intel_pstate.c 63.9 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
29
#include <linux/acpi.h>
30
#include <linux/vmalloc.h>
31 32 33 34 35
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
36
#include <asm/cpufeature.h>
37
#include <asm/intel-family.h>
38

39
#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
40

41
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
42
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
43

44 45
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
46
#include <acpi/cppc_acpi.h>
47 48
#endif

49
#define FRAC_BITS 8
50 51
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
52

53 54
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 56
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57

58 59 60 61 62
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

63
static inline int32_t div_fp(s64 x, s64 y)
64
{
65
	return div64_s64((int64_t)x << FRAC_BITS, y);
66 67
}

68 69 70 71 72 73 74 75 76 77 78
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

79 80 81 82 83
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

84 85 86 87 88 89 90 91 92 93
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

94 95 96 97 98
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

99 100
/**
 * struct sample -	Store performance sample
101
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
102 103
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
104
 *			P state. This can be different than core_avg_perf
105 106 107 108 109 110 111 112 113 114 115 116
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
117
struct sample {
118
	int32_t core_avg_perf;
119
	int32_t busy_scaled;
120 121
	u64 aperf;
	u64 mperf;
122
	u64 tsc;
123
	u64 time;
124 125
};

126 127 128 129 130 131 132 133 134 135 136
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
137 138
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
139 140 141
 *
 * Stores the per cpu model P state limits and current P state.
 */
142 143 144 145
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
146
	int	max_pstate_physical;
147
	int	scaling;
148
	int	turbo_pstate;
149 150
	unsigned int max_freq;
	unsigned int turbo_freq;
151 152
};

153 154 155 156 157 158 159 160 161 162 163 164 165
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
166
struct vid_data {
167 168 169
	int min;
	int max;
	int turbo;
170 171 172
	int32_t ratio;
};

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
190 191
};

192 193 194
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
195
 * @policy:		CPUFreq policy value
196
 * @update_util:	CPUFreq utility callback information
197
 * @update_util_set:	CPUFreq utility callback is set
198 199
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
200 201 202
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @last_sample_time:	Last Sample time
203 204 205
 * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
 *			This shift is a multiplier to mperf delta to
 *			calculate CPU busy.
206 207 208 209 210 211
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
212 213
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
214 215
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
216 217 218
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
219
 * @epp_policy:		Last saved policy used to set EPP/EPB
220 221 222 223
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
224 225
 * @hwp_req_cached:	Cached value of the last HWP Request MSR
 * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
226 227
 * @last_io_update:	Last time when IO wake flag was set
 * @sched_flags:	Store scheduler flags for possible cross CPU update
228
 * @hwp_boost_min:	Last HWP boosted min performance
229 230 231
 *
 * This structure stores per CPU instance data for all CPUs.
 */
232 233 234
struct cpudata {
	int cpu;

235
	unsigned int policy;
236
	struct update_util_data update_util;
237
	bool   update_util_set;
238 239

	struct pstate_data pstate;
240
	struct vid_data vid;
241

242
	u64	last_update;
243
	u64	last_sample_time;
244
	u64	aperf_mperf_shift;
245 246
	u64	prev_aperf;
	u64	prev_mperf;
247
	u64	prev_tsc;
248
	u64	prev_cummulative_iowait;
249
	struct sample sample;
250 251
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
252 253 254 255
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
256
	unsigned int iowait_boost;
257
	s16 epp_powersave;
258
	s16 epp_policy;
259 260
	s16 epp_default;
	s16 epp_saved;
261 262
	u64 hwp_req_cached;
	u64 hwp_cap_cached;
263 264
	u64 last_io_update;
	unsigned int sched_flags;
265
	u32 hwp_boost_min;
266 267 268
};

static struct cpudata **all_cpu_data;
269 270 271 272 273 274 275 276 277 278 279 280 281 282

/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
283 284
struct pstate_funcs {
	int (*get_max)(void);
285
	int (*get_max_physical)(void);
286 287
	int (*get_min)(void);
	int (*get_turbo)(void);
288
	int (*get_scaling)(void);
289
	int (*get_aperf_mperf_shift)(void);
290
	u64 (*get_val)(struct cpudata*, int pstate);
291
	void (*get_vid)(struct cpudata *);
292 293
};

294
static struct pstate_funcs pstate_funcs __read_mostly;
295

296
static int hwp_active __read_mostly;
297
static int hwp_mode_bdw __read_mostly;
298
static bool per_cpu_limits __read_mostly;
299
static bool hwp_boost __read_mostly;
300

301
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302

303 304 305
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
306

307
static struct global_params global;
308

309
static DEFINE_MUTEX(intel_pstate_driver_lock);
310 311
static DEFINE_MUTEX(intel_pstate_limits_lock);

312
#ifdef CONFIG_ACPI
313 314 315 316 317 318 319 320 321 322

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

374 375 376 377 378 379
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

380 381
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
382
		return;
383
	}
384

385
	if (!intel_pstate_get_ppc_enable_status())
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
428
	 * correct max turbo frequency based on the turbo state.
429 430
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
431
	if (!global.turbo_disabled)
432 433 434
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
435
	pr_debug("_PPC limits will be enforced\n");
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
455
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
456 457 458
{
}

459
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
460 461 462 463
{
}
#endif

464 465 466 467 468 469 470
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
471
	global.turbo_disabled =
472 473 474 475
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

476 477 478
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
479
	int turbo_pstate = cpu->pstate.turbo_pstate;
480

481
	return turbo_pstate ?
482
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
483 484
}

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

504 505 506 507 508 509 510 511 512 513 514
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
515
		epp = (hwp_req_data >> 24) & 0xff;
516
	} else {
517 518
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
519
	}
520 521 522 523

	return epp;
}

524
static int intel_pstate_set_epb(int cpu, s16 pref)
525 526
{
	u64 epb;
527
	int ret;
528 529

	if (!static_cpu_has(X86_FEATURE_EPB))
530
		return -ENXIO;
531

532 533 534
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
535 536 537

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
538 539

	return 0;
540 541
}

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
561 562 563 564 565 566
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
567 568 569 570 571 572 573 574 575 576 577

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
578 579 580 581 582 583 584 585
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
			return 2;
		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
			return 3;
		else
			return 4;
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		if (epp == -EINVAL)
624
			epp = epp_values[pref_index - 1];
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
660
	int ret;
661 662 663 664 665

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

666 667 668
	ret = match_string(energy_perf_strings, -1, str_preference);
	if (ret < 0)
		return ret;
669

670 671
	intel_pstate_set_energy_pref_index(cpu_data, ret);
	return count;
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

695 696
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
697
{
698
	u64 cap;
699

700
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
701
	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
702
	if (global.no_turbo)
703
		*current_max = HWP_GUARANTEED_PERF(cap);
704
	else
705 706 707 708 709 710 711 712 713 714 715 716 717 718
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
719

720 721
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
722

723
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
724

725 726
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
727

728 729
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
730

731 732
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
733

734
	cpu_data->epp_policy = cpu_data->policy;
735

736 737 738 739 740
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
741

742 743 744 745 746 747
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
748

749 750 751 752 753
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
754

755 756 757 758 759 760 761 762 763 764
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
765

766 767
		epp = cpu_data->epp_powersave;
	}
768
update_epp:
769 770 771 772 773
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
774
	}
775
skip_epp:
776
	WRITE_ONCE(cpu_data->hwp_req_cached, value);
777
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
778
}
D
Dirk Brandewie 已提交
779

780 781 782 783 784 785 786 787 788 789 790 791
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

792 793
static void intel_pstate_hwp_enable(struct cpudata *cpudata);

794 795 796 797 798
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

799 800
	mutex_lock(&intel_pstate_limits_lock);

801 802 803
	if (policy->cpu == 0)
		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);

804
	all_cpu_data[policy->cpu]->epp_policy = 0;
805
	intel_pstate_hwp_set(policy->cpu);
806 807 808

	mutex_unlock(&intel_pstate_limits_lock);

809
	return 0;
810 811
}

812
static void intel_pstate_update_policies(void)
813
{
814 815 816 817
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
818 819
}

820 821 822 823 824
/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
825
		return sprintf(buf, "%u\n", global.object);		\
826 827
	}

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

856 857 858 859 860 861 862
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

863 864
	mutex_lock(&intel_pstate_driver_lock);

865
	if (!intel_pstate_driver) {
866 867 868 869
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

870 871 872 873
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
874
	turbo_fp = div_fp(no_turbo, total);
875
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
876 877 878

	mutex_unlock(&intel_pstate_driver_lock);

879 880 881
	return sprintf(buf, "%u\n", turbo_pct);
}

882 883 884 885 886 887
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

888 889
	mutex_lock(&intel_pstate_driver_lock);

890
	if (!intel_pstate_driver) {
891 892 893 894
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

895 896
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
897 898 899

	mutex_unlock(&intel_pstate_driver_lock);

900 901 902
	return sprintf(buf, "%u\n", total);
}

903 904 905 906 907
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

908 909
	mutex_lock(&intel_pstate_driver_lock);

910
	if (!intel_pstate_driver) {
911 912 913 914
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

915
	update_turbo_state();
916 917
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
918
	else
919
		ret = sprintf(buf, "%u\n", global.no_turbo);
920

921 922
	mutex_unlock(&intel_pstate_driver_lock);

923 924 925
	return ret;
}

926
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
927
			      const char *buf, size_t count)
928 929 930
{
	unsigned int input;
	int ret;
931

932 933 934
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
935

936 937
	mutex_lock(&intel_pstate_driver_lock);

938
	if (!intel_pstate_driver) {
939 940 941 942
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

943 944
	mutex_lock(&intel_pstate_limits_lock);

945
	update_turbo_state();
946
	if (global.turbo_disabled) {
J
Joe Perches 已提交
947
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
948
		mutex_unlock(&intel_pstate_limits_lock);
949
		mutex_unlock(&intel_pstate_driver_lock);
950
		return -EPERM;
951
	}
D
Dirk Brandewie 已提交
952

953
	global.no_turbo = clamp_t(int, input, 0, 1);
954

955 956 957 958 959 960 961 962 963
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

964 965
	mutex_unlock(&intel_pstate_limits_lock);

966 967
	intel_pstate_update_policies();

968 969
	mutex_unlock(&intel_pstate_driver_lock);

970 971 972 973
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
974
				  const char *buf, size_t count)
975 976 977
{
	unsigned int input;
	int ret;
978

979 980 981 982
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

983 984
	mutex_lock(&intel_pstate_driver_lock);

985
	if (!intel_pstate_driver) {
986 987 988 989
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

990 991
	mutex_lock(&intel_pstate_limits_lock);

992
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
993

994 995
	mutex_unlock(&intel_pstate_limits_lock);

996 997
	intel_pstate_update_policies();

998 999
	mutex_unlock(&intel_pstate_driver_lock);

1000 1001 1002 1003
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1004
				  const char *buf, size_t count)
1005 1006 1007
{
	unsigned int input;
	int ret;
1008

1009 1010 1011
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1012

1013 1014
	mutex_lock(&intel_pstate_driver_lock);

1015
	if (!intel_pstate_driver) {
1016 1017 1018 1019
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1020 1021
	mutex_lock(&intel_pstate_limits_lock);

1022 1023
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1024

1025 1026
	mutex_unlock(&intel_pstate_limits_lock);

1027 1028
	intel_pstate_update_policies();

1029 1030
	mutex_unlock(&intel_pstate_driver_lock);

1031 1032 1033
	return count;
}

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	return sprintf(buf, "%u\n", hwp_boost);
}

static ssize_t store_hwp_dynamic_boost(struct kobject *a, struct attribute *b,
				       const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = kstrtouint(buf, 10, &input);
	if (ret)
		return ret;

	mutex_lock(&intel_pstate_driver_lock);
	hwp_boost = !!input;
	intel_pstate_update_policies();
	mutex_unlock(&intel_pstate_driver_lock);

	return count;
}

1058 1059 1060
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1061
define_one_global_rw(status);
1062 1063 1064
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1065
define_one_global_ro(turbo_pct);
1066
define_one_global_ro(num_pstates);
1067
define_one_global_rw(hwp_dynamic_boost);
1068 1069

static struct attribute *intel_pstate_attributes[] = {
1070
	&status.attr,
1071
	&no_turbo.attr,
1072
	&turbo_pct.attr,
1073
	&num_pstates.attr,
1074 1075 1076
	NULL
};

1077
static const struct attribute_group intel_pstate_attr_group = {
1078 1079 1080
	.attrs = intel_pstate_attributes,
};

1081
static void __init intel_pstate_sysfs_expose_params(void)
1082
{
1083
	struct kobject *intel_pstate_kobject;
1084 1085 1086 1087
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1088 1089 1090
	if (WARN_ON(!intel_pstate_kobject))
		return;

1091
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1108 1109 1110 1111 1112
	if (hwp_active) {
		rc = sysfs_create_file(intel_pstate_kobject,
				       &hwp_dynamic_boost.attr);
		WARN_ON(rc);
	}
1113 1114
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1115

1116
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1117
{
1118
	/* First disable HWP notification interrupt as we don't process them */
1119 1120
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1121

1122
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1123
	cpudata->epp_policy = 0;
1124 1125
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1126 1127
}

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1147
static int atom_get_min_pstate(void)
1148 1149
{
	u64 value;
1150

1151
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1152
	return (value >> 8) & 0x7F;
1153 1154
}

1155
static int atom_get_max_pstate(void)
1156 1157
{
	u64 value;
1158

1159
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1160
	return (value >> 16) & 0x7F;
1161
}
1162

1163
static int atom_get_turbo_pstate(void)
1164 1165
{
	u64 value;
1166

1167
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1168
	return value & 0x7F;
1169 1170
}

1171
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1172 1173 1174 1175 1176
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1177
	val = (u64)pstate << 8;
1178
	if (global.no_turbo && !global.turbo_disabled)
1179 1180 1181 1182 1183 1184 1185
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1186
	vid = ceiling_fp(vid_fp);
1187

1188 1189 1190
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1191
	return val | vid;
1192 1193
}

1194
static int silvermont_get_scaling(void)
1195 1196 1197
{
	u64 value;
	int i;
1198 1199 1200
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1201 1202

	rdmsrl(MSR_FSB_FREQ, value);
1203 1204
	i = value & 0x7;
	WARN_ON(i > 4);
1205

1206 1207
	return silvermont_freq_table[i];
}
1208

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1223 1224
}

1225
static void atom_get_vid(struct cpudata *cpudata)
1226 1227 1228
{
	u64 value;

1229
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1230 1231
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1232 1233 1234 1235
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1236

1237
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1238
	cpudata->vid.turbo = value & 0x7f;
1239 1240
}

1241
static int core_get_min_pstate(void)
1242 1243
{
	u64 value;
1244

1245
	rdmsrl(MSR_PLATFORM_INFO, value);
1246 1247 1248
	return (value >> 40) & 0xFF;
}

1249
static int core_get_max_pstate_physical(void)
1250 1251
{
	u64 value;
1252

1253
	rdmsrl(MSR_PLATFORM_INFO, value);
1254 1255 1256
	return (value >> 8) & 0xFF;
}

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1290
static int core_get_max_pstate(void)
1291
{
1292 1293 1294
	u64 tar;
	u64 plat_info;
	int max_pstate;
1295
	int tdp_ratio;
1296 1297 1298 1299 1300
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1301 1302 1303 1304 1305 1306 1307 1308 1309
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1310 1311
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1312 1313
		int tar_levels;

1314
		/* Do some sanity checking for safety */
1315 1316 1317 1318
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1319 1320
		}
	}
1321

1322
	return max_pstate;
1323 1324
}

1325
static int core_get_turbo_pstate(void)
1326 1327 1328
{
	u64 value;
	int nont, ret;
1329

1330
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1331
	nont = core_get_max_pstate();
1332
	ret = (value) & 255;
1333 1334 1335 1336 1337
	if (ret <= nont)
		ret = nont;
	return ret;
}

1338 1339 1340 1341 1342
static inline int core_get_scaling(void)
{
	return 100000;
}

1343
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1344 1345 1346
{
	u64 val;

1347
	val = (u64)pstate << 8;
1348
	if (global.no_turbo && !global.turbo_disabled)
1349 1350
		val |= (u64)1 << 32;

1351
	return val;
1352 1353
}

1354 1355 1356 1357 1358
static int knl_get_aperf_mperf_shift(void)
{
	return 10;
}

1359 1360 1361 1362 1363
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1364
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1365 1366 1367 1368 1369 1370 1371
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1372
static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1373
{
1374 1375
	return global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1376 1377
}

1378
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1379
{
1380 1381
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1382 1383 1384 1385 1386 1387 1388
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1389 1390
}

1391 1392 1393 1394 1395 1396 1397
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1398
	int pstate;
1399 1400

	update_turbo_state();
1401
	pstate = intel_pstate_get_base_pstate(cpu);
1402
	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1403
	intel_pstate_set_pstate(cpu, pstate);
1404 1405
}

1406 1407
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1408 1409
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1410
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1411
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1412
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1413
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1414 1415 1416 1417 1418 1419 1420 1421 1422

	if (hwp_active && !hwp_mode_bdw) {
		unsigned int phy_max, current_max;

		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
	} else {
		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
	}
1423

1424 1425 1426
	if (pstate_funcs.get_aperf_mperf_shift)
		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();

1427 1428
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1429 1430

	intel_pstate_set_min_pstate(cpu);
1431 1432
}

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
/*
 * Long hold time will keep high perf limits for long time,
 * which negatively impacts perf/watt for some workloads,
 * like specpower. 3ms is based on experiements on some
 * workoads.
 */
static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;

static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
{
	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
	u32 max_limit = (hwp_req & 0xff00) >> 8;
	u32 min_limit = (hwp_req & 0xff);
	u32 boost_level1;

	/*
	 * Cases to consider (User changes via sysfs or boot time):
	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
	 *	No boost, return.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
	 *     Should result in one level boost only for P0.
	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
	 *     Should result in two level boost:
	 *         (min + p1)/2 and P1.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
	 *     Should result in three level boost:
	 *        (min + p1)/2, P1 and P0.
	 */

	/* If max and min are equal or already at max, nothing to boost */
	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
		return;

	if (!cpu->hwp_boost_min)
		cpu->hwp_boost_min = min_limit;

	/* level at half way mark between min and guranteed */
	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;

	if (cpu->hwp_boost_min < boost_level1)
		cpu->hwp_boost_min = boost_level1;
	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = max_limit;
	else
		return;

	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
	wrmsrl(MSR_HWP_REQUEST, hwp_req);
	cpu->last_update = cpu->sample.time;
}

static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
{
	if (cpu->hwp_boost_min) {
		bool expired;

		/* Check if we are idle for hold time to boost down */
		expired = time_after64(cpu->sample.time, cpu->last_update +
				       hwp_boost_hold_time_ns);
		if (expired) {
			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
			cpu->hwp_boost_min = 0;
		}
	}
	cpu->last_update = cpu->sample.time;
}

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
						      u64 time)
{
	cpu->sample.time = time;

	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
		bool do_io = false;

		cpu->sched_flags = 0;
		/*
		 * Set iowait_boost flag and update time. Since IO WAIT flag
		 * is set all the time, we can't just conclude that there is
		 * some IO bound activity is scheduled on this CPU with just
		 * one occurrence. If we receive at least two in two
		 * consecutive ticks, then we treat as boost candidate.
		 */
		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
			do_io = true;

		cpu->last_io_update = time;

		if (do_io)
			intel_pstate_hwp_boost_up(cpu);

	} else {
		intel_pstate_hwp_boost_down(cpu);
	}
}

1532 1533 1534
static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
						u64 time, unsigned int flags)
{
1535 1536 1537 1538 1539 1540
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);

	cpu->sched_flags |= flags;

	if (smp_processor_id() == cpu->cpu)
		intel_pstate_update_util_hwp_local(cpu, time);
1541 1542
}

1543
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1544
{
1545
	struct sample *sample = &cpu->sample;
1546

1547
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1548 1549
}

1550
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1551 1552
{
	u64 aperf, mperf;
1553
	unsigned long flags;
1554
	u64 tsc;
1555

1556
	local_irq_save(flags);
1557 1558
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1559
	tsc = rdtsc();
1560
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1561
		local_irq_restore(flags);
1562
		return false;
1563
	}
1564
	local_irq_restore(flags);
1565

1566
	cpu->last_sample_time = cpu->sample.time;
1567
	cpu->sample.time = time;
1568 1569
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1570
	cpu->sample.tsc =  tsc;
1571 1572
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1573
	cpu->sample.tsc -= cpu->prev_tsc;
1574

1575 1576
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1577
	cpu->prev_tsc = tsc;
1578 1579 1580 1581 1582 1583 1584
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1585 1586 1587 1588 1589
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1590 1591
}

1592 1593
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1594
	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1595 1596
}

1597 1598
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1599 1600
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1601 1602
}

1603
static inline int32_t get_target_pstate(struct cpudata *cpu)
1604 1605
{
	struct sample *sample = &cpu->sample;
1606
	int32_t busy_frac, boost;
1607
	int target, avg_pstate;
1608

1609 1610
	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
			   sample->tsc);
1611

1612 1613
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1614

1615 1616
	if (busy_frac < boost)
		busy_frac = boost;
1617

1618
	sample->busy_scaled = busy_frac * 100;
1619

1620
	target = global.no_turbo || global.turbo_disabled ?
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1639 1640
}

1641
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1642
{
1643 1644
	int max_pstate = intel_pstate_get_base_pstate(cpu);
	int min_pstate;
1645

1646 1647
	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1648
	return clamp_t(int, pstate, min_pstate, max_pstate);
1649 1650 1651 1652
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1653 1654 1655
	if (pstate == cpu->pstate.current_pstate)
		return;

1656
	cpu->pstate.current_pstate = pstate;
1657 1658 1659
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1660
static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1661
{
1662
	int from = cpu->pstate.current_pstate;
1663
	struct sample *sample;
1664
	int target_pstate;
1665

1666 1667
	update_turbo_state();

1668
	target_pstate = get_target_pstate(cpu);
1669 1670
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1671
	intel_pstate_update_pstate(cpu, target_pstate);
1672 1673

	sample = &cpu->sample;
1674
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1675
		fp_toint(sample->busy_scaled),
1676 1677 1678 1679 1680
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1681 1682
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1683 1684
}

1685
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1686
				     unsigned int flags)
1687
{
1688
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1689 1690
	u64 delta_ns;

1691 1692 1693 1694
	/* Don't allow remote callbacks */
	if (smp_processor_id() != cpu->cpu)
		return;

1695 1696
	if (flags & SCHED_CPUFREQ_IOWAIT) {
		cpu->iowait_boost = int_tofp(1);
1697 1698 1699 1700 1701 1702 1703 1704 1705
		cpu->last_update = time;
		/*
		 * The last time the busy was 100% so P-state was max anyway
		 * so avoid overhead of computation.
		 */
		if (fp_toint(cpu->sample.busy_scaled) == 100)
			return;

		goto set_pstate;
1706 1707 1708 1709 1710
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		delta_ns = time - cpu->last_update;
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1711
	}
1712
	cpu->last_update = time;
1713
	delta_ns = time - cpu->sample.time;
1714
	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1715
		return;
1716

1717
set_pstate:
1718 1719
	if (intel_pstate_sample(cpu, time))
		intel_pstate_adjust_pstate(cpu);
1720
}
1721

1722 1723 1724 1725 1726 1727 1728
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1729 1730
};

1731 1732 1733 1734 1735 1736 1737 1738
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
1739 1740
};

1741 1742 1743 1744 1745 1746 1747 1748
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
1749 1750
};

1751 1752 1753 1754 1755
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
1756
	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1757 1758
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1759 1760
};

1761
#define ICPU(model, policy) \
1762 1763
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1764 1765

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1784 1785
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       core_funcs),
1786
	ICPU(INTEL_FAM6_SKYLAKE_X,		core_funcs),
1787 1788 1789 1790
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1791
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1792 1793 1794
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
D
Dirk Brandewie 已提交
1795 1796 1797
	{}
};

1798
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1799
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1800 1801 1802
	{}
};

1803 1804 1805 1806 1807 1808
static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
	{}
};

1809 1810 1811 1812
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1813 1814 1815
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1816
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1817 1818 1819 1820 1821
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1822 1823 1824
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1825
	}
1826 1827 1828 1829

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1830

1831
	if (hwp_active) {
1832 1833 1834 1835 1836 1837
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1838
		intel_pstate_hwp_enable(cpu);
1839 1840 1841 1842

		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
		if (id)
			hwp_boost = true;
1843
	}
1844

1845
	intel_pstate_get_cpu_pstates(cpu);
1846

J
Joe Perches 已提交
1847
	pr_debug("controlling: cpu %d\n", cpunum);
1848 1849 1850 1851

	return 0;
}

1852
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1853
{
1854 1855
	struct cpudata *cpu = all_cpu_data[cpu_num];

1856
	if (hwp_active && !hwp_boost)
1857 1858
		return;

1859 1860 1861
	if (cpu->update_util_set)
		return;

1862 1863
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1864
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1865 1866 1867
				     (hwp_active ?
				      intel_pstate_update_util_hwp :
				      intel_pstate_update_util));
1868
	cpu->update_util_set = true;
1869 1870 1871 1872
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1873 1874 1875 1876 1877
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1878
	cpufreq_remove_update_util_hook(cpu);
1879
	cpu_data->update_util_set = false;
1880 1881 1882
	synchronize_sched();
}

1883 1884 1885 1886 1887 1888
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

1889
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1890
					    struct cpudata *cpu)
1891
{
1892
	int max_freq = intel_pstate_get_max_freq(cpu);
1893
	int32_t max_policy_perf, min_policy_perf;
1894
	int max_state, turbo_max;
1895

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
		max_state = intel_pstate_get_base_pstate(cpu);
		turbo_max = cpu->pstate.turbo_pstate;
	}

	max_policy_perf = max_state * policy->max / max_freq;
1909
	if (policy->max == policy->min) {
1910
		min_policy_perf = max_policy_perf;
1911
	} else {
1912
		min_policy_perf = max_state * policy->min / max_freq;
1913 1914
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
1915
	}
1916

1917 1918 1919 1920
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
		 policy->cpu, max_state,
		 min_policy_perf, max_policy_perf);

1921
	/* Normalize user input to [min_perf, max_perf] */
1922
	if (per_cpu_limits) {
1923 1924
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
1925 1926 1927 1928
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
1929 1930
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1931
		global_min = clamp_t(int32_t, global_min, 0, global_max);
1932

1933 1934
		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
			 global_min, global_max);
1935

1936 1937 1938 1939
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1940

1941 1942 1943
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
1944

1945 1946 1947 1948
	}
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
1949 1950
}

1951 1952
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1953 1954
	struct cpudata *cpu;

1955 1956 1957
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1958 1959 1960
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

1961
	cpu = all_cpu_data[policy->cpu];
1962 1963
	cpu->policy = policy->policy;

1964 1965
	mutex_lock(&intel_pstate_limits_lock);

1966
	intel_pstate_update_perf_limits(policy, cpu);
1967

1968
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1969 1970 1971 1972 1973 1974
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
1975 1976
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
1977 1978
	}

1979 1980 1981 1982 1983 1984 1985 1986
	if (hwp_active) {
		/*
		 * When hwp_boost was active before and dynamically it
		 * was turned off, in that case we need to clear the
		 * update util hook.
		 */
		if (!hwp_boost)
			intel_pstate_clear_update_util_hook(policy->cpu);
1987
		intel_pstate_hwp_set(policy->cpu);
1988
	}
D
Dirk Brandewie 已提交
1989

1990 1991
	mutex_unlock(&intel_pstate_limits_lock);

1992 1993 1994
	return 0;
}

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2006 2007
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2008 2009 2010
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2011 2012
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2013

2014
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2015
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2016 2017
		return -EINVAL;

2018 2019
	intel_pstate_adjust_policy_max(policy, cpu);

2020 2021 2022
	return 0;
}

2023 2024 2025 2026 2027
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2028
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2029
{
2030
	pr_debug("CPU %d exiting\n", policy->cpu);
2031

2032
	intel_pstate_clear_update_util_hook(policy->cpu);
2033 2034 2035
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2036 2037
		intel_cpufreq_stop_cpu(policy);
}
2038

2039 2040 2041
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2042

2043
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2044

2045
	return 0;
2046 2047
}

2048
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2049 2050
{
	struct cpudata *cpu;
2051
	int rc;
2052 2053 2054 2055 2056 2057 2058

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2059 2060
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
2061

2062 2063
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2064 2065

	/* cpuinfo and default policy values */
2066
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2067
	update_turbo_state();
2068
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2069 2070 2071
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2072
	intel_pstate_init_acpi_perf_limits(policy);
2073

2074 2075
	policy->fast_switch_possible = true;

2076 2077 2078
	return 0;
}

2079
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2080
{
2081 2082 2083 2084 2085
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

2086
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2087 2088 2089
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2090 2091 2092 2093

	return 0;
}

2094
static struct cpufreq_driver intel_pstate = {
2095 2096 2097
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2098
	.suspend	= intel_pstate_hwp_save_state,
2099
	.resume		= intel_pstate_resume,
2100
	.init		= intel_pstate_cpu_init,
2101
	.exit		= intel_pstate_cpu_exit,
2102
	.stop_cpu	= intel_pstate_stop_cpu,
2103 2104 2105
	.name		= "intel_pstate",
};

2106 2107 2108 2109 2110
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2111 2112
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2113

2114
	intel_pstate_adjust_policy_max(policy, cpu);
2115

2116 2117
	intel_pstate_update_perf_limits(policy, cpu);

2118 2119 2120
	return 0;
}

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
/* Use of trace in passive mode:
 *
 * In passive mode the trace core_busy field (also known as the
 * performance field, and lablelled as such on the graphs; also known as
 * core_avg_perf) is not needed and so is re-assigned to indicate if the
 * driver call was via the normal or fast switch path. Various graphs
 * output from the intel_pstate_tracer.py utility that include core_busy
 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
 * so we use 10 to indicate the the normal path through the driver, and
 * 90 to indicate the fast switch path through the driver.
 * The scaled_busy field is not used, and is set to 0.
 */

#define	INTEL_PSTATE_TRACE_TARGET 10
#define	INTEL_PSTATE_TRACE_FAST_SWITCH 90

static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
{
	struct sample *sample;

	if (!trace_pstate_sample_enabled())
		return;

	if (!intel_pstate_sample(cpu, ktime_get()))
		return;

	sample = &cpu->sample;
	trace_pstate_sample(trace_type,
		0,
		old_pstate,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
}

2159 2160 2161 2162 2163 2164
static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
2165
	int target_pstate, old_pstate;
2166

2167 2168
	update_turbo_state();

2169
	freqs.old = policy->cur;
2170
	freqs.new = target_freq;
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2185
	old_pstate = cpu->pstate.current_pstate;
2186 2187 2188 2189 2190
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2191
	freqs.new = target_pstate * cpu->pstate.scaling;
2192
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2193 2194 2195 2196 2197 2198 2199 2200 2201
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
2202
	int target_pstate, old_pstate;
2203

2204 2205
	update_turbo_state();

2206
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2207
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2208
	old_pstate = cpu->pstate.current_pstate;
2209
	intel_pstate_update_pstate(cpu, target_pstate);
2210
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2211
	return target_pstate * cpu->pstate.scaling;
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2222
	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

2240
static struct cpufreq_driver *default_driver = &intel_pstate;
2241

2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2257
	intel_pstate_driver = NULL;
2258 2259
}

2260
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2261 2262 2263
{
	int ret;

2264 2265
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2266

2267
	intel_pstate_driver = driver;
2268 2269 2270 2271 2272 2273
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2274 2275
	global.min_perf_pct = min_perf_pct_min();

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2292
	if (!intel_pstate_driver)
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2304
		return intel_pstate_driver ?
2305 2306 2307
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2308
		if (intel_pstate_driver) {
2309 2310 2311 2312 2313 2314 2315 2316
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2317
		return intel_pstate_register_driver(&intel_pstate);
2318 2319 2320
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2321
		if (intel_pstate_driver) {
2322
			if (intel_pstate_driver == &intel_cpufreq)
2323 2324 2325 2326 2327 2328 2329
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2330
		return intel_pstate_register_driver(&intel_cpufreq);
2331 2332 2333 2334 2335
	}

	return -EINVAL;
}

2336 2337 2338
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2339
static unsigned int force_load __initdata;
2340

2341
static int __init intel_pstate_msrs_not_valid(void)
2342
{
2343
	if (!pstate_funcs.get_max() ||
2344 2345
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2346 2347 2348 2349
		return -ENODEV;

	return 0;
}
2350

2351
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2352 2353
{
	pstate_funcs.get_max   = funcs->get_max;
2354
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2355 2356
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2357
	pstate_funcs.get_scaling = funcs->get_scaling;
2358
	pstate_funcs.get_val   = funcs->get_val;
2359
	pstate_funcs.get_vid   = funcs->get_vid;
2360
	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2361 2362
}

2363
#ifdef CONFIG_ACPI
2364

2365
static bool __init intel_pstate_no_acpi_pss(void)
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2394
static bool __init intel_pstate_has_acpi_ppc(void)
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2414
/* Hardware vendor-specific info that has its own power management modes */
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
static struct acpi_platform_list plat_info[] __initdata = {
	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{ } /* End */
2432 2433
};

2434
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2435
{
D
Dirk Brandewie 已提交
2436 2437
	const struct x86_cpu_id *id;
	u64 misc_pwr;
2438
	int idx;
D
Dirk Brandewie 已提交
2439 2440 2441 2442 2443 2444 2445

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2446

2447 2448
	idx = acpi_match_platform_list(plat_info);
	if (idx < 0)
2449 2450
		return false;

2451 2452 2453 2454 2455
	switch (plat_info[idx].data) {
	case PSS:
		return intel_pstate_no_acpi_pss();
	case PPC:
		return intel_pstate_has_acpi_ppc() && !force_load;
2456 2457 2458 2459
	}

	return false;
}
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2470 2471
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2472
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2473
static inline void intel_pstate_request_control_from_smm(void) {}
2474 2475
#endif /* CONFIG_ACPI */

2476 2477 2478 2479 2480
#define INTEL_PSTATE_HWP_BROADWELL	0x01

#define ICPU_HWP(model, hwp_mode) \
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }

2481
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2482 2483 2484
	ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
	ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
	ICPU_HWP(X86_MODEL_ANY, 0),
2485 2486 2487
	{}
};

2488 2489
static int __init intel_pstate_init(void)
{
2490
	const struct x86_cpu_id *id;
2491
	int rc;
2492

2493 2494 2495
	if (no_load)
		return -ENODEV;

2496 2497
	id = x86_match_cpu(hwp_support_ids);
	if (id) {
2498
		copy_cpu_funcs(&core_funcs);
2499
		if (!no_hwp) {
2500
			hwp_active++;
2501
			hwp_mode_bdw = id->driver_data;
2502 2503 2504 2505 2506 2507 2508
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		id = x86_match_cpu(intel_pstate_cpu_ids);
		if (!id)
			return -ENODEV;
2509

2510
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2511
	}
2512

2513 2514 2515
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2516 2517 2518 2519 2520 2521 2522 2523
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2524 2525 2526
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2527
	pr_info("Intel P-state driver initializing\n");
2528

2529
	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2530 2531 2532
	if (!all_cpu_data)
		return -ENOMEM;

2533 2534
	intel_pstate_request_control_from_smm();

2535
	intel_pstate_sysfs_expose_params();
2536

2537
	mutex_lock(&intel_pstate_driver_lock);
2538
	rc = intel_pstate_register_driver(default_driver);
2539
	mutex_unlock(&intel_pstate_driver_lock);
2540 2541
	if (rc)
		return rc;
2542

2543
	if (hwp_active)
J
Joe Perches 已提交
2544
		pr_info("HWP enabled\n");
2545

2546
	return 0;
2547 2548 2549
}
device_initcall(intel_pstate_init);

2550 2551 2552 2553 2554
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2555
	if (!strcmp(str, "disable")) {
2556
		no_load = 1;
2557 2558
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2559
		default_driver = &intel_cpufreq;
2560 2561
		no_hwp = 1;
	}
2562
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2563
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2564
		no_hwp = 1;
2565
	}
2566 2567
	if (!strcmp(str, "force"))
		force_load = 1;
2568 2569
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2570 2571
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2572 2573 2574 2575 2576 2577

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2578 2579 2580 2581
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2582 2583 2584
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");