intel_pstate.c 66.2 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
29
#include <linux/acpi.h>
30
#include <linux/vmalloc.h>
31 32 33 34 35
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
36
#include <asm/cpufeature.h>
37
#include <asm/intel-family.h>
38

39
#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
40

41
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
42
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
43

44 45
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
46
#include <acpi/cppc_acpi.h>
47 48
#endif

49
#define FRAC_BITS 8
50 51
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
52

53 54
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 56
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57

58 59 60 61 62
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

63
static inline int32_t div_fp(s64 x, s64 y)
64
{
65
	return div64_s64((int64_t)x << FRAC_BITS, y);
66 67
}

68 69 70 71 72 73 74 75 76 77 78
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

79 80 81 82 83
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

84 85 86 87 88 89 90 91 92 93
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

94 95 96 97 98
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

99 100
/**
 * struct sample -	Store performance sample
101
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
102 103
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
104
 *			P state. This can be different than core_avg_perf
105 106 107 108 109 110 111 112 113 114 115 116
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
117
struct sample {
118
	int32_t core_avg_perf;
119
	int32_t busy_scaled;
120 121
	u64 aperf;
	u64 mperf;
122
	u64 tsc;
123
	u64 time;
124 125
};

126 127 128 129 130 131 132 133 134 135 136
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
137 138
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
139 140 141
 *
 * Stores the per cpu model P state limits and current P state.
 */
142 143 144 145
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
146
	int	max_pstate_physical;
147
	int	scaling;
148
	int	turbo_pstate;
149 150
	unsigned int max_freq;
	unsigned int turbo_freq;
151 152
};

153 154 155 156 157 158 159 160 161 162 163 164 165
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
166
struct vid_data {
167 168 169
	int min;
	int max;
	int turbo;
170 171 172
	int32_t ratio;
};

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
190 191
};

192 193 194
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
195
 * @policy:		CPUFreq policy value
196
 * @update_util:	CPUFreq utility callback information
197
 * @update_util_set:	CPUFreq utility callback is set
198 199
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
200 201 202
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @last_sample_time:	Last Sample time
203 204 205
 * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
 *			This shift is a multiplier to mperf delta to
 *			calculate CPU busy.
206 207 208 209 210 211
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
212 213
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
214 215
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
216 217 218
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
219
 * @epp_policy:		Last saved policy used to set EPP/EPB
220 221 222 223
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
224 225
 * @hwp_req_cached:	Cached value of the last HWP Request MSR
 * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
226 227
 * @last_io_update:	Last time when IO wake flag was set
 * @sched_flags:	Store scheduler flags for possible cross CPU update
228
 * @hwp_boost_min:	Last HWP boosted min performance
229 230 231
 *
 * This structure stores per CPU instance data for all CPUs.
 */
232 233 234
struct cpudata {
	int cpu;

235
	unsigned int policy;
236
	struct update_util_data update_util;
237
	bool   update_util_set;
238 239

	struct pstate_data pstate;
240
	struct vid_data vid;
241

242
	u64	last_update;
243
	u64	last_sample_time;
244
	u64	aperf_mperf_shift;
245 246
	u64	prev_aperf;
	u64	prev_mperf;
247
	u64	prev_tsc;
248
	u64	prev_cummulative_iowait;
249
	struct sample sample;
250 251
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
252 253 254 255
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
256
	unsigned int iowait_boost;
257
	s16 epp_powersave;
258
	s16 epp_policy;
259 260
	s16 epp_default;
	s16 epp_saved;
261 262
	u64 hwp_req_cached;
	u64 hwp_cap_cached;
263 264
	u64 last_io_update;
	unsigned int sched_flags;
265
	u32 hwp_boost_min;
266 267 268
};

static struct cpudata **all_cpu_data;
269 270 271 272 273 274 275 276 277 278 279 280 281 282

/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
283 284
struct pstate_funcs {
	int (*get_max)(void);
285
	int (*get_max_physical)(void);
286 287
	int (*get_min)(void);
	int (*get_turbo)(void);
288
	int (*get_scaling)(void);
289
	int (*get_aperf_mperf_shift)(void);
290
	u64 (*get_val)(struct cpudata*, int pstate);
291
	void (*get_vid)(struct cpudata *);
292 293
};

294
static struct pstate_funcs pstate_funcs __read_mostly;
295

296
static int hwp_active __read_mostly;
297
static int hwp_mode_bdw __read_mostly;
298
static bool per_cpu_limits __read_mostly;
299
static bool hwp_boost __read_mostly;
300

301
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302

303 304 305
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
306

307
static struct global_params global;
308

309
static DEFINE_MUTEX(intel_pstate_driver_lock);
310 311
static DEFINE_MUTEX(intel_pstate_limits_lock);

312
#ifdef CONFIG_ACPI
313

314
static bool intel_pstate_acpi_pm_profile_server(void)
315 316 317 318 319
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

320 321 322 323 324 325 326 327
	return false;
}

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (intel_pstate_acpi_pm_profile_server())
		return true;

328 329 330
	return acpi_ppc;
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
376 377 378 379 380 381 382 383 384 385 386 387 388

static int intel_pstate_get_cppc_guranteed(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return ret;

	return cppc_perf.guaranteed_perf;
}

389
#else /* CONFIG_ACPI_CPPC_LIB */
390 391 392
static void intel_pstate_set_itmt_prio(int cpu)
{
}
393
#endif /* CONFIG_ACPI_CPPC_LIB */
394

395 396 397 398 399 400
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

401 402
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
403
		return;
404
	}
405

406
	if (!intel_pstate_get_ppc_enable_status())
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
449
	 * correct max turbo frequency based on the turbo state.
450 451
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
452
	if (!global.turbo_disabled)
453 454 455
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
456
	pr_debug("_PPC limits will be enforced\n");
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
475
#else /* CONFIG_ACPI */
476
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
477 478 479
{
}

480
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
481 482
{
}
483 484 485 486 487

static inline bool intel_pstate_acpi_pm_profile_server(void)
{
	return false;
}
488 489 490 491 492 493 494 495
#endif /* CONFIG_ACPI */

#ifndef CONFIG_ACPI_CPPC_LIB
static int intel_pstate_get_cppc_guranteed(int cpu)
{
	return -ENOTSUPP;
}
#endif /* CONFIG_ACPI_CPPC_LIB */
496

497 498 499 500 501 502 503
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
504
	global.turbo_disabled =
505 506 507 508
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

509 510 511
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
512
	int turbo_pstate = cpu->pstate.turbo_pstate;
513

514
	return turbo_pstate ?
515
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
516 517
}

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

537 538 539 540 541 542 543 544 545 546 547
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
548
		epp = (hwp_req_data >> 24) & 0xff;
549
	} else {
550 551
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
552
	}
553 554 555 556

	return epp;
}

557
static int intel_pstate_set_epb(int cpu, s16 pref)
558 559
{
	u64 epb;
560
	int ret;
561 562

	if (!static_cpu_has(X86_FEATURE_EPB))
563
		return -ENXIO;
564

565 566 567
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
568 569 570

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
571 572

	return 0;
573 574
}

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
594 595 596 597 598 599
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
600 601 602 603 604 605 606 607 608 609 610

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
611 612 613 614 615 616 617 618
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
			return 2;
		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
			return 3;
		else
			return 4;
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		if (epp == -EINVAL)
657
			epp = epp_values[pref_index - 1];
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
693
	int ret;
694 695 696 697 698

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

699 700 701
	ret = match_string(energy_perf_strings, -1, str_preference);
	if (ret < 0)
		return ret;
702

703 704
	intel_pstate_set_energy_pref_index(cpu_data, ret);
	return count;
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu;
	u64 cap;
	int ratio;

	ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
	if (ratio <= 0) {
		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
		ratio = HWP_GUARANTEED_PERF(cap);
	}

	cpu = all_cpu_data[policy->cpu];

	return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
}

cpufreq_freq_attr_ro(base_frequency);

741 742 743
static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
744
	&base_frequency,
745 746 747
	NULL,
};

748 749
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
750
{
751
	u64 cap;
752

753
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
754
	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
755
	if (global.no_turbo)
756
		*current_max = HWP_GUARANTEED_PERF(cap);
757
	else
758 759 760 761 762 763 764 765 766 767 768 769 770 771
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
772

773 774
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
775

776
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
777

778 779
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
780

781 782
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
783

784 785
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
786

787
	cpu_data->epp_policy = cpu_data->policy;
788

789 790 791 792 793
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
794

795 796 797 798 799 800
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
801

802 803 804 805 806
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
807

808 809 810 811 812 813 814 815 816 817
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
818

819 820
		epp = cpu_data->epp_powersave;
	}
821
update_epp:
822 823 824 825 826
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
827
	}
828
skip_epp:
829
	WRITE_ONCE(cpu_data->hwp_req_cached, value);
830
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
831
}
D
Dirk Brandewie 已提交
832

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
static void intel_pstate_hwp_force_min_perf(int cpu)
{
	u64 value;
	int min_perf;

	value = all_cpu_data[cpu]->hwp_req_cached;
	value &= ~GENMASK_ULL(31, 0);
	min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);

	/* Set hwp_max = hwp_min */
	value |= HWP_MAX_PERF(min_perf);
	value |= HWP_MIN_PERF(min_perf);

	/* Set EPP/EPB to min */
	if (static_cpu_has(X86_FEATURE_HWP_EPP))
		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
	else
		intel_pstate_set_epb(cpu, HWP_EPP_BALANCE_POWERSAVE);

	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
}

855 856 857 858 859 860 861 862 863 864 865 866
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

867 868
static void intel_pstate_hwp_enable(struct cpudata *cpudata);

869 870 871 872 873
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

874 875
	mutex_lock(&intel_pstate_limits_lock);

876 877 878
	if (policy->cpu == 0)
		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);

879
	all_cpu_data[policy->cpu]->epp_policy = 0;
880
	intel_pstate_hwp_set(policy->cpu);
881 882 883

	mutex_unlock(&intel_pstate_limits_lock);

884
	return 0;
885 886
}

887
static void intel_pstate_update_policies(void)
888
{
889 890 891 892
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
893 894
}

895 896 897
/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
898
	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
899
	{								\
900
		return sprintf(buf, "%u\n", global.object);		\
901 902
	}

903 904 905 906
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
907
			   struct kobj_attribute *attr, char *buf)
908 909 910 911 912 913 914 915 916 917
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

918
static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
919 920 921 922 923 924 925 926 927 928 929 930
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

931
static ssize_t show_turbo_pct(struct kobject *kobj,
932
				struct kobj_attribute *attr, char *buf)
933 934 935 936 937
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

938 939
	mutex_lock(&intel_pstate_driver_lock);

940
	if (!intel_pstate_driver) {
941 942 943 944
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

945 946 947 948
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
949
	turbo_fp = div_fp(no_turbo, total);
950
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
951 952 953

	mutex_unlock(&intel_pstate_driver_lock);

954 955 956
	return sprintf(buf, "%u\n", turbo_pct);
}

957
static ssize_t show_num_pstates(struct kobject *kobj,
958
				struct kobj_attribute *attr, char *buf)
959 960 961 962
{
	struct cpudata *cpu;
	int total;

963 964
	mutex_lock(&intel_pstate_driver_lock);

965
	if (!intel_pstate_driver) {
966 967 968 969
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

970 971
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
972 973 974

	mutex_unlock(&intel_pstate_driver_lock);

975 976 977
	return sprintf(buf, "%u\n", total);
}

978
static ssize_t show_no_turbo(struct kobject *kobj,
979
			     struct kobj_attribute *attr, char *buf)
980 981 982
{
	ssize_t ret;

983 984
	mutex_lock(&intel_pstate_driver_lock);

985
	if (!intel_pstate_driver) {
986 987 988 989
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

990
	update_turbo_state();
991 992
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
993
	else
994
		ret = sprintf(buf, "%u\n", global.no_turbo);
995

996 997
	mutex_unlock(&intel_pstate_driver_lock);

998 999 1000
	return ret;
}

1001
static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1002
			      const char *buf, size_t count)
1003 1004 1005
{
	unsigned int input;
	int ret;
1006

1007 1008 1009
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1010

1011 1012
	mutex_lock(&intel_pstate_driver_lock);

1013
	if (!intel_pstate_driver) {
1014 1015 1016 1017
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1018 1019
	mutex_lock(&intel_pstate_limits_lock);

1020
	update_turbo_state();
1021
	if (global.turbo_disabled) {
J
Joe Perches 已提交
1022
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1023
		mutex_unlock(&intel_pstate_limits_lock);
1024
		mutex_unlock(&intel_pstate_driver_lock);
1025
		return -EPERM;
1026
	}
D
Dirk Brandewie 已提交
1027

1028
	global.no_turbo = clamp_t(int, input, 0, 1);
1029

1030 1031 1032 1033 1034 1035 1036 1037 1038
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1039 1040
	mutex_unlock(&intel_pstate_limits_lock);

1041 1042
	intel_pstate_update_policies();

1043 1044
	mutex_unlock(&intel_pstate_driver_lock);

1045 1046 1047
	return count;
}

1048
static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1049
				  const char *buf, size_t count)
1050 1051 1052
{
	unsigned int input;
	int ret;
1053

1054 1055 1056 1057
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1058 1059
	mutex_lock(&intel_pstate_driver_lock);

1060
	if (!intel_pstate_driver) {
1061 1062 1063 1064
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1065 1066
	mutex_lock(&intel_pstate_limits_lock);

1067
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1068

1069 1070
	mutex_unlock(&intel_pstate_limits_lock);

1071 1072
	intel_pstate_update_policies();

1073 1074
	mutex_unlock(&intel_pstate_driver_lock);

1075 1076 1077
	return count;
}

1078
static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1079
				  const char *buf, size_t count)
1080 1081 1082
{
	unsigned int input;
	int ret;
1083

1084 1085 1086
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1087

1088 1089
	mutex_lock(&intel_pstate_driver_lock);

1090
	if (!intel_pstate_driver) {
1091 1092 1093 1094
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1095 1096
	mutex_lock(&intel_pstate_limits_lock);

1097 1098
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1099

1100 1101
	mutex_unlock(&intel_pstate_limits_lock);

1102 1103
	intel_pstate_update_policies();

1104 1105
	mutex_unlock(&intel_pstate_driver_lock);

1106 1107 1108
	return count;
}

1109
static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1110
				struct kobj_attribute *attr, char *buf)
1111 1112 1113 1114
{
	return sprintf(buf, "%u\n", hwp_boost);
}

1115 1116
static ssize_t store_hwp_dynamic_boost(struct kobject *a,
				       struct kobj_attribute *b,
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
				       const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = kstrtouint(buf, 10, &input);
	if (ret)
		return ret;

	mutex_lock(&intel_pstate_driver_lock);
	hwp_boost = !!input;
	intel_pstate_update_policies();
	mutex_unlock(&intel_pstate_driver_lock);

	return count;
}

1134 1135 1136
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1137
define_one_global_rw(status);
1138 1139 1140
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1141
define_one_global_ro(turbo_pct);
1142
define_one_global_ro(num_pstates);
1143
define_one_global_rw(hwp_dynamic_boost);
1144 1145

static struct attribute *intel_pstate_attributes[] = {
1146
	&status.attr,
1147
	&no_turbo.attr,
1148
	&turbo_pct.attr,
1149
	&num_pstates.attr,
1150 1151 1152
	NULL
};

1153
static const struct attribute_group intel_pstate_attr_group = {
1154 1155 1156
	.attrs = intel_pstate_attributes,
};

1157
static void __init intel_pstate_sysfs_expose_params(void)
1158
{
1159
	struct kobject *intel_pstate_kobject;
1160 1161 1162 1163
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1164 1165 1166
	if (WARN_ON(!intel_pstate_kobject))
		return;

1167
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1184 1185 1186 1187 1188
	if (hwp_active) {
		rc = sysfs_create_file(intel_pstate_kobject,
				       &hwp_dynamic_boost.attr);
		WARN_ON(rc);
	}
1189 1190
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1191

1192
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1193
{
1194
	/* First disable HWP notification interrupt as we don't process them */
1195 1196
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1197

1198
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1199
	cpudata->epp_policy = 0;
1200 1201
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1202 1203
}

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1223
static int atom_get_min_pstate(void)
1224 1225
{
	u64 value;
1226

1227
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1228
	return (value >> 8) & 0x7F;
1229 1230
}

1231
static int atom_get_max_pstate(void)
1232 1233
{
	u64 value;
1234

1235
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1236
	return (value >> 16) & 0x7F;
1237
}
1238

1239
static int atom_get_turbo_pstate(void)
1240 1241
{
	u64 value;
1242

1243
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1244
	return value & 0x7F;
1245 1246
}

1247
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1248 1249 1250 1251 1252
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1253
	val = (u64)pstate << 8;
1254
	if (global.no_turbo && !global.turbo_disabled)
1255 1256 1257 1258 1259 1260 1261
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1262
	vid = ceiling_fp(vid_fp);
1263

1264 1265 1266
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1267
	return val | vid;
1268 1269
}

1270
static int silvermont_get_scaling(void)
1271 1272 1273
{
	u64 value;
	int i;
1274 1275 1276
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1277 1278

	rdmsrl(MSR_FSB_FREQ, value);
1279 1280
	i = value & 0x7;
	WARN_ON(i > 4);
1281

1282 1283
	return silvermont_freq_table[i];
}
1284

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1299 1300
}

1301
static void atom_get_vid(struct cpudata *cpudata)
1302 1303 1304
{
	u64 value;

1305
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1306 1307
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1308 1309 1310 1311
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1312

1313
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1314
	cpudata->vid.turbo = value & 0x7f;
1315 1316
}

1317
static int core_get_min_pstate(void)
1318 1319
{
	u64 value;
1320

1321
	rdmsrl(MSR_PLATFORM_INFO, value);
1322 1323 1324
	return (value >> 40) & 0xFF;
}

1325
static int core_get_max_pstate_physical(void)
1326 1327
{
	u64 value;
1328

1329
	rdmsrl(MSR_PLATFORM_INFO, value);
1330 1331 1332
	return (value >> 8) & 0xFF;
}

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1366
static int core_get_max_pstate(void)
1367
{
1368 1369 1370
	u64 tar;
	u64 plat_info;
	int max_pstate;
1371
	int tdp_ratio;
1372 1373 1374 1375 1376
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1377 1378 1379 1380 1381 1382 1383 1384 1385
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1386 1387
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1388 1389
		int tar_levels;

1390
		/* Do some sanity checking for safety */
1391 1392 1393 1394
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1395 1396
		}
	}
1397

1398
	return max_pstate;
1399 1400
}

1401
static int core_get_turbo_pstate(void)
1402 1403 1404
{
	u64 value;
	int nont, ret;
1405

1406
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1407
	nont = core_get_max_pstate();
1408
	ret = (value) & 255;
1409 1410 1411 1412 1413
	if (ret <= nont)
		ret = nont;
	return ret;
}

1414 1415 1416 1417 1418
static inline int core_get_scaling(void)
{
	return 100000;
}

1419
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1420 1421 1422
{
	u64 val;

1423
	val = (u64)pstate << 8;
1424
	if (global.no_turbo && !global.turbo_disabled)
1425 1426
		val |= (u64)1 << 32;

1427
	return val;
1428 1429
}

1430 1431 1432 1433 1434
static int knl_get_aperf_mperf_shift(void)
{
	return 10;
}

1435 1436 1437 1438 1439
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1440
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1441 1442 1443 1444 1445 1446 1447
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1448
static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1449
{
1450 1451
	return global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1452 1453
}

1454
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1455
{
1456 1457
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1458 1459 1460 1461 1462 1463 1464
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1465 1466
}

1467 1468 1469 1470 1471 1472 1473
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1474
	int pstate;
1475 1476

	update_turbo_state();
1477
	pstate = intel_pstate_get_base_pstate(cpu);
1478
	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1479
	intel_pstate_set_pstate(cpu, pstate);
1480 1481
}

1482 1483
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1484 1485
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1486
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1487
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1488
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1489
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1490 1491 1492 1493 1494 1495 1496 1497 1498

	if (hwp_active && !hwp_mode_bdw) {
		unsigned int phy_max, current_max;

		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
	} else {
		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
	}
1499

1500 1501 1502
	if (pstate_funcs.get_aperf_mperf_shift)
		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();

1503 1504
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1505 1506

	intel_pstate_set_min_pstate(cpu);
1507 1508
}

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
/*
 * Long hold time will keep high perf limits for long time,
 * which negatively impacts perf/watt for some workloads,
 * like specpower. 3ms is based on experiements on some
 * workoads.
 */
static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;

static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
{
	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
	u32 max_limit = (hwp_req & 0xff00) >> 8;
	u32 min_limit = (hwp_req & 0xff);
	u32 boost_level1;

	/*
	 * Cases to consider (User changes via sysfs or boot time):
	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
	 *	No boost, return.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
	 *     Should result in one level boost only for P0.
	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
	 *     Should result in two level boost:
	 *         (min + p1)/2 and P1.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
	 *     Should result in three level boost:
	 *        (min + p1)/2, P1 and P0.
	 */

	/* If max and min are equal or already at max, nothing to boost */
	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
		return;

	if (!cpu->hwp_boost_min)
		cpu->hwp_boost_min = min_limit;

	/* level at half way mark between min and guranteed */
	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;

	if (cpu->hwp_boost_min < boost_level1)
		cpu->hwp_boost_min = boost_level1;
	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = max_limit;
	else
		return;

	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
	wrmsrl(MSR_HWP_REQUEST, hwp_req);
	cpu->last_update = cpu->sample.time;
}

static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
{
	if (cpu->hwp_boost_min) {
		bool expired;

		/* Check if we are idle for hold time to boost down */
		expired = time_after64(cpu->sample.time, cpu->last_update +
				       hwp_boost_hold_time_ns);
		if (expired) {
			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
			cpu->hwp_boost_min = 0;
		}
	}
	cpu->last_update = cpu->sample.time;
}

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
						      u64 time)
{
	cpu->sample.time = time;

	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
		bool do_io = false;

		cpu->sched_flags = 0;
		/*
		 * Set iowait_boost flag and update time. Since IO WAIT flag
		 * is set all the time, we can't just conclude that there is
		 * some IO bound activity is scheduled on this CPU with just
		 * one occurrence. If we receive at least two in two
		 * consecutive ticks, then we treat as boost candidate.
		 */
		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
			do_io = true;

		cpu->last_io_update = time;

		if (do_io)
			intel_pstate_hwp_boost_up(cpu);

	} else {
		intel_pstate_hwp_boost_down(cpu);
	}
}

1608 1609 1610
static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
						u64 time, unsigned int flags)
{
1611 1612 1613 1614 1615 1616
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);

	cpu->sched_flags |= flags;

	if (smp_processor_id() == cpu->cpu)
		intel_pstate_update_util_hwp_local(cpu, time);
1617 1618
}

1619
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1620
{
1621
	struct sample *sample = &cpu->sample;
1622

1623
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1624 1625
}

1626
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1627 1628
{
	u64 aperf, mperf;
1629
	unsigned long flags;
1630
	u64 tsc;
1631

1632
	local_irq_save(flags);
1633 1634
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1635
	tsc = rdtsc();
1636
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1637
		local_irq_restore(flags);
1638
		return false;
1639
	}
1640
	local_irq_restore(flags);
1641

1642
	cpu->last_sample_time = cpu->sample.time;
1643
	cpu->sample.time = time;
1644 1645
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1646
	cpu->sample.tsc =  tsc;
1647 1648
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1649
	cpu->sample.tsc -= cpu->prev_tsc;
1650

1651 1652
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1653
	cpu->prev_tsc = tsc;
1654 1655 1656 1657 1658 1659 1660
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1661 1662 1663 1664 1665
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1666 1667
}

1668 1669
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1670
	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1671 1672
}

1673 1674
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1675 1676
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1677 1678
}

1679
static inline int32_t get_target_pstate(struct cpudata *cpu)
1680 1681
{
	struct sample *sample = &cpu->sample;
1682
	int32_t busy_frac, boost;
1683
	int target, avg_pstate;
1684

1685 1686
	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
			   sample->tsc);
1687

1688 1689
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1690

1691 1692
	if (busy_frac < boost)
		busy_frac = boost;
1693

1694
	sample->busy_scaled = busy_frac * 100;
1695

1696
	target = global.no_turbo || global.turbo_disabled ?
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1715 1716
}

1717
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1718
{
1719 1720
	int max_pstate = intel_pstate_get_base_pstate(cpu);
	int min_pstate;
1721

1722 1723
	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1724
	return clamp_t(int, pstate, min_pstate, max_pstate);
1725 1726 1727 1728
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1729 1730 1731
	if (pstate == cpu->pstate.current_pstate)
		return;

1732
	cpu->pstate.current_pstate = pstate;
1733 1734 1735
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1736
static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1737
{
1738
	int from = cpu->pstate.current_pstate;
1739
	struct sample *sample;
1740
	int target_pstate;
1741

1742 1743
	update_turbo_state();

1744
	target_pstate = get_target_pstate(cpu);
1745 1746
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1747
	intel_pstate_update_pstate(cpu, target_pstate);
1748 1749

	sample = &cpu->sample;
1750
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1751
		fp_toint(sample->busy_scaled),
1752 1753 1754 1755 1756
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1757 1758
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1759 1760
}

1761
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1762
				     unsigned int flags)
1763
{
1764
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1765 1766
	u64 delta_ns;

1767 1768 1769 1770
	/* Don't allow remote callbacks */
	if (smp_processor_id() != cpu->cpu)
		return;

1771 1772
	if (flags & SCHED_CPUFREQ_IOWAIT) {
		cpu->iowait_boost = int_tofp(1);
1773 1774 1775 1776 1777 1778 1779 1780 1781
		cpu->last_update = time;
		/*
		 * The last time the busy was 100% so P-state was max anyway
		 * so avoid overhead of computation.
		 */
		if (fp_toint(cpu->sample.busy_scaled) == 100)
			return;

		goto set_pstate;
1782 1783 1784 1785 1786
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		delta_ns = time - cpu->last_update;
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1787
	}
1788
	cpu->last_update = time;
1789
	delta_ns = time - cpu->sample.time;
1790
	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1791
		return;
1792

1793
set_pstate:
1794 1795
	if (intel_pstate_sample(cpu, time))
		intel_pstate_adjust_pstate(cpu);
1796
}
1797

1798 1799 1800 1801 1802 1803 1804
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1805 1806
};

1807 1808 1809 1810 1811 1812 1813 1814
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
1815 1816
};

1817 1818 1819 1820 1821 1822 1823 1824
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
1825 1826
};

1827 1828 1829 1830 1831
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
1832
	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1833 1834
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1835 1836
};

1837
#define ICPU(model, policy) \
1838 1839
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1840 1841

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1842 1843
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
1844
	ICPU(INTEL_FAM6_ATOM_SILVERMONT,	silvermont_funcs),
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1860
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		core_funcs),
1861
	ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS,     core_funcs),
1862
	ICPU(INTEL_FAM6_SKYLAKE_X,		core_funcs),
1863 1864 1865 1866
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1867
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1868 1869 1870
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
D
Dirk Brandewie 已提交
1871 1872 1873
	{}
};

1874
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1875
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1876 1877 1878
	{}
};

1879 1880 1881 1882 1883 1884
static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
	{}
};

1885 1886 1887 1888
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1889 1890 1891
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1892
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1893 1894 1895 1896 1897
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1898 1899 1900
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1901
	}
1902 1903 1904 1905

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1906

1907
	if (hwp_active) {
1908 1909 1910 1911 1912 1913
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1914
		intel_pstate_hwp_enable(cpu);
1915 1916

		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1917
		if (id && intel_pstate_acpi_pm_profile_server())
1918
			hwp_boost = true;
1919
	}
1920

1921
	intel_pstate_get_cpu_pstates(cpu);
1922

J
Joe Perches 已提交
1923
	pr_debug("controlling: cpu %d\n", cpunum);
1924 1925 1926 1927

	return 0;
}

1928
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1929
{
1930 1931
	struct cpudata *cpu = all_cpu_data[cpu_num];

1932
	if (hwp_active && !hwp_boost)
1933 1934
		return;

1935 1936 1937
	if (cpu->update_util_set)
		return;

1938 1939
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1940
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1941 1942 1943
				     (hwp_active ?
				      intel_pstate_update_util_hwp :
				      intel_pstate_update_util));
1944
	cpu->update_util_set = true;
1945 1946 1947 1948
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1949 1950 1951 1952 1953
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1954
	cpufreq_remove_update_util_hook(cpu);
1955
	cpu_data->update_util_set = false;
1956
	synchronize_rcu();
1957 1958
}

1959 1960 1961 1962 1963 1964
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

1965
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1966
					    struct cpudata *cpu)
1967
{
1968
	int max_freq = intel_pstate_get_max_freq(cpu);
1969
	int32_t max_policy_perf, min_policy_perf;
1970
	int max_state, turbo_max;
1971

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
		max_state = intel_pstate_get_base_pstate(cpu);
		turbo_max = cpu->pstate.turbo_pstate;
	}

	max_policy_perf = max_state * policy->max / max_freq;
1985
	if (policy->max == policy->min) {
1986
		min_policy_perf = max_policy_perf;
1987
	} else {
1988
		min_policy_perf = max_state * policy->min / max_freq;
1989 1990
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
1991
	}
1992

1993 1994 1995 1996
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
		 policy->cpu, max_state,
		 min_policy_perf, max_policy_perf);

1997
	/* Normalize user input to [min_perf, max_perf] */
1998
	if (per_cpu_limits) {
1999 2000
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
2001 2002 2003 2004
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
2005 2006
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2007
		global_min = clamp_t(int32_t, global_min, 0, global_max);
2008

2009 2010
		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
			 global_min, global_max);
2011

2012 2013 2014 2015
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2016

2017 2018 2019
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
2020

2021 2022 2023 2024
	}
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
2025 2026
}

2027 2028
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2029 2030
	struct cpudata *cpu;

2031 2032 2033
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2034 2035 2036
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2037
	cpu = all_cpu_data[policy->cpu];
2038 2039
	cpu->policy = policy->policy;

2040 2041
	mutex_lock(&intel_pstate_limits_lock);

2042
	intel_pstate_update_perf_limits(policy, cpu);
2043

2044
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2045 2046 2047 2048 2049 2050
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
2051 2052
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
2053 2054
	}

2055 2056 2057 2058 2059 2060 2061 2062
	if (hwp_active) {
		/*
		 * When hwp_boost was active before and dynamically it
		 * was turned off, in that case we need to clear the
		 * update util hook.
		 */
		if (!hwp_boost)
			intel_pstate_clear_update_util_hook(policy->cpu);
2063
		intel_pstate_hwp_set(policy->cpu);
2064
	}
D
Dirk Brandewie 已提交
2065

2066 2067
	mutex_unlock(&intel_pstate_limits_lock);

2068 2069 2070
	return 0;
}

2071 2072 2073
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
2074 2075
	if (!hwp_active &&
	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2076 2077 2078 2079 2080 2081 2082
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2083 2084
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2085 2086 2087
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2088 2089
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2090

2091
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2092
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2093 2094
		return -EINVAL;

2095 2096
	intel_pstate_adjust_policy_max(policy, cpu);

2097 2098 2099
	return 0;
}

2100 2101 2102 2103 2104
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2105
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2106
{
2107
	pr_debug("CPU %d exiting\n", policy->cpu);
2108

2109
	intel_pstate_clear_update_util_hook(policy->cpu);
2110
	if (hwp_active) {
2111
		intel_pstate_hwp_save_state(policy);
2112 2113
		intel_pstate_hwp_force_min_perf(policy->cpu);
	} else {
2114
		intel_cpufreq_stop_cpu(policy);
2115
	}
2116
}
2117

2118 2119 2120
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2121

2122
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2123

2124
	return 0;
2125 2126
}

2127
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2128 2129
{
	struct cpudata *cpu;
2130
	int rc;
2131 2132 2133 2134 2135 2136 2137

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2138 2139
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
2140

2141 2142
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2143 2144

	/* cpuinfo and default policy values */
2145
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2146
	update_turbo_state();
2147
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2148 2149 2150
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2151 2152 2153 2154 2155 2156 2157 2158 2159
	if (hwp_active) {
		unsigned int max_freq;

		max_freq = global.turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
		if (max_freq < policy->cpuinfo.max_freq)
			policy->cpuinfo.max_freq = max_freq;
	}

2160
	intel_pstate_init_acpi_perf_limits(policy);
2161

2162 2163
	policy->fast_switch_possible = true;

2164 2165 2166
	return 0;
}

2167
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2168
{
2169 2170 2171 2172 2173
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

2174
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2175 2176 2177
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2178 2179 2180 2181

	return 0;
}

2182
static struct cpufreq_driver intel_pstate = {
2183 2184 2185
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2186
	.suspend	= intel_pstate_hwp_save_state,
2187
	.resume		= intel_pstate_resume,
2188
	.init		= intel_pstate_cpu_init,
2189
	.exit		= intel_pstate_cpu_exit,
2190
	.stop_cpu	= intel_pstate_stop_cpu,
2191 2192 2193
	.name		= "intel_pstate",
};

2194 2195 2196 2197 2198
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2199 2200
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2201

2202
	intel_pstate_adjust_policy_max(policy, cpu);
2203

2204 2205
	intel_pstate_update_perf_limits(policy, cpu);

2206 2207 2208
	return 0;
}

2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
/* Use of trace in passive mode:
 *
 * In passive mode the trace core_busy field (also known as the
 * performance field, and lablelled as such on the graphs; also known as
 * core_avg_perf) is not needed and so is re-assigned to indicate if the
 * driver call was via the normal or fast switch path. Various graphs
 * output from the intel_pstate_tracer.py utility that include core_busy
 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
 * so we use 10 to indicate the the normal path through the driver, and
 * 90 to indicate the fast switch path through the driver.
 * The scaled_busy field is not used, and is set to 0.
 */

#define	INTEL_PSTATE_TRACE_TARGET 10
#define	INTEL_PSTATE_TRACE_FAST_SWITCH 90

static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
{
	struct sample *sample;

	if (!trace_pstate_sample_enabled())
		return;

	if (!intel_pstate_sample(cpu, ktime_get()))
		return;

	sample = &cpu->sample;
	trace_pstate_sample(trace_type,
		0,
		old_pstate,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
}

2247 2248 2249 2250 2251 2252
static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
2253
	int target_pstate, old_pstate;
2254

2255 2256
	update_turbo_state();

2257
	freqs.old = policy->cur;
2258
	freqs.new = target_freq;
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2273
	old_pstate = cpu->pstate.current_pstate;
2274 2275 2276 2277 2278
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2279
	freqs.new = target_pstate * cpu->pstate.scaling;
2280
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2281 2282 2283 2284 2285 2286 2287 2288 2289
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
2290
	int target_pstate, old_pstate;
2291

2292 2293
	update_turbo_state();

2294
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2295
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2296
	old_pstate = cpu->pstate.current_pstate;
2297
	intel_pstate_update_pstate(cpu, target_pstate);
2298
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2299
	return target_pstate * cpu->pstate.scaling;
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2310
	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

2328
static struct cpufreq_driver *default_driver = &intel_pstate;
2329

2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2345
	intel_pstate_driver = NULL;
2346 2347
}

2348
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2349 2350 2351
{
	int ret;

2352 2353
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2354

2355
	intel_pstate_driver = driver;
2356 2357 2358 2359 2360 2361
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2362 2363
	global.min_perf_pct = min_perf_pct_min();

2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2380
	if (!intel_pstate_driver)
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2392
		return intel_pstate_driver ?
2393 2394 2395
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2396
		if (intel_pstate_driver) {
2397 2398 2399 2400 2401 2402 2403 2404
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2405
		return intel_pstate_register_driver(&intel_pstate);
2406 2407 2408
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2409
		if (intel_pstate_driver) {
2410
			if (intel_pstate_driver == &intel_cpufreq)
2411 2412 2413 2414 2415 2416 2417
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2418
		return intel_pstate_register_driver(&intel_cpufreq);
2419 2420 2421 2422 2423
	}

	return -EINVAL;
}

2424 2425 2426
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2427
static unsigned int force_load __initdata;
2428

2429
static int __init intel_pstate_msrs_not_valid(void)
2430
{
2431
	if (!pstate_funcs.get_max() ||
2432 2433
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2434 2435 2436 2437
		return -ENODEV;

	return 0;
}
2438

2439
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2440 2441
{
	pstate_funcs.get_max   = funcs->get_max;
2442
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2443 2444
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2445
	pstate_funcs.get_scaling = funcs->get_scaling;
2446
	pstate_funcs.get_val   = funcs->get_val;
2447
	pstate_funcs.get_vid   = funcs->get_vid;
2448
	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2449 2450
}

2451
#ifdef CONFIG_ACPI
2452

2453
static bool __init intel_pstate_no_acpi_pss(void)
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
static bool __init intel_pstate_no_acpi_pcch(void)
{
	acpi_status status;
	acpi_handle handle;

	status = acpi_get_handle(NULL, "\\_SB", &handle);
	if (ACPI_FAILURE(status))
		return true;

	return !acpi_has_method(handle, "PCCH");
}

2494
static bool __init intel_pstate_has_acpi_ppc(void)
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2514
/* Hardware vendor-specific info that has its own power management modes */
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
static struct acpi_platform_list plat_info[] __initdata = {
	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{ } /* End */
2532 2533
};

2534
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2535
{
D
Dirk Brandewie 已提交
2536 2537
	const struct x86_cpu_id *id;
	u64 misc_pwr;
2538
	int idx;
D
Dirk Brandewie 已提交
2539 2540 2541 2542 2543 2544 2545

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2546

2547 2548
	idx = acpi_match_platform_list(plat_info);
	if (idx < 0)
2549 2550
		return false;

2551 2552
	switch (plat_info[idx].data) {
	case PSS:
2553 2554 2555 2556
		if (!intel_pstate_no_acpi_pss())
			return false;

		return intel_pstate_no_acpi_pcch();
2557 2558
	case PPC:
		return intel_pstate_has_acpi_ppc() && !force_load;
2559 2560 2561 2562
	}

	return false;
}
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2573 2574
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2575
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2576
static inline void intel_pstate_request_control_from_smm(void) {}
2577 2578
#endif /* CONFIG_ACPI */

2579 2580 2581 2582 2583
#define INTEL_PSTATE_HWP_BROADWELL	0x01

#define ICPU_HWP(model, hwp_mode) \
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }

2584
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2585 2586 2587
	ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
	ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
	ICPU_HWP(X86_MODEL_ANY, 0),
2588 2589 2590
	{}
};

2591 2592
static int __init intel_pstate_init(void)
{
2593
	const struct x86_cpu_id *id;
2594
	int rc;
2595

2596 2597 2598
	if (no_load)
		return -ENODEV;

2599 2600
	id = x86_match_cpu(hwp_support_ids);
	if (id) {
2601
		copy_cpu_funcs(&core_funcs);
2602
		if (!no_hwp) {
2603
			hwp_active++;
2604
			hwp_mode_bdw = id->driver_data;
2605 2606 2607 2608 2609 2610 2611
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		id = x86_match_cpu(intel_pstate_cpu_ids);
		if (!id)
			return -ENODEV;
2612

2613
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2614
	}
2615

2616 2617 2618
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2619 2620 2621 2622 2623 2624 2625 2626
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2627 2628 2629
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2630
	pr_info("Intel P-state driver initializing\n");
2631

2632
	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2633 2634 2635
	if (!all_cpu_data)
		return -ENOMEM;

2636 2637
	intel_pstate_request_control_from_smm();

2638
	intel_pstate_sysfs_expose_params();
2639

2640
	mutex_lock(&intel_pstate_driver_lock);
2641
	rc = intel_pstate_register_driver(default_driver);
2642
	mutex_unlock(&intel_pstate_driver_lock);
2643 2644
	if (rc)
		return rc;
2645

2646
	if (hwp_active)
J
Joe Perches 已提交
2647
		pr_info("HWP enabled\n");
2648

2649
	return 0;
2650 2651 2652
}
device_initcall(intel_pstate_init);

2653 2654 2655 2656 2657
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2658
	if (!strcmp(str, "disable")) {
2659
		no_load = 1;
2660 2661
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2662
		default_driver = &intel_cpufreq;
2663 2664
		no_hwp = 1;
	}
2665
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2666
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2667
		no_hwp = 1;
2668
	}
2669 2670
	if (!strcmp(str, "force"))
		force_load = 1;
2671 2672
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2673 2674
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2675 2676 2677 2678 2679 2680

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2681 2682 2683 2684
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2685 2686 2687
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");