intel_pstate.c 64.8 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28 29
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000

42 43
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
44
#include <acpi/cppc_acpi.h>
45 46
#endif

47
#define FRAC_BITS 8
48 49
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
50

51 52
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53 54
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55

56 57 58 59 60
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

61
static inline int32_t div_fp(s64 x, s64 y)
62
{
63
	return div64_s64((int64_t)x << FRAC_BITS, y);
64 65
}

66 67 68 69 70 71 72 73 74 75 76
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

77 78 79 80 81
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

82 83 84 85 86 87 88 89 90 91
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

92 93 94 95 96
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

97 98
/**
 * struct sample -	Store performance sample
99
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
100 101
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
102
 *			P state. This can be different than core_avg_perf
103 104 105 106 107 108 109 110 111 112 113 114
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
115
struct sample {
116
	int32_t core_avg_perf;
117
	int32_t busy_scaled;
118 119
	u64 aperf;
	u64 mperf;
120
	u64 tsc;
121
	u64 time;
122 123
};

124 125 126 127 128 129 130 131 132 133 134
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
135 136
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
137 138 139
 *
 * Stores the per cpu model P state limits and current P state.
 */
140 141 142 143
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
144
	int	max_pstate_physical;
145
	int	scaling;
146
	int	turbo_pstate;
147 148
	unsigned int max_freq;
	unsigned int turbo_freq;
149 150
};

151 152 153 154 155 156 157 158 159 160 161 162 163
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
164
struct vid_data {
165 166 167
	int min;
	int max;
	int turbo;
168 169 170
	int32_t ratio;
};

171 172 173 174 175 176 177 178 179 180 181 182
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
183 184 185 186 187 188 189
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
190
	int32_t last_err;
191 192
};

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
210 211
};

212 213 214
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
215
 * @policy:		CPUFreq policy value
216
 * @update_util:	CPUFreq utility callback information
217
 * @update_util_set:	CPUFreq utility callback is set
218 219
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
220 221 222 223 224 225 226 227 228 229
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
230 231 232 233
 * @min_perf:		Minimum capacity limit as a fraction of the maximum
 *			turbo P-state capacity.
 * @max_perf:		Maximum capacity limit as a fraction of the maximum
 *			turbo P-state capacity.
234 235
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
236 237 238
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
239
 * @epp_policy:		Last saved policy used to set EPP/EPB
240 241 242 243
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
244 245 246
 *
 * This structure stores per CPU instance data for all CPUs.
 */
247 248 249
struct cpudata {
	int cpu;

250
	unsigned int policy;
251
	struct update_util_data update_util;
252
	bool   update_util_set;
253 254

	struct pstate_data pstate;
255
	struct vid_data vid;
256 257
	struct _pid pid;

258
	u64	last_update;
259
	u64	last_sample_time;
260 261
	u64	prev_aperf;
	u64	prev_mperf;
262
	u64	prev_tsc;
263
	u64	prev_cummulative_iowait;
264
	struct sample sample;
265 266
	int32_t	min_perf;
	int32_t	max_perf;
267 268 269 270
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
271
	unsigned int iowait_boost;
272
	s16 epp_powersave;
273
	s16 epp_policy;
274 275
	s16 epp_default;
	s16 epp_saved;
276 277 278
};

static struct cpudata **all_cpu_data;
279 280

/**
281
 * struct pstate_adjust_policy - Stores static PID configuration data
282 283 284 285 286 287 288 289 290 291
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
292 293
struct pstate_adjust_policy {
	int sample_rate_ms;
294
	s64 sample_rate_ns;
295 296 297 298 299 300 301
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

302 303 304 305 306 307 308 309 310 311 312 313 314 315
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
316 317
struct pstate_funcs {
	int (*get_max)(void);
318
	int (*get_max_physical)(void);
319 320
	int (*get_min)(void);
	int (*get_turbo)(void);
321
	int (*get_scaling)(void);
322
	u64 (*get_val)(struct cpudata*, int pstate);
323
	void (*get_vid)(struct cpudata *);
324
	int32_t (*get_target_pstate)(struct cpudata *);
325 326
};

327 328 329 330
/**
 * struct cpu_defaults- Per CPU model default config data
 * @funcs:		Callback function data
 */
331 332
struct cpu_defaults {
	struct pstate_funcs funcs;
333 334
};

335
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
336
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
337

338
static struct pstate_funcs pstate_funcs __read_mostly;
339 340 341 342 343 344 345 346 347 348
static struct pstate_adjust_policy pid_params __read_mostly = {
	.sample_rate_ms = 10,
	.sample_rate_ns = 10 * NSEC_PER_MSEC,
	.deadband = 0,
	.setpoint = 97,
	.p_gain_pct = 20,
	.d_gain_pct = 0,
	.i_gain_pct = 0,
};

349
static int hwp_active __read_mostly;
350
static bool per_cpu_limits __read_mostly;
351

352 353
static bool driver_registered __read_mostly;

354 355 356
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
357

358
static struct global_params global;
359

360
static DEFINE_MUTEX(intel_pstate_driver_lock);
361 362
static DEFINE_MUTEX(intel_pstate_limits_lock);

363
#ifdef CONFIG_ACPI
364 365 366 367 368 369 370 371 372 373

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

425 426 427 428 429 430
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

431 432
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
433
		return;
434
	}
435

436
	if (!intel_pstate_get_ppc_enable_status())
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
479
	 * correct max turbo frequency based on the turbo state.
480 481
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
482
	if (!global.turbo_disabled)
483 484 485
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
486
	pr_debug("_PPC limits will be enforced\n");
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
506
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
507 508 509
{
}

510
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
511 512 513 514
{
}
#endif

515
static signed int pid_calc(struct _pid *pid, int32_t busy)
516
{
517
	signed int result;
518 519 520
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

521
	fp_error = pid->setpoint - busy;
522

523
	if (abs(fp_error) <= pid->deadband)
524 525 526 527 528 529
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

530 531 532 533 534 535 536 537
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
538 539 540 541 542 543
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

544 545
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
546 547

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
548
	result = result + (1 << (FRAC_BITS-1));
549 550 551
	return (signed int)fp_toint(result);
}

552
static inline void intel_pstate_pid_reset(struct cpudata *cpu)
553
{
554
	struct _pid *pid = &cpu->pid;
555

556 557 558 559 560 561 562
	pid->p_gain = percent_fp(pid_params.p_gain_pct);
	pid->d_gain = percent_fp(pid_params.d_gain_pct);
	pid->i_gain = percent_fp(pid_params.i_gain_pct);
	pid->setpoint = int_tofp(pid_params.setpoint);
	pid->last_err  = pid->setpoint - int_tofp(100);
	pid->deadband  = int_tofp(pid_params.deadband);
	pid->integral  = 0;
563 564
}

565 566 567 568 569 570 571
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
572
	global.turbo_disabled =
573 574 575 576
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

577 578 579 580 581 582 583 584
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];

	return DIV_ROUND_UP(cpu->pstate.min_pstate * 100,
			    cpu->pstate.turbo_pstate);
}

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

604 605 606 607 608 609 610 611 612 613 614
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
615
		epp = (hwp_req_data >> 24) & 0xff;
616
	} else {
617 618
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
619
	}
620 621 622 623

	return epp;
}

624
static int intel_pstate_set_epb(int cpu, s16 pref)
625 626
{
	u64 epb;
627
	int ret;
628 629

	if (!static_cpu_has(X86_FEATURE_EPB))
630
		return -ENXIO;
631

632 633 634
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
635 636 637

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
638 639

	return 0;
640 641
}

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * Range:
		 *	0x00-0x3F	:	Performance
		 *	0x40-0x7F	:	Balance performance
		 *	0x80-0xBF	:	Balance power
		 *	0xC0-0xFF	:	Power
		 * The EPP is a 8 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 6) + 1;
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		/*
		 * If epp is not default, convert from index into
		 * energy_perf_strings to epp value, by shifting 6
		 * bits left to use only top two bits in epp.
		 * The resultant epp need to shifted by 24 bits to
		 * epp position in MSR_HWP_REQUEST.
		 */
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 6;

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

802
static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
D
Dirk Brandewie 已提交
803
{
804
	int min, hw_min, max, hw_max, cpu;
805 806
	u64 value, cap;

807
	for_each_cpu(cpu, policy->cpus) {
808 809
		struct cpudata *cpu_data = all_cpu_data[cpu];
		s16 epp;
810

811 812
		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
		hw_min = HWP_LOWEST_PERF(cap);
813
		if (global.no_turbo)
814 815 816
			hw_max = HWP_GUARANTEED_PERF(cap);
		else
			hw_max = HWP_HIGHEST_PERF(cap);
817

818
		max = fp_ext_toint(hw_max * cpu_data->max_perf);
819 820 821
		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
			min = max;
		else
822
			min = fp_ext_toint(hw_max * cpu_data->min_perf);
823

D
Dirk Brandewie 已提交
824
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
825

D
Dirk Brandewie 已提交
826 827 828 829 830
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
831 832 833 834 835 836

		if (cpu_data->epp_policy == cpu_data->policy)
			goto skip_epp;

		cpu_data->epp_policy = cpu_data->policy;

837 838 839 840 841 842
		if (cpu_data->epp_saved >= 0) {
			epp = cpu_data->epp_saved;
			cpu_data->epp_saved = -EINVAL;
			goto update_epp;
		}

843 844
		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
			epp = intel_pstate_get_epp(cpu_data, value);
845
			cpu_data->epp_powersave = epp;
846
			/* If EPP read was failed, then don't try to write */
847
			if (epp < 0)
848 849 850 851 852 853
				goto skip_epp;


			epp = 0;
		} else {
			/* skip setting EPP, when saved value is invalid */
854
			if (cpu_data->epp_powersave < 0)
855 856 857 858 859 860 861 862 863 864 865 866 867
				goto skip_epp;

			/*
			 * No need to restore EPP when it is not zero. This
			 * means:
			 *  - Policy is not changed
			 *  - user has manually changed
			 *  - Error reading EPB
			 */
			epp = intel_pstate_get_epp(cpu_data, value);
			if (epp)
				goto skip_epp;

868
			epp = cpu_data->epp_powersave;
869
		}
870
update_epp:
871 872 873 874 875 876 877
		if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
			value &= ~GENMASK_ULL(31, 24);
			value |= (u64)epp << 24;
		} else {
			intel_pstate_set_epb(cpu, epp);
		}
skip_epp:
D
Dirk Brandewie 已提交
878 879
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
880
}
D
Dirk Brandewie 已提交
881

882 883 884 885 886 887 888 889 890 891 892 893
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

894 895 896 897 898
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

899 900
	mutex_lock(&intel_pstate_limits_lock);

901
	all_cpu_data[policy->cpu]->epp_policy = 0;
902
	intel_pstate_hwp_set(policy);
903 904 905

	mutex_unlock(&intel_pstate_limits_lock);

906
	return 0;
907 908
}

909
static void intel_pstate_update_policies(void)
910
{
911 912 913 914
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
915 916
}

917 918 919
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
920 921
	unsigned int cpu;

922
	*(u32 *)data = val;
923
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
924 925
	for_each_possible_cpu(cpu)
		if (all_cpu_data[cpu])
926
			intel_pstate_pid_reset(all_cpu_data[cpu]);
927

928 929
	return 0;
}
930

931 932 933 934 935
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
936
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
937

938 939
static struct dentry *debugfs_parent;

940 941 942
struct pid_param {
	char *name;
	void *value;
943
	struct dentry *dentry;
944 945 946
};

static struct pid_param pid_files[] = {
947 948 949 950 951 952 953
	{"sample_rate_ms", &pid_params.sample_rate_ms, },
	{"d_gain_pct", &pid_params.d_gain_pct, },
	{"i_gain_pct", &pid_params.i_gain_pct, },
	{"deadband", &pid_params.deadband, },
	{"setpoint", &pid_params.setpoint, },
	{"p_gain_pct", &pid_params.p_gain_pct, },
	{NULL, NULL, }
954 955
};

956
static void intel_pstate_debug_expose_params(void)
957
{
958
	int i;
959 960 961 962

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
963 964 965 966 967 968 969 970 971

	for (i = 0; pid_files[i].name; i++) {
		struct dentry *dentry;

		dentry = debugfs_create_file(pid_files[i].name, 0660,
					     debugfs_parent, pid_files[i].value,
					     &fops_pid_param);
		if (!IS_ERR(dentry))
			pid_files[i].dentry = dentry;
972 973 974
	}
}

975 976 977 978 979 980 981 982 983 984
static void intel_pstate_debug_hide_params(void)
{
	int i;

	if (IS_ERR_OR_NULL(debugfs_parent))
		return;

	for (i = 0; pid_files[i].name; i++) {
		debugfs_remove(pid_files[i].dentry);
		pid_files[i].dentry = NULL;
985
	}
986 987 988

	debugfs_remove(debugfs_parent);
	debugfs_parent = NULL;
989 990 991 992 993 994 995 996 997
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
998
		return sprintf(buf, "%u\n", global.object);		\
999 1000
	}

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

1029 1030 1031 1032 1033 1034 1035
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1036 1037 1038 1039 1040 1041 1042
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1043 1044 1045 1046
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1047
	turbo_fp = div_fp(no_turbo, total);
1048
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1049 1050 1051

	mutex_unlock(&intel_pstate_driver_lock);

1052 1053 1054
	return sprintf(buf, "%u\n", turbo_pct);
}

1055 1056 1057 1058 1059 1060
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

1061 1062 1063 1064 1065 1066 1067
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1068 1069
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1070 1071 1072

	mutex_unlock(&intel_pstate_driver_lock);

1073 1074 1075
	return sprintf(buf, "%u\n", total);
}

1076 1077 1078 1079 1080
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

1081 1082 1083 1084 1085 1086 1087
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1088
	update_turbo_state();
1089 1090
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1091
	else
1092
		ret = sprintf(buf, "%u\n", global.no_turbo);
1093

1094 1095
	mutex_unlock(&intel_pstate_driver_lock);

1096 1097 1098
	return ret;
}

1099
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1100
			      const char *buf, size_t count)
1101 1102 1103
{
	unsigned int input;
	int ret;
1104

1105 1106 1107
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1108

1109 1110 1111 1112 1113 1114 1115
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1116 1117
	mutex_lock(&intel_pstate_limits_lock);

1118
	update_turbo_state();
1119
	if (global.turbo_disabled) {
J
Joe Perches 已提交
1120
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1121
		mutex_unlock(&intel_pstate_limits_lock);
1122
		mutex_unlock(&intel_pstate_driver_lock);
1123
		return -EPERM;
1124
	}
D
Dirk Brandewie 已提交
1125

1126
	global.no_turbo = clamp_t(int, input, 0, 1);
1127

1128 1129 1130 1131 1132 1133 1134 1135 1136
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1137 1138
	mutex_unlock(&intel_pstate_limits_lock);

1139 1140
	intel_pstate_update_policies();

1141 1142
	mutex_unlock(&intel_pstate_driver_lock);

1143 1144 1145 1146
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1147
				  const char *buf, size_t count)
1148 1149 1150
{
	unsigned int input;
	int ret;
1151

1152 1153 1154 1155
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1156 1157 1158 1159 1160 1161 1162
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1163 1164
	mutex_lock(&intel_pstate_limits_lock);

1165
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1166

1167 1168
	mutex_unlock(&intel_pstate_limits_lock);

1169 1170
	intel_pstate_update_policies();

1171 1172
	mutex_unlock(&intel_pstate_driver_lock);

1173 1174 1175 1176
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1177
				  const char *buf, size_t count)
1178 1179 1180
{
	unsigned int input;
	int ret;
1181

1182 1183 1184
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1185

1186 1187 1188 1189 1190 1191 1192
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1193 1194
	mutex_lock(&intel_pstate_limits_lock);

1195 1196
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1197

1198 1199
	mutex_unlock(&intel_pstate_limits_lock);

1200 1201
	intel_pstate_update_policies();

1202 1203
	mutex_unlock(&intel_pstate_driver_lock);

1204 1205 1206 1207 1208 1209
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1210
define_one_global_rw(status);
1211 1212 1213
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1214
define_one_global_ro(turbo_pct);
1215
define_one_global_ro(num_pstates);
1216 1217

static struct attribute *intel_pstate_attributes[] = {
1218
	&status.attr,
1219
	&no_turbo.attr,
1220
	&turbo_pct.attr,
1221
	&num_pstates.attr,
1222 1223 1224 1225 1226 1227 1228
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

1229
static void __init intel_pstate_sysfs_expose_params(void)
1230
{
1231
	struct kobject *intel_pstate_kobject;
1232 1233 1234 1235
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1236 1237 1238
	if (WARN_ON(!intel_pstate_kobject))
		return;

1239
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1256 1257
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1258

1259
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1260
{
1261
	/* First disable HWP notification interrupt as we don't process them */
1262 1263
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1264

1265
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1266
	cpudata->epp_policy = 0;
1267 1268
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1269 1270
}

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1290
static int atom_get_min_pstate(void)
1291 1292
{
	u64 value;
1293

1294
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1295
	return (value >> 8) & 0x7F;
1296 1297
}

1298
static int atom_get_max_pstate(void)
1299 1300
{
	u64 value;
1301

1302
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1303
	return (value >> 16) & 0x7F;
1304
}
1305

1306
static int atom_get_turbo_pstate(void)
1307 1308
{
	u64 value;
1309

1310
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1311
	return value & 0x7F;
1312 1313
}

1314
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1315 1316 1317 1318 1319
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1320
	val = (u64)pstate << 8;
1321
	if (global.no_turbo && !global.turbo_disabled)
1322 1323 1324 1325 1326 1327 1328
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1329
	vid = ceiling_fp(vid_fp);
1330

1331 1332 1333
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1334
	return val | vid;
1335 1336
}

1337
static int silvermont_get_scaling(void)
1338 1339 1340
{
	u64 value;
	int i;
1341 1342 1343
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1344 1345

	rdmsrl(MSR_FSB_FREQ, value);
1346 1347
	i = value & 0x7;
	WARN_ON(i > 4);
1348

1349 1350
	return silvermont_freq_table[i];
}
1351

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1366 1367
}

1368
static void atom_get_vid(struct cpudata *cpudata)
1369 1370 1371
{
	u64 value;

1372
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1373 1374
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1375 1376 1377 1378
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1379

1380
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1381
	cpudata->vid.turbo = value & 0x7f;
1382 1383
}

1384
static int core_get_min_pstate(void)
1385 1386
{
	u64 value;
1387

1388
	rdmsrl(MSR_PLATFORM_INFO, value);
1389 1390 1391
	return (value >> 40) & 0xFF;
}

1392
static int core_get_max_pstate_physical(void)
1393 1394
{
	u64 value;
1395

1396
	rdmsrl(MSR_PLATFORM_INFO, value);
1397 1398 1399
	return (value >> 8) & 0xFF;
}

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1433
static int core_get_max_pstate(void)
1434
{
1435 1436 1437
	u64 tar;
	u64 plat_info;
	int max_pstate;
1438
	int tdp_ratio;
1439 1440 1441 1442 1443
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1444 1445 1446 1447 1448 1449 1450 1451 1452
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1453 1454
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1455 1456
		int tar_levels;

1457
		/* Do some sanity checking for safety */
1458 1459 1460 1461
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1462 1463
		}
	}
1464

1465
	return max_pstate;
1466 1467
}

1468
static int core_get_turbo_pstate(void)
1469 1470 1471
{
	u64 value;
	int nont, ret;
1472

1473
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1474
	nont = core_get_max_pstate();
1475
	ret = (value) & 255;
1476 1477 1478 1479 1480
	if (ret <= nont)
		ret = nont;
	return ret;
}

1481 1482 1483 1484 1485
static inline int core_get_scaling(void)
{
	return 100000;
}

1486
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1487 1488 1489
{
	u64 val;

1490
	val = (u64)pstate << 8;
1491
	if (global.no_turbo && !global.turbo_disabled)
1492 1493
		val |= (u64)1 << 32;

1494
	return val;
1495 1496
}

1497 1498 1499 1500 1501
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1502
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1503 1504 1505 1506 1507 1508 1509
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1510 1511 1512
static struct cpu_defaults core_params = {
	.funcs = {
		.get_max = core_get_max_pstate,
1513
		.get_max_physical = core_get_max_pstate_physical,
1514 1515
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1516
		.get_scaling = core_get_scaling,
1517
		.get_val = core_get_val,
1518
		.get_target_pstate = get_target_pstate_use_performance,
1519 1520 1521
	},
};

1522
static const struct cpu_defaults silvermont_params = {
1523 1524 1525 1526 1527
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1528
		.get_val = atom_get_val,
1529 1530
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1531
		.get_target_pstate = get_target_pstate_use_cpu_load,
1532 1533 1534
	},
};

1535
static const struct cpu_defaults airmont_params = {
1536
	.funcs = {
1537 1538 1539 1540
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1541
		.get_val = atom_get_val,
1542
		.get_scaling = airmont_get_scaling,
1543
		.get_vid = atom_get_vid,
1544
		.get_target_pstate = get_target_pstate_use_cpu_load,
1545 1546 1547
	},
};

1548
static const struct cpu_defaults knl_params = {
1549 1550
	.funcs = {
		.get_max = core_get_max_pstate,
1551
		.get_max_physical = core_get_max_pstate_physical,
1552 1553
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1554
		.get_scaling = core_get_scaling,
1555
		.get_val = core_get_val,
1556
		.get_target_pstate = get_target_pstate_use_performance,
1557 1558 1559
	},
};

1560
static const struct cpu_defaults bxt_params = {
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_max_physical = core_get_max_pstate_physical,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.get_val = core_get_val,
		.get_target_pstate = get_target_pstate_use_cpu_load,
	},
};

1572 1573 1574
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1575
	int max_perf_adj;
1576
	int min_perf;
1577

1578
	if (global.no_turbo || global.turbo_disabled)
1579 1580
		max_perf = cpu->pstate.max_pstate;

1581 1582 1583 1584 1585
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1586
	max_perf_adj = fp_ext_toint(max_perf * cpu->max_perf);
1587 1588
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1589

1590
	min_perf = fp_ext_toint(max_perf * cpu->min_perf);
1591
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1592 1593
}

1594
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1595
{
1596 1597
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1598 1599 1600 1601 1602 1603 1604
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1605 1606
}

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
	int min_pstate, max_pstate;

	update_turbo_state();
	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
	intel_pstate_set_pstate(cpu, max_pstate);
}

1621 1622
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1623 1624
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1625
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1626
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1627
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1628 1629
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1630

1631 1632
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1633 1634

	intel_pstate_set_min_pstate(cpu);
1635 1636
}

1637
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1638
{
1639
	struct sample *sample = &cpu->sample;
1640

1641
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1642 1643
}

1644
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1645 1646
{
	u64 aperf, mperf;
1647
	unsigned long flags;
1648
	u64 tsc;
1649

1650
	local_irq_save(flags);
1651 1652
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1653
	tsc = rdtsc();
1654
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1655
		local_irq_restore(flags);
1656
		return false;
1657
	}
1658
	local_irq_restore(flags);
1659

1660
	cpu->last_sample_time = cpu->sample.time;
1661
	cpu->sample.time = time;
1662 1663
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1664
	cpu->sample.tsc =  tsc;
1665 1666
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1667
	cpu->sample.tsc -= cpu->prev_tsc;
1668

1669 1670
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1671
	cpu->prev_tsc = tsc;
1672 1673 1674 1675 1676 1677 1678 1679
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1680 1681
}

1682 1683
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1684 1685
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1686 1687
}

1688 1689
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1690 1691
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1692 1693
}

1694 1695 1696
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1697
	int32_t busy_frac, boost;
1698
	int target, avg_pstate;
1699

1700
	busy_frac = div_fp(sample->mperf, sample->tsc);
1701

1702 1703
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1704

1705 1706
	if (busy_frac < boost)
		busy_frac = boost;
1707

1708
	sample->busy_scaled = busy_frac * 100;
1709

1710
	target = global.no_turbo || global.turbo_disabled ?
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1729 1730
}

1731
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1732
{
1733
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1734
	u64 duration_ns;
1735

1736
	/*
1737 1738 1739 1740 1741
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1742
	 */
1743 1744
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1745
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1746
			       div_fp(100 * max_pstate, current_pstate));
1747

1748
	/*
1749 1750 1751
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1752
	 * enough period of time to adjust our performance metric.
1753
	 */
1754
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1755
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1756
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1757
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1758 1759 1760
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1761
			perf_scaled = 0;
1762 1763
	}

1764 1765
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1766 1767
}

1768
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1769 1770 1771 1772 1773
{
	int max_perf, min_perf;

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
1774 1775 1776 1777 1778
	return pstate;
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1779 1780 1781
	if (pstate == cpu->pstate.current_pstate)
		return;

1782
	cpu->pstate.current_pstate = pstate;
1783 1784 1785
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1786 1787
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1788
	int from, target_pstate;
1789 1790 1791
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1792

1793 1794
	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1795

1796 1797
	update_turbo_state();

1798 1799
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1800
	intel_pstate_update_pstate(cpu, target_pstate);
1801 1802

	sample = &cpu->sample;
1803
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1804
		fp_toint(sample->busy_scaled),
1805 1806 1807 1808 1809
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1810 1811
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1812 1813
}

1814
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1815
				     unsigned int flags)
1816
{
1817
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1818 1819
	u64 delta_ns;

1820
	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
		if (flags & SCHED_CPUFREQ_IOWAIT) {
			cpu->iowait_boost = int_tofp(1);
		} else if (cpu->iowait_boost) {
			/* Clear iowait_boost if the CPU may have been idle. */
			delta_ns = time - cpu->last_update;
			if (delta_ns > TICK_NSEC)
				cpu->iowait_boost = 0;
		}
		cpu->last_update = time;
	}
1831

1832
	delta_ns = time - cpu->sample.time;
1833
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1834 1835
		bool sample_taken = intel_pstate_sample(cpu, time);

1836
		if (sample_taken) {
1837
			intel_pstate_calc_avg_perf(cpu);
1838 1839 1840
			if (!hwp_active)
				intel_pstate_adjust_busy_pstate(cpu);
		}
1841
	}
1842 1843 1844
}

#define ICPU(model, policy) \
1845 1846
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1847 1848

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1866
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_params),
1867
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1868 1869 1870 1871
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1872
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1873
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1874 1875
	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
D
Dirk Brandewie 已提交
1876 1877 1878
	{}
};

1879 1880 1881 1882 1883
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
	{}
};

1884 1885 1886 1887
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1888 1889 1890
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1891
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1892 1893 1894 1895 1896
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1897 1898 1899
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1900
	}
1901 1902 1903 1904

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1905

1906
	if (hwp_active) {
1907 1908 1909 1910 1911 1912
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1913
		intel_pstate_hwp_enable(cpu);
1914 1915
	} else if (pstate_funcs.get_target_pstate == get_target_pstate_use_performance) {
		intel_pstate_pid_reset(cpu);
1916
	}
1917

1918
	intel_pstate_get_cpu_pstates(cpu);
1919

J
Joe Perches 已提交
1920
	pr_debug("controlling: cpu %d\n", cpunum);
1921 1922 1923 1924 1925 1926

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1927
	struct cpudata *cpu = all_cpu_data[cpu_num];
1928

1929
	return cpu ? get_avg_frequency(cpu) : 0;
1930 1931
}

1932
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1933
{
1934 1935
	struct cpudata *cpu = all_cpu_data[cpu_num];

1936 1937 1938
	if (cpu->update_util_set)
		return;

1939 1940
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1941 1942
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
1943
	cpu->update_util_set = true;
1944 1945 1946 1947
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1948 1949 1950 1951 1952
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1953
	cpufreq_remove_update_util_hook(cpu);
1954
	cpu_data->update_util_set = false;
1955 1956 1957
	synchronize_sched();
}

1958 1959 1960 1961 1962 1963
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

1964
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1965
					    struct cpudata *cpu)
1966
{
1967
	int max_freq = intel_pstate_get_max_freq(cpu);
1968
	int32_t max_policy_perf, min_policy_perf;
1969

1970
	max_policy_perf = div_ext_fp(policy->max, max_freq);
1971
	max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
1972
	if (policy->max == policy->min) {
1973
		min_policy_perf = max_policy_perf;
1974
	} else {
1975
		min_policy_perf = div_ext_fp(policy->min, max_freq);
1976 1977
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
1978
	}
1979

1980
	/* Normalize user input to [min_perf, max_perf] */
1981
	if (per_cpu_limits) {
1982 1983
		cpu->min_perf = min_policy_perf;
		cpu->max_perf = max_policy_perf;
1984 1985 1986 1987 1988 1989
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
		global_max = percent_ext_fp(global.max_perf_pct);
		global_min = percent_ext_fp(global.min_perf_pct);
1990
		if (max_freq != cpu->pstate.turbo_freq) {
1991 1992 1993 1994 1995 1996 1997 1998
			int32_t turbo_factor;

			turbo_factor = div_ext_fp(cpu->pstate.turbo_pstate,
						  cpu->pstate.max_pstate);
			global_min = mul_ext_fp(global_min, turbo_factor);
			global_max = mul_ext_fp(global_max, turbo_factor);
		}
		global_min = clamp_t(int32_t, global_min, 0, global_max);
1999

2000 2001 2002 2003
		cpu->min_perf = max(min_policy_perf, global_min);
		cpu->min_perf = min(cpu->min_perf, max_policy_perf);
		cpu->max_perf = min(max_policy_perf, global_max);
		cpu->max_perf = max(min_policy_perf, cpu->max_perf);
2004 2005

		/* Make sure min_perf <= max_perf */
2006
		cpu->min_perf = min(cpu->min_perf, cpu->max_perf);
2007
	}
2008

2009 2010
	cpu->max_perf = round_up(cpu->max_perf, EXT_FRAC_BITS);
	cpu->min_perf = round_up(cpu->min_perf, EXT_FRAC_BITS);
2011 2012

	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2013 2014
		 fp_ext_toint(cpu->max_perf * 100),
		 fp_ext_toint(cpu->min_perf * 100));
2015 2016
}

2017 2018
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2019 2020
	struct cpudata *cpu;

2021 2022 2023
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2024 2025 2026
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2027
	cpu = all_cpu_data[policy->cpu];
2028 2029
	cpu->policy = policy->policy;

2030 2031
	mutex_lock(&intel_pstate_limits_lock);

2032
	intel_pstate_update_perf_limits(policy, cpu);
2033

2034
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2035 2036 2037 2038 2039 2040 2041 2042
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
	}

2043 2044
	intel_pstate_set_update_util_hook(policy->cpu);

2045 2046
	if (hwp_active)
		intel_pstate_hwp_set(policy);
D
Dirk Brandewie 已提交
2047

2048 2049
	mutex_unlock(&intel_pstate_limits_lock);

2050 2051 2052
	return 0;
}

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2064 2065
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2066 2067 2068
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2069 2070
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2071

2072
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2073
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2074 2075
		return -EINVAL;

2076 2077
	intel_pstate_adjust_policy_max(policy, cpu);

2078 2079 2080
	return 0;
}

2081 2082 2083 2084 2085
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2086
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2087
{
2088
	pr_debug("CPU %d exiting\n", policy->cpu);
2089

2090
	intel_pstate_clear_update_util_hook(policy->cpu);
2091 2092 2093
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2094 2095
		intel_cpufreq_stop_cpu(policy);
}
2096

2097 2098 2099
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2100

2101
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2102

2103
	return 0;
2104 2105
}

2106
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2107 2108
{
	struct cpudata *cpu;
2109
	int rc;
2110 2111 2112 2113 2114 2115 2116

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2117 2118
	cpu->max_perf = int_ext_tofp(1);
	cpu->min_perf = 0;
2119

2120 2121
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2122 2123

	/* cpuinfo and default policy values */
2124
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2125
	update_turbo_state();
2126
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2127 2128 2129
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2130
	intel_pstate_init_acpi_perf_limits(policy);
2131 2132
	cpumask_set_cpu(policy->cpu, policy->cpus);

2133 2134
	policy->fast_switch_possible = true;

2135 2136 2137
	return 0;
}

2138
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2139
{
2140 2141 2142 2143 2144 2145
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2146
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2147 2148 2149
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2150 2151 2152 2153

	return 0;
}

2154
static struct cpufreq_driver intel_pstate = {
2155 2156 2157
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2158
	.suspend	= intel_pstate_hwp_save_state,
2159
	.resume		= intel_pstate_resume,
2160 2161
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
2162
	.exit		= intel_pstate_cpu_exit,
2163
	.stop_cpu	= intel_pstate_stop_cpu,
2164 2165 2166
	.name		= "intel_pstate",
};

2167 2168 2169 2170 2171
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2172 2173
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2174

2175
	intel_pstate_adjust_policy_max(policy, cpu);
2176

2177 2178
	intel_pstate_update_perf_limits(policy, cpu);

2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	return 0;
}

static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
	int target_pstate;

2190 2191
	update_turbo_state();

2192
	freqs.old = policy->cur;
2193
	freqs.new = target_freq;
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2213
	freqs.new = target_pstate * cpu->pstate.scaling;
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	int target_pstate;

2225 2226
	update_turbo_state();

2227
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2228
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2229
	intel_pstate_update_pstate(cpu, target_pstate);
2230
	return target_pstate * cpu->pstate.scaling;
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
}

static int intel_pstate_register_driver(void)
{
	int ret;

2281 2282
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2283

2284 2285 2286 2287 2288 2289
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2290 2291
	global.min_perf_pct = min_perf_pct_min();

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
	mutex_lock(&intel_pstate_limits_lock);
	driver_registered = true;
	mutex_unlock(&intel_pstate_limits_lock);

	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
		intel_pstate_debug_expose_params();

	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
		intel_pstate_debug_hide_params();

	mutex_lock(&intel_pstate_limits_lock);
	driver_registered = false;
	mutex_unlock(&intel_pstate_limits_lock);

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
	if (!driver_registered)
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
		return driver_registered ?
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
		if (driver_registered) {
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

		intel_pstate_driver = &intel_pstate;
		return intel_pstate_register_driver();
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
		if (driver_registered) {
			if (intel_pstate_driver != &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

		intel_pstate_driver = &intel_cpufreq;
		return intel_pstate_register_driver();
	}

	return -EINVAL;
}

2370 2371 2372
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2373
static unsigned int force_load __initdata;
2374

2375
static int __init intel_pstate_msrs_not_valid(void)
2376
{
2377
	if (!pstate_funcs.get_max() ||
2378 2379
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2380 2381 2382 2383
		return -ENODEV;

	return 0;
}
2384

2385 2386 2387
#ifdef CONFIG_ACPI
static void intel_pstate_use_acpi_profile(void)
{
2388 2389 2390 2391 2392 2393
	switch (acpi_gbl_FADT.preferred_profile) {
	case PM_MOBILE:
	case PM_TABLET:
	case PM_APPLIANCE_PC:
	case PM_DESKTOP:
	case PM_WORKSTATION:
2394 2395
		pstate_funcs.get_target_pstate =
				get_target_pstate_use_cpu_load;
2396
	}
2397 2398 2399 2400 2401 2402 2403
}
#else
static void intel_pstate_use_acpi_profile(void)
{
}
#endif

2404
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2405 2406
{
	pstate_funcs.get_max   = funcs->get_max;
2407
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2408 2409
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2410
	pstate_funcs.get_scaling = funcs->get_scaling;
2411
	pstate_funcs.get_val   = funcs->get_val;
2412
	pstate_funcs.get_vid   = funcs->get_vid;
2413 2414
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

2415
	intel_pstate_use_acpi_profile();
2416 2417
}

2418
#ifdef CONFIG_ACPI
2419

2420
static bool __init intel_pstate_no_acpi_pss(void)
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2449
static bool __init intel_pstate_has_acpi_ppc(void)
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2469 2470 2471 2472
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2473
	int  oem_pwr_table;
2474 2475 2476
};

/* Hardware vendor-specific info that has its own power management modes */
2477
static struct hw_vendor_info vendor_info[] __initdata = {
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
2489 2490 2491 2492
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
2493 2494 2495
	{0, "", ""},
};

2496
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2497 2498 2499
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
2500 2501 2502 2503 2504 2505 2506 2507 2508
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2509

2510 2511
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2512 2513 2514
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
2515
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2516 2517 2518 2519 2520 2521
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
2522 2523
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
2524
			}
2525 2526 2527 2528
	}

	return false;
}
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2539 2540
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2541
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2542
static inline void intel_pstate_request_control_from_smm(void) {}
2543 2544
#endif /* CONFIG_ACPI */

2545 2546 2547 2548 2549
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2550 2551
static int __init intel_pstate_init(void)
{
2552
	int rc;
2553

2554 2555 2556
	if (no_load)
		return -ENODEV;

2557
	if (x86_match_cpu(hwp_support_ids)) {
2558
		copy_cpu_funcs(&core_params.funcs);
2559 2560 2561 2562 2563
		if (no_hwp) {
			pstate_funcs.get_target_pstate = get_target_pstate_use_cpu_load;
		} else {
			hwp_active++;
			intel_pstate.attr = hwp_cpufreq_attrs;
2564
			pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
2565 2566 2567 2568 2569
			goto hwp_cpu_matched;
		}
	} else {
		const struct x86_cpu_id *id;
		struct cpu_defaults *cpu_def;
2570

2571 2572 2573
		id = x86_match_cpu(intel_pstate_cpu_ids);
		if (!id)
			return -ENODEV;
2574

2575 2576 2577
		cpu_def = (struct cpu_defaults *)id->driver_data;
		copy_cpu_funcs(&cpu_def->funcs);
	}
2578

2579 2580 2581
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2582 2583 2584 2585 2586 2587 2588 2589
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2590 2591 2592
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2593
	pr_info("Intel P-state driver initializing\n");
2594

2595
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2596 2597 2598
	if (!all_cpu_data)
		return -ENOMEM;

2599 2600
	intel_pstate_request_control_from_smm();

2601
	intel_pstate_sysfs_expose_params();
2602

2603
	mutex_lock(&intel_pstate_driver_lock);
2604
	rc = intel_pstate_register_driver();
2605
	mutex_unlock(&intel_pstate_driver_lock);
2606 2607
	if (rc)
		return rc;
2608

2609
	if (hwp_active)
J
Joe Perches 已提交
2610
		pr_info("HWP enabled\n");
2611

2612
	return 0;
2613 2614 2615
}
device_initcall(intel_pstate_init);

2616 2617 2618 2619 2620
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2621
	if (!strcmp(str, "disable")) {
2622
		no_load = 1;
2623 2624 2625 2626 2627
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
		intel_pstate_driver = &intel_cpufreq;
		no_hwp = 1;
	}
2628
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2629
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2630
		no_hwp = 1;
2631
	}
2632 2633
	if (!strcmp(str, "force"))
		force_load = 1;
2634 2635
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2636 2637
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2638 2639 2640 2641 2642 2643

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2644 2645 2646 2647
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2648 2649 2650
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");