intel_pstate.c 64.7 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
29
#include <linux/acpi.h>
30
#include <linux/vmalloc.h>
31 32 33 34 35
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
36
#include <asm/cpufeature.h>
37
#include <asm/intel-family.h>
38

39
#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
40

41
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
42
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
43

44 45
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
46
#include <acpi/cppc_acpi.h>
47 48
#endif

49
#define FRAC_BITS 8
50 51
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
52

53 54
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 56
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57

58 59 60 61 62
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

63
static inline int32_t div_fp(s64 x, s64 y)
64
{
65
	return div64_s64((int64_t)x << FRAC_BITS, y);
66 67
}

68 69 70 71 72 73 74 75 76 77 78
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

79 80 81 82 83
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

84 85 86 87 88 89 90 91 92 93
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

94 95 96 97 98
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

99 100
/**
 * struct sample -	Store performance sample
101
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
102 103
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
104
 *			P state. This can be different than core_avg_perf
105 106 107 108 109 110 111 112 113 114 115 116
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
117
struct sample {
118
	int32_t core_avg_perf;
119
	int32_t busy_scaled;
120 121
	u64 aperf;
	u64 mperf;
122
	u64 tsc;
123
	u64 time;
124 125
};

126 127 128 129 130 131 132 133 134 135 136
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
137 138
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
139 140 141
 *
 * Stores the per cpu model P state limits and current P state.
 */
142 143 144 145
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
146
	int	max_pstate_physical;
147
	int	scaling;
148
	int	turbo_pstate;
149 150
	unsigned int max_freq;
	unsigned int turbo_freq;
151 152
};

153 154 155 156 157 158 159 160 161 162 163 164 165
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
166
struct vid_data {
167 168 169
	int min;
	int max;
	int turbo;
170 171 172
	int32_t ratio;
};

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
190 191
};

192 193 194
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
195
 * @policy:		CPUFreq policy value
196
 * @update_util:	CPUFreq utility callback information
197
 * @update_util_set:	CPUFreq utility callback is set
198 199
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
200 201 202
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @last_sample_time:	Last Sample time
203 204 205
 * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
 *			This shift is a multiplier to mperf delta to
 *			calculate CPU busy.
206 207 208 209 210 211
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
212 213
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
214 215
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
216 217 218
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
219
 * @epp_policy:		Last saved policy used to set EPP/EPB
220 221 222 223
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
224 225
 * @hwp_req_cached:	Cached value of the last HWP Request MSR
 * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
226 227
 * @last_io_update:	Last time when IO wake flag was set
 * @sched_flags:	Store scheduler flags for possible cross CPU update
228
 * @hwp_boost_min:	Last HWP boosted min performance
229 230 231
 *
 * This structure stores per CPU instance data for all CPUs.
 */
232 233 234
struct cpudata {
	int cpu;

235
	unsigned int policy;
236
	struct update_util_data update_util;
237
	bool   update_util_set;
238 239

	struct pstate_data pstate;
240
	struct vid_data vid;
241

242
	u64	last_update;
243
	u64	last_sample_time;
244
	u64	aperf_mperf_shift;
245 246
	u64	prev_aperf;
	u64	prev_mperf;
247
	u64	prev_tsc;
248
	u64	prev_cummulative_iowait;
249
	struct sample sample;
250 251
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
252 253 254 255
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
256
	unsigned int iowait_boost;
257
	s16 epp_powersave;
258
	s16 epp_policy;
259 260
	s16 epp_default;
	s16 epp_saved;
261 262
	u64 hwp_req_cached;
	u64 hwp_cap_cached;
263 264
	u64 last_io_update;
	unsigned int sched_flags;
265
	u32 hwp_boost_min;
266 267 268
};

static struct cpudata **all_cpu_data;
269 270 271 272 273 274 275 276 277 278 279 280 281 282

/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
283 284
struct pstate_funcs {
	int (*get_max)(void);
285
	int (*get_max_physical)(void);
286 287
	int (*get_min)(void);
	int (*get_turbo)(void);
288
	int (*get_scaling)(void);
289
	int (*get_aperf_mperf_shift)(void);
290
	u64 (*get_val)(struct cpudata*, int pstate);
291
	void (*get_vid)(struct cpudata *);
292 293
};

294
static struct pstate_funcs pstate_funcs __read_mostly;
295

296
static int hwp_active __read_mostly;
297
static int hwp_mode_bdw __read_mostly;
298
static bool per_cpu_limits __read_mostly;
299
static bool hwp_boost __read_mostly;
300

301
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302

303 304 305
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
306

307
static struct global_params global;
308

309
static DEFINE_MUTEX(intel_pstate_driver_lock);
310 311
static DEFINE_MUTEX(intel_pstate_limits_lock);

312
#ifdef CONFIG_ACPI
313

314
static bool intel_pstate_acpi_pm_profile_server(void)
315 316 317 318 319
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

320 321 322 323 324 325 326 327
	return false;
}

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (intel_pstate_acpi_pm_profile_server())
		return true;

328 329 330
	return acpi_ppc;
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

382 383 384 385 386 387
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

388 389
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
390
		return;
391
	}
392

393
	if (!intel_pstate_get_ppc_enable_status())
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
436
	 * correct max turbo frequency based on the turbo state.
437 438
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
439
	if (!global.turbo_disabled)
440 441 442
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
443
	pr_debug("_PPC limits will be enforced\n");
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
463
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
464 465 466
{
}

467
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
468 469
{
}
470 471 472 473 474

static inline bool intel_pstate_acpi_pm_profile_server(void)
{
	return false;
}
475 476
#endif

477 478 479 480 481 482 483
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
484
	global.turbo_disabled =
485 486 487 488
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

489 490 491
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
492
	int turbo_pstate = cpu->pstate.turbo_pstate;
493

494
	return turbo_pstate ?
495
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
496 497
}

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

517 518 519 520 521 522 523 524 525 526 527
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
528
		epp = (hwp_req_data >> 24) & 0xff;
529
	} else {
530 531
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
532
	}
533 534 535 536

	return epp;
}

537
static int intel_pstate_set_epb(int cpu, s16 pref)
538 539
{
	u64 epb;
540
	int ret;
541 542

	if (!static_cpu_has(X86_FEATURE_EPB))
543
		return -ENXIO;
544

545 546 547
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
548 549 550

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
551 552

	return 0;
553 554
}

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
574 575 576 577 578 579
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
580 581 582 583 584 585 586 587 588 589 590

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
591 592 593 594 595 596 597 598
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
			return 2;
		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
			return 3;
		else
			return 4;
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		if (epp == -EINVAL)
637
			epp = epp_values[pref_index - 1];
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
673
	int ret;
674 675 676 677 678

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

679 680 681
	ret = match_string(energy_perf_strings, -1, str_preference);
	if (ret < 0)
		return ret;
682

683 684
	intel_pstate_set_energy_pref_index(cpu_data, ret);
	return count;
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

708 709
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
710
{
711
	u64 cap;
712

713
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
714
	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
715
	if (global.no_turbo)
716
		*current_max = HWP_GUARANTEED_PERF(cap);
717
	else
718 719 720 721 722 723 724 725 726 727 728 729 730 731
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
732

733 734
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
735

736
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
737

738 739
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
740

741 742
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
743

744 745
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
746

747
	cpu_data->epp_policy = cpu_data->policy;
748

749 750 751 752 753
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
754

755 756 757 758 759 760
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
761

762 763 764 765 766
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
767

768 769 770 771 772 773 774 775 776 777
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
778

779 780
		epp = cpu_data->epp_powersave;
	}
781
update_epp:
782 783 784 785 786
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
787
	}
788
skip_epp:
789
	WRITE_ONCE(cpu_data->hwp_req_cached, value);
790
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
791
}
D
Dirk Brandewie 已提交
792

793 794 795 796 797 798 799 800 801 802 803 804
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

805 806
static void intel_pstate_hwp_enable(struct cpudata *cpudata);

807 808 809 810 811
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

812 813
	mutex_lock(&intel_pstate_limits_lock);

814 815 816
	if (policy->cpu == 0)
		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);

817
	all_cpu_data[policy->cpu]->epp_policy = 0;
818
	intel_pstate_hwp_set(policy->cpu);
819 820 821

	mutex_unlock(&intel_pstate_limits_lock);

822
	return 0;
823 824
}

825
static void intel_pstate_update_policies(void)
826
{
827 828 829 830
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
831 832
}

833 834 835 836 837
/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
838
		return sprintf(buf, "%u\n", global.object);		\
839 840
	}

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

869 870 871 872 873 874 875
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

876 877
	mutex_lock(&intel_pstate_driver_lock);

878
	if (!intel_pstate_driver) {
879 880 881 882
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

883 884 885 886
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
887
	turbo_fp = div_fp(no_turbo, total);
888
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
889 890 891

	mutex_unlock(&intel_pstate_driver_lock);

892 893 894
	return sprintf(buf, "%u\n", turbo_pct);
}

895 896 897 898 899 900
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

901 902
	mutex_lock(&intel_pstate_driver_lock);

903
	if (!intel_pstate_driver) {
904 905 906 907
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

908 909
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
910 911 912

	mutex_unlock(&intel_pstate_driver_lock);

913 914 915
	return sprintf(buf, "%u\n", total);
}

916 917 918 919 920
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

921 922
	mutex_lock(&intel_pstate_driver_lock);

923
	if (!intel_pstate_driver) {
924 925 926 927
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

928
	update_turbo_state();
929 930
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
931
	else
932
		ret = sprintf(buf, "%u\n", global.no_turbo);
933

934 935
	mutex_unlock(&intel_pstate_driver_lock);

936 937 938
	return ret;
}

939
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
940
			      const char *buf, size_t count)
941 942 943
{
	unsigned int input;
	int ret;
944

945 946 947
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
948

949 950
	mutex_lock(&intel_pstate_driver_lock);

951
	if (!intel_pstate_driver) {
952 953 954 955
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

956 957
	mutex_lock(&intel_pstate_limits_lock);

958
	update_turbo_state();
959
	if (global.turbo_disabled) {
J
Joe Perches 已提交
960
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
961
		mutex_unlock(&intel_pstate_limits_lock);
962
		mutex_unlock(&intel_pstate_driver_lock);
963
		return -EPERM;
964
	}
D
Dirk Brandewie 已提交
965

966
	global.no_turbo = clamp_t(int, input, 0, 1);
967

968 969 970 971 972 973 974 975 976
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

977 978
	mutex_unlock(&intel_pstate_limits_lock);

979 980
	intel_pstate_update_policies();

981 982
	mutex_unlock(&intel_pstate_driver_lock);

983 984 985 986
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
987
				  const char *buf, size_t count)
988 989 990
{
	unsigned int input;
	int ret;
991

992 993 994 995
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

996 997
	mutex_lock(&intel_pstate_driver_lock);

998
	if (!intel_pstate_driver) {
999 1000 1001 1002
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1003 1004
	mutex_lock(&intel_pstate_limits_lock);

1005
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1006

1007 1008
	mutex_unlock(&intel_pstate_limits_lock);

1009 1010
	intel_pstate_update_policies();

1011 1012
	mutex_unlock(&intel_pstate_driver_lock);

1013 1014 1015 1016
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1017
				  const char *buf, size_t count)
1018 1019 1020
{
	unsigned int input;
	int ret;
1021

1022 1023 1024
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1025

1026 1027
	mutex_lock(&intel_pstate_driver_lock);

1028
	if (!intel_pstate_driver) {
1029 1030 1031 1032
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1033 1034
	mutex_lock(&intel_pstate_limits_lock);

1035 1036
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1037

1038 1039
	mutex_unlock(&intel_pstate_limits_lock);

1040 1041
	intel_pstate_update_policies();

1042 1043
	mutex_unlock(&intel_pstate_driver_lock);

1044 1045 1046
	return count;
}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	return sprintf(buf, "%u\n", hwp_boost);
}

static ssize_t store_hwp_dynamic_boost(struct kobject *a, struct attribute *b,
				       const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = kstrtouint(buf, 10, &input);
	if (ret)
		return ret;

	mutex_lock(&intel_pstate_driver_lock);
	hwp_boost = !!input;
	intel_pstate_update_policies();
	mutex_unlock(&intel_pstate_driver_lock);

	return count;
}

1071 1072 1073
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1074
define_one_global_rw(status);
1075 1076 1077
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1078
define_one_global_ro(turbo_pct);
1079
define_one_global_ro(num_pstates);
1080
define_one_global_rw(hwp_dynamic_boost);
1081 1082

static struct attribute *intel_pstate_attributes[] = {
1083
	&status.attr,
1084
	&no_turbo.attr,
1085
	&turbo_pct.attr,
1086
	&num_pstates.attr,
1087 1088 1089
	NULL
};

1090
static const struct attribute_group intel_pstate_attr_group = {
1091 1092 1093
	.attrs = intel_pstate_attributes,
};

1094
static void __init intel_pstate_sysfs_expose_params(void)
1095
{
1096
	struct kobject *intel_pstate_kobject;
1097 1098 1099 1100
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1101 1102 1103
	if (WARN_ON(!intel_pstate_kobject))
		return;

1104
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1121 1122 1123 1124 1125
	if (hwp_active) {
		rc = sysfs_create_file(intel_pstate_kobject,
				       &hwp_dynamic_boost.attr);
		WARN_ON(rc);
	}
1126 1127
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1128

1129
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1130
{
1131
	/* First disable HWP notification interrupt as we don't process them */
1132 1133
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1134

1135
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1136
	cpudata->epp_policy = 0;
1137 1138
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1139 1140
}

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1160
static int atom_get_min_pstate(void)
1161 1162
{
	u64 value;
1163

1164
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1165
	return (value >> 8) & 0x7F;
1166 1167
}

1168
static int atom_get_max_pstate(void)
1169 1170
{
	u64 value;
1171

1172
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1173
	return (value >> 16) & 0x7F;
1174
}
1175

1176
static int atom_get_turbo_pstate(void)
1177 1178
{
	u64 value;
1179

1180
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1181
	return value & 0x7F;
1182 1183
}

1184
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1185 1186 1187 1188 1189
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1190
	val = (u64)pstate << 8;
1191
	if (global.no_turbo && !global.turbo_disabled)
1192 1193 1194 1195 1196 1197 1198
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1199
	vid = ceiling_fp(vid_fp);
1200

1201 1202 1203
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1204
	return val | vid;
1205 1206
}

1207
static int silvermont_get_scaling(void)
1208 1209 1210
{
	u64 value;
	int i;
1211 1212 1213
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1214 1215

	rdmsrl(MSR_FSB_FREQ, value);
1216 1217
	i = value & 0x7;
	WARN_ON(i > 4);
1218

1219 1220
	return silvermont_freq_table[i];
}
1221

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1236 1237
}

1238
static void atom_get_vid(struct cpudata *cpudata)
1239 1240 1241
{
	u64 value;

1242
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1243 1244
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1245 1246 1247 1248
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1249

1250
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1251
	cpudata->vid.turbo = value & 0x7f;
1252 1253
}

1254
static int core_get_min_pstate(void)
1255 1256
{
	u64 value;
1257

1258
	rdmsrl(MSR_PLATFORM_INFO, value);
1259 1260 1261
	return (value >> 40) & 0xFF;
}

1262
static int core_get_max_pstate_physical(void)
1263 1264
{
	u64 value;
1265

1266
	rdmsrl(MSR_PLATFORM_INFO, value);
1267 1268 1269
	return (value >> 8) & 0xFF;
}

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1303
static int core_get_max_pstate(void)
1304
{
1305 1306 1307
	u64 tar;
	u64 plat_info;
	int max_pstate;
1308
	int tdp_ratio;
1309 1310 1311 1312 1313
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1314 1315 1316 1317 1318 1319 1320 1321 1322
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1323 1324
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1325 1326
		int tar_levels;

1327
		/* Do some sanity checking for safety */
1328 1329 1330 1331
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1332 1333
		}
	}
1334

1335
	return max_pstate;
1336 1337
}

1338
static int core_get_turbo_pstate(void)
1339 1340 1341
{
	u64 value;
	int nont, ret;
1342

1343
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1344
	nont = core_get_max_pstate();
1345
	ret = (value) & 255;
1346 1347 1348 1349 1350
	if (ret <= nont)
		ret = nont;
	return ret;
}

1351 1352 1353 1354 1355
static inline int core_get_scaling(void)
{
	return 100000;
}

1356
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1357 1358 1359
{
	u64 val;

1360
	val = (u64)pstate << 8;
1361
	if (global.no_turbo && !global.turbo_disabled)
1362 1363
		val |= (u64)1 << 32;

1364
	return val;
1365 1366
}

1367 1368 1369 1370 1371
static int knl_get_aperf_mperf_shift(void)
{
	return 10;
}

1372 1373 1374 1375 1376
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1377
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1378 1379 1380 1381 1382 1383 1384
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1385
static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1386
{
1387 1388
	return global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1389 1390
}

1391
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1392
{
1393 1394
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1395 1396 1397 1398 1399 1400 1401
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1402 1403
}

1404 1405 1406 1407 1408 1409 1410
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1411
	int pstate;
1412 1413

	update_turbo_state();
1414
	pstate = intel_pstate_get_base_pstate(cpu);
1415
	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1416
	intel_pstate_set_pstate(cpu, pstate);
1417 1418
}

1419 1420
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1421 1422
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1423
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1424
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1425
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1426
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1427 1428 1429 1430 1431 1432 1433 1434 1435

	if (hwp_active && !hwp_mode_bdw) {
		unsigned int phy_max, current_max;

		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
	} else {
		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
	}
1436

1437 1438 1439
	if (pstate_funcs.get_aperf_mperf_shift)
		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();

1440 1441
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1442 1443

	intel_pstate_set_min_pstate(cpu);
1444 1445
}

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
/*
 * Long hold time will keep high perf limits for long time,
 * which negatively impacts perf/watt for some workloads,
 * like specpower. 3ms is based on experiements on some
 * workoads.
 */
static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;

static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
{
	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
	u32 max_limit = (hwp_req & 0xff00) >> 8;
	u32 min_limit = (hwp_req & 0xff);
	u32 boost_level1;

	/*
	 * Cases to consider (User changes via sysfs or boot time):
	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
	 *	No boost, return.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
	 *     Should result in one level boost only for P0.
	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
	 *     Should result in two level boost:
	 *         (min + p1)/2 and P1.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
	 *     Should result in three level boost:
	 *        (min + p1)/2, P1 and P0.
	 */

	/* If max and min are equal or already at max, nothing to boost */
	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
		return;

	if (!cpu->hwp_boost_min)
		cpu->hwp_boost_min = min_limit;

	/* level at half way mark between min and guranteed */
	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;

	if (cpu->hwp_boost_min < boost_level1)
		cpu->hwp_boost_min = boost_level1;
	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = max_limit;
	else
		return;

	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
	wrmsrl(MSR_HWP_REQUEST, hwp_req);
	cpu->last_update = cpu->sample.time;
}

static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
{
	if (cpu->hwp_boost_min) {
		bool expired;

		/* Check if we are idle for hold time to boost down */
		expired = time_after64(cpu->sample.time, cpu->last_update +
				       hwp_boost_hold_time_ns);
		if (expired) {
			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
			cpu->hwp_boost_min = 0;
		}
	}
	cpu->last_update = cpu->sample.time;
}

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
						      u64 time)
{
	cpu->sample.time = time;

	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
		bool do_io = false;

		cpu->sched_flags = 0;
		/*
		 * Set iowait_boost flag and update time. Since IO WAIT flag
		 * is set all the time, we can't just conclude that there is
		 * some IO bound activity is scheduled on this CPU with just
		 * one occurrence. If we receive at least two in two
		 * consecutive ticks, then we treat as boost candidate.
		 */
		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
			do_io = true;

		cpu->last_io_update = time;

		if (do_io)
			intel_pstate_hwp_boost_up(cpu);

	} else {
		intel_pstate_hwp_boost_down(cpu);
	}
}

1545 1546 1547
static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
						u64 time, unsigned int flags)
{
1548 1549 1550 1551 1552 1553
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);

	cpu->sched_flags |= flags;

	if (smp_processor_id() == cpu->cpu)
		intel_pstate_update_util_hwp_local(cpu, time);
1554 1555
}

1556
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1557
{
1558
	struct sample *sample = &cpu->sample;
1559

1560
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1561 1562
}

1563
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1564 1565
{
	u64 aperf, mperf;
1566
	unsigned long flags;
1567
	u64 tsc;
1568

1569
	local_irq_save(flags);
1570 1571
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1572
	tsc = rdtsc();
1573
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1574
		local_irq_restore(flags);
1575
		return false;
1576
	}
1577
	local_irq_restore(flags);
1578

1579
	cpu->last_sample_time = cpu->sample.time;
1580
	cpu->sample.time = time;
1581 1582
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1583
	cpu->sample.tsc =  tsc;
1584 1585
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1586
	cpu->sample.tsc -= cpu->prev_tsc;
1587

1588 1589
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1590
	cpu->prev_tsc = tsc;
1591 1592 1593 1594 1595 1596 1597
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1598 1599 1600 1601 1602
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1603 1604
}

1605 1606
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1607
	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1608 1609
}

1610 1611
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1612 1613
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1614 1615
}

1616
static inline int32_t get_target_pstate(struct cpudata *cpu)
1617 1618
{
	struct sample *sample = &cpu->sample;
1619
	int32_t busy_frac, boost;
1620
	int target, avg_pstate;
1621

1622 1623
	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
			   sample->tsc);
1624

1625 1626
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1627

1628 1629
	if (busy_frac < boost)
		busy_frac = boost;
1630

1631
	sample->busy_scaled = busy_frac * 100;
1632

1633
	target = global.no_turbo || global.turbo_disabled ?
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1652 1653
}

1654
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1655
{
1656 1657
	int max_pstate = intel_pstate_get_base_pstate(cpu);
	int min_pstate;
1658

1659 1660
	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1661
	return clamp_t(int, pstate, min_pstate, max_pstate);
1662 1663 1664 1665
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1666 1667 1668
	if (pstate == cpu->pstate.current_pstate)
		return;

1669
	cpu->pstate.current_pstate = pstate;
1670 1671 1672
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1673
static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1674
{
1675
	int from = cpu->pstate.current_pstate;
1676
	struct sample *sample;
1677
	int target_pstate;
1678

1679 1680
	update_turbo_state();

1681
	target_pstate = get_target_pstate(cpu);
1682 1683
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1684
	intel_pstate_update_pstate(cpu, target_pstate);
1685 1686

	sample = &cpu->sample;
1687
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1688
		fp_toint(sample->busy_scaled),
1689 1690 1691 1692 1693
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1694 1695
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1696 1697
}

1698
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1699
				     unsigned int flags)
1700
{
1701
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1702 1703
	u64 delta_ns;

1704 1705 1706 1707
	/* Don't allow remote callbacks */
	if (smp_processor_id() != cpu->cpu)
		return;

1708 1709
	if (flags & SCHED_CPUFREQ_IOWAIT) {
		cpu->iowait_boost = int_tofp(1);
1710 1711 1712 1713 1714 1715 1716 1717 1718
		cpu->last_update = time;
		/*
		 * The last time the busy was 100% so P-state was max anyway
		 * so avoid overhead of computation.
		 */
		if (fp_toint(cpu->sample.busy_scaled) == 100)
			return;

		goto set_pstate;
1719 1720 1721 1722 1723
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		delta_ns = time - cpu->last_update;
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1724
	}
1725
	cpu->last_update = time;
1726
	delta_ns = time - cpu->sample.time;
1727
	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1728
		return;
1729

1730
set_pstate:
1731 1732
	if (intel_pstate_sample(cpu, time))
		intel_pstate_adjust_pstate(cpu);
1733
}
1734

1735 1736 1737 1738 1739 1740 1741
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1742 1743
};

1744 1745 1746 1747 1748 1749 1750 1751
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
1752 1753
};

1754 1755 1756 1757 1758 1759 1760 1761
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
1762 1763
};

1764 1765 1766 1767 1768
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
1769
	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1770 1771
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1772 1773
};

1774
#define ICPU(model, policy) \
1775 1776
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1777 1778

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1797 1798
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       core_funcs),
1799
	ICPU(INTEL_FAM6_SKYLAKE_X,		core_funcs),
1800 1801 1802 1803
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1804
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1805 1806 1807
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
D
Dirk Brandewie 已提交
1808 1809 1810
	{}
};

1811
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1812
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1813 1814 1815
	{}
};

1816 1817 1818 1819 1820 1821
static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
	{}
};

1822 1823 1824 1825
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1826 1827 1828
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1829
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1830 1831 1832 1833 1834
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1835 1836 1837
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1838
	}
1839 1840 1841 1842

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1843

1844
	if (hwp_active) {
1845 1846 1847 1848 1849 1850
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1851
		intel_pstate_hwp_enable(cpu);
1852 1853

		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1854
		if (id && intel_pstate_acpi_pm_profile_server())
1855
			hwp_boost = true;
1856
	}
1857

1858
	intel_pstate_get_cpu_pstates(cpu);
1859

J
Joe Perches 已提交
1860
	pr_debug("controlling: cpu %d\n", cpunum);
1861 1862 1863 1864

	return 0;
}

1865
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1866
{
1867 1868
	struct cpudata *cpu = all_cpu_data[cpu_num];

1869
	if (hwp_active && !hwp_boost)
1870 1871
		return;

1872 1873 1874
	if (cpu->update_util_set)
		return;

1875 1876
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1877
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1878 1879 1880
				     (hwp_active ?
				      intel_pstate_update_util_hwp :
				      intel_pstate_update_util));
1881
	cpu->update_util_set = true;
1882 1883 1884 1885
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1886 1887 1888 1889 1890
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1891
	cpufreq_remove_update_util_hook(cpu);
1892
	cpu_data->update_util_set = false;
1893 1894 1895
	synchronize_sched();
}

1896 1897 1898 1899 1900 1901
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

1902
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1903
					    struct cpudata *cpu)
1904
{
1905
	int max_freq = intel_pstate_get_max_freq(cpu);
1906
	int32_t max_policy_perf, min_policy_perf;
1907
	int max_state, turbo_max;
1908

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
		max_state = intel_pstate_get_base_pstate(cpu);
		turbo_max = cpu->pstate.turbo_pstate;
	}

	max_policy_perf = max_state * policy->max / max_freq;
1922
	if (policy->max == policy->min) {
1923
		min_policy_perf = max_policy_perf;
1924
	} else {
1925
		min_policy_perf = max_state * policy->min / max_freq;
1926 1927
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
1928
	}
1929

1930 1931 1932 1933
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
		 policy->cpu, max_state,
		 min_policy_perf, max_policy_perf);

1934
	/* Normalize user input to [min_perf, max_perf] */
1935
	if (per_cpu_limits) {
1936 1937
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
1938 1939 1940 1941
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
1942 1943
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1944
		global_min = clamp_t(int32_t, global_min, 0, global_max);
1945

1946 1947
		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
			 global_min, global_max);
1948

1949 1950 1951 1952
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1953

1954 1955 1956
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
1957

1958 1959 1960 1961
	}
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
1962 1963
}

1964 1965
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1966 1967
	struct cpudata *cpu;

1968 1969 1970
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1971 1972 1973
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

1974
	cpu = all_cpu_data[policy->cpu];
1975 1976
	cpu->policy = policy->policy;

1977 1978
	mutex_lock(&intel_pstate_limits_lock);

1979
	intel_pstate_update_perf_limits(policy, cpu);
1980

1981
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1982 1983 1984 1985 1986 1987
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
1988 1989
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
1990 1991
	}

1992 1993 1994 1995 1996 1997 1998 1999
	if (hwp_active) {
		/*
		 * When hwp_boost was active before and dynamically it
		 * was turned off, in that case we need to clear the
		 * update util hook.
		 */
		if (!hwp_boost)
			intel_pstate_clear_update_util_hook(policy->cpu);
2000
		intel_pstate_hwp_set(policy->cpu);
2001
	}
D
Dirk Brandewie 已提交
2002

2003 2004
	mutex_unlock(&intel_pstate_limits_lock);

2005 2006 2007
	return 0;
}

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2019 2020
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2021 2022 2023
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2024 2025
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2026

2027
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2028
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2029 2030
		return -EINVAL;

2031 2032
	intel_pstate_adjust_policy_max(policy, cpu);

2033 2034 2035
	return 0;
}

2036 2037 2038 2039 2040
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2041
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2042
{
2043
	pr_debug("CPU %d exiting\n", policy->cpu);
2044

2045
	intel_pstate_clear_update_util_hook(policy->cpu);
2046 2047 2048
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2049 2050
		intel_cpufreq_stop_cpu(policy);
}
2051

2052 2053 2054
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2055

2056
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2057

2058
	return 0;
2059 2060
}

2061
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2062 2063
{
	struct cpudata *cpu;
2064
	int rc;
2065 2066 2067 2068 2069 2070 2071

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2072 2073
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
2074

2075 2076
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2077 2078

	/* cpuinfo and default policy values */
2079
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2080
	update_turbo_state();
2081
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2082 2083 2084
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2085 2086 2087 2088 2089 2090 2091 2092 2093
	if (hwp_active) {
		unsigned int max_freq;

		max_freq = global.turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
		if (max_freq < policy->cpuinfo.max_freq)
			policy->cpuinfo.max_freq = max_freq;
	}

2094
	intel_pstate_init_acpi_perf_limits(policy);
2095

2096 2097
	policy->fast_switch_possible = true;

2098 2099 2100
	return 0;
}

2101
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2102
{
2103 2104 2105 2106 2107
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

2108
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2109 2110 2111
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2112 2113 2114 2115

	return 0;
}

2116
static struct cpufreq_driver intel_pstate = {
2117 2118 2119
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2120
	.suspend	= intel_pstate_hwp_save_state,
2121
	.resume		= intel_pstate_resume,
2122
	.init		= intel_pstate_cpu_init,
2123
	.exit		= intel_pstate_cpu_exit,
2124
	.stop_cpu	= intel_pstate_stop_cpu,
2125 2126 2127
	.name		= "intel_pstate",
};

2128 2129 2130 2131 2132
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2133 2134
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2135

2136
	intel_pstate_adjust_policy_max(policy, cpu);
2137

2138 2139
	intel_pstate_update_perf_limits(policy, cpu);

2140 2141 2142
	return 0;
}

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
/* Use of trace in passive mode:
 *
 * In passive mode the trace core_busy field (also known as the
 * performance field, and lablelled as such on the graphs; also known as
 * core_avg_perf) is not needed and so is re-assigned to indicate if the
 * driver call was via the normal or fast switch path. Various graphs
 * output from the intel_pstate_tracer.py utility that include core_busy
 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
 * so we use 10 to indicate the the normal path through the driver, and
 * 90 to indicate the fast switch path through the driver.
 * The scaled_busy field is not used, and is set to 0.
 */

#define	INTEL_PSTATE_TRACE_TARGET 10
#define	INTEL_PSTATE_TRACE_FAST_SWITCH 90

static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
{
	struct sample *sample;

	if (!trace_pstate_sample_enabled())
		return;

	if (!intel_pstate_sample(cpu, ktime_get()))
		return;

	sample = &cpu->sample;
	trace_pstate_sample(trace_type,
		0,
		old_pstate,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
}

2181 2182 2183 2184 2185 2186
static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
2187
	int target_pstate, old_pstate;
2188

2189 2190
	update_turbo_state();

2191
	freqs.old = policy->cur;
2192
	freqs.new = target_freq;
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2207
	old_pstate = cpu->pstate.current_pstate;
2208 2209 2210 2211 2212
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2213
	freqs.new = target_pstate * cpu->pstate.scaling;
2214
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2215 2216 2217 2218 2219 2220 2221 2222 2223
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
2224
	int target_pstate, old_pstate;
2225

2226 2227
	update_turbo_state();

2228
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2229
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2230
	old_pstate = cpu->pstate.current_pstate;
2231
	intel_pstate_update_pstate(cpu, target_pstate);
2232
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2233
	return target_pstate * cpu->pstate.scaling;
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2244
	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

2262
static struct cpufreq_driver *default_driver = &intel_pstate;
2263

2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2279
	intel_pstate_driver = NULL;
2280 2281
}

2282
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2283 2284 2285
{
	int ret;

2286 2287
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2288

2289
	intel_pstate_driver = driver;
2290 2291 2292 2293 2294 2295
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2296 2297
	global.min_perf_pct = min_perf_pct_min();

2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2314
	if (!intel_pstate_driver)
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2326
		return intel_pstate_driver ?
2327 2328 2329
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2330
		if (intel_pstate_driver) {
2331 2332 2333 2334 2335 2336 2337 2338
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2339
		return intel_pstate_register_driver(&intel_pstate);
2340 2341 2342
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2343
		if (intel_pstate_driver) {
2344
			if (intel_pstate_driver == &intel_cpufreq)
2345 2346 2347 2348 2349 2350 2351
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2352
		return intel_pstate_register_driver(&intel_cpufreq);
2353 2354 2355 2356 2357
	}

	return -EINVAL;
}

2358 2359 2360
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2361
static unsigned int force_load __initdata;
2362

2363
static int __init intel_pstate_msrs_not_valid(void)
2364
{
2365
	if (!pstate_funcs.get_max() ||
2366 2367
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2368 2369 2370 2371
		return -ENODEV;

	return 0;
}
2372

2373
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2374 2375
{
	pstate_funcs.get_max   = funcs->get_max;
2376
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2377 2378
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2379
	pstate_funcs.get_scaling = funcs->get_scaling;
2380
	pstate_funcs.get_val   = funcs->get_val;
2381
	pstate_funcs.get_vid   = funcs->get_vid;
2382
	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2383 2384
}

2385
#ifdef CONFIG_ACPI
2386

2387
static bool __init intel_pstate_no_acpi_pss(void)
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
static bool __init intel_pstate_no_acpi_pcch(void)
{
	acpi_status status;
	acpi_handle handle;

	status = acpi_get_handle(NULL, "\\_SB", &handle);
	if (ACPI_FAILURE(status))
		return true;

	return !acpi_has_method(handle, "PCCH");
}

2428
static bool __init intel_pstate_has_acpi_ppc(void)
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2448
/* Hardware vendor-specific info that has its own power management modes */
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
static struct acpi_platform_list plat_info[] __initdata = {
	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{ } /* End */
2466 2467
};

2468
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2469
{
D
Dirk Brandewie 已提交
2470 2471
	const struct x86_cpu_id *id;
	u64 misc_pwr;
2472
	int idx;
D
Dirk Brandewie 已提交
2473 2474 2475 2476 2477 2478 2479

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2480

2481 2482
	idx = acpi_match_platform_list(plat_info);
	if (idx < 0)
2483 2484
		return false;

2485 2486
	switch (plat_info[idx].data) {
	case PSS:
2487 2488 2489 2490
		if (!intel_pstate_no_acpi_pss())
			return false;

		return intel_pstate_no_acpi_pcch();
2491 2492
	case PPC:
		return intel_pstate_has_acpi_ppc() && !force_load;
2493 2494 2495 2496
	}

	return false;
}
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2507 2508
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2509
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2510
static inline void intel_pstate_request_control_from_smm(void) {}
2511 2512
#endif /* CONFIG_ACPI */

2513 2514 2515 2516 2517
#define INTEL_PSTATE_HWP_BROADWELL	0x01

#define ICPU_HWP(model, hwp_mode) \
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }

2518
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2519 2520 2521
	ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
	ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
	ICPU_HWP(X86_MODEL_ANY, 0),
2522 2523 2524
	{}
};

2525 2526
static int __init intel_pstate_init(void)
{
2527
	const struct x86_cpu_id *id;
2528
	int rc;
2529

2530 2531 2532
	if (no_load)
		return -ENODEV;

2533 2534
	id = x86_match_cpu(hwp_support_ids);
	if (id) {
2535
		copy_cpu_funcs(&core_funcs);
2536
		if (!no_hwp) {
2537
			hwp_active++;
2538
			hwp_mode_bdw = id->driver_data;
2539 2540 2541 2542 2543 2544 2545
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		id = x86_match_cpu(intel_pstate_cpu_ids);
		if (!id)
			return -ENODEV;
2546

2547
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2548
	}
2549

2550 2551 2552
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2553 2554 2555 2556 2557 2558 2559 2560
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2561 2562 2563
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2564
	pr_info("Intel P-state driver initializing\n");
2565

2566
	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2567 2568 2569
	if (!all_cpu_data)
		return -ENOMEM;

2570 2571
	intel_pstate_request_control_from_smm();

2572
	intel_pstate_sysfs_expose_params();
2573

2574
	mutex_lock(&intel_pstate_driver_lock);
2575
	rc = intel_pstate_register_driver(default_driver);
2576
	mutex_unlock(&intel_pstate_driver_lock);
2577 2578
	if (rc)
		return rc;
2579

2580
	if (hwp_active)
J
Joe Perches 已提交
2581
		pr_info("HWP enabled\n");
2582

2583
	return 0;
2584 2585 2586
}
device_initcall(intel_pstate_init);

2587 2588 2589 2590 2591
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2592
	if (!strcmp(str, "disable")) {
2593
		no_load = 1;
2594 2595
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2596
		default_driver = &intel_cpufreq;
2597 2598
		no_hwp = 1;
	}
2599
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2600
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2601
		no_hwp = 1;
2602
	}
2603 2604
	if (!strcmp(str, "force"))
		force_load = 1;
2605 2606
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2607 2608
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2609 2610 2611 2612 2613 2614

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2615 2616 2617 2618
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2619 2620 2621
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");