intel_pstate.c 78.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * intel_pstate.c: Native P state management for Intel processors
4 5 6 7 8
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 */

J
Joe Perches 已提交
9 10
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

11 12 13 14 15 16 17
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
18
#include <linux/sched/cpufreq.h>
19 20 21 22 23 24
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
25
#include <linux/acpi.h>
26
#include <linux/vmalloc.h>
27
#include <linux/pm_qos.h>
28 29 30 31 32
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
33
#include <asm/cpufeature.h>
34
#include <asm/intel-family.h>
35

36
#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
37

38
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
39
#define INTEL_CPUFREQ_TRANSITION_DELAY_HWP	5000
40
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
41

42 43
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
44
#include <acpi/cppc_acpi.h>
45 46
#endif

47
#define FRAC_BITS 8
48 49
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
50

51 52
#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))

53 54
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 56
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57

58 59 60 61 62
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

63
static inline int32_t div_fp(s64 x, s64 y)
64
{
65
	return div64_s64((int64_t)x << FRAC_BITS, y);
66 67
}

68 69 70 71 72 73 74 75 76 77 78
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

79 80 81 82 83 84 85 86 87 88
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

89 90
/**
 * struct sample -	Store performance sample
91
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
92 93
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
94
 *			P state. This can be different than core_avg_perf
95 96 97 98 99 100 101 102 103 104 105 106
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
107
struct sample {
108
	int32_t core_avg_perf;
109
	int32_t busy_scaled;
110 111
	u64 aperf;
	u64 mperf;
112
	u64 tsc;
113
	u64 time;
114 115
};

116 117 118 119 120 121 122 123 124 125 126
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
127 128
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
129 130 131
 *
 * Stores the per cpu model P state limits and current P state.
 */
132 133 134 135
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
136
	int	max_pstate_physical;
137
	int	scaling;
138
	int	turbo_pstate;
139 140
	unsigned int max_freq;
	unsigned int turbo_freq;
141 142
};

143 144 145 146 147 148 149 150 151 152 153 154 155
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
156
struct vid_data {
157 158 159
	int min;
	int max;
	int turbo;
160 161 162
	int32_t ratio;
};

163 164 165
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
166
 * @turbo_disabled:	Whether or not turbo P-states are available at all,
167 168 169
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
170
 * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
171 172 173 174 175 176 177 178
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
179
	bool turbo_disabled_mf;
180 181
	int max_perf_pct;
	int min_perf_pct;
182 183
};

184 185 186
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
187
 * @policy:		CPUFreq policy value
188
 * @update_util:	CPUFreq utility callback information
189
 * @update_util_set:	CPUFreq utility callback is set
190 191
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
192 193 194
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @last_sample_time:	Last Sample time
195
 * @aperf_mperf_shift:	APERF vs MPERF counting frequency difference
196 197 198 199 200 201
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
202 203
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
204 205
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
206 207 208
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
209
 * @epp_policy:		Last saved policy used to set EPP/EPB
210 211
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
212
 * @epp_cached		Cached HWP energy-performance preference value
213 214
 * @hwp_req_cached:	Cached value of the last HWP Request MSR
 * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
215 216
 * @last_io_update:	Last time when IO wake flag was set
 * @sched_flags:	Store scheduler flags for possible cross CPU update
217
 * @hwp_boost_min:	Last HWP boosted min performance
218
 * @suspended:		Whether or not the driver has been suspended.
219 220 221
 *
 * This structure stores per CPU instance data for all CPUs.
 */
222 223 224
struct cpudata {
	int cpu;

225
	unsigned int policy;
226
	struct update_util_data update_util;
227
	bool   update_util_set;
228 229

	struct pstate_data pstate;
230
	struct vid_data vid;
231

232
	u64	last_update;
233
	u64	last_sample_time;
234
	u64	aperf_mperf_shift;
235 236
	u64	prev_aperf;
	u64	prev_mperf;
237
	u64	prev_tsc;
238
	u64	prev_cummulative_iowait;
239
	struct sample sample;
240 241
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
242 243 244 245
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
246
	unsigned int iowait_boost;
247
	s16 epp_powersave;
248
	s16 epp_policy;
249
	s16 epp_default;
250
	s16 epp_cached;
251 252
	u64 hwp_req_cached;
	u64 hwp_cap_cached;
253 254
	u64 last_io_update;
	unsigned int sched_flags;
255
	u32 hwp_boost_min;
256
	bool suspended;
257 258 259
};

static struct cpudata **all_cpu_data;
260 261 262 263 264 265 266 267

/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
268
 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
269 270 271 272 273 274
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
275 276
struct pstate_funcs {
	int (*get_max)(void);
277
	int (*get_max_physical)(void);
278 279
	int (*get_min)(void);
	int (*get_turbo)(void);
280
	int (*get_scaling)(void);
281
	int (*get_aperf_mperf_shift)(void);
282
	u64 (*get_val)(struct cpudata*, int pstate);
283
	void (*get_vid)(struct cpudata *);
284 285
};

286
static struct pstate_funcs pstate_funcs __read_mostly;
287

288
static int hwp_active __read_mostly;
289
static int hwp_mode_bdw __read_mostly;
290
static bool per_cpu_limits __read_mostly;
291
static bool hwp_boost __read_mostly;
292

293
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
294

295 296 297
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
298

299
static struct global_params global;
300

301
static DEFINE_MUTEX(intel_pstate_driver_lock);
302 303
static DEFINE_MUTEX(intel_pstate_limits_lock);

304
#ifdef CONFIG_ACPI
305

306
static bool intel_pstate_acpi_pm_profile_server(void)
307 308 309 310 311
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

312 313 314 315 316 317 318 319
	return false;
}

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (intel_pstate_acpi_pm_profile_server())
		return true;

320 321 322
	return acpi_ppc;
}

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
368 369 370 371 372 373 374 375 376 377

static int intel_pstate_get_cppc_guranteed(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return ret;

378 379 380 381
	if (cppc_perf.guaranteed_perf)
		return cppc_perf.guaranteed_perf;

	return cppc_perf.nominal_perf;
382 383
}

384
#else /* CONFIG_ACPI_CPPC_LIB */
385 386 387
static void intel_pstate_set_itmt_prio(int cpu)
{
}
388
#endif /* CONFIG_ACPI_CPPC_LIB */
389

390 391 392 393 394 395
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

396 397
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
398
		return;
399
	}
400

401
	if (!intel_pstate_get_ppc_enable_status())
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
444
	 * correct max turbo frequency based on the turbo state.
445 446
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
447
	if (!global.turbo_disabled)
448 449 450
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
451
	pr_debug("_PPC limits will be enforced\n");
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
470
#else /* CONFIG_ACPI */
471
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
472 473 474
{
}

475
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
476 477
{
}
478 479 480 481 482

static inline bool intel_pstate_acpi_pm_profile_server(void)
{
	return false;
}
483 484 485 486 487 488 489 490
#endif /* CONFIG_ACPI */

#ifndef CONFIG_ACPI_CPPC_LIB
static int intel_pstate_get_cppc_guranteed(int cpu)
{
	return -ENOTSUPP;
}
#endif /* CONFIG_ACPI_CPPC_LIB */
491

492 493 494 495 496 497 498
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
499
	global.turbo_disabled =
500 501 502 503
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

504 505 506
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
507
	int turbo_pstate = cpu->pstate.turbo_pstate;
508

509
	return turbo_pstate ?
510
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
511 512
}

513 514 515 516 517
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

518
	if (!boot_cpu_has(X86_FEATURE_EPB))
519 520 521 522 523 524 525 526 527 528 529 530 531
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

532
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
533 534 535 536 537 538 539 540 541 542
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
543
		epp = (hwp_req_data >> 24) & 0xff;
544
	} else {
545 546
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
547
	}
548 549 550 551

	return epp;
}

552
static int intel_pstate_set_epb(int cpu, s16 pref)
553 554
{
	u64 epb;
555
	int ret;
556

557
	if (!boot_cpu_has(X86_FEATURE_EPB))
558
		return -ENXIO;
559

560 561 562
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
563 564 565

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
566 567

	return 0;
568 569
}

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
589 590 591 592 593 594
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
595

596
static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
597 598 599 600
{
	s16 epp;
	int index = -EINVAL;

601
	*raw_epp = 0;
602 603 604 605
	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

606
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
607 608
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
609
		if (epp == HWP_EPP_BALANCE_PERFORMANCE)
610
			return 2;
611
		if (epp == HWP_EPP_BALANCE_POWERSAVE)
612
			return 3;
613
		if (epp == HWP_EPP_POWERSAVE)
614
			return 4;
615 616
		*raw_epp = epp;
		return 0;
617
	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

634 635
static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
{
636 637
	int ret;

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
	/*
	 * Use the cached HWP Request MSR value, because in the active mode the
	 * register itself may be updated by intel_pstate_hwp_boost_up() or
	 * intel_pstate_hwp_boost_down() at any time.
	 */
	u64 value = READ_ONCE(cpu->hwp_req_cached);

	value &= ~GENMASK_ULL(31, 24);
	value |= (u64)epp << 24;
	/*
	 * The only other updater of hwp_req_cached in the active mode,
	 * intel_pstate_hwp_set(), is called under the same lock as this
	 * function, so it cannot run in parallel with the update below.
	 */
	WRITE_ONCE(cpu->hwp_req_cached, value);
653 654 655 656 657
	ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
	if (!ret)
		cpu->epp_cached = epp;

	return ret;
658 659
}

660
static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
661 662
					      int pref_index, bool use_raw,
					      u32 raw_epp)
663 664 665 666 667 668 669
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

670
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
671 672 673
		if (use_raw)
			epp = raw_epp;
		else if (epp == -EINVAL)
674
			epp = epp_values[pref_index - 1];
675

676 677 678 679 680 681 682 683
		/*
		 * To avoid confusion, refuse to set EPP to any values different
		 * from 0 (performance) if the current policy is "performance",
		 * because those values would be overridden.
		 */
		if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
			return -EBUSY;

684
		ret = intel_pstate_set_epp(cpu_data, epp);
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

710 711
static struct cpufreq_driver intel_pstate;

712 713 714
static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
715
	struct cpudata *cpu = all_cpu_data[policy->cpu];
716
	char str_preference[21];
717
	bool raw = false;
718
	ssize_t ret;
719
	u32 epp = 0;
720 721 722 723 724

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

725
	ret = match_string(energy_perf_strings, -1, str_preference);
726 727 728 729 730 731 732 733
	if (ret < 0) {
		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
			return ret;

		ret = kstrtouint(buf, 10, &epp);
		if (ret)
			return ret;

734 735 736
		if (epp > 255)
			return -EINVAL;

737 738 739
		raw = true;
	}

740 741 742 743 744 745 746 747
	/*
	 * This function runs with the policy R/W semaphore held, which
	 * guarantees that the driver pointer will not change while it is
	 * running.
	 */
	if (!intel_pstate_driver)
		return -EAGAIN;

748 749
	mutex_lock(&intel_pstate_limits_lock);

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
	if (intel_pstate_driver == &intel_pstate) {
		ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
	} else {
		/*
		 * In the passive mode the governor needs to be stopped on the
		 * target CPU before the EPP update and restarted after it,
		 * which is super-heavy-weight, so make sure it is worth doing
		 * upfront.
		 */
		if (!raw)
			epp = ret ? epp_values[ret - 1] : cpu->epp_default;

		if (cpu->epp_cached != epp) {
			int err;

			cpufreq_stop_governor(policy);
			ret = intel_pstate_set_epp(cpu, epp);
			err = cpufreq_start_governor(policy);
768
			if (!ret)
769 770 771
				ret = err;
		}
	}
772 773

	mutex_unlock(&intel_pstate_limits_lock);
774

775
	return ret ?: count;
776 777 778 779 780 781
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
782
	int preference, raw_epp;
783

784
	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
785 786 787
	if (preference < 0)
		return preference;

788 789 790 791
	if (raw_epp)
		return  sprintf(buf, "%d\n", raw_epp);
	else
		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
792 793 794 795
}

cpufreq_freq_attr_rw(energy_performance_preference);

796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu;
	u64 cap;
	int ratio;

	ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
	if (ratio <= 0) {
		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
		ratio = HWP_GUARANTEED_PERF(cap);
	}

	cpu = all_cpu_data[policy->cpu];

	return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
}

cpufreq_freq_attr_ro(base_frequency);

815 816 817
static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
818
	&base_frequency,
819 820 821
	NULL,
};

822 823
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
824
{
825
	u64 cap;
826

827
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
828
	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
829
	if (global.no_turbo || global.turbo_disabled)
830
		*current_max = HWP_GUARANTEED_PERF(cap);
831
	else
832 833 834 835 836 837 838 839 840 841 842 843 844 845
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
846

847 848
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
849

850
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
851

852 853
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
854

855 856
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
857

858 859
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
860

861
	cpu_data->epp_policy = cpu_data->policy;
862

863 864 865 866 867 868
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
869

870 871 872 873 874
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
875

876 877 878 879 880 881 882 883 884 885
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
886

887 888
		epp = cpu_data->epp_powersave;
	}
889
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
890 891 892 893
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
894
	}
895
skip_epp:
896
	WRITE_ONCE(cpu_data->hwp_req_cached, value);
897
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
898
}
D
Dirk Brandewie 已提交
899

900
static void intel_pstate_hwp_offline(struct cpudata *cpu)
901
{
902
	u64 value = READ_ONCE(cpu->hwp_req_cached);
903 904
	int min_perf;

905 906 907 908 909 910 911 912 913 914 915
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * In case the EPP has been set to "performance" by the
		 * active mode "performance" scaling algorithm, replace that
		 * temporary value with the cached EPP one.
		 */
		value &= ~GENMASK_ULL(31, 24);
		value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
		WRITE_ONCE(cpu->hwp_req_cached, value);
	}

916
	value &= ~GENMASK_ULL(31, 0);
917
	min_perf = HWP_LOWEST_PERF(cpu->hwp_cap_cached);
918 919 920 921 922

	/* Set hwp_max = hwp_min */
	value |= HWP_MAX_PERF(min_perf);
	value |= HWP_MIN_PERF(min_perf);

923
	/* Set EPP to min */
924
	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
925 926
		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);

927
	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
928 929
}

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
#define POWER_CTL_EE_ENABLE	1
#define POWER_CTL_EE_DISABLE	2

static int power_ctl_ee_state;

static void set_power_ctl_ee_state(bool input)
{
	u64 power_ctl;

	mutex_lock(&intel_pstate_driver_lock);
	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
	if (input) {
		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
	} else {
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
	}
	wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
	mutex_unlock(&intel_pstate_driver_lock);
}

952 953
static void intel_pstate_hwp_enable(struct cpudata *cpudata);

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
static void intel_pstate_hwp_reenable(struct cpudata *cpu)
{
	intel_pstate_hwp_enable(cpu);
	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
}

static int intel_pstate_suspend(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	pr_debug("CPU %d suspending\n", cpu->cpu);

	cpu->suspended = true;

	return 0;
}

971 972
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
973 974 975
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	pr_debug("CPU %d resuming\n", cpu->cpu);
976 977 978 979 980 981 982

	/* Only restore if the system default is changed */
	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
		set_power_ctl_ee_state(true);
	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
		set_power_ctl_ee_state(false);

983 984
	if (cpu->suspended && hwp_active) {
		mutex_lock(&intel_pstate_limits_lock);
985

986 987
		/* Re-enable HWP, because "online" has not done that. */
		intel_pstate_hwp_reenable(cpu);
988

989 990
		mutex_unlock(&intel_pstate_limits_lock);
	}
991

992
	cpu->suspended = false;
993

994
	return 0;
995 996
}

997
static void intel_pstate_update_policies(void)
998
{
999 1000 1001 1002
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
1003 1004
}

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
static void intel_pstate_update_max_freq(unsigned int cpu)
{
	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
	struct cpudata *cpudata;

	if (!policy)
		return;

	cpudata = all_cpu_data[cpu];
	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;

1017
	refresh_frequency_limits(policy);
1018 1019 1020 1021

	cpufreq_cpu_release(policy);
}

1022 1023 1024 1025 1026 1027 1028 1029 1030
static void intel_pstate_update_limits(unsigned int cpu)
{
	mutex_lock(&intel_pstate_driver_lock);

	update_turbo_state();
	/*
	 * If turbo has been turned on or off globally, policy limits for
	 * all CPUs need to be updated to reflect that.
	 */
1031 1032
	if (global.turbo_disabled_mf != global.turbo_disabled) {
		global.turbo_disabled_mf = global.turbo_disabled;
1033
		arch_set_max_freq_ratio(global.turbo_disabled);
1034 1035
		for_each_possible_cpu(cpu)
			intel_pstate_update_max_freq(cpu);
1036 1037 1038 1039 1040 1041 1042
	} else {
		cpufreq_update_policy(cpu);
	}

	mutex_unlock(&intel_pstate_driver_lock);
}

1043 1044 1045
/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
1046
	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
1047
	{								\
1048
		return sprintf(buf, "%u\n", global.object);		\
1049 1050
	}

1051 1052 1053 1054
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
1055
			   struct kobj_attribute *attr, char *buf)
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

1066
static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

1079
static ssize_t show_turbo_pct(struct kobject *kobj,
1080
				struct kobj_attribute *attr, char *buf)
1081 1082 1083 1084 1085
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1086 1087
	mutex_lock(&intel_pstate_driver_lock);

1088
	if (!intel_pstate_driver) {
1089 1090 1091 1092
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1093 1094 1095 1096
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1097
	turbo_fp = div_fp(no_turbo, total);
1098
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1099 1100 1101

	mutex_unlock(&intel_pstate_driver_lock);

1102 1103 1104
	return sprintf(buf, "%u\n", turbo_pct);
}

1105
static ssize_t show_num_pstates(struct kobject *kobj,
1106
				struct kobj_attribute *attr, char *buf)
1107 1108 1109 1110
{
	struct cpudata *cpu;
	int total;

1111 1112
	mutex_lock(&intel_pstate_driver_lock);

1113
	if (!intel_pstate_driver) {
1114 1115 1116 1117
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1118 1119
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1120 1121 1122

	mutex_unlock(&intel_pstate_driver_lock);

1123 1124 1125
	return sprintf(buf, "%u\n", total);
}

1126
static ssize_t show_no_turbo(struct kobject *kobj,
1127
			     struct kobj_attribute *attr, char *buf)
1128 1129 1130
{
	ssize_t ret;

1131 1132
	mutex_lock(&intel_pstate_driver_lock);

1133
	if (!intel_pstate_driver) {
1134 1135 1136 1137
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1138
	update_turbo_state();
1139 1140
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1141
	else
1142
		ret = sprintf(buf, "%u\n", global.no_turbo);
1143

1144 1145
	mutex_unlock(&intel_pstate_driver_lock);

1146 1147 1148
	return ret;
}

1149
static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1150
			      const char *buf, size_t count)
1151 1152 1153
{
	unsigned int input;
	int ret;
1154

1155 1156 1157
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1158

1159 1160
	mutex_lock(&intel_pstate_driver_lock);

1161
	if (!intel_pstate_driver) {
1162 1163 1164 1165
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1166 1167
	mutex_lock(&intel_pstate_limits_lock);

1168
	update_turbo_state();
1169
	if (global.turbo_disabled) {
1170
		pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1171
		mutex_unlock(&intel_pstate_limits_lock);
1172
		mutex_unlock(&intel_pstate_driver_lock);
1173
		return -EPERM;
1174
	}
D
Dirk Brandewie 已提交
1175

1176
	global.no_turbo = clamp_t(int, input, 0, 1);
1177

1178 1179 1180 1181 1182 1183 1184 1185 1186
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1187 1188
	mutex_unlock(&intel_pstate_limits_lock);

1189 1190
	intel_pstate_update_policies();

1191 1192
	mutex_unlock(&intel_pstate_driver_lock);

1193 1194 1195
	return count;
}

1196
static void update_qos_request(enum freq_qos_req_type type)
1197 1198
{
	int max_state, turbo_max, freq, i, perf_pct;
1199
	struct freq_qos_request *req;
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
	struct cpufreq_policy *policy;

	for_each_possible_cpu(i) {
		struct cpudata *cpu = all_cpu_data[i];

		policy = cpufreq_cpu_get(i);
		if (!policy)
			continue;

		req = policy->driver_data;
		cpufreq_cpu_put(policy);

		if (!req)
			continue;

		if (hwp_active)
			intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
		else
			turbo_max = cpu->pstate.turbo_pstate;

1220
		if (type == FREQ_QOS_MIN) {
1221 1222 1223 1224 1225 1226 1227 1228 1229
			perf_pct = global.min_perf_pct;
		} else {
			req++;
			perf_pct = global.max_perf_pct;
		}

		freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
		freq *= cpu->pstate.scaling;

1230
		if (freq_qos_update_request(req, freq) < 0)
1231 1232 1233 1234
			pr_warn("Failed to update freq constraint: CPU%d\n", i);
	}
}

1235
static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1236
				  const char *buf, size_t count)
1237 1238 1239
{
	unsigned int input;
	int ret;
1240

1241 1242 1243 1244
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1245 1246
	mutex_lock(&intel_pstate_driver_lock);

1247
	if (!intel_pstate_driver) {
1248 1249 1250 1251
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1252 1253
	mutex_lock(&intel_pstate_limits_lock);

1254
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1255

1256 1257
	mutex_unlock(&intel_pstate_limits_lock);

1258 1259 1260
	if (intel_pstate_driver == &intel_pstate)
		intel_pstate_update_policies();
	else
1261
		update_qos_request(FREQ_QOS_MAX);
1262

1263 1264
	mutex_unlock(&intel_pstate_driver_lock);

1265 1266 1267
	return count;
}

1268
static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1269
				  const char *buf, size_t count)
1270 1271 1272
{
	unsigned int input;
	int ret;
1273

1274 1275 1276
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1277

1278 1279
	mutex_lock(&intel_pstate_driver_lock);

1280
	if (!intel_pstate_driver) {
1281 1282 1283 1284
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1285 1286
	mutex_lock(&intel_pstate_limits_lock);

1287 1288
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1289

1290 1291
	mutex_unlock(&intel_pstate_limits_lock);

1292 1293 1294
	if (intel_pstate_driver == &intel_pstate)
		intel_pstate_update_policies();
	else
1295
		update_qos_request(FREQ_QOS_MIN);
1296

1297 1298
	mutex_unlock(&intel_pstate_driver_lock);

1299 1300 1301
	return count;
}

1302
static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1303
				struct kobj_attribute *attr, char *buf)
1304 1305 1306 1307
{
	return sprintf(buf, "%u\n", hwp_boost);
}

1308 1309
static ssize_t store_hwp_dynamic_boost(struct kobject *a,
				       struct kobj_attribute *b,
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
				       const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = kstrtouint(buf, 10, &input);
	if (ret)
		return ret;

	mutex_lock(&intel_pstate_driver_lock);
	hwp_boost = !!input;
	intel_pstate_update_policies();
	mutex_unlock(&intel_pstate_driver_lock);

	return count;
}

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
				      char *buf)
{
	u64 power_ctl;
	int enable;

	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
	return sprintf(buf, "%d\n", !enable);
}

static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
				       const char *buf, size_t count)
{
	bool input;
	int ret;

	ret = kstrtobool(buf, &input);
	if (ret)
		return ret;

	set_power_ctl_ee_state(input);

	return count;
}

1353 1354 1355
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1356
define_one_global_rw(status);
1357 1358 1359
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1360
define_one_global_ro(turbo_pct);
1361
define_one_global_ro(num_pstates);
1362
define_one_global_rw(hwp_dynamic_boost);
1363
define_one_global_rw(energy_efficiency);
1364 1365

static struct attribute *intel_pstate_attributes[] = {
1366
	&status.attr,
1367
	&no_turbo.attr,
1368
	&turbo_pct.attr,
1369
	&num_pstates.attr,
1370 1371 1372
	NULL
};

1373
static const struct attribute_group intel_pstate_attr_group = {
1374 1375 1376
	.attrs = intel_pstate_attributes,
};

1377 1378
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];

1379 1380
static struct kobject *intel_pstate_kobject;

1381
static void __init intel_pstate_sysfs_expose_params(void)
1382 1383 1384 1385 1386
{
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1387 1388 1389
	if (WARN_ON(!intel_pstate_kobject))
		return;

1390
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1407 1408 1409 1410
	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
		WARN_ON(rc);
	}
1411
}
1412

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
static void __init intel_pstate_sysfs_remove(void)
{
	if (!intel_pstate_kobject)
		return;

	sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);

	if (!per_cpu_limits) {
		sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
		sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);

		if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
			sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
	}

	kobject_put(intel_pstate_kobject);
}

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
{
	int rc;

	if (!hwp_active)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
	WARN_ON_ONCE(rc);
}

static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
{
	if (!hwp_active)
		return;

	sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
}

1450
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1451

1452
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1453
{
1454
	/* First disable HWP notification interrupt as we don't process them */
1455
	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1456
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1457

1458
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1459 1460
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1461 1462
}

1463
static int atom_get_min_pstate(void)
1464 1465
{
	u64 value;
1466

1467
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1468
	return (value >> 8) & 0x7F;
1469 1470
}

1471
static int atom_get_max_pstate(void)
1472 1473
{
	u64 value;
1474

1475
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1476
	return (value >> 16) & 0x7F;
1477
}
1478

1479
static int atom_get_turbo_pstate(void)
1480 1481
{
	u64 value;
1482

1483
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1484
	return value & 0x7F;
1485 1486
}

1487
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1488 1489 1490 1491 1492
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1493
	val = (u64)pstate << 8;
1494
	if (global.no_turbo && !global.turbo_disabled)
1495 1496 1497 1498 1499 1500 1501
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1502
	vid = ceiling_fp(vid_fp);
1503

1504 1505 1506
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1507
	return val | vid;
1508 1509
}

1510
static int silvermont_get_scaling(void)
1511 1512 1513
{
	u64 value;
	int i;
1514 1515 1516
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1517 1518

	rdmsrl(MSR_FSB_FREQ, value);
1519 1520
	i = value & 0x7;
	WARN_ON(i > 4);
1521

1522 1523
	return silvermont_freq_table[i];
}
1524

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1539 1540
}

1541
static void atom_get_vid(struct cpudata *cpudata)
1542 1543 1544
{
	u64 value;

1545
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1546 1547
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1548 1549 1550 1551
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1552

1553
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1554
	cpudata->vid.turbo = value & 0x7f;
1555 1556
}

1557
static int core_get_min_pstate(void)
1558 1559
{
	u64 value;
1560

1561
	rdmsrl(MSR_PLATFORM_INFO, value);
1562 1563 1564
	return (value >> 40) & 0xFF;
}

1565
static int core_get_max_pstate_physical(void)
1566 1567
{
	u64 value;
1568

1569
	rdmsrl(MSR_PLATFORM_INFO, value);
1570 1571 1572
	return (value >> 8) & 0xFF;
}

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1606
static int core_get_max_pstate(void)
1607
{
1608 1609 1610
	u64 tar;
	u64 plat_info;
	int max_pstate;
1611
	int tdp_ratio;
1612 1613 1614 1615 1616
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1617 1618 1619 1620 1621 1622 1623 1624 1625
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1626 1627
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1628 1629
		int tar_levels;

1630
		/* Do some sanity checking for safety */
1631 1632 1633 1634
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1635 1636
		}
	}
1637

1638
	return max_pstate;
1639 1640
}

1641
static int core_get_turbo_pstate(void)
1642 1643 1644
{
	u64 value;
	int nont, ret;
1645

1646
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1647
	nont = core_get_max_pstate();
1648
	ret = (value) & 255;
1649 1650 1651 1652 1653
	if (ret <= nont)
		ret = nont;
	return ret;
}

1654 1655 1656 1657 1658
static inline int core_get_scaling(void)
{
	return 100000;
}

1659
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1660 1661 1662
{
	u64 val;

1663
	val = (u64)pstate << 8;
1664
	if (global.no_turbo && !global.turbo_disabled)
1665 1666
		val |= (u64)1 << 32;

1667
	return val;
1668 1669
}

1670 1671 1672 1673 1674
static int knl_get_aperf_mperf_shift(void)
{
	return 10;
}

1675 1676 1677 1678 1679
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1680
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1681 1682 1683 1684 1685 1686 1687
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1688
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1689
{
1690 1691
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1692 1693 1694 1695 1696 1697 1698
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1699 1700
}

1701 1702 1703 1704 1705 1706 1707
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1708
	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1709 1710

	update_turbo_state();
1711
	intel_pstate_set_pstate(cpu, pstate);
1712 1713
}

1714 1715
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1716 1717
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1718
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1719
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1720
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1721
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1722 1723 1724 1725 1726 1727

	if (hwp_active && !hwp_mode_bdw) {
		unsigned int phy_max, current_max;

		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1728
		cpu->pstate.turbo_pstate = phy_max;
1729 1730 1731
	} else {
		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
	}
1732

1733 1734 1735
	if (pstate_funcs.get_aperf_mperf_shift)
		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();

1736 1737
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1738 1739

	intel_pstate_set_min_pstate(cpu);
1740 1741
}

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
/*
 * Long hold time will keep high perf limits for long time,
 * which negatively impacts perf/watt for some workloads,
 * like specpower. 3ms is based on experiements on some
 * workoads.
 */
static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;

static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
{
	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
	u32 max_limit = (hwp_req & 0xff00) >> 8;
	u32 min_limit = (hwp_req & 0xff);
	u32 boost_level1;

	/*
	 * Cases to consider (User changes via sysfs or boot time):
	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
	 *	No boost, return.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
	 *     Should result in one level boost only for P0.
	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
	 *     Should result in two level boost:
	 *         (min + p1)/2 and P1.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
	 *     Should result in three level boost:
	 *        (min + p1)/2, P1 and P0.
	 */

	/* If max and min are equal or already at max, nothing to boost */
	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
		return;

	if (!cpu->hwp_boost_min)
		cpu->hwp_boost_min = min_limit;

	/* level at half way mark between min and guranteed */
	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;

	if (cpu->hwp_boost_min < boost_level1)
		cpu->hwp_boost_min = boost_level1;
	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = max_limit;
	else
		return;

	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
	wrmsrl(MSR_HWP_REQUEST, hwp_req);
	cpu->last_update = cpu->sample.time;
}

static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
{
	if (cpu->hwp_boost_min) {
		bool expired;

		/* Check if we are idle for hold time to boost down */
		expired = time_after64(cpu->sample.time, cpu->last_update +
				       hwp_boost_hold_time_ns);
		if (expired) {
			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
			cpu->hwp_boost_min = 0;
		}
	}
	cpu->last_update = cpu->sample.time;
}

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
						      u64 time)
{
	cpu->sample.time = time;

	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
		bool do_io = false;

		cpu->sched_flags = 0;
		/*
		 * Set iowait_boost flag and update time. Since IO WAIT flag
		 * is set all the time, we can't just conclude that there is
		 * some IO bound activity is scheduled on this CPU with just
		 * one occurrence. If we receive at least two in two
		 * consecutive ticks, then we treat as boost candidate.
		 */
		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
			do_io = true;

		cpu->last_io_update = time;

		if (do_io)
			intel_pstate_hwp_boost_up(cpu);

	} else {
		intel_pstate_hwp_boost_down(cpu);
	}
}

1841 1842 1843
static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
						u64 time, unsigned int flags)
{
1844 1845 1846 1847 1848 1849
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);

	cpu->sched_flags |= flags;

	if (smp_processor_id() == cpu->cpu)
		intel_pstate_update_util_hwp_local(cpu, time);
1850 1851
}

1852
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1853
{
1854
	struct sample *sample = &cpu->sample;
1855

1856
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1857 1858
}

1859
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1860 1861
{
	u64 aperf, mperf;
1862
	unsigned long flags;
1863
	u64 tsc;
1864

1865
	local_irq_save(flags);
1866 1867
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1868
	tsc = rdtsc();
1869
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1870
		local_irq_restore(flags);
1871
		return false;
1872
	}
1873
	local_irq_restore(flags);
1874

1875
	cpu->last_sample_time = cpu->sample.time;
1876
	cpu->sample.time = time;
1877 1878
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1879
	cpu->sample.tsc =  tsc;
1880 1881
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1882
	cpu->sample.tsc -= cpu->prev_tsc;
1883

1884 1885
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1886
	cpu->prev_tsc = tsc;
1887 1888 1889 1890 1891 1892 1893
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1894 1895 1896 1897 1898
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1899 1900
}

1901 1902
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1903
	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1904 1905
}

1906 1907
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1908 1909
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1910 1911
}

1912
static inline int32_t get_target_pstate(struct cpudata *cpu)
1913 1914
{
	struct sample *sample = &cpu->sample;
1915
	int32_t busy_frac;
1916
	int target, avg_pstate;
1917

1918 1919
	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
			   sample->tsc);
1920

1921 1922
	if (busy_frac < cpu->iowait_boost)
		busy_frac = cpu->iowait_boost;
1923

1924
	sample->busy_scaled = busy_frac * 100;
1925

1926
	target = global.no_turbo || global.turbo_disabled ?
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1945 1946
}

1947
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1948
{
1949 1950
	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1951

1952
	return clamp_t(int, pstate, min_pstate, max_pstate);
1953 1954 1955 1956
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1957 1958 1959
	if (pstate == cpu->pstate.current_pstate)
		return;

1960
	cpu->pstate.current_pstate = pstate;
1961 1962 1963
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1964
static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1965
{
1966
	int from = cpu->pstate.current_pstate;
1967
	struct sample *sample;
1968
	int target_pstate;
1969

1970 1971
	update_turbo_state();

1972
	target_pstate = get_target_pstate(cpu);
1973 1974
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1975
	intel_pstate_update_pstate(cpu, target_pstate);
1976 1977

	sample = &cpu->sample;
1978
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1979
		fp_toint(sample->busy_scaled),
1980 1981 1982 1983 1984
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1985 1986
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1987 1988
}

1989
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1990
				     unsigned int flags)
1991
{
1992
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1993 1994
	u64 delta_ns;

1995 1996 1997 1998
	/* Don't allow remote callbacks */
	if (smp_processor_id() != cpu->cpu)
		return;

1999
	delta_ns = time - cpu->last_update;
2000
	if (flags & SCHED_CPUFREQ_IOWAIT) {
2001 2002 2003
		/* Start over if the CPU may have been idle. */
		if (delta_ns > TICK_NSEC) {
			cpu->iowait_boost = ONE_EIGHTH_FP;
2004
		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2005 2006 2007 2008 2009 2010
			cpu->iowait_boost <<= 1;
			if (cpu->iowait_boost > int_tofp(1))
				cpu->iowait_boost = int_tofp(1);
		} else {
			cpu->iowait_boost = ONE_EIGHTH_FP;
		}
2011 2012 2013 2014
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
2015 2016
		else
			cpu->iowait_boost >>= 1;
2017
	}
2018
	cpu->last_update = time;
2019
	delta_ns = time - cpu->sample.time;
2020
	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2021
		return;
2022

2023 2024
	if (intel_pstate_sample(cpu, time))
		intel_pstate_adjust_pstate(cpu);
2025
}
2026

2027 2028 2029 2030 2031 2032 2033
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
2034 2035
};

2036 2037 2038 2039 2040 2041 2042 2043
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
2044 2045
};

2046 2047 2048 2049 2050 2051 2052 2053
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
2054 2055
};

2056 2057 2058 2059 2060
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
2061
	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2062 2063
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
2064 2065
};

2066 2067 2068
#define X86_MATCH(model, policy)					 \
	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
					   X86_FEATURE_APERFMPERF, &policy)
2069 2070

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	X86_MATCH(SANDYBRIDGE,		core_funcs),
	X86_MATCH(SANDYBRIDGE_X,	core_funcs),
	X86_MATCH(ATOM_SILVERMONT,	silvermont_funcs),
	X86_MATCH(IVYBRIDGE,		core_funcs),
	X86_MATCH(HASWELL,		core_funcs),
	X86_MATCH(BROADWELL,		core_funcs),
	X86_MATCH(IVYBRIDGE_X,		core_funcs),
	X86_MATCH(HASWELL_X,		core_funcs),
	X86_MATCH(HASWELL_L,		core_funcs),
	X86_MATCH(HASWELL_G,		core_funcs),
	X86_MATCH(BROADWELL_G,		core_funcs),
	X86_MATCH(ATOM_AIRMONT,		airmont_funcs),
	X86_MATCH(SKYLAKE_L,		core_funcs),
	X86_MATCH(BROADWELL_X,		core_funcs),
	X86_MATCH(SKYLAKE,		core_funcs),
	X86_MATCH(BROADWELL_D,		core_funcs),
	X86_MATCH(XEON_PHI_KNL,		knl_funcs),
	X86_MATCH(XEON_PHI_KNM,		knl_funcs),
	X86_MATCH(ATOM_GOLDMONT,	core_funcs),
	X86_MATCH(ATOM_GOLDMONT_PLUS,	core_funcs),
	X86_MATCH(SKYLAKE_X,		core_funcs),
2092 2093 2094 2095
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

2096
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2097 2098 2099
	X86_MATCH(BROADWELL_D,		core_funcs),
	X86_MATCH(BROADWELL_X,		core_funcs),
	X86_MATCH(SKYLAKE_X,		core_funcs),
D
Dirk Brandewie 已提交
2100 2101 2102
	{}
};

2103
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2104
	X86_MATCH(KABYLAKE,		core_funcs),
2105 2106 2107
	{}
};

2108
static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2109 2110
	X86_MATCH(SKYLAKE_X,		core_funcs),
	X86_MATCH(SKYLAKE,		core_funcs),
2111 2112 2113
	{}
};

2114 2115 2116 2117
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

2118 2119 2120
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
2121
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2122 2123 2124 2125 2126
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

2127
		cpu->cpu = cpunum;
2128

2129
		cpu->epp_default = -EINVAL;
2130

2131 2132
		if (hwp_active) {
			const struct x86_cpu_id *id;
2133

2134
			intel_pstate_hwp_enable(cpu);
2135

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
			id = x86_match_cpu(intel_pstate_hwp_boost_ids);
			if (id && intel_pstate_acpi_pm_profile_server())
				hwp_boost = true;
		}
	} else if (hwp_active) {
		/*
		 * Re-enable HWP in case this happens after a resume from ACPI
		 * S3 if the CPU was offline during the whole system/resume
		 * cycle.
		 */
		intel_pstate_hwp_reenable(cpu);
2147
	}
2148

2149 2150 2151
	cpu->epp_powersave = -EINVAL;
	cpu->epp_policy = 0;

2152
	intel_pstate_get_cpu_pstates(cpu);
2153

J
Joe Perches 已提交
2154
	pr_debug("controlling: cpu %d\n", cpunum);
2155 2156 2157 2158

	return 0;
}

2159
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2160
{
2161 2162
	struct cpudata *cpu = all_cpu_data[cpu_num];

2163
	if (hwp_active && !hwp_boost)
2164 2165
		return;

2166 2167 2168
	if (cpu->update_util_set)
		return;

2169 2170
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
2171
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2172 2173 2174
				     (hwp_active ?
				      intel_pstate_update_util_hwp :
				      intel_pstate_update_util));
2175
	cpu->update_util_set = true;
2176 2177 2178 2179
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
2180 2181 2182 2183 2184
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

2185
	cpufreq_remove_update_util_hook(cpu);
2186
	cpu_data->update_util_set = false;
2187
	synchronize_rcu();
2188 2189
}

2190 2191 2192 2193 2194 2195
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

2196 2197 2198
static void intel_pstate_update_perf_limits(struct cpudata *cpu,
					    unsigned int policy_min,
					    unsigned int policy_max)
2199
{
2200
	int32_t max_policy_perf, min_policy_perf;
2201
	int max_state, turbo_max;
2202
	int max_freq;
2203

2204 2205 2206 2207 2208 2209 2210 2211
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
2212 2213
		max_state = global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2214 2215
		turbo_max = cpu->pstate.turbo_pstate;
	}
2216
	max_freq = max_state * cpu->pstate.scaling;
2217

2218 2219
	max_policy_perf = max_state * policy_max / max_freq;
	if (policy_max == policy_min) {
2220
		min_policy_perf = max_policy_perf;
2221
	} else {
2222
		min_policy_perf = max_state * policy_min / max_freq;
2223 2224
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
2225
	}
2226

2227
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2228
		 cpu->cpu, max_state, min_policy_perf, max_policy_perf);
2229

2230
	/* Normalize user input to [min_perf, max_perf] */
2231
	if (per_cpu_limits) {
2232 2233
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
2234 2235 2236 2237
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
2238 2239
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2240
		global_min = clamp_t(int32_t, global_min, 0, global_max);
2241

2242
		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2243
			 global_min, global_max);
2244

2245 2246 2247 2248
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2249

2250 2251 2252
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
2253

2254
	}
2255
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2256 2257
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
2258 2259
}

2260 2261
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2262 2263
	struct cpudata *cpu;

2264 2265 2266
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2267 2268 2269
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2270
	cpu = all_cpu_data[policy->cpu];
2271 2272
	cpu->policy = policy->policy;

2273 2274
	mutex_lock(&intel_pstate_limits_lock);

2275
	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2276

2277
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2278 2279 2280 2281 2282 2283
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
2284 2285
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
2286 2287
	}

2288 2289 2290 2291 2292 2293 2294 2295
	if (hwp_active) {
		/*
		 * When hwp_boost was active before and dynamically it
		 * was turned off, in that case we need to clear the
		 * update util hook.
		 */
		if (!hwp_boost)
			intel_pstate_clear_update_util_hook(policy->cpu);
2296
		intel_pstate_hwp_set(policy->cpu);
2297
	}
D
Dirk Brandewie 已提交
2298

2299 2300
	mutex_unlock(&intel_pstate_limits_lock);

2301 2302 2303
	return 0;
}

2304 2305
static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
					   struct cpufreq_policy_data *policy)
2306
{
2307 2308
	if (!hwp_active &&
	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2309 2310 2311 2312 2313 2314 2315
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2316 2317
static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
					   struct cpufreq_policy_data *policy)
2318
{
2319 2320
	int max_freq;

2321
	update_turbo_state();
2322 2323 2324 2325 2326 2327 2328 2329 2330
	if (hwp_active) {
		int max_state, turbo_max;

		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
		max_freq = max_state * cpu->pstate.scaling;
	} else {
		max_freq = intel_pstate_get_max_freq(cpu);
	}
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2331

2332
	intel_pstate_adjust_policy_max(cpu, policy);
2333 2334 2335 2336 2337
}

static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
{
	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2338

2339 2340 2341
	return 0;
}

2342
static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2343
{
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	pr_debug("CPU %d going offline\n", cpu->cpu);

	if (cpu->suspended)
		return 0;

	/*
	 * If the CPU is an SMT thread and it goes offline with the performance
	 * settings different from the minimum, it will prevent its sibling
	 * from getting to lower performance levels, so force the minimum
	 * performance on CPU offline to prevent that from happening.
	 */
2357
	if (hwp_active)
2358
		intel_pstate_hwp_offline(cpu);
2359
	else
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
		intel_pstate_set_min_pstate(cpu);

	intel_pstate_exit_perf_limits(policy);

	return 0;
}

static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	pr_debug("CPU %d going online\n", cpu->cpu);

	intel_pstate_init_acpi_perf_limits(policy);

	if (hwp_active) {
		/*
		 * Re-enable HWP and clear the "suspended" flag to let "resume"
		 * know that it need not do that.
		 */
		intel_pstate_hwp_reenable(cpu);
		cpu->suspended = false;
	}

	return 0;
2385 2386
}

2387
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2388
{
2389
	pr_debug("CPU %d stopping\n", policy->cpu);
2390

2391 2392
	intel_pstate_clear_update_util_hook(policy->cpu);
}
2393

2394 2395
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
2396
	pr_debug("CPU %d exiting\n", policy->cpu);
2397

2398
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2399

2400
	return 0;
2401 2402
}

2403
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2404 2405
{
	struct cpudata *cpu;
2406
	int rc;
2407 2408 2409 2410 2411 2412 2413

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2414 2415
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
2416

2417 2418
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2419 2420

	/* cpuinfo and default policy values */
2421
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2422
	update_turbo_state();
2423
	global.turbo_disabled_mf = global.turbo_disabled;
2424
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2425 2426 2427
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2428 2429 2430 2431 2432 2433 2434 2435 2436
	if (hwp_active) {
		unsigned int max_freq;

		max_freq = global.turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
		if (max_freq < policy->cpuinfo.max_freq)
			policy->cpuinfo.max_freq = max_freq;
	}

2437
	intel_pstate_init_acpi_perf_limits(policy);
2438

2439 2440
	policy->fast_switch_possible = true;

2441 2442 2443
	return 0;
}

2444
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2445
{
2446 2447 2448 2449 2450
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

2451 2452 2453 2454 2455
	/*
	 * Set the policy to powersave to provide a valid fallback value in case
	 * the default cpufreq governor is neither powersave nor performance.
	 */
	policy->policy = CPUFREQ_POLICY_POWERSAVE;
2456

2457 2458 2459 2460 2461 2462
	if (hwp_active) {
		struct cpudata *cpu = all_cpu_data[policy->cpu];

		cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
	}

2463 2464 2465
	return 0;
}

2466
static struct cpufreq_driver intel_pstate = {
2467 2468 2469
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2470
	.suspend	= intel_pstate_suspend,
2471
	.resume		= intel_pstate_resume,
2472
	.init		= intel_pstate_cpu_init,
2473
	.exit		= intel_pstate_cpu_exit,
2474
	.stop_cpu	= intel_pstate_stop_cpu,
2475 2476
	.offline	= intel_pstate_cpu_offline,
	.online		= intel_pstate_cpu_online,
2477
	.update_limits	= intel_pstate_update_limits,
2478 2479 2480
	.name		= "intel_pstate",
};

2481
static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2482 2483 2484
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

2485
	intel_pstate_verify_cpu_policy(cpu, policy);
2486
	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2487

2488 2489 2490
	return 0;
}

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
/* Use of trace in passive mode:
 *
 * In passive mode the trace core_busy field (also known as the
 * performance field, and lablelled as such on the graphs; also known as
 * core_avg_perf) is not needed and so is re-assigned to indicate if the
 * driver call was via the normal or fast switch path. Various graphs
 * output from the intel_pstate_tracer.py utility that include core_busy
 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
 * so we use 10 to indicate the the normal path through the driver, and
 * 90 to indicate the fast switch path through the driver.
 * The scaled_busy field is not used, and is set to 0.
 */

#define	INTEL_PSTATE_TRACE_TARGET 10
#define	INTEL_PSTATE_TRACE_FAST_SWITCH 90

static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
{
	struct sample *sample;

	if (!trace_pstate_sample_enabled())
		return;

	if (!intel_pstate_sample(cpu, ktime_get()))
		return;

	sample = &cpu->sample;
	trace_pstate_sample(trace_type,
		0,
		old_pstate,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
}

2529 2530
static void intel_cpufreq_adjust_hwp(struct cpudata *cpu, u32 min, u32 max,
				     u32 desired, bool fast_switch)
2531 2532 2533 2534
{
	u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;

	value &= ~HWP_MIN_PERF(~0L);
2535
	value |= HWP_MIN_PERF(min);
2536 2537

	value &= ~HWP_MAX_PERF(~0L);
2538 2539 2540 2541
	value |= HWP_MAX_PERF(max);

	value &= ~HWP_DESIRED_PERF(~0L);
	value |= HWP_DESIRED_PERF(desired);
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563

	if (value == prev)
		return;

	WRITE_ONCE(cpu->hwp_req_cached, value);
	if (fast_switch)
		wrmsrl(MSR_HWP_REQUEST, value);
	else
		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
}

static void intel_cpufreq_adjust_perf_ctl(struct cpudata *cpu,
					  u32 target_pstate, bool fast_switch)
{
	if (fast_switch)
		wrmsrl(MSR_IA32_PERF_CTL,
		       pstate_funcs.get_val(cpu, target_pstate));
	else
		wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
}

2564 2565
static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
				       int target_pstate, bool fast_switch)
2566
{
2567
	struct cpudata *cpu = all_cpu_data[policy->cpu];
2568 2569 2570
	int old_pstate = cpu->pstate.current_pstate;

	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2571 2572 2573 2574 2575 2576 2577
	if (hwp_active) {
		int max_pstate = policy->strict_target ?
					target_pstate : cpu->max_perf_ratio;

		intel_cpufreq_adjust_hwp(cpu, target_pstate, max_pstate, 0,
					 fast_switch);
	} else if (target_pstate != old_pstate) {
2578
		intel_cpufreq_adjust_perf_ctl(cpu, target_pstate, fast_switch);
2579
	}
2580 2581

	cpu->pstate.current_pstate = target_pstate;
2582 2583 2584 2585 2586 2587 2588

	intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
			    INTEL_PSTATE_TRACE_TARGET, old_pstate);

	return target_pstate;
}

2589 2590 2591 2592 2593 2594
static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
2595
	int target_pstate;
2596

2597 2598
	update_turbo_state();

2599
	freqs.old = policy->cur;
2600
	freqs.new = target_freq;
2601 2602

	cpufreq_freq_transition_begin(policy, &freqs);
2603

2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
2615

2616
	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2617

2618
	freqs.new = target_pstate * cpu->pstate.scaling;
2619

2620 2621 2622 2623 2624 2625 2626 2627 2628
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
2629
	int target_pstate;
2630

2631 2632
	update_turbo_state();

2633
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2634

2635
	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2636

2637
	return target_pstate * cpu->pstate.scaling;
2638 2639
}

2640 2641 2642 2643 2644 2645
static void intel_cpufreq_adjust_perf(unsigned int cpunum,
				      unsigned long min_perf,
				      unsigned long target_perf,
				      unsigned long capacity)
{
	struct cpudata *cpu = all_cpu_data[cpunum];
2646
	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2647 2648 2649 2650
	int old_pstate = cpu->pstate.current_pstate;
	int cap_pstate, min_pstate, max_pstate, target_pstate;

	update_turbo_state();
2651 2652
	cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
					     HWP_HIGHEST_PERF(hwp_cap);
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681

	/* Optimization: Avoid unnecessary divisions. */

	target_pstate = cap_pstate;
	if (target_perf < capacity)
		target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);

	min_pstate = cap_pstate;
	if (min_perf < capacity)
		min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);

	if (min_pstate < cpu->pstate.min_pstate)
		min_pstate = cpu->pstate.min_pstate;

	if (min_pstate < cpu->min_perf_ratio)
		min_pstate = cpu->min_perf_ratio;

	max_pstate = min(cap_pstate, cpu->max_perf_ratio);
	if (max_pstate < min_pstate)
		max_pstate = min_pstate;

	target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);

	intel_cpufreq_adjust_hwp(cpu, min_pstate, max_pstate, target_pstate, true);

	cpu->pstate.current_pstate = target_pstate;
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
}

2682 2683
static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
2684
	int max_state, turbo_max, min_freq, max_freq, ret;
2685
	struct freq_qos_request *req;
2686 2687 2688 2689 2690 2691
	struct cpudata *cpu;
	struct device *dev;

	dev = get_cpu_device(policy->cpu);
	if (!dev)
		return -ENODEV;
2692

2693
	ret = __intel_pstate_cpu_init(policy);
2694 2695 2696 2697 2698 2699 2700
	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

2701 2702 2703 2704 2705 2706 2707 2708
	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
	if (!req) {
		ret = -ENOMEM;
		goto pstate_exit;
	}

	cpu = all_cpu_data[policy->cpu];

2709 2710 2711
	if (hwp_active) {
		u64 value;

2712
		intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
2713 2714 2715
		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
		rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
		WRITE_ONCE(cpu->hwp_req_cached, value);
2716
		cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2717
	} else {
2718
		turbo_max = cpu->pstate.turbo_pstate;
2719 2720
		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
	}
2721 2722 2723 2724 2725 2726

	min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
	min_freq *= cpu->pstate.scaling;
	max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
	max_freq *= cpu->pstate.scaling;

2727 2728
	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
				   min_freq);
2729 2730 2731 2732 2733
	if (ret < 0) {
		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
		goto free_req;
	}

2734 2735
	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
				   max_freq);
2736 2737 2738 2739 2740 2741 2742
	if (ret < 0) {
		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
		goto remove_min_req;
	}

	policy->driver_data = req;

2743
	return 0;
2744 2745

remove_min_req:
2746
	freq_qos_remove_request(req);
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
free_req:
	kfree(req);
pstate_exit:
	intel_pstate_exit_perf_limits(policy);

	return ret;
}

static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
{
2757
	struct freq_qos_request *req;
2758 2759 2760

	req = policy->driver_data;

2761 2762
	freq_qos_remove_request(req + 1);
	freq_qos_remove_request(req);
2763 2764 2765
	kfree(req);

	return intel_pstate_cpu_exit(policy);
2766 2767 2768 2769 2770 2771 2772 2773
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
2774
	.exit		= intel_cpufreq_cpu_exit,
2775 2776 2777 2778
	.offline	= intel_pstate_cpu_offline,
	.online		= intel_pstate_cpu_online,
	.suspend	= intel_pstate_suspend,
	.resume		= intel_pstate_resume,
2779
	.update_limits	= intel_pstate_update_limits,
2780 2781 2782
	.name		= "intel_cpufreq",
};

2783
static struct cpufreq_driver *default_driver;
2784

2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2800

2801
	intel_pstate_driver = NULL;
2802 2803
}

2804
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2805 2806 2807
{
	int ret;

2808 2809 2810
	if (driver == &intel_pstate)
		intel_pstate_sysfs_expose_hwp_dynamic_boost();

2811 2812
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2813

2814
	intel_pstate_driver = driver;
2815 2816 2817 2818 2819 2820
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2821 2822
	global.min_perf_pct = min_perf_pct_min();

2823 2824 2825 2826 2827
	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2828
	if (!intel_pstate_driver)
2829 2830 2831 2832 2833 2834 2835 2836
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
2837 2838 2839 2840 2841 2842 2843
	if (size == 3 && !strncmp(buf, "off", size)) {
		if (!intel_pstate_driver)
			return -EINVAL;

		if (hwp_active)
			return -EBUSY;

2844 2845
		cpufreq_unregister_driver(intel_pstate_driver);
		intel_pstate_driver_cleanup();
2846
		return 0;
2847
	}
2848 2849

	if (size == 6 && !strncmp(buf, "active", size)) {
2850
		if (intel_pstate_driver) {
2851 2852 2853
			if (intel_pstate_driver == &intel_pstate)
				return 0;

2854
			cpufreq_unregister_driver(intel_pstate_driver);
2855 2856
		}

2857
		return intel_pstate_register_driver(&intel_pstate);
2858 2859 2860
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2861
		if (intel_pstate_driver) {
2862
			if (intel_pstate_driver == &intel_cpufreq)
2863 2864
				return 0;

2865 2866
			cpufreq_unregister_driver(intel_pstate_driver);
			intel_pstate_sysfs_hide_hwp_dynamic_boost();
2867 2868
		}

2869
		return intel_pstate_register_driver(&intel_cpufreq);
2870 2871 2872 2873 2874
	}

	return -EINVAL;
}

2875 2876 2877
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2878
static unsigned int force_load __initdata;
2879

2880
static int __init intel_pstate_msrs_not_valid(void)
2881
{
2882
	if (!pstate_funcs.get_max() ||
2883 2884
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2885 2886 2887 2888
		return -ENODEV;

	return 0;
}
2889

2890
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2891 2892
{
	pstate_funcs.get_max   = funcs->get_max;
2893
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2894 2895
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2896
	pstate_funcs.get_scaling = funcs->get_scaling;
2897
	pstate_funcs.get_val   = funcs->get_val;
2898
	pstate_funcs.get_vid   = funcs->get_vid;
2899
	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2900 2901
}

2902
#ifdef CONFIG_ACPI
2903

2904
static bool __init intel_pstate_no_acpi_pss(void)
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

2930
	pr_debug("ACPI _PSS not found\n");
2931 2932 2933
	return true;
}

2934 2935 2936 2937 2938 2939 2940
static bool __init intel_pstate_no_acpi_pcch(void)
{
	acpi_status status;
	acpi_handle handle;

	status = acpi_get_handle(NULL, "\\_SB", &handle);
	if (ACPI_FAILURE(status))
2941 2942 2943 2944
		goto not_found;

	if (acpi_has_method(handle, "PCCH"))
		return false;
2945

2946 2947 2948
not_found:
	pr_debug("ACPI PCCH not found\n");
	return true;
2949 2950
}

2951
static bool __init intel_pstate_has_acpi_ppc(void)
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
2963
	pr_debug("ACPI _PPC not found\n");
2964 2965 2966 2967 2968 2969 2970 2971
	return false;
}

enum {
	PSS,
	PPC,
};

2972
/* Hardware vendor-specific info that has its own power management modes */
2973
static struct acpi_platform_list plat_info[] __initdata = {
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2989
	{ } /* End */
2990 2991
};

2992 2993
#define BITMASK_OOB	(BIT(8) | BIT(18))

2994
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2995
{
D
Dirk Brandewie 已提交
2996 2997
	const struct x86_cpu_id *id;
	u64 misc_pwr;
2998
	int idx;
D
Dirk Brandewie 已提交
2999 3000 3001 3002

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3003 3004 3005
		if (misc_pwr & BITMASK_OOB) {
			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
D
Dirk Brandewie 已提交
3006
			return true;
3007
		}
D
Dirk Brandewie 已提交
3008
	}
3009

3010 3011
	idx = acpi_match_platform_list(plat_info);
	if (idx < 0)
3012 3013
		return false;

3014 3015
	switch (plat_info[idx].data) {
	case PSS:
3016 3017 3018 3019
		if (!intel_pstate_no_acpi_pss())
			return false;

		return intel_pstate_no_acpi_pcch();
3020 3021
	case PPC:
		return intel_pstate_has_acpi_ppc() && !force_load;
3022 3023 3024 3025
	}

	return false;
}
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
3036 3037
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3038
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3039
static inline void intel_pstate_request_control_from_smm(void) {}
3040 3041
#endif /* CONFIG_ACPI */

3042 3043
#define INTEL_PSTATE_HWP_BROADWELL	0x01

3044 3045
#define X86_MATCH_HWP(model, hwp_mode)					\
	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3046
					   X86_FEATURE_HWP, hwp_mode)
3047

3048
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3049 3050 3051
	X86_MATCH_HWP(BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
	X86_MATCH_HWP(BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
	X86_MATCH_HWP(ANY,		0),
3052 3053 3054
	{}
};

3055 3056
static int __init intel_pstate_init(void)
{
3057
	const struct x86_cpu_id *id;
3058
	int rc;
3059

3060 3061 3062
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return -ENODEV;

3063 3064 3065
	if (no_load)
		return -ENODEV;

3066 3067
	id = x86_match_cpu(hwp_support_ids);
	if (id) {
3068
		copy_cpu_funcs(&core_funcs);
3069 3070 3071 3072 3073 3074
		/*
		 * Avoid enabling HWP for processors without EPP support,
		 * because that means incomplete HWP implementation which is a
		 * corner case and supporting it is generally problematic.
		 */
		if (!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) {
3075
			hwp_active++;
3076
			hwp_mode_bdw = id->driver_data;
3077
			intel_pstate.attr = hwp_cpufreq_attrs;
3078
			intel_cpufreq.attr = hwp_cpufreq_attrs;
3079
			intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3080
			intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3081 3082 3083
			if (!default_driver)
				default_driver = &intel_pstate;

3084 3085 3086 3087
			goto hwp_cpu_matched;
		}
	} else {
		id = x86_match_cpu(intel_pstate_cpu_ids);
3088
		if (!id) {
3089
			pr_info("CPU model not supported\n");
3090
			return -ENODEV;
3091
		}
3092

3093
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3094
	}
3095

3096 3097
	if (intel_pstate_msrs_not_valid()) {
		pr_info("Invalid MSRs\n");
3098
		return -ENODEV;
3099
	}
3100
	/* Without HWP start in the passive mode. */
3101 3102
	if (!default_driver)
		default_driver = &intel_cpufreq;
3103

3104 3105 3106 3107 3108
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
3109 3110
	if (intel_pstate_platform_pwr_mgmt_exists()) {
		pr_info("P-states controlled by the platform\n");
3111
		return -ENODEV;
3112
	}
3113

3114 3115 3116
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
3117
	pr_info("Intel P-state driver initializing\n");
3118

3119
	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3120 3121 3122
	if (!all_cpu_data)
		return -ENOMEM;

3123 3124
	intel_pstate_request_control_from_smm();

3125
	intel_pstate_sysfs_expose_params();
3126

3127
	mutex_lock(&intel_pstate_driver_lock);
3128
	rc = intel_pstate_register_driver(default_driver);
3129
	mutex_unlock(&intel_pstate_driver_lock);
3130 3131
	if (rc) {
		intel_pstate_sysfs_remove();
3132
		return rc;
3133
	}
3134

3135 3136 3137 3138 3139 3140 3141 3142 3143
	if (hwp_active) {
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id) {
			set_power_ctl_ee_state(false);
			pr_info("Disabling energy efficiency optimization\n");
		}

J
Joe Perches 已提交
3144
		pr_info("HWP enabled\n");
3145
	}
3146

3147
	return 0;
3148 3149 3150
}
device_initcall(intel_pstate_init);

3151 3152 3153 3154 3155
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

3156
	if (!strcmp(str, "disable"))
3157
		no_load = 1;
3158
	else if (!strcmp(str, "active"))
3159
		default_driver = &intel_pstate;
3160
	else if (!strcmp(str, "passive"))
3161
		default_driver = &intel_cpufreq;
3162

3163
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
3164
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
3165
		no_hwp = 1;
3166
	}
3167 3168
	if (!strcmp(str, "force"))
		force_load = 1;
3169 3170
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
3171 3172
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
3173 3174 3175 3176 3177 3178

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

3179 3180 3181 3182
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

3183 3184 3185
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");