intel_pstate.c 69.9 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000

42 43 44 45
#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d
46

47 48
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
49
#include <acpi/cppc_acpi.h>
50 51
#endif

52
#define FRAC_BITS 8
53 54
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
55

56 57
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
58 59
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
60

61 62 63 64 65
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

66
static inline int32_t div_fp(s64 x, s64 y)
67
{
68
	return div64_s64((int64_t)x << FRAC_BITS, y);
69 70
}

71 72 73 74 75 76 77 78 79 80 81
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

82 83 84 85 86 87 88 89 90 91
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

92 93
/**
 * struct sample -	Store performance sample
94
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
95 96
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
97
 *			P state. This can be different than core_avg_perf
98 99 100 101 102 103 104 105 106 107 108 109
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
110
struct sample {
111
	int32_t core_avg_perf;
112
	int32_t busy_scaled;
113 114
	u64 aperf;
	u64 mperf;
115
	u64 tsc;
116
	u64 time;
117 118
};

119 120 121 122 123 124 125 126 127 128 129
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
130 131
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
132 133 134
 *
 * Stores the per cpu model P state limits and current P state.
 */
135 136 137 138
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
139
	int	max_pstate_physical;
140
	int	scaling;
141
	int	turbo_pstate;
142 143
	unsigned int max_freq;
	unsigned int turbo_freq;
144 145
};

146 147 148 149 150 151 152 153 154 155 156 157 158
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
159
struct vid_data {
160 161 162
	int min;
	int max;
	int turbo;
163 164 165
	int32_t ratio;
};

166 167 168 169 170 171 172 173 174 175 176 177
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
178 179 180 181 182 183 184
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
185
	int32_t last_err;
186 187
};

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
/**
 * struct perf_limits - Store user and policy limits
 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 * @turbo_disabled:	Platform turbo status either from msr
 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 *			matches the maximum turbo pstate
 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 *			is minimum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 *			is maximum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 * @max_policy_pct:	The maximum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 *			intel pstate sysfs interface, unused when per cpu
 *			controls are enforced
 * @min_policy_pct:	The minimum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 *			intel pstate sysfs interface, unused when per cpu
 *			controls are enforced
 *
 * Storage for user and policy defined limits.
 */
struct perf_limits {
	int no_turbo;
	int turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
	int max_policy_pct;
	int max_sysfs_pct;
	int min_policy_pct;
	int min_sysfs_pct;
};

230 231 232
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
233
 * @policy:		CPUFreq policy value
234
 * @update_util:	CPUFreq utility callback information
235
 * @update_util_set:	CPUFreq utility callback is set
236 237
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
238 239 240 241 242 243 244 245 246 247
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
248 249 250
 * @perf_limits:	Pointer to perf_limit unique to this CPU
 *			Not all field in the structure are applicable
 *			when per cpu controls are enforced
251 252
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
253 254 255
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
256
 * @epp_policy:		Last saved policy used to set EPP/EPB
257 258 259 260
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
261 262 263
 *
 * This structure stores per CPU instance data for all CPUs.
 */
264 265 266
struct cpudata {
	int cpu;

267
	unsigned int policy;
268
	struct update_util_data update_util;
269
	bool   update_util_set;
270 271

	struct pstate_data pstate;
272
	struct vid_data vid;
273 274
	struct _pid pid;

275
	u64	last_update;
276
	u64	last_sample_time;
277 278
	u64	prev_aperf;
	u64	prev_mperf;
279
	u64	prev_tsc;
280
	u64	prev_cummulative_iowait;
281
	struct sample sample;
282
	struct perf_limits *perf_limits;
283 284 285 286
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
287
	unsigned int iowait_boost;
288
	s16 epp_powersave;
289
	s16 epp_policy;
290 291
	s16 epp_default;
	s16 epp_saved;
292 293 294
};

static struct cpudata **all_cpu_data;
295 296

/**
297
 * struct pstate_adjust_policy - Stores static PID configuration data
298 299 300 301 302 303 304 305 306 307
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
308 309
struct pstate_adjust_policy {
	int sample_rate_ms;
310
	s64 sample_rate_ns;
311 312 313 314 315 316 317
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

318 319 320 321 322 323 324 325 326 327 328 329 330 331
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
332 333
struct pstate_funcs {
	int (*get_max)(void);
334
	int (*get_max_physical)(void);
335 336
	int (*get_min)(void);
	int (*get_turbo)(void);
337
	int (*get_scaling)(void);
338
	u64 (*get_val)(struct cpudata*, int pstate);
339
	void (*get_vid)(struct cpudata *);
340
	int32_t (*get_target_pstate)(struct cpudata *);
341 342
};

343 344 345 346 347
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
348 349 350
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
351 352
};

353
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
354
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
355

356 357 358
static struct pstate_adjust_policy pid_params __read_mostly;
static struct pstate_funcs pstate_funcs __read_mostly;
static int hwp_active __read_mostly;
359
static bool per_cpu_limits __read_mostly;
360

361 362
static bool driver_registered __read_mostly;

363 364 365
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
366

367 368 369 370
static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
371
	.max_perf = int_ext_tofp(1),
372
	.min_perf_pct = 100,
373
	.min_perf = int_ext_tofp(1),
374 375 376 377 378 379 380
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
381
	.no_turbo = 0,
382
	.turbo_disabled = 0,
383
	.max_perf_pct = 100,
384
	.max_perf = int_ext_tofp(1),
385 386
	.min_perf_pct = 0,
	.min_perf = 0,
387 388
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
389 390
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
391 392
};

393 394 395 396 397 398
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

399
static DEFINE_MUTEX(intel_pstate_driver_lock);
400 401
static DEFINE_MUTEX(intel_pstate_limits_lock);

402
#ifdef CONFIG_ACPI
403 404 405 406 407 408 409 410 411 412

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

464 465 466 467 468 469
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

470 471
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
472
		return;
473
	}
474

475
	if (!intel_pstate_get_ppc_enable_status())
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
518
	 * correct max turbo frequency based on the turbo state.
519 520
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
521
	if (!limits->turbo_disabled)
522 523 524
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
525
	pr_debug("_PPC limits will be enforced\n");
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
545
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
546 547 548
{
}

549
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
550 551 552 553
{
}
#endif

554
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
555
			     int deadband, int integral) {
556 557
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
558
	pid->integral  = int_tofp(integral);
559
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
560 561 562 563
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
564
	pid->p_gain = div_fp(percent, 100);
565 566 567 568
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
569
	pid->i_gain = div_fp(percent, 100);
570 571 572 573
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
574
	pid->d_gain = div_fp(percent, 100);
575 576
}

577
static signed int pid_calc(struct _pid *pid, int32_t busy)
578
{
579
	signed int result;
580 581 582
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

583
	fp_error = pid->setpoint - busy;
584

585
	if (abs(fp_error) <= pid->deadband)
586 587 588 589 590 591
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

592 593 594 595 596 597 598 599
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
600 601 602 603 604 605
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

606 607
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
608 609

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
610
	result = result + (1 << (FRAC_BITS-1));
611 612 613 614 615
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
616 617 618
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
619

620
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
621 622 623 624 625
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
626

627 628 629 630 631 632
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

633 634 635 636 637 638 639
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
640
	limits->turbo_disabled =
641 642 643 644
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

664 665 666 667 668 669 670 671 672 673 674
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
675
		epp = (hwp_req_data >> 24) & 0xff;
676
	} else {
677 678
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
679
	}
680 681 682 683

	return epp;
}

684
static int intel_pstate_set_epb(int cpu, s16 pref)
685 686
{
	u64 epb;
687
	int ret;
688 689

	if (!static_cpu_has(X86_FEATURE_EPB))
690
		return -ENXIO;
691

692 693 694
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
695 696 697

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
698 699

	return 0;
700 701
}

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * Range:
		 *	0x00-0x3F	:	Performance
		 *	0x40-0x7F	:	Balance performance
		 *	0x80-0xBF	:	Balance power
		 *	0xC0-0xFF	:	Power
		 * The EPP is a 8 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 6) + 1;
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		/*
		 * If epp is not default, convert from index into
		 * energy_perf_strings to epp value, by shifting 6
		 * bits left to use only top two bits in epp.
		 * The resultant epp need to shifted by 24 bits to
		 * epp position in MSR_HWP_REQUEST.
		 */
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 6;

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

862
static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
D
Dirk Brandewie 已提交
863
{
864
	int min, hw_min, max, hw_max, cpu, range, adj_range;
865
	struct perf_limits *perf_limits = limits;
866 867
	u64 value, cap;

868
	for_each_cpu(cpu, policy->cpus) {
869
		int max_perf_pct, min_perf_pct;
870 871
		struct cpudata *cpu_data = all_cpu_data[cpu];
		s16 epp;
872 873 874 875

		if (per_cpu_limits)
			perf_limits = all_cpu_data[cpu]->perf_limits;

876 877
		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
		hw_min = HWP_LOWEST_PERF(cap);
878 879 880 881
		if (limits->no_turbo)
			hw_max = HWP_GUARANTEED_PERF(cap);
		else
			hw_max = HWP_HIGHEST_PERF(cap);
882 883
		range = hw_max - hw_min;

884 885 886
		max_perf_pct = perf_limits->max_perf_pct;
		min_perf_pct = perf_limits->min_perf_pct;

D
Dirk Brandewie 已提交
887
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
888
		adj_range = min_perf_pct * range / 100;
889
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
890 891 892
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

893
		adj_range = max_perf_pct * range / 100;
894
		max = hw_min + adj_range;
D
Dirk Brandewie 已提交
895 896 897

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
898 899 900 901 902 903

		if (cpu_data->epp_policy == cpu_data->policy)
			goto skip_epp;

		cpu_data->epp_policy = cpu_data->policy;

904 905 906 907 908 909
		if (cpu_data->epp_saved >= 0) {
			epp = cpu_data->epp_saved;
			cpu_data->epp_saved = -EINVAL;
			goto update_epp;
		}

910 911
		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
			epp = intel_pstate_get_epp(cpu_data, value);
912
			cpu_data->epp_powersave = epp;
913
			/* If EPP read was failed, then don't try to write */
914
			if (epp < 0)
915 916 917 918 919 920
				goto skip_epp;


			epp = 0;
		} else {
			/* skip setting EPP, when saved value is invalid */
921
			if (cpu_data->epp_powersave < 0)
922 923 924 925 926 927 928 929 930 931 932 933 934
				goto skip_epp;

			/*
			 * No need to restore EPP when it is not zero. This
			 * means:
			 *  - Policy is not changed
			 *  - user has manually changed
			 *  - Error reading EPB
			 */
			epp = intel_pstate_get_epp(cpu_data, value);
			if (epp)
				goto skip_epp;

935
			epp = cpu_data->epp_powersave;
936
		}
937
update_epp:
938 939 940 941 942 943 944
		if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
			value &= ~GENMASK_ULL(31, 24);
			value |= (u64)epp << 24;
		} else {
			intel_pstate_set_epb(cpu, epp);
		}
skip_epp:
D
Dirk Brandewie 已提交
945 946
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
947
}
D
Dirk Brandewie 已提交
948

949 950 951
static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
{
	if (hwp_active)
952
		intel_pstate_hwp_set(policy);
953 954 955 956

	return 0;
}

957 958 959 960 961 962 963 964 965 966 967 968
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

969 970
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
971 972
	int ret;

973 974 975
	if (!hwp_active)
		return 0;

976 977
	mutex_lock(&intel_pstate_limits_lock);

978 979
	all_cpu_data[policy->cpu]->epp_policy = 0;

980 981 982 983 984
	ret = intel_pstate_hwp_set_policy(policy);

	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
985 986
}

987
static void intel_pstate_update_policies(void)
988
{
989 990 991 992
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
993 994
}

995 996 997 998 999 1000 1001
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
1002

1003 1004 1005 1006 1007
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
1008
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
1009

1010 1011
static struct dentry *debugfs_parent;

1012 1013 1014
struct pid_param {
	char *name;
	void *value;
1015
	struct dentry *dentry;
1016 1017 1018
};

static struct pid_param pid_files[] = {
1019 1020 1021 1022 1023 1024 1025
	{"sample_rate_ms", &pid_params.sample_rate_ms, },
	{"d_gain_pct", &pid_params.d_gain_pct, },
	{"i_gain_pct", &pid_params.i_gain_pct, },
	{"deadband", &pid_params.deadband, },
	{"setpoint", &pid_params.setpoint, },
	{"p_gain_pct", &pid_params.p_gain_pct, },
	{NULL, NULL, }
1026 1027
};

1028
static void intel_pstate_debug_expose_params(void)
1029
{
1030
	int i;
1031 1032 1033 1034

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
1035 1036 1037 1038 1039 1040 1041 1042 1043

	for (i = 0; pid_files[i].name; i++) {
		struct dentry *dentry;

		dentry = debugfs_create_file(pid_files[i].name, 0660,
					     debugfs_parent, pid_files[i].value,
					     &fops_pid_param);
		if (!IS_ERR(dentry))
			pid_files[i].dentry = dentry;
1044 1045 1046
	}
}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
static void intel_pstate_debug_hide_params(void)
{
	int i;

	if (IS_ERR_OR_NULL(debugfs_parent))
		return;

	for (i = 0; pid_files[i].name; i++) {
		debugfs_remove(pid_files[i].dentry);
		pid_files[i].dentry = NULL;
1057
	}
1058 1059 1060

	debugfs_remove(debugfs_parent);
	debugfs_parent = NULL;
1061 1062 1063 1064 1065 1066 1067 1068 1069
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
1070
		return sprintf(buf, "%u\n", limits->object);		\
1071 1072
	}

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

1101 1102 1103 1104 1105 1106 1107
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1108 1109 1110 1111 1112 1113 1114
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1115 1116 1117 1118
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1119
	turbo_fp = div_fp(no_turbo, total);
1120
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1121 1122 1123

	mutex_unlock(&intel_pstate_driver_lock);

1124 1125 1126
	return sprintf(buf, "%u\n", turbo_pct);
}

1127 1128 1129 1130 1131 1132
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

1133 1134 1135 1136 1137 1138 1139
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1140 1141
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1142 1143 1144

	mutex_unlock(&intel_pstate_driver_lock);

1145 1146 1147
	return sprintf(buf, "%u\n", total);
}

1148 1149 1150 1151 1152
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

1153 1154 1155 1156 1157 1158 1159
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1160
	update_turbo_state();
1161 1162
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
1163
	else
1164
		ret = sprintf(buf, "%u\n", limits->no_turbo);
1165

1166 1167
	mutex_unlock(&intel_pstate_driver_lock);

1168 1169 1170
	return ret;
}

1171
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1172
			      const char *buf, size_t count)
1173 1174 1175
{
	unsigned int input;
	int ret;
1176

1177 1178 1179
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1180

1181 1182 1183 1184 1185 1186 1187
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1188 1189
	mutex_lock(&intel_pstate_limits_lock);

1190
	update_turbo_state();
1191
	if (limits->turbo_disabled) {
J
Joe Perches 已提交
1192
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1193
		mutex_unlock(&intel_pstate_limits_lock);
1194
		mutex_unlock(&intel_pstate_driver_lock);
1195
		return -EPERM;
1196
	}
D
Dirk Brandewie 已提交
1197

1198
	limits->no_turbo = clamp_t(int, input, 0, 1);
1199

1200 1201
	mutex_unlock(&intel_pstate_limits_lock);

1202 1203
	intel_pstate_update_policies();

1204 1205
	mutex_unlock(&intel_pstate_driver_lock);

1206 1207 1208 1209
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1210
				  const char *buf, size_t count)
1211 1212 1213
{
	unsigned int input;
	int ret;
1214

1215 1216 1217 1218
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1219 1220 1221 1222 1223 1224 1225
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1226 1227
	mutex_lock(&intel_pstate_limits_lock);

1228 1229 1230 1231 1232 1233 1234
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
1235
	limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
1236

1237 1238
	mutex_unlock(&intel_pstate_limits_lock);

1239 1240
	intel_pstate_update_policies();

1241 1242
	mutex_unlock(&intel_pstate_driver_lock);

1243 1244 1245 1246
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1247
				  const char *buf, size_t count)
1248 1249 1250
{
	unsigned int input;
	int ret;
1251

1252 1253 1254
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1255

1256 1257 1258 1259 1260 1261 1262
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1263 1264
	mutex_lock(&intel_pstate_limits_lock);

1265 1266 1267 1268 1269 1270 1271
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
1272
	limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1273

1274 1275
	mutex_unlock(&intel_pstate_limits_lock);

1276 1277
	intel_pstate_update_policies();

1278 1279
	mutex_unlock(&intel_pstate_driver_lock);

1280 1281 1282 1283 1284 1285
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1286
define_one_global_rw(status);
1287 1288 1289
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1290
define_one_global_ro(turbo_pct);
1291
define_one_global_ro(num_pstates);
1292 1293

static struct attribute *intel_pstate_attributes[] = {
1294
	&status.attr,
1295
	&no_turbo.attr,
1296
	&turbo_pct.attr,
1297
	&num_pstates.attr,
1298 1299 1300 1301 1302 1303 1304
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

1305
static void __init intel_pstate_sysfs_expose_params(void)
1306
{
1307
	struct kobject *intel_pstate_kobject;
1308 1309 1310 1311
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1312 1313 1314
	if (WARN_ON(!intel_pstate_kobject))
		return;

1315
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1332 1333
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1334

1335
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1336
{
1337
	/* First disable HWP notification interrupt as we don't process them */
1338 1339
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1340

1341
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1342
	cpudata->epp_policy = 0;
1343 1344
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1345 1346
}

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1366
static int atom_get_min_pstate(void)
1367 1368
{
	u64 value;
1369

1370
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
1371
	return (value >> 8) & 0x7F;
1372 1373
}

1374
static int atom_get_max_pstate(void)
1375 1376
{
	u64 value;
1377

1378
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
1379
	return (value >> 16) & 0x7F;
1380
}
1381

1382
static int atom_get_turbo_pstate(void)
1383 1384
{
	u64 value;
1385

1386
	rdmsrl(ATOM_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1387
	return value & 0x7F;
1388 1389
}

1390
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1391 1392 1393 1394 1395
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1396
	val = (u64)pstate << 8;
1397
	if (limits->no_turbo && !limits->turbo_disabled)
1398 1399 1400 1401 1402 1403 1404
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1405
	vid = ceiling_fp(vid_fp);
1406

1407 1408 1409
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1410
	return val | vid;
1411 1412
}

1413
static int silvermont_get_scaling(void)
1414 1415 1416
{
	u64 value;
	int i;
1417 1418 1419
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1420 1421

	rdmsrl(MSR_FSB_FREQ, value);
1422 1423
	i = value & 0x7;
	WARN_ON(i > 4);
1424

1425 1426
	return silvermont_freq_table[i];
}
1427

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1442 1443
}

1444
static void atom_get_vid(struct cpudata *cpudata)
1445 1446 1447
{
	u64 value;

1448
	rdmsrl(ATOM_VIDS, value);
D
Dirk Brandewie 已提交
1449 1450
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1451 1452 1453 1454
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1455

1456
	rdmsrl(ATOM_TURBO_VIDS, value);
1457
	cpudata->vid.turbo = value & 0x7f;
1458 1459
}

1460
static int core_get_min_pstate(void)
1461 1462
{
	u64 value;
1463

1464
	rdmsrl(MSR_PLATFORM_INFO, value);
1465 1466 1467
	return (value >> 40) & 0xFF;
}

1468
static int core_get_max_pstate_physical(void)
1469 1470
{
	u64 value;
1471

1472
	rdmsrl(MSR_PLATFORM_INFO, value);
1473 1474 1475
	return (value >> 8) & 0xFF;
}

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1509
static int core_get_max_pstate(void)
1510
{
1511 1512 1513
	u64 tar;
	u64 plat_info;
	int max_pstate;
1514
	int tdp_ratio;
1515 1516 1517 1518 1519
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1520 1521 1522 1523 1524 1525 1526 1527 1528
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1529 1530
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1531 1532
		int tar_levels;

1533
		/* Do some sanity checking for safety */
1534 1535 1536 1537
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1538 1539
		}
	}
1540

1541
	return max_pstate;
1542 1543
}

1544
static int core_get_turbo_pstate(void)
1545 1546 1547
{
	u64 value;
	int nont, ret;
1548

1549
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1550
	nont = core_get_max_pstate();
1551
	ret = (value) & 255;
1552 1553 1554 1555 1556
	if (ret <= nont)
		ret = nont;
	return ret;
}

1557 1558 1559 1560 1561
static inline int core_get_scaling(void)
{
	return 100000;
}

1562
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1563 1564 1565
{
	u64 val;

1566
	val = (u64)pstate << 8;
1567
	if (limits->no_turbo && !limits->turbo_disabled)
1568 1569
		val |= (u64)1 << 32;

1570
	return val;
1571 1572
}

1573 1574 1575 1576 1577
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1578
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1579 1580 1581 1582 1583 1584 1585
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1597
		.get_max_physical = core_get_max_pstate_physical,
1598 1599
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1600
		.get_scaling = core_get_scaling,
1601
		.get_val = core_get_val,
1602
		.get_target_pstate = get_target_pstate_use_performance,
1603 1604 1605
	},
};

1606
static const struct cpu_defaults silvermont_params = {
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1620
		.get_val = atom_get_val,
1621 1622
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1623
		.get_target_pstate = get_target_pstate_use_cpu_load,
1624 1625 1626
	},
};

1627
static const struct cpu_defaults airmont_params = {
1628 1629 1630
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
1631
		.setpoint = 60,
1632 1633 1634 1635 1636
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
1637 1638 1639 1640
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1641
		.get_val = atom_get_val,
1642
		.get_scaling = airmont_get_scaling,
1643
		.get_vid = atom_get_vid,
1644
		.get_target_pstate = get_target_pstate_use_cpu_load,
1645 1646 1647
	},
};

1648
static const struct cpu_defaults knl_params = {
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1659
		.get_max_physical = core_get_max_pstate_physical,
1660 1661
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1662
		.get_scaling = core_get_scaling,
1663
		.get_val = core_get_val,
1664
		.get_target_pstate = get_target_pstate_use_performance,
1665 1666 1667
	},
};

1668
static const struct cpu_defaults bxt_params = {
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_max_physical = core_get_max_pstate_physical,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.get_val = core_get_val,
		.get_target_pstate = get_target_pstate_use_cpu_load,
	},
};

1688 1689 1690
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1691
	int max_perf_adj;
1692
	int min_perf;
1693
	struct perf_limits *perf_limits = limits;
1694

1695
	if (limits->no_turbo || limits->turbo_disabled)
1696 1697
		max_perf = cpu->pstate.max_pstate;

1698 1699 1700
	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

1701 1702 1703 1704 1705
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1706
	max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1707 1708
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1709

1710
	min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1711
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1712 1713
}

1714
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1715
{
1716 1717
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1718 1719 1720 1721 1722 1723 1724
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1725 1726
}

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
	int min_pstate, max_pstate;

	update_turbo_state();
	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
	intel_pstate_set_pstate(cpu, max_pstate);
}

1741 1742
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1743 1744
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1745
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1746
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1747
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1748 1749
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1750

1751 1752
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1753 1754

	intel_pstate_set_min_pstate(cpu);
1755 1756
}

1757
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1758
{
1759
	struct sample *sample = &cpu->sample;
1760

1761
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1762 1763
}

1764
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1765 1766
{
	u64 aperf, mperf;
1767
	unsigned long flags;
1768
	u64 tsc;
1769

1770
	local_irq_save(flags);
1771 1772
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1773
	tsc = rdtsc();
1774
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1775
		local_irq_restore(flags);
1776
		return false;
1777
	}
1778
	local_irq_restore(flags);
1779

1780
	cpu->last_sample_time = cpu->sample.time;
1781
	cpu->sample.time = time;
1782 1783
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1784
	cpu->sample.tsc =  tsc;
1785 1786
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1787
	cpu->sample.tsc -= cpu->prev_tsc;
1788

1789 1790
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1791
	cpu->prev_tsc = tsc;
1792 1793 1794 1795 1796 1797 1798 1799
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1800 1801
}

1802 1803
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1804 1805
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1806 1807
}

1808 1809
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1810 1811
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1812 1813
}

1814 1815 1816
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1817
	int32_t busy_frac, boost;
1818
	int target, avg_pstate;
1819

1820
	busy_frac = div_fp(sample->mperf, sample->tsc);
1821

1822 1823
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1824

1825 1826
	if (busy_frac < boost)
		busy_frac = boost;
1827

1828
	sample->busy_scaled = busy_frac * 100;
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848

	target = limits->no_turbo || limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1849 1850
}

1851
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1852
{
1853
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1854
	u64 duration_ns;
1855

1856
	/*
1857 1858 1859 1860 1861
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1862
	 */
1863 1864
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1865
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1866
			       div_fp(100 * max_pstate, current_pstate));
1867

1868
	/*
1869 1870 1871
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1872
	 * enough period of time to adjust our performance metric.
1873
	 */
1874
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1875
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1876
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1877
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1878 1879 1880
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1881
			perf_scaled = 0;
1882 1883
	}

1884 1885
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1886 1887
}

1888
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1889 1890 1891 1892 1893
{
	int max_perf, min_perf;

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
1894
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1895 1896 1897 1898 1899 1900
	return pstate;
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
	pstate = intel_pstate_prepare_request(cpu, pstate);
1901 1902 1903
	if (pstate == cpu->pstate.current_pstate)
		return;

1904
	cpu->pstate.current_pstate = pstate;
1905 1906 1907
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1908 1909
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1910
	int from, target_pstate;
1911 1912 1913
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1914

1915 1916
	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1917

1918 1919
	update_turbo_state();

1920
	intel_pstate_update_pstate(cpu, target_pstate);
1921 1922

	sample = &cpu->sample;
1923
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1924
		fp_toint(sample->busy_scaled),
1925 1926 1927 1928 1929
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1930 1931
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1932 1933
}

1934
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1935
				     unsigned int flags)
1936
{
1937
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1938 1939
	u64 delta_ns;

1940
	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
		if (flags & SCHED_CPUFREQ_IOWAIT) {
			cpu->iowait_boost = int_tofp(1);
		} else if (cpu->iowait_boost) {
			/* Clear iowait_boost if the CPU may have been idle. */
			delta_ns = time - cpu->last_update;
			if (delta_ns > TICK_NSEC)
				cpu->iowait_boost = 0;
		}
		cpu->last_update = time;
	}
1951

1952
	delta_ns = time - cpu->sample.time;
1953
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1954 1955
		bool sample_taken = intel_pstate_sample(cpu, time);

1956
		if (sample_taken) {
1957
			intel_pstate_calc_avg_perf(cpu);
1958 1959 1960
			if (!hwp_active)
				intel_pstate_adjust_busy_pstate(cpu);
		}
1961
	}
1962 1963 1964
}

#define ICPU(model, policy) \
1965 1966
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1967 1968

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1986
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_params),
1987
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1988 1989 1990 1991
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1992
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1993
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1994 1995
	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
D
Dirk Brandewie 已提交
1996 1997 1998
	{}
};

1999 2000 2001 2002 2003
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
	{}
};

2004 2005 2006 2007
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
		unsigned int size = sizeof(struct cpudata);

		if (per_cpu_limits)
			size += sizeof(struct perf_limits);

		cpu = kzalloc(size, GFP_KERNEL);
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;
		if (per_cpu_limits)
			cpu->perf_limits = (struct perf_limits *)(cpu + 1);

2024 2025 2026
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
2027
	}
2028 2029 2030 2031

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
2032

2033
	if (hwp_active) {
2034 2035 2036 2037 2038 2039
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

2040
		intel_pstate_hwp_enable(cpu);
2041 2042 2043
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
2044

2045
	intel_pstate_get_cpu_pstates(cpu);
2046

2047 2048
	intel_pstate_busy_pid_reset(cpu);

J
Joe Perches 已提交
2049
	pr_debug("controlling: cpu %d\n", cpunum);
2050 2051 2052 2053 2054 2055

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
2056
	struct cpudata *cpu = all_cpu_data[cpu_num];
2057

2058
	return cpu ? get_avg_frequency(cpu) : 0;
2059 2060
}

2061
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2062
{
2063 2064
	struct cpudata *cpu = all_cpu_data[cpu_num];

2065 2066 2067
	if (cpu->update_util_set)
		return;

2068 2069
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
2070 2071
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
2072
	cpu->update_util_set = true;
2073 2074 2075 2076
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
2077 2078 2079 2080 2081
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

2082
	cpufreq_remove_update_util_hook(cpu);
2083
	cpu_data->update_util_set = false;
2084 2085 2086
	synchronize_sched();
}

2087 2088 2089 2090 2091
static void intel_pstate_set_performance_limits(struct perf_limits *limits)
{
	limits->no_turbo = 0;
	limits->turbo_disabled = 0;
	limits->max_perf_pct = 100;
2092
	limits->max_perf = int_ext_tofp(1);
2093
	limits->min_perf_pct = 100;
2094
	limits->min_perf = int_ext_tofp(1);
2095 2096 2097 2098 2099 2100
	limits->max_policy_pct = 100;
	limits->max_sysfs_pct = 100;
	limits->min_policy_pct = 0;
	limits->min_sysfs_pct = 0;
}

2101 2102 2103
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
					    struct perf_limits *limits)
{
2104

2105 2106 2107
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
2108 2109 2110
	if (policy->max == policy->min) {
		limits->min_policy_pct = limits->max_policy_pct;
	} else {
2111 2112
		limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
						      policy->cpuinfo.max_freq);
2113 2114 2115
		limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
						 0, 100);
	}
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);

	/* Make sure min_perf_pct <= max_perf_pct */
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);

2130 2131 2132 2133
	limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
	limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
	limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
	limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
2134 2135 2136 2137 2138

	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
		 limits->max_perf_pct, limits->min_perf_pct);
}

2139 2140
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2141
	struct cpudata *cpu;
2142
	struct perf_limits *perf_limits = NULL;
2143

2144 2145 2146
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2147 2148 2149
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2150
	cpu = all_cpu_data[policy->cpu];
2151 2152
	cpu->policy = policy->policy;

2153 2154 2155 2156 2157
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
2158 2159
	}

2160 2161 2162
	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

2163 2164
	mutex_lock(&intel_pstate_limits_lock);

2165 2166 2167 2168 2169
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
		if (!perf_limits) {
			limits = &performance_limits;
			perf_limits = limits;
		}
2170 2171
		if (policy->max >= policy->cpuinfo.max_freq &&
		    !limits->no_turbo) {
J
Joe Perches 已提交
2172
			pr_debug("set performance\n");
2173
			intel_pstate_set_performance_limits(perf_limits);
2174 2175 2176
			goto out;
		}
	} else {
J
Joe Perches 已提交
2177
		pr_debug("set powersave\n");
2178 2179 2180 2181
		if (!perf_limits) {
			limits = &powersave_limits;
			perf_limits = limits;
		}
2182

2183
	}
2184

2185
	intel_pstate_update_perf_limits(policy, perf_limits);
2186
 out:
2187
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2188 2189 2190 2191 2192 2193 2194 2195
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
	}

2196 2197
	intel_pstate_set_update_util_hook(policy->cpu);

2198
	intel_pstate_hwp_set_policy(policy);
D
Dirk Brandewie 已提交
2199

2200 2201
	mutex_unlock(&intel_pstate_limits_lock);

2202 2203 2204 2205 2206
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct perf_limits *perf_limits;

	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
		perf_limits = &performance_limits;
	else
		perf_limits = &powersave_limits;

	update_turbo_state();
	policy->cpuinfo.max_freq = perf_limits->turbo_disabled ||
					perf_limits->no_turbo ?
					cpu->pstate.max_freq :
					cpu->pstate.turbo_freq;

2221
	cpufreq_verify_within_cpu_limits(policy);
2222

2223
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2224
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2225 2226
		return -EINVAL;

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
	/* When per-CPU limits are used, sysfs limits are not used */
	if (!per_cpu_limits) {
		unsigned int max_freq, min_freq;

		max_freq = policy->cpuinfo.max_freq *
						limits->max_sysfs_pct / 100;
		min_freq = policy->cpuinfo.max_freq *
						limits->min_sysfs_pct / 100;
		cpufreq_verify_within_limits(policy, min_freq, max_freq);
	}

2238 2239 2240
	return 0;
}

2241 2242 2243 2244 2245
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2246
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2247
{
2248
	pr_debug("CPU %d exiting\n", policy->cpu);
2249

2250
	intel_pstate_clear_update_util_hook(policy->cpu);
2251 2252 2253
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2254 2255
		intel_cpufreq_stop_cpu(policy);
}
2256

2257 2258 2259
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2260

2261
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2262

2263
	return 0;
2264 2265
}

2266
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2267 2268
{
	struct cpudata *cpu;
2269
	int rc;
2270 2271 2272 2273 2274 2275 2276

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2277 2278 2279 2280 2281 2282 2283
	/*
	 * We need sane value in the cpu->perf_limits, so inherit from global
	 * perf_limits limits, which are seeded with values based on the
	 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
	 */
	if (per_cpu_limits)
		memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
2284

2285 2286
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2287 2288

	/* cpuinfo and default policy values */
2289
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2290 2291 2292 2293 2294
	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2295
	intel_pstate_init_acpi_perf_limits(policy);
2296 2297
	cpumask_set_cpu(policy->cpu, policy->cpus);

2298 2299
	policy->fast_switch_possible = true;

2300 2301 2302
	return 0;
}

2303
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2304
{
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2315 2316 2317 2318

	return 0;
}

2319
static struct cpufreq_driver intel_pstate = {
2320 2321 2322
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2323
	.suspend	= intel_pstate_hwp_save_state,
2324
	.resume		= intel_pstate_resume,
2325 2326
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
2327
	.exit		= intel_pstate_cpu_exit,
2328
	.stop_cpu	= intel_pstate_stop_cpu,
2329 2330 2331
	.name		= "intel_pstate",
};

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct perf_limits *perf_limits = limits;

	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;

	cpufreq_verify_within_cpu_limits(policy);

	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

2346 2347
	mutex_lock(&intel_pstate_limits_lock);

2348 2349
	intel_pstate_update_perf_limits(policy, perf_limits);

2350 2351
	mutex_unlock(&intel_pstate_limits_lock);

2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
	return 0;
}

static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
					       struct cpufreq_policy *policy,
					       unsigned int target_freq)
{
	unsigned int max_freq;

	update_turbo_state();

	max_freq = limits->no_turbo || limits->turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
	policy->cpuinfo.max_freq = max_freq;
	if (policy->max > max_freq)
		policy->max = max_freq;

	if (target_freq > max_freq)
		target_freq = max_freq;

	return target_freq;
}

static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
	int target_pstate;

	freqs.old = policy->cur;
	freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	int target_pstate;

	target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
	intel_pstate_update_pstate(cpu, target_pstate);
	return target_freq;
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;

2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
}

static int intel_pstate_register_driver(void)
{
	int ret;

	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

	mutex_lock(&intel_pstate_limits_lock);
	driver_registered = true;
	mutex_unlock(&intel_pstate_limits_lock);

	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
		intel_pstate_debug_expose_params();

	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
		intel_pstate_debug_hide_params();

	mutex_lock(&intel_pstate_limits_lock);
	driver_registered = false;
	mutex_unlock(&intel_pstate_limits_lock);

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
	if (!driver_registered)
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
		return driver_registered ?
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
		if (driver_registered) {
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

		intel_pstate_driver = &intel_pstate;
		return intel_pstate_register_driver();
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
		if (driver_registered) {
			if (intel_pstate_driver != &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

		intel_pstate_driver = &intel_cpufreq;
		return intel_pstate_register_driver();
	}

	return -EINVAL;
}

2553 2554 2555
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2556
static unsigned int force_load __initdata;
2557

2558
static int __init intel_pstate_msrs_not_valid(void)
2559
{
2560
	if (!pstate_funcs.get_max() ||
2561 2562
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2563 2564 2565 2566
		return -ENODEV;

	return 0;
}
2567

2568
static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2569 2570
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
2571
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2572 2573 2574 2575 2576 2577 2578
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
#ifdef CONFIG_ACPI
static void intel_pstate_use_acpi_profile(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
		pstate_funcs.get_target_pstate =
				get_target_pstate_use_cpu_load;
}
#else
static void intel_pstate_use_acpi_profile(void)
{
}
#endif

2592
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2593 2594
{
	pstate_funcs.get_max   = funcs->get_max;
2595
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2596 2597
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2598
	pstate_funcs.get_scaling = funcs->get_scaling;
2599
	pstate_funcs.get_val   = funcs->get_val;
2600
	pstate_funcs.get_vid   = funcs->get_vid;
2601 2602
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

2603
	intel_pstate_use_acpi_profile();
2604 2605
}

2606
#ifdef CONFIG_ACPI
2607

2608
static bool __init intel_pstate_no_acpi_pss(void)
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2637
static bool __init intel_pstate_has_acpi_ppc(void)
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2657 2658 2659 2660
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2661
	int  oem_pwr_table;
2662 2663 2664
};

/* Hardware vendor-specific info that has its own power management modes */
2665
static struct hw_vendor_info vendor_info[] __initdata = {
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
2677 2678 2679 2680
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
2681 2682 2683
	{0, "", ""},
};

2684
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2685 2686 2687
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
2688 2689 2690 2691 2692 2693 2694 2695 2696
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2697

2698 2699
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2700 2701 2702
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
2703
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2704 2705 2706 2707 2708 2709
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
2710 2711
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
2712
			}
2713 2714 2715 2716
	}

	return false;
}
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2727 2728
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2729
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2730
static inline void intel_pstate_request_control_from_smm(void) {}
2731 2732
#endif /* CONFIG_ACPI */

2733 2734 2735 2736 2737
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2738 2739 2740
static int __init intel_pstate_init(void)
{
	const struct x86_cpu_id *id;
2741
	struct cpu_defaults *cpu_def;
2742
	int rc = 0;
2743

2744 2745 2746
	if (no_load)
		return -ENODEV;

2747 2748 2749
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
2750
		intel_pstate.attr = hwp_cpufreq_attrs;
2751 2752 2753
		goto hwp_cpu_matched;
	}

2754 2755 2756 2757
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

2758
	cpu_def = (struct cpu_defaults *)id->driver_data;
2759

2760 2761
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
2762

2763 2764 2765
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2766 2767 2768 2769 2770 2771 2772 2773
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2774 2775 2776
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2777
	pr_info("Intel P-state driver initializing\n");
2778

2779
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2780 2781 2782
	if (!all_cpu_data)
		return -ENOMEM;

2783 2784
	intel_pstate_request_control_from_smm();

2785
	intel_pstate_sysfs_expose_params();
2786

2787
	mutex_lock(&intel_pstate_driver_lock);
2788
	rc = intel_pstate_register_driver();
2789
	mutex_unlock(&intel_pstate_driver_lock);
2790 2791
	if (rc)
		return rc;
2792

2793
	if (hwp_active)
J
Joe Perches 已提交
2794
		pr_info("HWP enabled\n");
2795

2796
	return 0;
2797 2798 2799
}
device_initcall(intel_pstate_init);

2800 2801 2802 2803 2804
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2805
	if (!strcmp(str, "disable")) {
2806
		no_load = 1;
2807 2808 2809 2810 2811
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
		intel_pstate_driver = &intel_cpufreq;
		no_hwp = 1;
	}
2812
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2813
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2814
		no_hwp = 1;
2815
	}
2816 2817
	if (!strcmp(str, "force"))
		force_load = 1;
2818 2819
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2820 2821
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2822 2823 2824 2825 2826 2827

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2828 2829 2830 2831
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2832 2833 2834
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");