intel_pstate.c 69.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * intel_pstate.c: Native P state management for Intel processors
4 5 6 7 8
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 */

J
Joe Perches 已提交
9 10
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

11 12 13 14 15 16 17
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
18
#include <linux/sched/cpufreq.h>
19 20 21 22 23 24
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
25
#include <linux/acpi.h>
26
#include <linux/vmalloc.h>
27
#include <linux/pm_qos.h>
28 29 30 31 32
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
33
#include <asm/cpufeature.h>
34
#include <asm/intel-family.h>
35

36
#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
37

38
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
39
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
40

41 42
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
43
#include <acpi/cppc_acpi.h>
44 45
#endif

46
#define FRAC_BITS 8
47 48
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
49

50 51
#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))

52 53
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
54 55
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
56

57 58 59 60 61
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

62
static inline int32_t div_fp(s64 x, s64 y)
63
{
64
	return div64_s64((int64_t)x << FRAC_BITS, y);
65 66
}

67 68 69 70 71 72 73 74 75 76 77
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

78 79 80 81 82
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

83 84 85 86 87 88 89 90 91 92
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

93 94 95 96 97
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

98 99
/**
 * struct sample -	Store performance sample
100
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
101 102
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
103
 *			P state. This can be different than core_avg_perf
104 105 106 107 108 109 110 111 112 113 114 115
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
116
struct sample {
117
	int32_t core_avg_perf;
118
	int32_t busy_scaled;
119 120
	u64 aperf;
	u64 mperf;
121
	u64 tsc;
122
	u64 time;
123 124
};

125 126 127 128 129 130 131 132 133 134 135
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
136 137
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
138 139 140
 *
 * Stores the per cpu model P state limits and current P state.
 */
141 142 143 144
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
145
	int	max_pstate_physical;
146
	int	scaling;
147
	int	turbo_pstate;
148 149
	unsigned int max_freq;
	unsigned int turbo_freq;
150 151
};

152 153 154 155 156 157 158 159 160 161 162 163 164
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
165
struct vid_data {
166 167 168
	int min;
	int max;
	int turbo;
169 170 171
	int32_t ratio;
};

172 173 174
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
175
 * @turbo_disabled:	Whether or not turbo P-states are available at all,
176 177 178
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
179
 * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
180 181 182 183 184 185 186 187
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
188
	bool turbo_disabled_mf;
189 190
	int max_perf_pct;
	int min_perf_pct;
191 192
};

193 194 195
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
196
 * @policy:		CPUFreq policy value
197
 * @update_util:	CPUFreq utility callback information
198
 * @update_util_set:	CPUFreq utility callback is set
199 200
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
201 202 203
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @last_sample_time:	Last Sample time
204 205 206
 * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
 *			This shift is a multiplier to mperf delta to
 *			calculate CPU busy.
207 208 209 210 211 212
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
213 214
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
215 216
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
217 218 219
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
220
 * @epp_policy:		Last saved policy used to set EPP/EPB
221 222 223 224
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
225 226
 * @hwp_req_cached:	Cached value of the last HWP Request MSR
 * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
227 228
 * @last_io_update:	Last time when IO wake flag was set
 * @sched_flags:	Store scheduler flags for possible cross CPU update
229
 * @hwp_boost_min:	Last HWP boosted min performance
230 231 232
 *
 * This structure stores per CPU instance data for all CPUs.
 */
233 234 235
struct cpudata {
	int cpu;

236
	unsigned int policy;
237
	struct update_util_data update_util;
238
	bool   update_util_set;
239 240

	struct pstate_data pstate;
241
	struct vid_data vid;
242

243
	u64	last_update;
244
	u64	last_sample_time;
245
	u64	aperf_mperf_shift;
246 247
	u64	prev_aperf;
	u64	prev_mperf;
248
	u64	prev_tsc;
249
	u64	prev_cummulative_iowait;
250
	struct sample sample;
251 252
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
253 254 255 256
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
257
	unsigned int iowait_boost;
258
	s16 epp_powersave;
259
	s16 epp_policy;
260 261
	s16 epp_default;
	s16 epp_saved;
262 263
	u64 hwp_req_cached;
	u64 hwp_cap_cached;
264 265
	u64 last_io_update;
	unsigned int sched_flags;
266
	u32 hwp_boost_min;
267 268 269
};

static struct cpudata **all_cpu_data;
270 271 272 273 274 275 276 277 278 279 280 281 282 283

/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
284 285
struct pstate_funcs {
	int (*get_max)(void);
286
	int (*get_max_physical)(void);
287 288
	int (*get_min)(void);
	int (*get_turbo)(void);
289
	int (*get_scaling)(void);
290
	int (*get_aperf_mperf_shift)(void);
291
	u64 (*get_val)(struct cpudata*, int pstate);
292
	void (*get_vid)(struct cpudata *);
293 294
};

295
static struct pstate_funcs pstate_funcs __read_mostly;
296

297
static int hwp_active __read_mostly;
298
static int hwp_mode_bdw __read_mostly;
299
static bool per_cpu_limits __read_mostly;
300
static bool hwp_boost __read_mostly;
301

302
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
303

304 305 306
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
307

308
static struct global_params global;
309

310
static DEFINE_MUTEX(intel_pstate_driver_lock);
311 312
static DEFINE_MUTEX(intel_pstate_limits_lock);

313
#ifdef CONFIG_ACPI
314

315
static bool intel_pstate_acpi_pm_profile_server(void)
316 317 318 319 320
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

321 322 323 324 325 326 327 328
	return false;
}

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (intel_pstate_acpi_pm_profile_server())
		return true;

329 330 331
	return acpi_ppc;
}

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
377 378 379 380 381 382 383 384 385 386

static int intel_pstate_get_cppc_guranteed(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return ret;

387 388 389 390
	if (cppc_perf.guaranteed_perf)
		return cppc_perf.guaranteed_perf;

	return cppc_perf.nominal_perf;
391 392
}

393
#else /* CONFIG_ACPI_CPPC_LIB */
394 395 396
static void intel_pstate_set_itmt_prio(int cpu)
{
}
397
#endif /* CONFIG_ACPI_CPPC_LIB */
398

399 400 401 402 403 404
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

405 406
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
407
		return;
408
	}
409

410
	if (!intel_pstate_get_ppc_enable_status())
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
453
	 * correct max turbo frequency based on the turbo state.
454 455
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
456
	if (!global.turbo_disabled)
457 458 459
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
460
	pr_debug("_PPC limits will be enforced\n");
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
479
#else /* CONFIG_ACPI */
480
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
481 482 483
{
}

484
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
485 486
{
}
487 488 489 490 491

static inline bool intel_pstate_acpi_pm_profile_server(void)
{
	return false;
}
492 493 494 495 496 497 498 499
#endif /* CONFIG_ACPI */

#ifndef CONFIG_ACPI_CPPC_LIB
static int intel_pstate_get_cppc_guranteed(int cpu)
{
	return -ENOTSUPP;
}
#endif /* CONFIG_ACPI_CPPC_LIB */
500

501 502 503 504 505 506 507
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
508
	global.turbo_disabled =
509 510 511 512
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

513 514 515
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
516
	int turbo_pstate = cpu->pstate.turbo_pstate;
517

518
	return turbo_pstate ?
519
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
520 521
}

522 523 524 525 526
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

527
	if (!boot_cpu_has(X86_FEATURE_EPB))
528 529 530 531 532 533 534 535 536 537 538 539 540
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

541
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
542 543 544 545 546 547 548 549 550 551
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
552
		epp = (hwp_req_data >> 24) & 0xff;
553
	} else {
554 555
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
556
	}
557 558 559 560

	return epp;
}

561
static int intel_pstate_set_epb(int cpu, s16 pref)
562 563
{
	u64 epb;
564
	int ret;
565

566
	if (!boot_cpu_has(X86_FEATURE_EPB))
567
		return -ENXIO;
568

569 570 571
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
572 573 574

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
575 576

	return 0;
577 578
}

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
598 599 600 601 602 603
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
604 605 606 607 608 609 610 611 612 613

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

614
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
615 616 617 618 619 620 621 622
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
			return 2;
		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
			return 3;
		else
			return 4;
623
	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

651
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
652 653 654 655 656 657 658 659 660
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		if (epp == -EINVAL)
661
			epp = epp_values[pref_index - 1];
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
697
	int ret;
698 699 700 701 702

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

703 704 705
	ret = match_string(energy_perf_strings, -1, str_preference);
	if (ret < 0)
		return ret;
706

707 708
	intel_pstate_set_energy_pref_index(cpu_data, ret);
	return count;
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu;
	u64 cap;
	int ratio;

	ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
	if (ratio <= 0) {
		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
		ratio = HWP_GUARANTEED_PERF(cap);
	}

	cpu = all_cpu_data[policy->cpu];

	return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
}

cpufreq_freq_attr_ro(base_frequency);

745 746 747
static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
748
	&base_frequency,
749 750 751
	NULL,
};

752 753
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
754
{
755
	u64 cap;
756

757
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
758
	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
759
	if (global.no_turbo)
760
		*current_max = HWP_GUARANTEED_PERF(cap);
761
	else
762 763 764 765 766 767 768 769 770 771 772 773 774 775
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
776

777 778
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
779

780
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
781

782 783
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
784

785 786
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
787

788 789
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
790

791
	cpu_data->epp_policy = cpu_data->policy;
792

793 794 795 796 797
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
798

799 800 801 802 803 804
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
805

806 807 808 809 810
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
811

812 813 814 815 816 817 818 819 820 821
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
822

823 824
		epp = cpu_data->epp_powersave;
	}
825
update_epp:
826
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
827 828 829 830
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
831
	}
832
skip_epp:
833
	WRITE_ONCE(cpu_data->hwp_req_cached, value);
834
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
835
}
D
Dirk Brandewie 已提交
836

837 838 839 840 841 842 843 844 845 846 847 848 849
static void intel_pstate_hwp_force_min_perf(int cpu)
{
	u64 value;
	int min_perf;

	value = all_cpu_data[cpu]->hwp_req_cached;
	value &= ~GENMASK_ULL(31, 0);
	min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);

	/* Set hwp_max = hwp_min */
	value |= HWP_MAX_PERF(min_perf);
	value |= HWP_MIN_PERF(min_perf);

850
	/* Set EPP to min */
851
	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
852 853 854 855 856
		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);

	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
}

857 858 859 860 861 862 863 864 865 866 867 868
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

869 870
static void intel_pstate_hwp_enable(struct cpudata *cpudata);

871 872 873 874 875
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

876 877
	mutex_lock(&intel_pstate_limits_lock);

878 879 880
	if (policy->cpu == 0)
		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);

881
	all_cpu_data[policy->cpu]->epp_policy = 0;
882
	intel_pstate_hwp_set(policy->cpu);
883 884 885

	mutex_unlock(&intel_pstate_limits_lock);

886
	return 0;
887 888
}

889
static void intel_pstate_update_policies(void)
890
{
891 892 893 894
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
895 896
}

897 898 899 900 901 902 903 904 905 906 907 908
static void intel_pstate_update_max_freq(unsigned int cpu)
{
	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
	struct cpudata *cpudata;

	if (!policy)
		return;

	cpudata = all_cpu_data[cpu];
	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;

909
	refresh_frequency_limits(policy);
910 911 912 913

	cpufreq_cpu_release(policy);
}

914 915 916 917 918 919 920 921 922
static void intel_pstate_update_limits(unsigned int cpu)
{
	mutex_lock(&intel_pstate_driver_lock);

	update_turbo_state();
	/*
	 * If turbo has been turned on or off globally, policy limits for
	 * all CPUs need to be updated to reflect that.
	 */
923 924 925 926
	if (global.turbo_disabled_mf != global.turbo_disabled) {
		global.turbo_disabled_mf = global.turbo_disabled;
		for_each_possible_cpu(cpu)
			intel_pstate_update_max_freq(cpu);
927 928 929 930 931 932 933
	} else {
		cpufreq_update_policy(cpu);
	}

	mutex_unlock(&intel_pstate_driver_lock);
}

934 935 936
/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
937
	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
938
	{								\
939
		return sprintf(buf, "%u\n", global.object);		\
940 941
	}

942 943 944 945
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
946
			   struct kobj_attribute *attr, char *buf)
947 948 949 950 951 952 953 954 955 956
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

957
static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
958 959 960 961 962 963 964 965 966 967 968 969
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

970
static ssize_t show_turbo_pct(struct kobject *kobj,
971
				struct kobj_attribute *attr, char *buf)
972 973 974 975 976
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

977 978
	mutex_lock(&intel_pstate_driver_lock);

979
	if (!intel_pstate_driver) {
980 981 982 983
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

984 985 986 987
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
988
	turbo_fp = div_fp(no_turbo, total);
989
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
990 991 992

	mutex_unlock(&intel_pstate_driver_lock);

993 994 995
	return sprintf(buf, "%u\n", turbo_pct);
}

996
static ssize_t show_num_pstates(struct kobject *kobj,
997
				struct kobj_attribute *attr, char *buf)
998 999 1000 1001
{
	struct cpudata *cpu;
	int total;

1002 1003
	mutex_lock(&intel_pstate_driver_lock);

1004
	if (!intel_pstate_driver) {
1005 1006 1007 1008
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1009 1010
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1011 1012 1013

	mutex_unlock(&intel_pstate_driver_lock);

1014 1015 1016
	return sprintf(buf, "%u\n", total);
}

1017
static ssize_t show_no_turbo(struct kobject *kobj,
1018
			     struct kobj_attribute *attr, char *buf)
1019 1020 1021
{
	ssize_t ret;

1022 1023
	mutex_lock(&intel_pstate_driver_lock);

1024
	if (!intel_pstate_driver) {
1025 1026 1027 1028
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1029
	update_turbo_state();
1030 1031
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1032
	else
1033
		ret = sprintf(buf, "%u\n", global.no_turbo);
1034

1035 1036
	mutex_unlock(&intel_pstate_driver_lock);

1037 1038 1039
	return ret;
}

1040
static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1041
			      const char *buf, size_t count)
1042 1043 1044
{
	unsigned int input;
	int ret;
1045

1046 1047 1048
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1049

1050 1051
	mutex_lock(&intel_pstate_driver_lock);

1052
	if (!intel_pstate_driver) {
1053 1054 1055 1056
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1057 1058
	mutex_lock(&intel_pstate_limits_lock);

1059
	update_turbo_state();
1060
	if (global.turbo_disabled) {
J
Joe Perches 已提交
1061
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1062
		mutex_unlock(&intel_pstate_limits_lock);
1063
		mutex_unlock(&intel_pstate_driver_lock);
1064
		return -EPERM;
1065
	}
D
Dirk Brandewie 已提交
1066

1067
	global.no_turbo = clamp_t(int, input, 0, 1);
1068

1069 1070 1071 1072 1073 1074 1075 1076 1077
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1078 1079
	mutex_unlock(&intel_pstate_limits_lock);

1080 1081
	intel_pstate_update_policies();

1082 1083
	mutex_unlock(&intel_pstate_driver_lock);

1084 1085 1086
	return count;
}

1087 1088
static struct cpufreq_driver intel_pstate;

1089
static void update_qos_request(enum freq_qos_req_type type)
1090 1091
{
	int max_state, turbo_max, freq, i, perf_pct;
1092
	struct freq_qos_request *req;
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	struct cpufreq_policy *policy;

	for_each_possible_cpu(i) {
		struct cpudata *cpu = all_cpu_data[i];

		policy = cpufreq_cpu_get(i);
		if (!policy)
			continue;

		req = policy->driver_data;
		cpufreq_cpu_put(policy);

		if (!req)
			continue;

		if (hwp_active)
			intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
		else
			turbo_max = cpu->pstate.turbo_pstate;

1113
		if (type == FREQ_QOS_MIN) {
1114 1115 1116 1117 1118 1119 1120 1121 1122
			perf_pct = global.min_perf_pct;
		} else {
			req++;
			perf_pct = global.max_perf_pct;
		}

		freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
		freq *= cpu->pstate.scaling;

1123
		if (freq_qos_update_request(req, freq) < 0)
1124 1125 1126 1127
			pr_warn("Failed to update freq constraint: CPU%d\n", i);
	}
}

1128
static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1129
				  const char *buf, size_t count)
1130 1131 1132
{
	unsigned int input;
	int ret;
1133

1134 1135 1136 1137
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1138 1139
	mutex_lock(&intel_pstate_driver_lock);

1140
	if (!intel_pstate_driver) {
1141 1142 1143 1144
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1145 1146
	mutex_lock(&intel_pstate_limits_lock);

1147
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1148

1149 1150
	mutex_unlock(&intel_pstate_limits_lock);

1151 1152 1153
	if (intel_pstate_driver == &intel_pstate)
		intel_pstate_update_policies();
	else
1154
		update_qos_request(FREQ_QOS_MAX);
1155

1156 1157
	mutex_unlock(&intel_pstate_driver_lock);

1158 1159 1160
	return count;
}

1161
static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1162
				  const char *buf, size_t count)
1163 1164 1165
{
	unsigned int input;
	int ret;
1166

1167 1168 1169
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1170

1171 1172
	mutex_lock(&intel_pstate_driver_lock);

1173
	if (!intel_pstate_driver) {
1174 1175 1176 1177
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1178 1179
	mutex_lock(&intel_pstate_limits_lock);

1180 1181
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1182

1183 1184
	mutex_unlock(&intel_pstate_limits_lock);

1185 1186 1187
	if (intel_pstate_driver == &intel_pstate)
		intel_pstate_update_policies();
	else
1188
		update_qos_request(FREQ_QOS_MIN);
1189

1190 1191
	mutex_unlock(&intel_pstate_driver_lock);

1192 1193 1194
	return count;
}

1195
static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1196
				struct kobj_attribute *attr, char *buf)
1197 1198 1199 1200
{
	return sprintf(buf, "%u\n", hwp_boost);
}

1201 1202
static ssize_t store_hwp_dynamic_boost(struct kobject *a,
				       struct kobj_attribute *b,
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
				       const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = kstrtouint(buf, 10, &input);
	if (ret)
		return ret;

	mutex_lock(&intel_pstate_driver_lock);
	hwp_boost = !!input;
	intel_pstate_update_policies();
	mutex_unlock(&intel_pstate_driver_lock);

	return count;
}

1220 1221 1222
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1223
define_one_global_rw(status);
1224 1225 1226
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1227
define_one_global_ro(turbo_pct);
1228
define_one_global_ro(num_pstates);
1229
define_one_global_rw(hwp_dynamic_boost);
1230 1231

static struct attribute *intel_pstate_attributes[] = {
1232
	&status.attr,
1233
	&no_turbo.attr,
1234
	&turbo_pct.attr,
1235
	&num_pstates.attr,
1236 1237 1238
	NULL
};

1239
static const struct attribute_group intel_pstate_attr_group = {
1240 1241 1242
	.attrs = intel_pstate_attributes,
};

1243
static void __init intel_pstate_sysfs_expose_params(void)
1244
{
1245
	struct kobject *intel_pstate_kobject;
1246 1247 1248 1249
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1250 1251 1252
	if (WARN_ON(!intel_pstate_kobject))
		return;

1253
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1270 1271 1272 1273 1274
	if (hwp_active) {
		rc = sysfs_create_file(intel_pstate_kobject,
				       &hwp_dynamic_boost.attr);
		WARN_ON(rc);
	}
1275 1276
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1277

1278
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1279
{
1280
	/* First disable HWP notification interrupt as we don't process them */
1281
	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1282
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1283

1284
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1285
	cpudata->epp_policy = 0;
1286 1287
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1288 1289
}

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1309
static int atom_get_min_pstate(void)
1310 1311
{
	u64 value;
1312

1313
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1314
	return (value >> 8) & 0x7F;
1315 1316
}

1317
static int atom_get_max_pstate(void)
1318 1319
{
	u64 value;
1320

1321
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1322
	return (value >> 16) & 0x7F;
1323
}
1324

1325
static int atom_get_turbo_pstate(void)
1326 1327
{
	u64 value;
1328

1329
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1330
	return value & 0x7F;
1331 1332
}

1333
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1334 1335 1336 1337 1338
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1339
	val = (u64)pstate << 8;
1340
	if (global.no_turbo && !global.turbo_disabled)
1341 1342 1343 1344 1345 1346 1347
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1348
	vid = ceiling_fp(vid_fp);
1349

1350 1351 1352
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1353
	return val | vid;
1354 1355
}

1356
static int silvermont_get_scaling(void)
1357 1358 1359
{
	u64 value;
	int i;
1360 1361 1362
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1363 1364

	rdmsrl(MSR_FSB_FREQ, value);
1365 1366
	i = value & 0x7;
	WARN_ON(i > 4);
1367

1368 1369
	return silvermont_freq_table[i];
}
1370

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1385 1386
}

1387
static void atom_get_vid(struct cpudata *cpudata)
1388 1389 1390
{
	u64 value;

1391
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1392 1393
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1394 1395 1396 1397
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1398

1399
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1400
	cpudata->vid.turbo = value & 0x7f;
1401 1402
}

1403
static int core_get_min_pstate(void)
1404 1405
{
	u64 value;
1406

1407
	rdmsrl(MSR_PLATFORM_INFO, value);
1408 1409 1410
	return (value >> 40) & 0xFF;
}

1411
static int core_get_max_pstate_physical(void)
1412 1413
{
	u64 value;
1414

1415
	rdmsrl(MSR_PLATFORM_INFO, value);
1416 1417 1418
	return (value >> 8) & 0xFF;
}

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1452
static int core_get_max_pstate(void)
1453
{
1454 1455 1456
	u64 tar;
	u64 plat_info;
	int max_pstate;
1457
	int tdp_ratio;
1458 1459 1460 1461 1462
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1463 1464 1465 1466 1467 1468 1469 1470 1471
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1472 1473
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1474 1475
		int tar_levels;

1476
		/* Do some sanity checking for safety */
1477 1478 1479 1480
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1481 1482
		}
	}
1483

1484
	return max_pstate;
1485 1486
}

1487
static int core_get_turbo_pstate(void)
1488 1489 1490
{
	u64 value;
	int nont, ret;
1491

1492
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1493
	nont = core_get_max_pstate();
1494
	ret = (value) & 255;
1495 1496 1497 1498 1499
	if (ret <= nont)
		ret = nont;
	return ret;
}

1500 1501 1502 1503 1504
static inline int core_get_scaling(void)
{
	return 100000;
}

1505
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1506 1507 1508
{
	u64 val;

1509
	val = (u64)pstate << 8;
1510
	if (global.no_turbo && !global.turbo_disabled)
1511 1512
		val |= (u64)1 << 32;

1513
	return val;
1514 1515
}

1516 1517 1518 1519 1520
static int knl_get_aperf_mperf_shift(void)
{
	return 10;
}

1521 1522 1523 1524 1525
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1526
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1527 1528 1529 1530 1531 1532 1533
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1534
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1535
{
1536 1537
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1538 1539 1540 1541 1542 1543 1544
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1545 1546
}

1547 1548 1549 1550 1551 1552 1553
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1554
	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1555 1556

	update_turbo_state();
1557
	intel_pstate_set_pstate(cpu, pstate);
1558 1559
}

1560 1561
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1562 1563
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1564
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1565
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1566
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1567
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1568 1569 1570 1571 1572 1573 1574 1575 1576

	if (hwp_active && !hwp_mode_bdw) {
		unsigned int phy_max, current_max;

		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
	} else {
		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
	}
1577

1578 1579 1580
	if (pstate_funcs.get_aperf_mperf_shift)
		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();

1581 1582
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1583 1584

	intel_pstate_set_min_pstate(cpu);
1585 1586
}

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
/*
 * Long hold time will keep high perf limits for long time,
 * which negatively impacts perf/watt for some workloads,
 * like specpower. 3ms is based on experiements on some
 * workoads.
 */
static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;

static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
{
	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
	u32 max_limit = (hwp_req & 0xff00) >> 8;
	u32 min_limit = (hwp_req & 0xff);
	u32 boost_level1;

	/*
	 * Cases to consider (User changes via sysfs or boot time):
	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
	 *	No boost, return.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
	 *     Should result in one level boost only for P0.
	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
	 *     Should result in two level boost:
	 *         (min + p1)/2 and P1.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
	 *     Should result in three level boost:
	 *        (min + p1)/2, P1 and P0.
	 */

	/* If max and min are equal or already at max, nothing to boost */
	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
		return;

	if (!cpu->hwp_boost_min)
		cpu->hwp_boost_min = min_limit;

	/* level at half way mark between min and guranteed */
	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;

	if (cpu->hwp_boost_min < boost_level1)
		cpu->hwp_boost_min = boost_level1;
	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = max_limit;
	else
		return;

	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
	wrmsrl(MSR_HWP_REQUEST, hwp_req);
	cpu->last_update = cpu->sample.time;
}

static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
{
	if (cpu->hwp_boost_min) {
		bool expired;

		/* Check if we are idle for hold time to boost down */
		expired = time_after64(cpu->sample.time, cpu->last_update +
				       hwp_boost_hold_time_ns);
		if (expired) {
			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
			cpu->hwp_boost_min = 0;
		}
	}
	cpu->last_update = cpu->sample.time;
}

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
						      u64 time)
{
	cpu->sample.time = time;

	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
		bool do_io = false;

		cpu->sched_flags = 0;
		/*
		 * Set iowait_boost flag and update time. Since IO WAIT flag
		 * is set all the time, we can't just conclude that there is
		 * some IO bound activity is scheduled on this CPU with just
		 * one occurrence. If we receive at least two in two
		 * consecutive ticks, then we treat as boost candidate.
		 */
		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
			do_io = true;

		cpu->last_io_update = time;

		if (do_io)
			intel_pstate_hwp_boost_up(cpu);

	} else {
		intel_pstate_hwp_boost_down(cpu);
	}
}

1686 1687 1688
static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
						u64 time, unsigned int flags)
{
1689 1690 1691 1692 1693 1694
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);

	cpu->sched_flags |= flags;

	if (smp_processor_id() == cpu->cpu)
		intel_pstate_update_util_hwp_local(cpu, time);
1695 1696
}

1697
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1698
{
1699
	struct sample *sample = &cpu->sample;
1700

1701
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1702 1703
}

1704
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1705 1706
{
	u64 aperf, mperf;
1707
	unsigned long flags;
1708
	u64 tsc;
1709

1710
	local_irq_save(flags);
1711 1712
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1713
	tsc = rdtsc();
1714
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1715
		local_irq_restore(flags);
1716
		return false;
1717
	}
1718
	local_irq_restore(flags);
1719

1720
	cpu->last_sample_time = cpu->sample.time;
1721
	cpu->sample.time = time;
1722 1723
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1724
	cpu->sample.tsc =  tsc;
1725 1726
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1727
	cpu->sample.tsc -= cpu->prev_tsc;
1728

1729 1730
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1731
	cpu->prev_tsc = tsc;
1732 1733 1734 1735 1736 1737 1738
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1739 1740 1741 1742 1743
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1744 1745
}

1746 1747
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1748
	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1749 1750
}

1751 1752
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1753 1754
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1755 1756
}

1757
static inline int32_t get_target_pstate(struct cpudata *cpu)
1758 1759
{
	struct sample *sample = &cpu->sample;
1760
	int32_t busy_frac;
1761
	int target, avg_pstate;
1762

1763 1764
	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
			   sample->tsc);
1765

1766 1767
	if (busy_frac < cpu->iowait_boost)
		busy_frac = cpu->iowait_boost;
1768

1769
	sample->busy_scaled = busy_frac * 100;
1770

1771
	target = global.no_turbo || global.turbo_disabled ?
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1790 1791
}

1792
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1793
{
1794 1795
	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1796

1797
	return clamp_t(int, pstate, min_pstate, max_pstate);
1798 1799 1800 1801
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1802 1803 1804
	if (pstate == cpu->pstate.current_pstate)
		return;

1805
	cpu->pstate.current_pstate = pstate;
1806 1807 1808
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1809
static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1810
{
1811
	int from = cpu->pstate.current_pstate;
1812
	struct sample *sample;
1813
	int target_pstate;
1814

1815 1816
	update_turbo_state();

1817
	target_pstate = get_target_pstate(cpu);
1818 1819
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1820
	intel_pstate_update_pstate(cpu, target_pstate);
1821 1822

	sample = &cpu->sample;
1823
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1824
		fp_toint(sample->busy_scaled),
1825 1826 1827 1828 1829
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1830 1831
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1832 1833
}

1834
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1835
				     unsigned int flags)
1836
{
1837
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1838 1839
	u64 delta_ns;

1840 1841 1842 1843
	/* Don't allow remote callbacks */
	if (smp_processor_id() != cpu->cpu)
		return;

1844
	delta_ns = time - cpu->last_update;
1845
	if (flags & SCHED_CPUFREQ_IOWAIT) {
1846 1847 1848
		/* Start over if the CPU may have been idle. */
		if (delta_ns > TICK_NSEC) {
			cpu->iowait_boost = ONE_EIGHTH_FP;
1849
		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1850 1851 1852 1853 1854 1855
			cpu->iowait_boost <<= 1;
			if (cpu->iowait_boost > int_tofp(1))
				cpu->iowait_boost = int_tofp(1);
		} else {
			cpu->iowait_boost = ONE_EIGHTH_FP;
		}
1856 1857 1858 1859
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1860 1861
		else
			cpu->iowait_boost >>= 1;
1862
	}
1863
	cpu->last_update = time;
1864
	delta_ns = time - cpu->sample.time;
1865
	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1866
		return;
1867

1868 1869
	if (intel_pstate_sample(cpu, time))
		intel_pstate_adjust_pstate(cpu);
1870
}
1871

1872 1873 1874 1875 1876 1877 1878
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1879 1880
};

1881 1882 1883 1884 1885 1886 1887 1888
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
1889 1890
};

1891 1892 1893 1894 1895 1896 1897 1898
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
1899 1900
};

1901 1902 1903 1904 1905
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
1906
	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1907 1908
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1909 1910
};

1911 1912 1913
#define X86_MATCH(model, policy)					 \
	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
					   X86_FEATURE_APERFMPERF, &policy)
1914 1915

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
	X86_MATCH(SANDYBRIDGE,		core_funcs),
	X86_MATCH(SANDYBRIDGE_X,	core_funcs),
	X86_MATCH(ATOM_SILVERMONT,	silvermont_funcs),
	X86_MATCH(IVYBRIDGE,		core_funcs),
	X86_MATCH(HASWELL,		core_funcs),
	X86_MATCH(BROADWELL,		core_funcs),
	X86_MATCH(IVYBRIDGE_X,		core_funcs),
	X86_MATCH(HASWELL_X,		core_funcs),
	X86_MATCH(HASWELL_L,		core_funcs),
	X86_MATCH(HASWELL_G,		core_funcs),
	X86_MATCH(BROADWELL_G,		core_funcs),
	X86_MATCH(ATOM_AIRMONT,		airmont_funcs),
	X86_MATCH(SKYLAKE_L,		core_funcs),
	X86_MATCH(BROADWELL_X,		core_funcs),
	X86_MATCH(SKYLAKE,		core_funcs),
	X86_MATCH(BROADWELL_D,		core_funcs),
	X86_MATCH(XEON_PHI_KNL,		knl_funcs),
	X86_MATCH(XEON_PHI_KNM,		knl_funcs),
	X86_MATCH(ATOM_GOLDMONT,	core_funcs),
	X86_MATCH(ATOM_GOLDMONT_PLUS,	core_funcs),
	X86_MATCH(SKYLAKE_X,		core_funcs),
1937 1938 1939 1940
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1941
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1942 1943 1944
	X86_MATCH(BROADWELL_D,		core_funcs),
	X86_MATCH(BROADWELL_X,		core_funcs),
	X86_MATCH(SKYLAKE_X,		core_funcs),
D
Dirk Brandewie 已提交
1945 1946 1947
	{}
};

1948
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1949
	X86_MATCH(KABYLAKE,		core_funcs),
1950 1951 1952
	{}
};

1953
static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1954 1955
	X86_MATCH(SKYLAKE_X,		core_funcs),
	X86_MATCH(SKYLAKE,		core_funcs),
1956 1957 1958
	{}
};

1959 1960 1961 1962
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1963 1964 1965
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1966
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1967 1968 1969 1970 1971
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1972 1973 1974
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1975
	}
1976 1977 1978 1979

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1980

1981
	if (hwp_active) {
1982 1983 1984 1985 1986 1987
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1988
		intel_pstate_hwp_enable(cpu);
1989 1990

		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1991
		if (id && intel_pstate_acpi_pm_profile_server())
1992
			hwp_boost = true;
1993
	}
1994

1995
	intel_pstate_get_cpu_pstates(cpu);
1996

J
Joe Perches 已提交
1997
	pr_debug("controlling: cpu %d\n", cpunum);
1998 1999 2000 2001

	return 0;
}

2002
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2003
{
2004 2005
	struct cpudata *cpu = all_cpu_data[cpu_num];

2006
	if (hwp_active && !hwp_boost)
2007 2008
		return;

2009 2010 2011
	if (cpu->update_util_set)
		return;

2012 2013
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
2014
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2015 2016 2017
				     (hwp_active ?
				      intel_pstate_update_util_hwp :
				      intel_pstate_update_util));
2018
	cpu->update_util_set = true;
2019 2020 2021 2022
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
2023 2024 2025 2026 2027
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

2028
	cpufreq_remove_update_util_hook(cpu);
2029
	cpu_data->update_util_set = false;
2030
	synchronize_rcu();
2031 2032
}

2033 2034 2035 2036 2037 2038
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

2039 2040 2041
static void intel_pstate_update_perf_limits(struct cpudata *cpu,
					    unsigned int policy_min,
					    unsigned int policy_max)
2042
{
2043
	int max_freq = intel_pstate_get_max_freq(cpu);
2044
	int32_t max_policy_perf, min_policy_perf;
2045
	int max_state, turbo_max;
2046

2047 2048 2049 2050 2051 2052 2053 2054
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
2055 2056
		max_state = global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2057 2058 2059
		turbo_max = cpu->pstate.turbo_pstate;
	}

2060 2061
	max_policy_perf = max_state * policy_max / max_freq;
	if (policy_max == policy_min) {
2062
		min_policy_perf = max_policy_perf;
2063
	} else {
2064
		min_policy_perf = max_state * policy_min / max_freq;
2065 2066
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
2067
	}
2068

2069
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2070
		 cpu->cpu, max_state, min_policy_perf, max_policy_perf);
2071

2072
	/* Normalize user input to [min_perf, max_perf] */
2073
	if (per_cpu_limits) {
2074 2075
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
2076 2077 2078 2079
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
2080 2081
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2082
		global_min = clamp_t(int32_t, global_min, 0, global_max);
2083

2084
		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2085
			 global_min, global_max);
2086

2087 2088 2089 2090
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2091

2092 2093 2094
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
2095

2096
	}
2097
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2098 2099
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
2100 2101
}

2102 2103
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2104 2105
	struct cpudata *cpu;

2106 2107 2108
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2109 2110 2111
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2112
	cpu = all_cpu_data[policy->cpu];
2113 2114
	cpu->policy = policy->policy;

2115 2116
	mutex_lock(&intel_pstate_limits_lock);

2117
	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2118

2119
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2120 2121 2122 2123 2124 2125
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
2126 2127
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
2128 2129
	}

2130 2131 2132 2133 2134 2135 2136 2137
	if (hwp_active) {
		/*
		 * When hwp_boost was active before and dynamically it
		 * was turned off, in that case we need to clear the
		 * update util hook.
		 */
		if (!hwp_boost)
			intel_pstate_clear_update_util_hook(policy->cpu);
2138
		intel_pstate_hwp_set(policy->cpu);
2139
	}
D
Dirk Brandewie 已提交
2140

2141 2142
	mutex_unlock(&intel_pstate_limits_lock);

2143 2144 2145
	return 0;
}

2146 2147
static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
					   struct cpufreq_policy_data *policy)
2148
{
2149 2150
	if (!hwp_active &&
	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2151 2152 2153 2154 2155 2156 2157
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2158
static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2159
{
2160 2161 2162
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2163 2164
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2165

2166
	intel_pstate_adjust_policy_max(cpu, policy);
2167

2168 2169 2170
	return 0;
}

2171 2172 2173 2174 2175
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2176
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2177
{
2178
	pr_debug("CPU %d exiting\n", policy->cpu);
2179

2180
	intel_pstate_clear_update_util_hook(policy->cpu);
2181
	if (hwp_active) {
2182
		intel_pstate_hwp_save_state(policy);
2183 2184
		intel_pstate_hwp_force_min_perf(policy->cpu);
	} else {
2185
		intel_cpufreq_stop_cpu(policy);
2186
	}
2187
}
2188

2189 2190 2191
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2192

2193
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2194

2195
	return 0;
2196 2197
}

2198
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2199 2200
{
	struct cpudata *cpu;
2201
	int rc;
2202 2203 2204 2205 2206 2207 2208

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2209 2210
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
2211

2212 2213
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2214 2215

	/* cpuinfo and default policy values */
2216
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2217
	update_turbo_state();
2218
	global.turbo_disabled_mf = global.turbo_disabled;
2219
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2220 2221 2222
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2223 2224 2225 2226 2227 2228 2229 2230 2231
	if (hwp_active) {
		unsigned int max_freq;

		max_freq = global.turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
		if (max_freq < policy->cpuinfo.max_freq)
			policy->cpuinfo.max_freq = max_freq;
	}

2232
	intel_pstate_init_acpi_perf_limits(policy);
2233

2234 2235
	policy->fast_switch_possible = true;

2236 2237 2238
	return 0;
}

2239
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2240
{
2241 2242 2243 2244 2245
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

2246
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2247 2248 2249
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2250 2251 2252 2253

	return 0;
}

2254
static struct cpufreq_driver intel_pstate = {
2255 2256 2257
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2258
	.suspend	= intel_pstate_hwp_save_state,
2259
	.resume		= intel_pstate_resume,
2260
	.init		= intel_pstate_cpu_init,
2261
	.exit		= intel_pstate_cpu_exit,
2262
	.stop_cpu	= intel_pstate_stop_cpu,
2263
	.update_limits	= intel_pstate_update_limits,
2264 2265 2266
	.name		= "intel_pstate",
};

2267
static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2268 2269 2270 2271
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2272 2273
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2274

2275
	intel_pstate_adjust_policy_max(cpu, policy);
2276

2277
	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2278

2279 2280 2281
	return 0;
}

2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
/* Use of trace in passive mode:
 *
 * In passive mode the trace core_busy field (also known as the
 * performance field, and lablelled as such on the graphs; also known as
 * core_avg_perf) is not needed and so is re-assigned to indicate if the
 * driver call was via the normal or fast switch path. Various graphs
 * output from the intel_pstate_tracer.py utility that include core_busy
 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
 * so we use 10 to indicate the the normal path through the driver, and
 * 90 to indicate the fast switch path through the driver.
 * The scaled_busy field is not used, and is set to 0.
 */

#define	INTEL_PSTATE_TRACE_TARGET 10
#define	INTEL_PSTATE_TRACE_FAST_SWITCH 90

static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
{
	struct sample *sample;

	if (!trace_pstate_sample_enabled())
		return;

	if (!intel_pstate_sample(cpu, ktime_get()))
		return;

	sample = &cpu->sample;
	trace_pstate_sample(trace_type,
		0,
		old_pstate,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
}

2320 2321 2322 2323 2324 2325
static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
2326
	int target_pstate, old_pstate;
2327

2328 2329
	update_turbo_state();

2330
	freqs.old = policy->cur;
2331
	freqs.new = target_freq;
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2346
	old_pstate = cpu->pstate.current_pstate;
2347 2348 2349 2350 2351
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2352
	freqs.new = target_pstate * cpu->pstate.scaling;
2353
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2354 2355 2356 2357 2358 2359 2360 2361 2362
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
2363
	int target_pstate, old_pstate;
2364

2365 2366
	update_turbo_state();

2367
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2368
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2369
	old_pstate = cpu->pstate.current_pstate;
2370
	intel_pstate_update_pstate(cpu, target_pstate);
2371
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2372
	return target_pstate * cpu->pstate.scaling;
2373 2374 2375 2376
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
2377
	int max_state, turbo_max, min_freq, max_freq, ret;
2378
	struct freq_qos_request *req;
2379 2380 2381 2382 2383 2384
	struct cpudata *cpu;
	struct device *dev;

	dev = get_cpu_device(policy->cpu);
	if (!dev)
		return -ENODEV;
2385

2386
	ret = __intel_pstate_cpu_init(policy);
2387 2388 2389 2390
	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2391
	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2392 2393 2394
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
	if (!req) {
		ret = -ENOMEM;
		goto pstate_exit;
	}

	cpu = all_cpu_data[policy->cpu];

	if (hwp_active)
		intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
	else
		turbo_max = cpu->pstate.turbo_pstate;

	min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
	min_freq *= cpu->pstate.scaling;
	max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
	max_freq *= cpu->pstate.scaling;

2413 2414
	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
				   min_freq);
2415 2416 2417 2418 2419
	if (ret < 0) {
		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
		goto free_req;
	}

2420 2421
	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
				   max_freq);
2422 2423 2424 2425 2426 2427 2428
	if (ret < 0) {
		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
		goto remove_min_req;
	}

	policy->driver_data = req;

2429
	return 0;
2430 2431

remove_min_req:
2432
	freq_qos_remove_request(req);
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
free_req:
	kfree(req);
pstate_exit:
	intel_pstate_exit_perf_limits(policy);

	return ret;
}

static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
{
2443
	struct freq_qos_request *req;
2444 2445 2446

	req = policy->driver_data;

2447 2448
	freq_qos_remove_request(req + 1);
	freq_qos_remove_request(req);
2449 2450 2451
	kfree(req);

	return intel_pstate_cpu_exit(policy);
2452 2453 2454 2455 2456 2457 2458 2459
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
2460
	.exit		= intel_cpufreq_cpu_exit,
2461
	.stop_cpu	= intel_cpufreq_stop_cpu,
2462
	.update_limits	= intel_pstate_update_limits,
2463 2464 2465
	.name		= "intel_cpufreq",
};

2466
static struct cpufreq_driver *default_driver = &intel_pstate;
2467

2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2483
	intel_pstate_driver = NULL;
2484 2485
}

2486
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2487 2488 2489
{
	int ret;

2490 2491
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2492

2493
	intel_pstate_driver = driver;
2494 2495 2496 2497 2498 2499
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2500 2501
	global.min_perf_pct = min_perf_pct_min();

2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2518
	if (!intel_pstate_driver)
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2530
		return intel_pstate_driver ?
2531 2532 2533
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2534
		if (intel_pstate_driver) {
2535 2536 2537 2538 2539 2540 2541 2542
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2543
		return intel_pstate_register_driver(&intel_pstate);
2544 2545 2546
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2547
		if (intel_pstate_driver) {
2548
			if (intel_pstate_driver == &intel_cpufreq)
2549 2550 2551 2552 2553 2554 2555
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2556
		return intel_pstate_register_driver(&intel_cpufreq);
2557 2558 2559 2560 2561
	}

	return -EINVAL;
}

2562 2563 2564
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2565
static unsigned int force_load __initdata;
2566

2567
static int __init intel_pstate_msrs_not_valid(void)
2568
{
2569
	if (!pstate_funcs.get_max() ||
2570 2571
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2572 2573 2574 2575
		return -ENODEV;

	return 0;
}
2576

2577
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2578 2579
{
	pstate_funcs.get_max   = funcs->get_max;
2580
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2581 2582
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2583
	pstate_funcs.get_scaling = funcs->get_scaling;
2584
	pstate_funcs.get_val   = funcs->get_val;
2585
	pstate_funcs.get_vid   = funcs->get_vid;
2586
	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2587 2588
}

2589
#ifdef CONFIG_ACPI
2590

2591
static bool __init intel_pstate_no_acpi_pss(void)
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

2617
	pr_debug("ACPI _PSS not found\n");
2618 2619 2620
	return true;
}

2621 2622 2623 2624 2625 2626 2627
static bool __init intel_pstate_no_acpi_pcch(void)
{
	acpi_status status;
	acpi_handle handle;

	status = acpi_get_handle(NULL, "\\_SB", &handle);
	if (ACPI_FAILURE(status))
2628 2629 2630 2631
		goto not_found;

	if (acpi_has_method(handle, "PCCH"))
		return false;
2632

2633 2634 2635
not_found:
	pr_debug("ACPI PCCH not found\n");
	return true;
2636 2637
}

2638
static bool __init intel_pstate_has_acpi_ppc(void)
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
2650
	pr_debug("ACPI _PPC not found\n");
2651 2652 2653 2654 2655 2656 2657 2658
	return false;
}

enum {
	PSS,
	PPC,
};

2659
/* Hardware vendor-specific info that has its own power management modes */
2660
static struct acpi_platform_list plat_info[] __initdata = {
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2676
	{ } /* End */
2677 2678
};

2679
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2680
{
D
Dirk Brandewie 已提交
2681 2682
	const struct x86_cpu_id *id;
	u64 misc_pwr;
2683
	int idx;
D
Dirk Brandewie 已提交
2684 2685 2686 2687

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2688 2689
		if (misc_pwr & (1 << 8)) {
			pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
D
Dirk Brandewie 已提交
2690
			return true;
2691
		}
D
Dirk Brandewie 已提交
2692
	}
2693

2694 2695
	idx = acpi_match_platform_list(plat_info);
	if (idx < 0)
2696 2697
		return false;

2698 2699
	switch (plat_info[idx].data) {
	case PSS:
2700 2701 2702 2703
		if (!intel_pstate_no_acpi_pss())
			return false;

		return intel_pstate_no_acpi_pcch();
2704 2705
	case PPC:
		return intel_pstate_has_acpi_ppc() && !force_load;
2706 2707 2708 2709
	}

	return false;
}
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2720 2721
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2722
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2723
static inline void intel_pstate_request_control_from_smm(void) {}
2724 2725
#endif /* CONFIG_ACPI */

2726 2727
#define INTEL_PSTATE_HWP_BROADWELL	0x01

2728 2729 2730
#define X86_MATCH_HWP(model, hwp_mode)					\
	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
					   X86_FEATURE_APERFMPERF, hwp_mode)
2731

2732
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2733 2734 2735
	X86_MATCH_HWP(BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
	X86_MATCH_HWP(BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
	X86_MATCH_HWP(ANY,		0),
2736 2737 2738
	{}
};

2739 2740
static int __init intel_pstate_init(void)
{
2741
	const struct x86_cpu_id *id;
2742
	int rc;
2743

2744 2745 2746
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return -ENODEV;

2747 2748 2749
	if (no_load)
		return -ENODEV;

2750 2751
	id = x86_match_cpu(hwp_support_ids);
	if (id) {
2752
		copy_cpu_funcs(&core_funcs);
2753
		if (!no_hwp) {
2754
			hwp_active++;
2755
			hwp_mode_bdw = id->driver_data;
2756 2757 2758 2759 2760
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		id = x86_match_cpu(intel_pstate_cpu_ids);
2761
		if (!id) {
2762
			pr_info("CPU model not supported\n");
2763
			return -ENODEV;
2764
		}
2765

2766
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2767
	}
2768

2769 2770
	if (intel_pstate_msrs_not_valid()) {
		pr_info("Invalid MSRs\n");
2771
		return -ENODEV;
2772
	}
2773

2774 2775 2776 2777 2778
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
2779 2780
	if (intel_pstate_platform_pwr_mgmt_exists()) {
		pr_info("P-states controlled by the platform\n");
2781
		return -ENODEV;
2782
	}
2783

2784 2785 2786
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2787
	pr_info("Intel P-state driver initializing\n");
2788

2789
	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2790 2791 2792
	if (!all_cpu_data)
		return -ENOMEM;

2793 2794
	intel_pstate_request_control_from_smm();

2795
	intel_pstate_sysfs_expose_params();
2796

2797
	mutex_lock(&intel_pstate_driver_lock);
2798
	rc = intel_pstate_register_driver(default_driver);
2799
	mutex_unlock(&intel_pstate_driver_lock);
2800 2801
	if (rc)
		return rc;
2802

2803
	if (hwp_active)
J
Joe Perches 已提交
2804
		pr_info("HWP enabled\n");
2805

2806
	return 0;
2807 2808 2809
}
device_initcall(intel_pstate_init);

2810 2811 2812 2813 2814
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2815
	if (!strcmp(str, "disable")) {
2816
		no_load = 1;
2817 2818
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2819
		default_driver = &intel_cpufreq;
2820 2821
		no_hwp = 1;
	}
2822
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2823
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2824
		no_hwp = 1;
2825
	}
2826 2827
	if (!strcmp(str, "force"))
		force_load = 1;
2828 2829
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2830 2831
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2832 2833 2834 2835 2836 2837

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2838 2839 2840 2841
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2842 2843 2844
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");