intel_pstate.c 69.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * intel_pstate.c: Native P state management for Intel processors
4 5 6 7 8
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 */

J
Joe Perches 已提交
9 10
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

11 12 13 14 15 16 17
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
18
#include <linux/sched/cpufreq.h>
19 20 21 22 23 24
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
25
#include <linux/acpi.h>
26
#include <linux/vmalloc.h>
27
#include <linux/pm_qos.h>
28 29 30 31 32
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
33
#include <asm/cpufeature.h>
34
#include <asm/intel-family.h>
35

36
#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
37

38
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
39
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
40

41 42
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
43
#include <acpi/cppc_acpi.h>
44 45
#endif

46
#define FRAC_BITS 8
47 48
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
49

50 51
#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))

52 53
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
54 55
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
56

57 58 59 60 61
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

62
static inline int32_t div_fp(s64 x, s64 y)
63
{
64
	return div64_s64((int64_t)x << FRAC_BITS, y);
65 66
}

67 68 69 70 71 72 73 74 75 76 77
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

78 79 80 81 82
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

83 84 85 86 87 88 89 90 91 92
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

93 94 95 96 97
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

98 99
/**
 * struct sample -	Store performance sample
100
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
101 102
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
103
 *			P state. This can be different than core_avg_perf
104 105 106 107 108 109 110 111 112 113 114 115
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
116
struct sample {
117
	int32_t core_avg_perf;
118
	int32_t busy_scaled;
119 120
	u64 aperf;
	u64 mperf;
121
	u64 tsc;
122
	u64 time;
123 124
};

125 126 127 128 129 130 131 132 133 134 135
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
136 137
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
138 139 140
 *
 * Stores the per cpu model P state limits and current P state.
 */
141 142 143 144
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
145
	int	max_pstate_physical;
146
	int	scaling;
147
	int	turbo_pstate;
148 149
	unsigned int max_freq;
	unsigned int turbo_freq;
150 151
};

152 153 154 155 156 157 158 159 160 161 162 163 164
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
165
struct vid_data {
166 167 168
	int min;
	int max;
	int turbo;
169 170 171
	int32_t ratio;
};

172 173 174 175 176 177 178
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
179
 * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
180 181 182 183 184 185 186 187
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
188
	bool turbo_disabled_mf;
189 190
	int max_perf_pct;
	int min_perf_pct;
191 192
};

193 194 195
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
196
 * @policy:		CPUFreq policy value
197
 * @update_util:	CPUFreq utility callback information
198
 * @update_util_set:	CPUFreq utility callback is set
199 200
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
201 202 203
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @last_sample_time:	Last Sample time
204 205 206
 * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
 *			This shift is a multiplier to mperf delta to
 *			calculate CPU busy.
207 208 209 210 211 212
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
213 214
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
215 216
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
217 218 219
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
220
 * @epp_policy:		Last saved policy used to set EPP/EPB
221 222 223 224
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
225 226
 * @hwp_req_cached:	Cached value of the last HWP Request MSR
 * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
227 228
 * @last_io_update:	Last time when IO wake flag was set
 * @sched_flags:	Store scheduler flags for possible cross CPU update
229
 * @hwp_boost_min:	Last HWP boosted min performance
230 231 232
 *
 * This structure stores per CPU instance data for all CPUs.
 */
233 234 235
struct cpudata {
	int cpu;

236
	unsigned int policy;
237
	struct update_util_data update_util;
238
	bool   update_util_set;
239 240

	struct pstate_data pstate;
241
	struct vid_data vid;
242

243
	u64	last_update;
244
	u64	last_sample_time;
245
	u64	aperf_mperf_shift;
246 247
	u64	prev_aperf;
	u64	prev_mperf;
248
	u64	prev_tsc;
249
	u64	prev_cummulative_iowait;
250
	struct sample sample;
251 252
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
253 254 255 256
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
257
	unsigned int iowait_boost;
258
	s16 epp_powersave;
259
	s16 epp_policy;
260 261
	s16 epp_default;
	s16 epp_saved;
262 263
	u64 hwp_req_cached;
	u64 hwp_cap_cached;
264 265
	u64 last_io_update;
	unsigned int sched_flags;
266
	u32 hwp_boost_min;
267 268 269
};

static struct cpudata **all_cpu_data;
270 271 272 273 274 275 276 277 278 279 280 281 282 283

/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
284 285
struct pstate_funcs {
	int (*get_max)(void);
286
	int (*get_max_physical)(void);
287 288
	int (*get_min)(void);
	int (*get_turbo)(void);
289
	int (*get_scaling)(void);
290
	int (*get_aperf_mperf_shift)(void);
291
	u64 (*get_val)(struct cpudata*, int pstate);
292
	void (*get_vid)(struct cpudata *);
293 294
};

295
static struct pstate_funcs pstate_funcs __read_mostly;
296

297
static int hwp_active __read_mostly;
298
static int hwp_mode_bdw __read_mostly;
299
static bool per_cpu_limits __read_mostly;
300
static bool hwp_boost __read_mostly;
301

302
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
303

304 305 306
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
307

308
static struct global_params global;
309

310
static DEFINE_MUTEX(intel_pstate_driver_lock);
311 312
static DEFINE_MUTEX(intel_pstate_limits_lock);

313
#ifdef CONFIG_ACPI
314

315
static bool intel_pstate_acpi_pm_profile_server(void)
316 317 318 319 320
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

321 322 323 324 325 326 327 328
	return false;
}

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (intel_pstate_acpi_pm_profile_server())
		return true;

329 330 331
	return acpi_ppc;
}

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
377 378 379 380 381 382 383 384 385 386

static int intel_pstate_get_cppc_guranteed(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return ret;

387 388 389 390
	if (cppc_perf.guaranteed_perf)
		return cppc_perf.guaranteed_perf;

	return cppc_perf.nominal_perf;
391 392
}

393
#else /* CONFIG_ACPI_CPPC_LIB */
394 395 396
static void intel_pstate_set_itmt_prio(int cpu)
{
}
397
#endif /* CONFIG_ACPI_CPPC_LIB */
398

399 400 401 402 403 404
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

405 406
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
407
		return;
408
	}
409

410
	if (!intel_pstate_get_ppc_enable_status())
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
453
	 * correct max turbo frequency based on the turbo state.
454 455
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
456
	if (!global.turbo_disabled)
457 458 459
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
460
	pr_debug("_PPC limits will be enforced\n");
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
479
#else /* CONFIG_ACPI */
480
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
481 482 483
{
}

484
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
485 486
{
}
487 488 489 490 491

static inline bool intel_pstate_acpi_pm_profile_server(void)
{
	return false;
}
492 493 494 495 496 497 498 499
#endif /* CONFIG_ACPI */

#ifndef CONFIG_ACPI_CPPC_LIB
static int intel_pstate_get_cppc_guranteed(int cpu)
{
	return -ENOTSUPP;
}
#endif /* CONFIG_ACPI_CPPC_LIB */
500

501 502 503 504 505 506 507
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
508
	global.turbo_disabled =
509 510 511 512
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

513 514 515
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
516
	int turbo_pstate = cpu->pstate.turbo_pstate;
517

518
	return turbo_pstate ?
519
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
520 521
}

522 523 524 525 526
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

527
	if (!boot_cpu_has(X86_FEATURE_EPB))
528 529 530 531 532 533 534 535 536 537 538 539 540
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

541
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
542 543 544 545 546 547 548 549 550 551
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
552
		epp = (hwp_req_data >> 24) & 0xff;
553
	} else {
554 555
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
556
	}
557 558 559 560

	return epp;
}

561
static int intel_pstate_set_epb(int cpu, s16 pref)
562 563
{
	u64 epb;
564
	int ret;
565

566
	if (!boot_cpu_has(X86_FEATURE_EPB))
567
		return -ENXIO;
568

569 570 571
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
572 573 574

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
575 576

	return 0;
577 578
}

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
598 599 600 601 602 603
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
604 605 606 607 608 609 610 611 612 613

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

614
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
615 616 617 618 619 620 621 622
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
			return 2;
		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
			return 3;
		else
			return 4;
623
	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

651
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
652 653 654 655 656 657 658 659 660
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		if (epp == -EINVAL)
661
			epp = epp_values[pref_index - 1];
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
697
	int ret;
698 699 700 701 702

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

703 704 705
	ret = match_string(energy_perf_strings, -1, str_preference);
	if (ret < 0)
		return ret;
706

707 708
	intel_pstate_set_energy_pref_index(cpu_data, ret);
	return count;
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu;
	u64 cap;
	int ratio;

	ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
	if (ratio <= 0) {
		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
		ratio = HWP_GUARANTEED_PERF(cap);
	}

	cpu = all_cpu_data[policy->cpu];

	return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
}

cpufreq_freq_attr_ro(base_frequency);

745 746 747
static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
748
	&base_frequency,
749 750 751
	NULL,
};

752 753
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
754
{
755
	u64 cap;
756

757
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
758
	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
759
	if (global.no_turbo)
760
		*current_max = HWP_GUARANTEED_PERF(cap);
761
	else
762 763 764 765 766 767 768 769 770 771 772 773 774 775
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
776

777 778
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
779

780
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
781

782 783
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
784

785 786
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
787

788 789
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
790

791
	cpu_data->epp_policy = cpu_data->policy;
792

793 794 795 796 797
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
798

799 800 801 802 803 804
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
805

806 807 808 809 810
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
811

812 813 814 815 816 817 818 819 820 821
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
822

823 824
		epp = cpu_data->epp_powersave;
	}
825
update_epp:
826
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
827 828 829 830
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
831
	}
832
skip_epp:
833
	WRITE_ONCE(cpu_data->hwp_req_cached, value);
834
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
835
}
D
Dirk Brandewie 已提交
836

837 838 839 840 841 842 843 844 845 846 847 848 849 850
static void intel_pstate_hwp_force_min_perf(int cpu)
{
	u64 value;
	int min_perf;

	value = all_cpu_data[cpu]->hwp_req_cached;
	value &= ~GENMASK_ULL(31, 0);
	min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);

	/* Set hwp_max = hwp_min */
	value |= HWP_MAX_PERF(min_perf);
	value |= HWP_MIN_PERF(min_perf);

	/* Set EPP/EPB to min */
851
	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
852 853 854 855 856 857 858
		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
	else
		intel_pstate_set_epb(cpu, HWP_EPP_BALANCE_POWERSAVE);

	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
}

859 860 861 862 863 864 865 866 867 868 869 870
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

871 872
static void intel_pstate_hwp_enable(struct cpudata *cpudata);

873 874 875 876 877
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

878 879
	mutex_lock(&intel_pstate_limits_lock);

880 881 882
	if (policy->cpu == 0)
		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);

883
	all_cpu_data[policy->cpu]->epp_policy = 0;
884
	intel_pstate_hwp_set(policy->cpu);
885 886 887

	mutex_unlock(&intel_pstate_limits_lock);

888
	return 0;
889 890
}

891
static void intel_pstate_update_policies(void)
892
{
893 894 895 896
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
897 898
}

899 900 901 902 903 904 905 906 907 908 909 910
static void intel_pstate_update_max_freq(unsigned int cpu)
{
	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
	struct cpudata *cpudata;

	if (!policy)
		return;

	cpudata = all_cpu_data[cpu];
	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;

911
	refresh_frequency_limits(policy);
912 913 914 915

	cpufreq_cpu_release(policy);
}

916 917 918 919 920 921 922 923 924
static void intel_pstate_update_limits(unsigned int cpu)
{
	mutex_lock(&intel_pstate_driver_lock);

	update_turbo_state();
	/*
	 * If turbo has been turned on or off globally, policy limits for
	 * all CPUs need to be updated to reflect that.
	 */
925 926 927 928
	if (global.turbo_disabled_mf != global.turbo_disabled) {
		global.turbo_disabled_mf = global.turbo_disabled;
		for_each_possible_cpu(cpu)
			intel_pstate_update_max_freq(cpu);
929 930 931 932 933 934 935
	} else {
		cpufreq_update_policy(cpu);
	}

	mutex_unlock(&intel_pstate_driver_lock);
}

936 937 938
/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
939
	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
940
	{								\
941
		return sprintf(buf, "%u\n", global.object);		\
942 943
	}

944 945 946 947
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
948
			   struct kobj_attribute *attr, char *buf)
949 950 951 952 953 954 955 956 957 958
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

959
static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
960 961 962 963 964 965 966 967 968 969 970 971
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

972
static ssize_t show_turbo_pct(struct kobject *kobj,
973
				struct kobj_attribute *attr, char *buf)
974 975 976 977 978
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

979 980
	mutex_lock(&intel_pstate_driver_lock);

981
	if (!intel_pstate_driver) {
982 983 984 985
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

986 987 988 989
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
990
	turbo_fp = div_fp(no_turbo, total);
991
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
992 993 994

	mutex_unlock(&intel_pstate_driver_lock);

995 996 997
	return sprintf(buf, "%u\n", turbo_pct);
}

998
static ssize_t show_num_pstates(struct kobject *kobj,
999
				struct kobj_attribute *attr, char *buf)
1000 1001 1002 1003
{
	struct cpudata *cpu;
	int total;

1004 1005
	mutex_lock(&intel_pstate_driver_lock);

1006
	if (!intel_pstate_driver) {
1007 1008 1009 1010
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1011 1012
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1013 1014 1015

	mutex_unlock(&intel_pstate_driver_lock);

1016 1017 1018
	return sprintf(buf, "%u\n", total);
}

1019
static ssize_t show_no_turbo(struct kobject *kobj,
1020
			     struct kobj_attribute *attr, char *buf)
1021 1022 1023
{
	ssize_t ret;

1024 1025
	mutex_lock(&intel_pstate_driver_lock);

1026
	if (!intel_pstate_driver) {
1027 1028 1029 1030
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1031
	update_turbo_state();
1032 1033
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1034
	else
1035
		ret = sprintf(buf, "%u\n", global.no_turbo);
1036

1037 1038
	mutex_unlock(&intel_pstate_driver_lock);

1039 1040 1041
	return ret;
}

1042
static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1043
			      const char *buf, size_t count)
1044 1045 1046
{
	unsigned int input;
	int ret;
1047

1048 1049 1050
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1051

1052 1053
	mutex_lock(&intel_pstate_driver_lock);

1054
	if (!intel_pstate_driver) {
1055 1056 1057 1058
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1059 1060
	mutex_lock(&intel_pstate_limits_lock);

1061
	update_turbo_state();
1062
	if (global.turbo_disabled) {
J
Joe Perches 已提交
1063
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1064
		mutex_unlock(&intel_pstate_limits_lock);
1065
		mutex_unlock(&intel_pstate_driver_lock);
1066
		return -EPERM;
1067
	}
D
Dirk Brandewie 已提交
1068

1069
	global.no_turbo = clamp_t(int, input, 0, 1);
1070

1071 1072 1073 1074 1075 1076 1077 1078 1079
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1080 1081
	mutex_unlock(&intel_pstate_limits_lock);

1082 1083
	intel_pstate_update_policies();

1084 1085
	mutex_unlock(&intel_pstate_driver_lock);

1086 1087 1088
	return count;
}

1089 1090
static struct cpufreq_driver intel_pstate;

1091
static void update_qos_request(enum freq_qos_req_type type)
1092 1093
{
	int max_state, turbo_max, freq, i, perf_pct;
1094
	struct freq_qos_request *req;
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	struct cpufreq_policy *policy;

	for_each_possible_cpu(i) {
		struct cpudata *cpu = all_cpu_data[i];

		policy = cpufreq_cpu_get(i);
		if (!policy)
			continue;

		req = policy->driver_data;
		cpufreq_cpu_put(policy);

		if (!req)
			continue;

		if (hwp_active)
			intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
		else
			turbo_max = cpu->pstate.turbo_pstate;

1115
		if (type == FREQ_QOS_MIN) {
1116 1117 1118 1119 1120 1121 1122 1123 1124
			perf_pct = global.min_perf_pct;
		} else {
			req++;
			perf_pct = global.max_perf_pct;
		}

		freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
		freq *= cpu->pstate.scaling;

1125
		if (freq_qos_update_request(req, freq) < 0)
1126 1127 1128 1129
			pr_warn("Failed to update freq constraint: CPU%d\n", i);
	}
}

1130
static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1131
				  const char *buf, size_t count)
1132 1133 1134
{
	unsigned int input;
	int ret;
1135

1136 1137 1138 1139
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1140 1141
	mutex_lock(&intel_pstate_driver_lock);

1142
	if (!intel_pstate_driver) {
1143 1144 1145 1146
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1147 1148
	mutex_lock(&intel_pstate_limits_lock);

1149
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1150

1151 1152
	mutex_unlock(&intel_pstate_limits_lock);

1153 1154 1155
	if (intel_pstate_driver == &intel_pstate)
		intel_pstate_update_policies();
	else
1156
		update_qos_request(FREQ_QOS_MAX);
1157

1158 1159
	mutex_unlock(&intel_pstate_driver_lock);

1160 1161 1162
	return count;
}

1163
static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1164
				  const char *buf, size_t count)
1165 1166 1167
{
	unsigned int input;
	int ret;
1168

1169 1170 1171
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1172

1173 1174
	mutex_lock(&intel_pstate_driver_lock);

1175
	if (!intel_pstate_driver) {
1176 1177 1178 1179
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1180 1181
	mutex_lock(&intel_pstate_limits_lock);

1182 1183
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1184

1185 1186
	mutex_unlock(&intel_pstate_limits_lock);

1187 1188 1189
	if (intel_pstate_driver == &intel_pstate)
		intel_pstate_update_policies();
	else
1190
		update_qos_request(FREQ_QOS_MIN);
1191

1192 1193
	mutex_unlock(&intel_pstate_driver_lock);

1194 1195 1196
	return count;
}

1197
static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1198
				struct kobj_attribute *attr, char *buf)
1199 1200 1201 1202
{
	return sprintf(buf, "%u\n", hwp_boost);
}

1203 1204
static ssize_t store_hwp_dynamic_boost(struct kobject *a,
				       struct kobj_attribute *b,
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
				       const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = kstrtouint(buf, 10, &input);
	if (ret)
		return ret;

	mutex_lock(&intel_pstate_driver_lock);
	hwp_boost = !!input;
	intel_pstate_update_policies();
	mutex_unlock(&intel_pstate_driver_lock);

	return count;
}

1222 1223 1224
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1225
define_one_global_rw(status);
1226 1227 1228
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1229
define_one_global_ro(turbo_pct);
1230
define_one_global_ro(num_pstates);
1231
define_one_global_rw(hwp_dynamic_boost);
1232 1233

static struct attribute *intel_pstate_attributes[] = {
1234
	&status.attr,
1235
	&no_turbo.attr,
1236
	&turbo_pct.attr,
1237
	&num_pstates.attr,
1238 1239 1240
	NULL
};

1241
static const struct attribute_group intel_pstate_attr_group = {
1242 1243 1244
	.attrs = intel_pstate_attributes,
};

1245
static void __init intel_pstate_sysfs_expose_params(void)
1246
{
1247
	struct kobject *intel_pstate_kobject;
1248 1249 1250 1251
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1252 1253 1254
	if (WARN_ON(!intel_pstate_kobject))
		return;

1255
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1272 1273 1274 1275 1276
	if (hwp_active) {
		rc = sysfs_create_file(intel_pstate_kobject,
				       &hwp_dynamic_boost.attr);
		WARN_ON(rc);
	}
1277 1278
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1279

1280
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1281
{
1282
	/* First disable HWP notification interrupt as we don't process them */
1283
	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1284
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1285

1286
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1287
	cpudata->epp_policy = 0;
1288 1289
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1290 1291
}

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1311
static int atom_get_min_pstate(void)
1312 1313
{
	u64 value;
1314

1315
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1316
	return (value >> 8) & 0x7F;
1317 1318
}

1319
static int atom_get_max_pstate(void)
1320 1321
{
	u64 value;
1322

1323
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1324
	return (value >> 16) & 0x7F;
1325
}
1326

1327
static int atom_get_turbo_pstate(void)
1328 1329
{
	u64 value;
1330

1331
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1332
	return value & 0x7F;
1333 1334
}

1335
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1336 1337 1338 1339 1340
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1341
	val = (u64)pstate << 8;
1342
	if (global.no_turbo && !global.turbo_disabled)
1343 1344 1345 1346 1347 1348 1349
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1350
	vid = ceiling_fp(vid_fp);
1351

1352 1353 1354
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1355
	return val | vid;
1356 1357
}

1358
static int silvermont_get_scaling(void)
1359 1360 1361
{
	u64 value;
	int i;
1362 1363 1364
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1365 1366

	rdmsrl(MSR_FSB_FREQ, value);
1367 1368
	i = value & 0x7;
	WARN_ON(i > 4);
1369

1370 1371
	return silvermont_freq_table[i];
}
1372

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1387 1388
}

1389
static void atom_get_vid(struct cpudata *cpudata)
1390 1391 1392
{
	u64 value;

1393
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1394 1395
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1396 1397 1398 1399
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1400

1401
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1402
	cpudata->vid.turbo = value & 0x7f;
1403 1404
}

1405
static int core_get_min_pstate(void)
1406 1407
{
	u64 value;
1408

1409
	rdmsrl(MSR_PLATFORM_INFO, value);
1410 1411 1412
	return (value >> 40) & 0xFF;
}

1413
static int core_get_max_pstate_physical(void)
1414 1415
{
	u64 value;
1416

1417
	rdmsrl(MSR_PLATFORM_INFO, value);
1418 1419 1420
	return (value >> 8) & 0xFF;
}

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1454
static int core_get_max_pstate(void)
1455
{
1456 1457 1458
	u64 tar;
	u64 plat_info;
	int max_pstate;
1459
	int tdp_ratio;
1460 1461 1462 1463 1464
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1465 1466 1467 1468 1469 1470 1471 1472 1473
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1474 1475
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1476 1477
		int tar_levels;

1478
		/* Do some sanity checking for safety */
1479 1480 1481 1482
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1483 1484
		}
	}
1485

1486
	return max_pstate;
1487 1488
}

1489
static int core_get_turbo_pstate(void)
1490 1491 1492
{
	u64 value;
	int nont, ret;
1493

1494
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1495
	nont = core_get_max_pstate();
1496
	ret = (value) & 255;
1497 1498 1499 1500 1501
	if (ret <= nont)
		ret = nont;
	return ret;
}

1502 1503 1504 1505 1506
static inline int core_get_scaling(void)
{
	return 100000;
}

1507
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1508 1509 1510
{
	u64 val;

1511
	val = (u64)pstate << 8;
1512
	if (global.no_turbo && !global.turbo_disabled)
1513 1514
		val |= (u64)1 << 32;

1515
	return val;
1516 1517
}

1518 1519 1520 1521 1522
static int knl_get_aperf_mperf_shift(void)
{
	return 10;
}

1523 1524 1525 1526 1527
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1528
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1529 1530 1531 1532 1533 1534 1535
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1536
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1537
{
1538 1539
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1540 1541 1542 1543 1544 1545 1546
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1547 1548
}

1549 1550 1551 1552 1553 1554 1555
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1556
	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1557 1558

	update_turbo_state();
1559
	intel_pstate_set_pstate(cpu, pstate);
1560 1561
}

1562 1563
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1564 1565
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1566
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1567
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1568
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1569
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1570 1571 1572 1573 1574 1575 1576 1577 1578

	if (hwp_active && !hwp_mode_bdw) {
		unsigned int phy_max, current_max;

		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
	} else {
		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
	}
1579

1580 1581 1582
	if (pstate_funcs.get_aperf_mperf_shift)
		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();

1583 1584
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1585 1586

	intel_pstate_set_min_pstate(cpu);
1587 1588
}

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
/*
 * Long hold time will keep high perf limits for long time,
 * which negatively impacts perf/watt for some workloads,
 * like specpower. 3ms is based on experiements on some
 * workoads.
 */
static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;

static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
{
	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
	u32 max_limit = (hwp_req & 0xff00) >> 8;
	u32 min_limit = (hwp_req & 0xff);
	u32 boost_level1;

	/*
	 * Cases to consider (User changes via sysfs or boot time):
	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
	 *	No boost, return.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
	 *     Should result in one level boost only for P0.
	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
	 *     Should result in two level boost:
	 *         (min + p1)/2 and P1.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
	 *     Should result in three level boost:
	 *        (min + p1)/2, P1 and P0.
	 */

	/* If max and min are equal or already at max, nothing to boost */
	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
		return;

	if (!cpu->hwp_boost_min)
		cpu->hwp_boost_min = min_limit;

	/* level at half way mark between min and guranteed */
	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;

	if (cpu->hwp_boost_min < boost_level1)
		cpu->hwp_boost_min = boost_level1;
	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = max_limit;
	else
		return;

	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
	wrmsrl(MSR_HWP_REQUEST, hwp_req);
	cpu->last_update = cpu->sample.time;
}

static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
{
	if (cpu->hwp_boost_min) {
		bool expired;

		/* Check if we are idle for hold time to boost down */
		expired = time_after64(cpu->sample.time, cpu->last_update +
				       hwp_boost_hold_time_ns);
		if (expired) {
			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
			cpu->hwp_boost_min = 0;
		}
	}
	cpu->last_update = cpu->sample.time;
}

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
						      u64 time)
{
	cpu->sample.time = time;

	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
		bool do_io = false;

		cpu->sched_flags = 0;
		/*
		 * Set iowait_boost flag and update time. Since IO WAIT flag
		 * is set all the time, we can't just conclude that there is
		 * some IO bound activity is scheduled on this CPU with just
		 * one occurrence. If we receive at least two in two
		 * consecutive ticks, then we treat as boost candidate.
		 */
		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
			do_io = true;

		cpu->last_io_update = time;

		if (do_io)
			intel_pstate_hwp_boost_up(cpu);

	} else {
		intel_pstate_hwp_boost_down(cpu);
	}
}

1688 1689 1690
static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
						u64 time, unsigned int flags)
{
1691 1692 1693 1694 1695 1696
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);

	cpu->sched_flags |= flags;

	if (smp_processor_id() == cpu->cpu)
		intel_pstate_update_util_hwp_local(cpu, time);
1697 1698
}

1699
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1700
{
1701
	struct sample *sample = &cpu->sample;
1702

1703
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1704 1705
}

1706
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1707 1708
{
	u64 aperf, mperf;
1709
	unsigned long flags;
1710
	u64 tsc;
1711

1712
	local_irq_save(flags);
1713 1714
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1715
	tsc = rdtsc();
1716
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1717
		local_irq_restore(flags);
1718
		return false;
1719
	}
1720
	local_irq_restore(flags);
1721

1722
	cpu->last_sample_time = cpu->sample.time;
1723
	cpu->sample.time = time;
1724 1725
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1726
	cpu->sample.tsc =  tsc;
1727 1728
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1729
	cpu->sample.tsc -= cpu->prev_tsc;
1730

1731 1732
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1733
	cpu->prev_tsc = tsc;
1734 1735 1736 1737 1738 1739 1740
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1741 1742 1743 1744 1745
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1746 1747
}

1748 1749
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1750
	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1751 1752
}

1753 1754
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1755 1756
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1757 1758
}

1759
static inline int32_t get_target_pstate(struct cpudata *cpu)
1760 1761
{
	struct sample *sample = &cpu->sample;
1762
	int32_t busy_frac;
1763
	int target, avg_pstate;
1764

1765 1766
	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
			   sample->tsc);
1767

1768 1769
	if (busy_frac < cpu->iowait_boost)
		busy_frac = cpu->iowait_boost;
1770

1771
	sample->busy_scaled = busy_frac * 100;
1772

1773
	target = global.no_turbo || global.turbo_disabled ?
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1792 1793
}

1794
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1795
{
1796 1797
	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1798

1799
	return clamp_t(int, pstate, min_pstate, max_pstate);
1800 1801 1802 1803
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1804 1805 1806
	if (pstate == cpu->pstate.current_pstate)
		return;

1807
	cpu->pstate.current_pstate = pstate;
1808 1809 1810
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1811
static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1812
{
1813
	int from = cpu->pstate.current_pstate;
1814
	struct sample *sample;
1815
	int target_pstate;
1816

1817 1818
	update_turbo_state();

1819
	target_pstate = get_target_pstate(cpu);
1820 1821
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1822
	intel_pstate_update_pstate(cpu, target_pstate);
1823 1824

	sample = &cpu->sample;
1825
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1826
		fp_toint(sample->busy_scaled),
1827 1828 1829 1830 1831
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1832 1833
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1834 1835
}

1836
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1837
				     unsigned int flags)
1838
{
1839
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1840 1841
	u64 delta_ns;

1842 1843 1844 1845
	/* Don't allow remote callbacks */
	if (smp_processor_id() != cpu->cpu)
		return;

1846
	delta_ns = time - cpu->last_update;
1847
	if (flags & SCHED_CPUFREQ_IOWAIT) {
1848 1849 1850
		/* Start over if the CPU may have been idle. */
		if (delta_ns > TICK_NSEC) {
			cpu->iowait_boost = ONE_EIGHTH_FP;
1851
		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1852 1853 1854 1855 1856 1857
			cpu->iowait_boost <<= 1;
			if (cpu->iowait_boost > int_tofp(1))
				cpu->iowait_boost = int_tofp(1);
		} else {
			cpu->iowait_boost = ONE_EIGHTH_FP;
		}
1858 1859 1860 1861
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1862 1863
		else
			cpu->iowait_boost >>= 1;
1864
	}
1865
	cpu->last_update = time;
1866
	delta_ns = time - cpu->sample.time;
1867
	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1868
		return;
1869

1870 1871
	if (intel_pstate_sample(cpu, time))
		intel_pstate_adjust_pstate(cpu);
1872
}
1873

1874 1875 1876 1877 1878 1879 1880
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1881 1882
};

1883 1884 1885 1886 1887 1888 1889 1890
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
1891 1892
};

1893 1894 1895 1896 1897 1898 1899 1900
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
1901 1902
};

1903 1904 1905 1906 1907
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
1908
	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1909 1910
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1911 1912
};

1913
#define ICPU(model, policy) \
1914 1915
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1916 1917

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1918
	ICPU(INTEL_FAM6_SANDYBRIDGE,		core_funcs),
1919
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
1920
	ICPU(INTEL_FAM6_ATOM_SILVERMONT,	silvermont_funcs),
1921
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
1922 1923
	ICPU(INTEL_FAM6_HASWELL,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL,		core_funcs),
1924 1925
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
1926
	ICPU(INTEL_FAM6_HASWELL_L,		core_funcs),
1927 1928
	ICPU(INTEL_FAM6_HASWELL_G,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_G,		core_funcs),
1929
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
1930
	ICPU(INTEL_FAM6_SKYLAKE_L,		core_funcs),
1931
	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
1932
	ICPU(INTEL_FAM6_SKYLAKE,		core_funcs),
1933
	ICPU(INTEL_FAM6_BROADWELL_D,		core_funcs),
1934 1935
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1936
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		core_funcs),
1937
	ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS,     core_funcs),
1938
	ICPU(INTEL_FAM6_SKYLAKE_X,		core_funcs),
1939 1940 1941 1942
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1943
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1944
	ICPU(INTEL_FAM6_BROADWELL_D, core_funcs),
1945 1946
	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
D
Dirk Brandewie 已提交
1947 1948 1949
	{}
};

1950
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1951
	ICPU(INTEL_FAM6_KABYLAKE, core_funcs),
1952 1953 1954
	{}
};

1955 1956
static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1957
	ICPU(INTEL_FAM6_SKYLAKE, core_funcs),
1958 1959 1960
	{}
};

1961 1962 1963 1964
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1965 1966 1967
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1968
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1969 1970 1971 1972 1973
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1974 1975 1976
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1977
	}
1978 1979 1980 1981

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1982

1983
	if (hwp_active) {
1984 1985 1986 1987 1988 1989
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1990
		intel_pstate_hwp_enable(cpu);
1991 1992

		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1993
		if (id && intel_pstate_acpi_pm_profile_server())
1994
			hwp_boost = true;
1995
	}
1996

1997
	intel_pstate_get_cpu_pstates(cpu);
1998

J
Joe Perches 已提交
1999
	pr_debug("controlling: cpu %d\n", cpunum);
2000 2001 2002 2003

	return 0;
}

2004
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2005
{
2006 2007
	struct cpudata *cpu = all_cpu_data[cpu_num];

2008
	if (hwp_active && !hwp_boost)
2009 2010
		return;

2011 2012 2013
	if (cpu->update_util_set)
		return;

2014 2015
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
2016
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2017 2018 2019
				     (hwp_active ?
				      intel_pstate_update_util_hwp :
				      intel_pstate_update_util));
2020
	cpu->update_util_set = true;
2021 2022 2023 2024
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
2025 2026 2027 2028 2029
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

2030
	cpufreq_remove_update_util_hook(cpu);
2031
	cpu_data->update_util_set = false;
2032
	synchronize_rcu();
2033 2034
}

2035 2036 2037 2038 2039 2040
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

2041
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
2042
					    struct cpudata *cpu)
2043
{
2044
	int max_freq = intel_pstate_get_max_freq(cpu);
2045
	int32_t max_policy_perf, min_policy_perf;
2046
	int max_state, turbo_max;
2047

2048 2049 2050 2051 2052 2053 2054 2055
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
2056 2057
		max_state = global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2058 2059 2060 2061
		turbo_max = cpu->pstate.turbo_pstate;
	}

	max_policy_perf = max_state * policy->max / max_freq;
2062
	if (policy->max == policy->min) {
2063
		min_policy_perf = max_policy_perf;
2064
	} else {
2065
		min_policy_perf = max_state * policy->min / max_freq;
2066 2067
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
2068
	}
2069

2070 2071 2072 2073
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
		 policy->cpu, max_state,
		 min_policy_perf, max_policy_perf);

2074
	/* Normalize user input to [min_perf, max_perf] */
2075
	if (per_cpu_limits) {
2076 2077
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
2078 2079 2080 2081
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
2082 2083
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2084
		global_min = clamp_t(int32_t, global_min, 0, global_max);
2085

2086 2087
		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
			 global_min, global_max);
2088

2089 2090 2091 2092
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2093

2094 2095 2096
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
2097

2098 2099 2100 2101
	}
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
2102 2103
}

2104 2105
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2106 2107
	struct cpudata *cpu;

2108 2109 2110
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2111 2112 2113
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2114
	cpu = all_cpu_data[policy->cpu];
2115 2116
	cpu->policy = policy->policy;

2117 2118
	mutex_lock(&intel_pstate_limits_lock);

2119
	intel_pstate_update_perf_limits(policy, cpu);
2120

2121
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2122 2123 2124 2125 2126 2127
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
2128 2129
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
2130 2131
	}

2132 2133 2134 2135 2136 2137 2138 2139
	if (hwp_active) {
		/*
		 * When hwp_boost was active before and dynamically it
		 * was turned off, in that case we need to clear the
		 * update util hook.
		 */
		if (!hwp_boost)
			intel_pstate_clear_update_util_hook(policy->cpu);
2140
		intel_pstate_hwp_set(policy->cpu);
2141
	}
D
Dirk Brandewie 已提交
2142

2143 2144
	mutex_unlock(&intel_pstate_limits_lock);

2145 2146 2147
	return 0;
}

2148 2149 2150
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
2151 2152
	if (!hwp_active &&
	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2153 2154 2155 2156 2157 2158 2159
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2160 2161
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2162 2163 2164
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2165 2166
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2167

2168
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2169
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2170 2171
		return -EINVAL;

2172 2173
	intel_pstate_adjust_policy_max(policy, cpu);

2174 2175 2176
	return 0;
}

2177 2178 2179 2180 2181
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2182
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2183
{
2184
	pr_debug("CPU %d exiting\n", policy->cpu);
2185

2186
	intel_pstate_clear_update_util_hook(policy->cpu);
2187
	if (hwp_active) {
2188
		intel_pstate_hwp_save_state(policy);
2189 2190
		intel_pstate_hwp_force_min_perf(policy->cpu);
	} else {
2191
		intel_cpufreq_stop_cpu(policy);
2192
	}
2193
}
2194

2195 2196 2197
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2198

2199
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2200

2201
	return 0;
2202 2203
}

2204
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2205 2206
{
	struct cpudata *cpu;
2207
	int rc;
2208 2209 2210 2211 2212 2213 2214

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2215 2216
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
2217

2218 2219
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2220 2221

	/* cpuinfo and default policy values */
2222
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2223
	update_turbo_state();
2224
	global.turbo_disabled_mf = global.turbo_disabled;
2225
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2226 2227 2228
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2229 2230 2231 2232 2233 2234 2235 2236 2237
	if (hwp_active) {
		unsigned int max_freq;

		max_freq = global.turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
		if (max_freq < policy->cpuinfo.max_freq)
			policy->cpuinfo.max_freq = max_freq;
	}

2238
	intel_pstate_init_acpi_perf_limits(policy);
2239

2240 2241
	policy->fast_switch_possible = true;

2242 2243 2244
	return 0;
}

2245
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2246
{
2247 2248 2249 2250 2251
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

2252
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2253 2254 2255
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2256 2257 2258 2259

	return 0;
}

2260
static struct cpufreq_driver intel_pstate = {
2261 2262 2263
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2264
	.suspend	= intel_pstate_hwp_save_state,
2265
	.resume		= intel_pstate_resume,
2266
	.init		= intel_pstate_cpu_init,
2267
	.exit		= intel_pstate_cpu_exit,
2268
	.stop_cpu	= intel_pstate_stop_cpu,
2269
	.update_limits	= intel_pstate_update_limits,
2270 2271 2272
	.name		= "intel_pstate",
};

2273 2274 2275 2276 2277
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2278 2279
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2280

2281
	intel_pstate_adjust_policy_max(policy, cpu);
2282

2283 2284
	intel_pstate_update_perf_limits(policy, cpu);

2285 2286 2287
	return 0;
}

2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
/* Use of trace in passive mode:
 *
 * In passive mode the trace core_busy field (also known as the
 * performance field, and lablelled as such on the graphs; also known as
 * core_avg_perf) is not needed and so is re-assigned to indicate if the
 * driver call was via the normal or fast switch path. Various graphs
 * output from the intel_pstate_tracer.py utility that include core_busy
 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
 * so we use 10 to indicate the the normal path through the driver, and
 * 90 to indicate the fast switch path through the driver.
 * The scaled_busy field is not used, and is set to 0.
 */

#define	INTEL_PSTATE_TRACE_TARGET 10
#define	INTEL_PSTATE_TRACE_FAST_SWITCH 90

static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
{
	struct sample *sample;

	if (!trace_pstate_sample_enabled())
		return;

	if (!intel_pstate_sample(cpu, ktime_get()))
		return;

	sample = &cpu->sample;
	trace_pstate_sample(trace_type,
		0,
		old_pstate,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
}

2326 2327 2328 2329 2330 2331
static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
2332
	int target_pstate, old_pstate;
2333

2334 2335
	update_turbo_state();

2336
	freqs.old = policy->cur;
2337
	freqs.new = target_freq;
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2352
	old_pstate = cpu->pstate.current_pstate;
2353 2354 2355 2356 2357
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2358
	freqs.new = target_pstate * cpu->pstate.scaling;
2359
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2360 2361 2362 2363 2364 2365 2366 2367 2368
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
2369
	int target_pstate, old_pstate;
2370

2371 2372
	update_turbo_state();

2373
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2374
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2375
	old_pstate = cpu->pstate.current_pstate;
2376
	intel_pstate_update_pstate(cpu, target_pstate);
2377
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2378
	return target_pstate * cpu->pstate.scaling;
2379 2380 2381 2382
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
2383
	int max_state, turbo_max, min_freq, max_freq, ret;
2384
	struct freq_qos_request *req;
2385 2386 2387 2388 2389 2390
	struct cpudata *cpu;
	struct device *dev;

	dev = get_cpu_device(policy->cpu);
	if (!dev)
		return -ENODEV;
2391

2392
	ret = __intel_pstate_cpu_init(policy);
2393 2394 2395 2396
	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2397
	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2398 2399 2400
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
	if (!req) {
		ret = -ENOMEM;
		goto pstate_exit;
	}

	cpu = all_cpu_data[policy->cpu];

	if (hwp_active)
		intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
	else
		turbo_max = cpu->pstate.turbo_pstate;

	min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
	min_freq *= cpu->pstate.scaling;
	max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
	max_freq *= cpu->pstate.scaling;

2419 2420
	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
				   min_freq);
2421 2422 2423 2424 2425
	if (ret < 0) {
		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
		goto free_req;
	}

2426 2427
	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
				   max_freq);
2428 2429 2430 2431 2432 2433 2434
	if (ret < 0) {
		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
		goto remove_min_req;
	}

	policy->driver_data = req;

2435
	return 0;
2436 2437

remove_min_req:
2438
	freq_qos_remove_request(req);
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
free_req:
	kfree(req);
pstate_exit:
	intel_pstate_exit_perf_limits(policy);

	return ret;
}

static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
{
2449
	struct freq_qos_request *req;
2450 2451 2452

	req = policy->driver_data;

2453 2454
	freq_qos_remove_request(req + 1);
	freq_qos_remove_request(req);
2455 2456 2457
	kfree(req);

	return intel_pstate_cpu_exit(policy);
2458 2459 2460 2461 2462 2463 2464 2465
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
2466
	.exit		= intel_cpufreq_cpu_exit,
2467
	.stop_cpu	= intel_cpufreq_stop_cpu,
2468
	.update_limits	= intel_pstate_update_limits,
2469 2470 2471
	.name		= "intel_cpufreq",
};

2472
static struct cpufreq_driver *default_driver = &intel_pstate;
2473

2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2489
	intel_pstate_driver = NULL;
2490 2491
}

2492
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2493 2494 2495
{
	int ret;

2496 2497
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2498

2499
	intel_pstate_driver = driver;
2500 2501 2502 2503 2504 2505
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2506 2507
	global.min_perf_pct = min_perf_pct_min();

2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2524
	if (!intel_pstate_driver)
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2536
		return intel_pstate_driver ?
2537 2538 2539
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2540
		if (intel_pstate_driver) {
2541 2542 2543 2544 2545 2546 2547 2548
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2549
		return intel_pstate_register_driver(&intel_pstate);
2550 2551 2552
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2553
		if (intel_pstate_driver) {
2554
			if (intel_pstate_driver == &intel_cpufreq)
2555 2556 2557 2558 2559 2560 2561
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2562
		return intel_pstate_register_driver(&intel_cpufreq);
2563 2564 2565 2566 2567
	}

	return -EINVAL;
}

2568 2569 2570
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2571
static unsigned int force_load __initdata;
2572

2573
static int __init intel_pstate_msrs_not_valid(void)
2574
{
2575
	if (!pstate_funcs.get_max() ||
2576 2577
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2578 2579 2580 2581
		return -ENODEV;

	return 0;
}
2582

2583
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2584 2585
{
	pstate_funcs.get_max   = funcs->get_max;
2586
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2587 2588
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2589
	pstate_funcs.get_scaling = funcs->get_scaling;
2590
	pstate_funcs.get_val   = funcs->get_val;
2591
	pstate_funcs.get_vid   = funcs->get_vid;
2592
	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2593 2594
}

2595
#ifdef CONFIG_ACPI
2596

2597
static bool __init intel_pstate_no_acpi_pss(void)
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

2623
	pr_debug("ACPI _PSS not found\n");
2624 2625 2626
	return true;
}

2627 2628 2629 2630 2631 2632 2633
static bool __init intel_pstate_no_acpi_pcch(void)
{
	acpi_status status;
	acpi_handle handle;

	status = acpi_get_handle(NULL, "\\_SB", &handle);
	if (ACPI_FAILURE(status))
2634 2635 2636 2637
		goto not_found;

	if (acpi_has_method(handle, "PCCH"))
		return false;
2638

2639 2640 2641
not_found:
	pr_debug("ACPI PCCH not found\n");
	return true;
2642 2643
}

2644
static bool __init intel_pstate_has_acpi_ppc(void)
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
2656
	pr_debug("ACPI _PPC not found\n");
2657 2658 2659 2660 2661 2662 2663 2664
	return false;
}

enum {
	PSS,
	PPC,
};

2665
/* Hardware vendor-specific info that has its own power management modes */
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
static struct acpi_platform_list plat_info[] __initdata = {
	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{ } /* End */
2683 2684
};

2685
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2686
{
D
Dirk Brandewie 已提交
2687 2688
	const struct x86_cpu_id *id;
	u64 misc_pwr;
2689
	int idx;
D
Dirk Brandewie 已提交
2690 2691 2692 2693

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2694 2695
		if (misc_pwr & (1 << 8)) {
			pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
D
Dirk Brandewie 已提交
2696
			return true;
2697
		}
D
Dirk Brandewie 已提交
2698
	}
2699

2700 2701
	idx = acpi_match_platform_list(plat_info);
	if (idx < 0)
2702 2703
		return false;

2704 2705
	switch (plat_info[idx].data) {
	case PSS:
2706 2707 2708 2709
		if (!intel_pstate_no_acpi_pss())
			return false;

		return intel_pstate_no_acpi_pcch();
2710 2711
	case PPC:
		return intel_pstate_has_acpi_ppc() && !force_load;
2712 2713 2714 2715
	}

	return false;
}
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2726 2727
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2728
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2729
static inline void intel_pstate_request_control_from_smm(void) {}
2730 2731
#endif /* CONFIG_ACPI */

2732 2733 2734 2735 2736
#define INTEL_PSTATE_HWP_BROADWELL	0x01

#define ICPU_HWP(model, hwp_mode) \
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }

2737
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2738
	ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2739
	ICPU_HWP(INTEL_FAM6_BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL),
2740
	ICPU_HWP(X86_MODEL_ANY, 0),
2741 2742 2743
	{}
};

2744 2745
static int __init intel_pstate_init(void)
{
2746
	const struct x86_cpu_id *id;
2747
	int rc;
2748

2749 2750 2751
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return -ENODEV;

2752 2753 2754
	if (no_load)
		return -ENODEV;

2755 2756
	id = x86_match_cpu(hwp_support_ids);
	if (id) {
2757
		copy_cpu_funcs(&core_funcs);
2758
		if (!no_hwp) {
2759
			hwp_active++;
2760
			hwp_mode_bdw = id->driver_data;
2761 2762 2763 2764 2765
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		id = x86_match_cpu(intel_pstate_cpu_ids);
2766
		if (!id) {
2767
			pr_info("CPU model not supported\n");
2768
			return -ENODEV;
2769
		}
2770

2771
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2772
	}
2773

2774 2775
	if (intel_pstate_msrs_not_valid()) {
		pr_info("Invalid MSRs\n");
2776
		return -ENODEV;
2777
	}
2778

2779 2780 2781 2782 2783
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
2784 2785
	if (intel_pstate_platform_pwr_mgmt_exists()) {
		pr_info("P-states controlled by the platform\n");
2786
		return -ENODEV;
2787
	}
2788

2789 2790 2791
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2792
	pr_info("Intel P-state driver initializing\n");
2793

2794
	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2795 2796 2797
	if (!all_cpu_data)
		return -ENOMEM;

2798 2799
	intel_pstate_request_control_from_smm();

2800
	intel_pstate_sysfs_expose_params();
2801

2802
	mutex_lock(&intel_pstate_driver_lock);
2803
	rc = intel_pstate_register_driver(default_driver);
2804
	mutex_unlock(&intel_pstate_driver_lock);
2805 2806
	if (rc)
		return rc;
2807

2808
	if (hwp_active)
J
Joe Perches 已提交
2809
		pr_info("HWP enabled\n");
2810

2811
	return 0;
2812 2813 2814
}
device_initcall(intel_pstate_init);

2815 2816 2817 2818 2819
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2820
	if (!strcmp(str, "disable")) {
2821
		no_load = 1;
2822 2823
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2824
		default_driver = &intel_cpufreq;
2825 2826
		no_hwp = 1;
	}
2827
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2828
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2829
		no_hwp = 1;
2830
	}
2831 2832
	if (!strcmp(str, "force"))
		force_load = 1;
2833 2834
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2835 2836
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2837 2838 2839 2840 2841 2842

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2843 2844 2845 2846
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2847 2848 2849
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");