
	/*
1852
	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1853
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1854
	 * which is also under mmap_read_lock(mm):
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
1872
	entry = pmdp_invalidate(vma, addr, pmd);
1873

1874 1875 1876
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
	if (uffd_wp) {
		entry = pmd_wrprotect(entry);
		entry = pmd_mkuffd_wp(entry);
	} else if (uffd_wp_resolve) {
		/*
		 * Leave the write bit to be handled by PF interrupt
		 * handler, then things like COW could be properly
		 * handled.
		 */
		entry = pmd_clear_uffd_wp(entry);
	}
1888 1889 1890 1891 1892
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
1893 1894 1895 1896
	return ret;
}

/*
1897
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1898
 *
1899 1900
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1901
 */
1902
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1903
{
1904 1905
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1906 1907
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
1908 1909 1910
		return ptl;
	spin_unlock(ptl);
	return NULL;
1911 1912
}

1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
1945
	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1946
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1947
	if (vma_is_special_huge(vma)) {
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

1965
	count_vm_event(THP_SPLIT_PUD);
1966 1967 1968 1969 1970 1971 1972 1973

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
1974
	struct mmu_notifier_range range;
1975

1976
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1977
				address & HPAGE_PUD_MASK,
1978 1979 1980
				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pud_lock(vma->vm_mm, pud);
1981 1982
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
1983
	__split_huge_pud_locked(vma, pud, range.start);
1984 1985 1986

out:
	spin_unlock(ptl);
1987 1988 1989 1990
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
1991
	mmu_notifier_invalidate_range_only_end(&range);
1992 1993 1994
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1995 1996 1997 1998 1999 2000 2001 2002
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

2003 2004 2005 2006 2007 2008
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
2009
	 * See Documentation/vm/mmu_notifier.rst
2010 2011
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2030
		unsigned long haddr, bool freeze)
2031 2032 2033 2034
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
2035
	pmd_t old_pmd, _pmd;
2036
	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2037
	unsigned long addr;
2038 2039 2040 2041 2042
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2043 2044
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
2045 2046 2047

	count_vm_event(THP_SPLIT_PMD);

2048 2049
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2050 2051 2052 2053 2054 2055
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
2056
		if (vma_is_special_huge(vma))
2057 2058
			return;
		page = pmd_page(_pmd);
2059 2060
		if (!PageDirty(page) && pmd_dirty(_pmd))
			set_page_dirty(page);
2061 2062 2063 2064
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
2065
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2066
		return;
2067
	} else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
2068 2069 2070 2071 2072 2073 2074 2075 2076
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2077 2078 2079
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2080 2081 2082 2083 2084 2085 2086 2087
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
2088 2089
	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
	 * 383 on page 105. Intel should be safe but is also warns that it's
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2103
	if (unlikely(pmd_migration)) {
2104 2105
		swp_entry_t entry;

2106
		entry = pmd_to_swp_entry(old_pmd);
2107
		page = pfn_to_page(swp_offset(entry));
2108 2109 2110
		write = is_write_migration_entry(entry);
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2111
		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2112
	} else {
2113
		page = pmd_page(old_pmd);
2114 2115 2116 2117 2118
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
2119
		uffd_wp = pmd_uffd_wp(old_pmd);
2120
	}
2121
	VM_BUG_ON_PAGE(!page_count(page), page);
2122
	page_ref_add(page, HPAGE_PMD_NR - 1);
2123

2124 2125 2126 2127
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2128 2129 2130
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2131
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2132 2133 2134 2135 2136 2137
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2138
		if (freeze || pmd_migration) {
2139 2140 2141
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
2142 2143
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2144 2145
			if (uffd_wp)
				entry = pte_swp_mkuffd_wp(entry);
2146
		} else {
2147
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2148
			entry = maybe_mkwrite(entry, vma);
2149 2150 2151 2152
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2153 2154
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2155 2156
			if (uffd_wp)
				entry = pte_mkuffd_wp(entry);
2157
		}
2158
		pte = pte_offset_map(&_pmd, addr);
2159
		BUG_ON(!pte_none(*pte));
2160
		set_pte_at(mm, addr, pte, entry);
2161
		if (!pmd_migration)
2162
			atomic_inc(&page[i]._mapcount);
2163
		pte_unmap(pte);
2164 2165
	}

2166 2167 2168 2169 2170 2171 2172
	if (!pmd_migration) {
		/*
		 * Set PG_double_map before dropping compound_mapcount to avoid
		 * false-negative page_mapped().
		 */
		if (compound_mapcount(page) > 1 &&
		    !TestSetPageDoubleMap(page)) {
2173
			for (i = 0; i < HPAGE_PMD_NR; i++)
2174 2175 2176 2177 2178 2179
				atomic_inc(&page[i]._mapcount);
		}

		lock_page_memcg(page);
		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
			/* Last compound_mapcount is gone. */
2180 2181
			__mod_lruvec_page_state(page, NR_ANON_THPS,
						-HPAGE_PMD_NR);
2182 2183 2184 2185 2186
			if (TestClearPageDoubleMap(page)) {
				/* No need in mapcount reference anymore */
				for (i = 0; i < HPAGE_PMD_NR; i++)
					atomic_dec(&page[i]._mapcount);
			}
2187
		}
2188
		unlock_page_memcg(page);
2189 2190 2191 2192
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2193 2194

	if (freeze) {
2195
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2196 2197 2198 2199
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2200 2201 2202
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2203
		unsigned long address, bool freeze, struct page *page)
2204 2205
{
	spinlock_t *ptl;
2206
	struct mmu_notifier_range range;
2207
	bool do_unlock_page = false;
2208
	pmd_t _pmd;
2209

2210
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2211
				address & HPAGE_PMD_MASK,
2212 2213 2214
				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pmd_lock(vma->vm_mm, pmd);
2215 2216 2217 2218 2219 2220

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
2221 2222 2223 2224 2225
	if (page) {
		VM_WARN_ON_ONCE(!PageLocked(page));
		if (page != pmd_page(*pmd))
			goto out;
	}
2226

2227
repeat:
2228
	if (pmd_trans_huge(*pmd)) {
2229 2230
		if (!page) {
			page = pmd_page(*pmd);
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
			/*
			 * An anonymous page must be locked, to ensure that a
			 * concurrent reuse_swap_page() sees stable mapcount;
			 * but reuse_swap_page() is not used on shmem or file,
			 * and page lock must not be taken when zap_pmd_range()
			 * calls __split_huge_pmd() while i_mmap_lock is held.
			 */
			if (PageAnon(page)) {
				if (unlikely(!trylock_page(page))) {
					get_page(page);
					_pmd = *pmd;
					spin_unlock(ptl);
					lock_page(page);
					spin_lock(ptl);
					if (unlikely(!pmd_same(*pmd, _pmd))) {
						unlock_page(page);
						put_page(page);
						page = NULL;
						goto repeat;
					}
2251 2252
					put_page(page);
				}
2253
				do_unlock_page = true;
2254 2255
			}
		}
2256
		if (PageMlocked(page))
2257
			clear_page_mlock(page);
2258
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2259
		goto out;
2260
	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2261
out:
2262
	spin_unlock(ptl);
2263
	if (do_unlock_page)
2264
		unlock_page(page);
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
2278
	mmu_notifier_invalidate_range_only_end(&range);
2279 2280
}

2281 2282
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2283
{
2284
	pgd_t *pgd;
2285
	p4d_t *p4d;
2286
	pud_t *pud;
2287 2288
	pmd_t *pmd;

2289
	pgd = pgd_offset(vma->vm_mm, address);
2290 2291 2292
	if (!pgd_present(*pgd))
		return;

2293 2294 2295 2296 2297
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2298 2299 2300 2301
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2302

2303
	__split_huge_pmd(vma, pmd, address, freeze, page);
2304 2305
}

2306
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2319
		split_huge_pmd_address(vma, start, false, NULL);
2320 2321 2322 2323 2324 2325 2326 2327 2328

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2329
		split_huge_pmd_address(vma, end, false, NULL);
2330 2331 2332

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
2333
	 * vm_next->vm_start isn't hpage aligned and it could previously
2334 2335 2336 2337 2338
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
2339
		nstart += adjust_next;
2340 2341 2342
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2343
			split_huge_pmd_address(next, nstart, false, NULL);
2344 2345
	}
}
2346

2347
static void unmap_page(struct page *page)
2348
{
2349
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK |
2350
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
M
Minchan Kim 已提交
2351
	bool unmap_success;
2352 2353 2354

	VM_BUG_ON_PAGE(!PageHead(page), page);

2355
	if (PageAnon(page))
2356
		ttu_flags |= TTU_SPLIT_FREEZE;
2357

M
Minchan Kim 已提交
2358 2359
	unmap_success = try_to_unmap(page, ttu_flags);
	VM_BUG_ON_PAGE(!unmap_success, page);
2360 2361
}

2362
static void remap_page(struct page *page, unsigned int nr)
2363
{
2364
	int i;
2365 2366 2367
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
2368
		for (i = 0; i < nr; i++)
2369 2370
			remove_migration_ptes(page + i, page + i, true);
	}
2371 2372
}

2373
static void lru_add_page_tail(struct page *head, struct page *tail,
2374 2375
		struct lruvec *lruvec, struct list_head *list)
{
2376 2377 2378
	VM_BUG_ON_PAGE(!PageHead(head), head);
	VM_BUG_ON_PAGE(PageCompound(tail), head);
	VM_BUG_ON_PAGE(PageLRU(tail), head);
2379
	lockdep_assert_held(&lruvec->lru_lock);
2380

A
Alex Shi 已提交
2381
	if (list) {
2382
		/* page reclaim is reclaiming a huge page */
A
Alex Shi 已提交
2383
		VM_WARN_ON(PageLRU(head));
2384 2385
		get_page(tail);
		list_add_tail(&tail->lru, list);
2386
	} else {
A
Alex Shi 已提交
2387 2388 2389 2390
		/* head is still on lru (and we have it frozen) */
		VM_WARN_ON(!PageLRU(head));
		SetPageLRU(tail);
		list_add_tail(&tail->lru, &head->lru);
2391 2392 2393
	}
}

2394
static void __split_huge_page_tail(struct page *head, int tail,
2395 2396 2397 2398
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2399
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2400 2401

	/*
2402 2403 2404
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
2405
	 * for example lock_page() which set PG_waiters.
2406 2407 2408 2409 2410
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2411
			 (1L << PG_swapcache) |
2412 2413 2414
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2415
			 (1L << PG_workingset) |
2416
			 (1L << PG_locked) |
2417
			 (1L << PG_unevictable) |
2418 2419 2420
#ifdef CONFIG_64BIT
			 (1L << PG_arch_2) |
#endif
2421
			 (1L << PG_dirty)));
2422

2423 2424 2425 2426 2427 2428
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2429
	/* Page flags must be visible before we make the page non-compound. */
2430 2431
	smp_wmb();

2432 2433 2434 2435 2436 2437
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2438 2439
	clear_compound_head(page_tail);

2440 2441 2442 2443
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2444 2445 2446 2447 2448 2449
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2450 2451 2452 2453 2454 2455

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2456 2457 2458
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2459
static void __split_huge_page(struct page *page, struct list_head *list,
A
Alex Shi 已提交
2460
		pgoff_t end)
2461 2462 2463
{
	struct page *head = compound_head(page);
	struct lruvec *lruvec;
2464 2465
	struct address_space *swap_cache = NULL;
	unsigned long offset = 0;
2466
	unsigned int nr = thp_nr_pages(head);
2467
	int i;
2468 2469 2470 2471

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

2472 2473 2474 2475 2476 2477 2478 2479
	if (PageAnon(head) && PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		offset = swp_offset(entry);
		swap_cache = swap_address_space(entry);
		xa_lock(&swap_cache->i_pages);
	}

2480 2481
	/* lock lru list/PageCompound, ref freezed by page_ref_freeze */
	lruvec = lock_page_lruvec(head);
A
Alex Shi 已提交
2482

2483
	for (i = nr - 1; i >= 1; i--) {
2484
		__split_huge_page_tail(head, i, lruvec, list);
2485 2486
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
2487
			ClearPageDirty(head + i);
2488
			__delete_from_page_cache(head + i, NULL);
2489 2490
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2491
			put_page(head + i);
2492 2493 2494 2495 2496 2497
		} else if (!PageAnon(page)) {
			__xa_store(&head->mapping->i_pages, head[i].index,
					head + i, 0);
		} else if (swap_cache) {
			__xa_store(&swap_cache->i_pages, offset + i,
					head + i, 0);
2498 2499
		}
	}
2500 2501

	ClearPageCompound(head);
2502
	unlock_page_lruvec(lruvec);
A
Alex Shi 已提交
2503
	/* Caller disabled irqs, so they are still disabled here */
2504

2505
	split_page_owner(head, nr);
2506

2507 2508
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
M
Matthew Wilcox 已提交
2509
		/* Additional pin to swap cache */
2510
		if (PageSwapCache(head)) {
2511
			page_ref_add(head, 2);
2512 2513
			xa_unlock(&swap_cache->i_pages);
		} else {
2514
			page_ref_inc(head);
2515
		}
2516
	} else {
M
Matthew Wilcox 已提交
2517
		/* Additional pin to page cache */
2518
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2519
		xa_unlock(&head->mapping->i_pages);
2520
	}
A
Alex Shi 已提交
2521
	local_irq_enable();
2522

2523
	remap_page(head, nr);
2524

H
Huang Ying 已提交
2525 2526 2527 2528 2529 2530
	if (PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		split_swap_cluster(entry);
	}

2531
	for (i = 0; i < nr; i++) {
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2548 2549
int total_mapcount(struct page *page)
{
2550
	int i, compound, nr, ret;
2551 2552 2553 2554 2555 2556

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
2557
	compound = compound_mapcount(page);
2558
	nr = compound_nr(page);
2559
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2560 2561
		return compound;
	ret = compound;
2562
	for (i = 0; i < nr; i++)
2563
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2564 2565
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
2566
		return ret - compound * nr;
2567
	if (PageDoubleMap(page))
2568
		ret -= nr;
2569 2570 2571
	return ret;
}

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
2613
	for (i = 0; i < thp_nr_pages(page); i++) {
2614 2615 2616 2617 2618 2619
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
2620
		_total_mapcount -= thp_nr_pages(page);
2621 2622 2623 2624 2625 2626 2627 2628 2629
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2630 2631 2632 2633 2634
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
	int extra_pins;

M
Matthew Wilcox 已提交
2635
	/* Additional pins from page cache */
2636
	if (PageAnon(page))
2637
		extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2638
	else
2639
		extra_pins = thp_nr_pages(page);
2640 2641 2642 2643 2644
	if (pextra_pins)
		*pextra_pins = extra_pins;
	return total_mapcount(page) == page_count(page) - extra_pins - 1;
}

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2667
	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2668 2669 2670
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2671
	pgoff_t end;
2672

2673
	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2674 2675
	VM_BUG_ON_PAGE(!PageLocked(head), head);
	VM_BUG_ON_PAGE(!PageCompound(head), head);
2676

2677
	if (PageWriteback(head))
2678 2679
		return -EBUSY;

2680 2681
	if (PageAnon(head)) {
		/*
2682
		 * The caller does not necessarily hold an mmap_lock that would
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2694
		end = -1;
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2708 2709 2710 2711 2712 2713 2714 2715 2716

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2717 2718 2719
	}

	/*
2720
	 * Racy check if we can split the page, before unmap_page() will
2721 2722
	 * split PMDs
	 */
2723
	if (!can_split_huge_page(head, &extra_pins)) {
2724 2725 2726 2727
		ret = -EBUSY;
		goto out_unlock;
	}

2728
	unmap_page(head);
2729 2730
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

A
Alex Shi 已提交
2731 2732
	/* block interrupt reentry in xa_lock and spinlock */
	local_irq_disable();
2733
	if (mapping) {
M
Matthew Wilcox 已提交
2734
		XA_STATE(xas, &mapping->i_pages, page_index(head));
2735 2736

		/*
M
Matthew Wilcox 已提交
2737
		 * Check if the head page is present in page cache.
2738 2739
		 * We assume all tail are present too, if head is there.
		 */
M
Matthew Wilcox 已提交
2740 2741
		xa_lock(&mapping->i_pages);
		if (xas_load(&xas) != head)
2742 2743 2744
			goto fail;
	}

2745
	/* Prevent deferred_split_scan() touching ->_refcount */
2746
	spin_lock(&ds_queue->split_queue_lock);
2747 2748
	count = page_count(head);
	mapcount = total_mapcount(head);
2749
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2750
		if (!list_empty(page_deferred_list(head))) {
2751
			ds_queue->split_queue_len--;
2752 2753
			list_del(page_deferred_list(head));
		}
2754
		spin_unlock(&ds_queue->split_queue_lock);
2755
		if (mapping) {
2756 2757
			int nr = thp_nr_pages(head);

2758
			if (PageSwapBacked(head))
2759 2760
				__mod_lruvec_page_state(head, NR_SHMEM_THPS,
							-nr);
2761
			else
2762 2763
				__mod_lruvec_page_state(head, NR_FILE_THPS,
							-nr);
2764 2765
		}

A
Alex Shi 已提交
2766
		__split_huge_page(page, list, end);
H
Huang Ying 已提交
2767
		ret = 0;
2768
	} else {
2769 2770 2771 2772 2773 2774 2775 2776
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
2777
		spin_unlock(&ds_queue->split_queue_lock);
2778
fail:		if (mapping)
M
Matthew Wilcox 已提交
2779
			xa_unlock(&mapping->i_pages);
A
Alex Shi 已提交
2780
		local_irq_enable();
2781
		remap_page(head, thp_nr_pages(head));
2782 2783 2784 2785
		ret = -EBUSY;
	}

out_unlock:
2786 2787 2788 2789 2790 2791
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2792 2793 2794 2795
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2796 2797 2798

void free_transhuge_page(struct page *page)
{
2799
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2800 2801
	unsigned long flags;

2802
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2803
	if (!list_empty(page_deferred_list(page))) {
2804
		ds_queue->split_queue_len--;
2805 2806
		list_del(page_deferred_list(page));
	}
2807
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2808 2809 2810 2811 2812
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2813 2814
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
#ifdef CONFIG_MEMCG
2815
	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2816
#endif
2817 2818 2819 2820
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
	/*
	 * The try_to_unmap() in page reclaim path might reach here too,
	 * this may cause a race condition to corrupt deferred split queue.
	 * And, if page reclaim is already handling the same page, it is
	 * unnecessary to handle it again in shrinker.
	 *
	 * Check PageSwapCache to determine if the page is being
	 * handled by page reclaim since THP swap would add the page into
	 * swap cache before calling try_to_unmap().
	 */
	if (PageSwapCache(page))
		return;

2834
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2835
	if (list_empty(page_deferred_list(page))) {
2836
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2837 2838
		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
		ds_queue->split_queue_len++;
2839 2840 2841 2842 2843
#ifdef CONFIG_MEMCG
		if (memcg)
			memcg_set_shrinker_bit(memcg, page_to_nid(page),
					       deferred_split_shrinker.id);
#endif
2844
	}
2845
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2846 2847 2848 2849 2850
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2851
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2852
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2853 2854 2855 2856 2857

#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif
2858
	return READ_ONCE(ds_queue->split_queue_len);
2859 2860 2861 2862 2863
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2864
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2865
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2866 2867 2868 2869 2870
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2871 2872 2873 2874 2875
#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif

2876
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2877
	/* Take pin on all head pages to avoid freeing them under us */
2878
	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2879 2880
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2881 2882 2883 2884
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2885
			list_del_init(page_deferred_list(page));
2886
			ds_queue->split_queue_len--;
2887
		}
2888 2889
		if (!--sc->nr_to_scan)
			break;
2890
	}
2891
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2892 2893 2894

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
2895 2896
		if (!trylock_page(page))
			goto next;
2897 2898 2899 2900
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2901
next:
2902 2903 2904
		put_page(page);
	}

2905 2906 2907
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
	list_splice_tail(&list, &ds_queue->split_queue);
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2908

2909 2910 2911 2912
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
2913
	if (!split && list_empty(&ds_queue->split_queue))
2914 2915
		return SHRINK_STOP;
	return split;
2916 2917 2918 2919 2920 2921
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2922 2923
	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
		 SHRINKER_NONSLAB,
2924
};
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2950
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

2963
	pr_info("%lu of %lu THP split\n", split, total);
2964 2965 2966

	return 0;
}
2967
DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2968 2969 2970 2971
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
2972 2973
	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
			    &split_huge_pages_fops);
2974 2975 2976 2977
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
2988
	pmd_t pmdswp;
2989 2990 2991 2992 2993

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2994
	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2995 2996 2997
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
	entry = make_migration_entry(page, pmd_write(pmdval));
2998 2999 3000 3001
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
	page_remove_rmap(page, true);
	put_page(page);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3021 3022
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
3023
	if (is_write_migration_entry(entry))
3024
		pmde = maybe_pmd_mkwrite(pmde, vma);
3025 3026

	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3027 3028 3029 3030
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
		page_add_file_rmap(new, true);
3031
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3032
	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3033 3034 3035 3036
		mlock_vma_page(new);
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif