intel_pstate.c 75.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * intel_pstate.c: Native P state management for Intel processors
4 5 6 7 8
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 */

J
Joe Perches 已提交
9 10
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

11 12 13 14 15 16 17
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
18
#include <linux/sched/cpufreq.h>
19 20 21 22 23 24
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
25
#include <linux/acpi.h>
26
#include <linux/vmalloc.h>
27
#include <linux/pm_qos.h>
28 29 30 31 32
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
33
#include <asm/cpufeature.h>
34
#include <asm/intel-family.h>
35

36
#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
37

38
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
39
#define INTEL_CPUFREQ_TRANSITION_DELAY_HWP	5000
40
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
41

42 43
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
44
#include <acpi/cppc_acpi.h>
45 46
#endif

47
#define FRAC_BITS 8
48 49
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
50

51 52
#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))

53 54
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 56
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57

58 59 60 61 62
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

63
static inline int32_t div_fp(s64 x, s64 y)
64
{
65
	return div64_s64((int64_t)x << FRAC_BITS, y);
66 67
}

68 69 70 71 72 73 74 75 76 77 78
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

79 80 81 82 83
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

84 85 86 87 88 89 90 91 92 93
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

94 95 96 97 98
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

99 100
/**
 * struct sample -	Store performance sample
101
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
102 103
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
104
 *			P state. This can be different than core_avg_perf
105 106 107 108 109 110 111 112 113 114 115 116
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
117
struct sample {
118
	int32_t core_avg_perf;
119
	int32_t busy_scaled;
120 121
	u64 aperf;
	u64 mperf;
122
	u64 tsc;
123
	u64 time;
124 125
};

126 127 128 129 130 131 132 133 134 135 136
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
137 138
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
139 140 141
 *
 * Stores the per cpu model P state limits and current P state.
 */
142 143 144 145
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
146
	int	max_pstate_physical;
147
	int	scaling;
148
	int	turbo_pstate;
149 150
	unsigned int max_freq;
	unsigned int turbo_freq;
151 152
};

153 154 155 156 157 158 159 160 161 162 163 164 165
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
166
struct vid_data {
167 168 169
	int min;
	int max;
	int turbo;
170 171 172
	int32_t ratio;
};

173 174 175
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
176
 * @turbo_disabled:	Whether or not turbo P-states are available at all,
177 178 179
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
180
 * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
181 182 183 184 185 186 187 188
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
189
	bool turbo_disabled_mf;
190 191
	int max_perf_pct;
	int min_perf_pct;
192 193
};

194 195 196
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
197
 * @policy:		CPUFreq policy value
198
 * @update_util:	CPUFreq utility callback information
199
 * @update_util_set:	CPUFreq utility callback is set
200 201
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
202 203 204
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @last_sample_time:	Last Sample time
205
 * @aperf_mperf_shift:	APERF vs MPERF counting frequency difference
206 207 208 209 210 211
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
212 213
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
214 215
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
216 217 218
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
219
 * @epp_policy:		Last saved policy used to set EPP/EPB
220 221 222 223
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
224
 * @epp_cached		Cached HWP energy-performance preference value
225 226
 * @hwp_req_cached:	Cached value of the last HWP Request MSR
 * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
227 228
 * @last_io_update:	Last time when IO wake flag was set
 * @sched_flags:	Store scheduler flags for possible cross CPU update
229
 * @hwp_boost_min:	Last HWP boosted min performance
230 231 232
 *
 * This structure stores per CPU instance data for all CPUs.
 */
233 234 235
struct cpudata {
	int cpu;

236
	unsigned int policy;
237
	struct update_util_data update_util;
238
	bool   update_util_set;
239 240

	struct pstate_data pstate;
241
	struct vid_data vid;
242

243
	u64	last_update;
244
	u64	last_sample_time;
245
	u64	aperf_mperf_shift;
246 247
	u64	prev_aperf;
	u64	prev_mperf;
248
	u64	prev_tsc;
249
	u64	prev_cummulative_iowait;
250
	struct sample sample;
251 252
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
253 254 255 256
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
257
	unsigned int iowait_boost;
258
	s16 epp_powersave;
259
	s16 epp_policy;
260 261
	s16 epp_default;
	s16 epp_saved;
262
	s16 epp_cached;
263 264
	u64 hwp_req_cached;
	u64 hwp_cap_cached;
265 266
	u64 last_io_update;
	unsigned int sched_flags;
267
	u32 hwp_boost_min;
268 269 270
};

static struct cpudata **all_cpu_data;
271 272 273 274 275 276 277 278

/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
279
 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
280 281 282 283 284 285
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
286 287
struct pstate_funcs {
	int (*get_max)(void);
288
	int (*get_max_physical)(void);
289 290
	int (*get_min)(void);
	int (*get_turbo)(void);
291
	int (*get_scaling)(void);
292
	int (*get_aperf_mperf_shift)(void);
293
	u64 (*get_val)(struct cpudata*, int pstate);
294
	void (*get_vid)(struct cpudata *);
295 296
};

297
static struct pstate_funcs pstate_funcs __read_mostly;
298

299
static int hwp_active __read_mostly;
300
static int hwp_mode_bdw __read_mostly;
301
static bool per_cpu_limits __read_mostly;
302
static bool hwp_boost __read_mostly;
303

304
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
305

306 307 308
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
309

310
static struct global_params global;
311

312
static DEFINE_MUTEX(intel_pstate_driver_lock);
313 314
static DEFINE_MUTEX(intel_pstate_limits_lock);

315
#ifdef CONFIG_ACPI
316

317
static bool intel_pstate_acpi_pm_profile_server(void)
318 319 320 321 322
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

323 324 325 326 327 328 329 330
	return false;
}

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (intel_pstate_acpi_pm_profile_server())
		return true;

331 332 333
	return acpi_ppc;
}

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
379 380 381 382 383 384 385 386 387 388

static int intel_pstate_get_cppc_guranteed(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return ret;

389 390 391 392
	if (cppc_perf.guaranteed_perf)
		return cppc_perf.guaranteed_perf;

	return cppc_perf.nominal_perf;
393 394
}

395
#else /* CONFIG_ACPI_CPPC_LIB */
396 397 398
static void intel_pstate_set_itmt_prio(int cpu)
{
}
399
#endif /* CONFIG_ACPI_CPPC_LIB */
400

401 402 403 404 405 406
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

407 408
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
409
		return;
410
	}
411

412
	if (!intel_pstate_get_ppc_enable_status())
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
455
	 * correct max turbo frequency based on the turbo state.
456 457
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
458
	if (!global.turbo_disabled)
459 460 461
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
462
	pr_debug("_PPC limits will be enforced\n");
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
481
#else /* CONFIG_ACPI */
482
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
483 484 485
{
}

486
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
487 488
{
}
489 490 491 492 493

static inline bool intel_pstate_acpi_pm_profile_server(void)
{
	return false;
}
494 495 496 497 498 499 500 501
#endif /* CONFIG_ACPI */

#ifndef CONFIG_ACPI_CPPC_LIB
static int intel_pstate_get_cppc_guranteed(int cpu)
{
	return -ENOTSUPP;
}
#endif /* CONFIG_ACPI_CPPC_LIB */
502

503 504 505 506 507 508 509
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
510
	global.turbo_disabled =
511 512 513 514
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

515 516 517
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
518
	int turbo_pstate = cpu->pstate.turbo_pstate;
519

520
	return turbo_pstate ?
521
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
522 523
}

524 525 526 527 528
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

529
	if (!boot_cpu_has(X86_FEATURE_EPB))
530 531 532 533 534 535 536 537 538 539 540 541 542
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

543
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
544 545 546 547 548 549 550 551 552 553
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
554
		epp = (hwp_req_data >> 24) & 0xff;
555
	} else {
556 557
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
558
	}
559 560 561 562

	return epp;
}

563
static int intel_pstate_set_epb(int cpu, s16 pref)
564 565
{
	u64 epb;
566
	int ret;
567

568
	if (!boot_cpu_has(X86_FEATURE_EPB))
569
		return -ENXIO;
570

571 572 573
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
574 575 576

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
577 578

	return 0;
579 580
}

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
600 601 602 603 604 605
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
606

607
static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
608 609 610 611
{
	s16 epp;
	int index = -EINVAL;

612
	*raw_epp = 0;
613 614 615 616
	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

617
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
618 619
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
620
		if (epp == HWP_EPP_BALANCE_PERFORMANCE)
621
			return 2;
622
		if (epp == HWP_EPP_BALANCE_POWERSAVE)
623
			return 3;
624
		if (epp == HWP_EPP_POWERSAVE)
625
			return 4;
626 627
		*raw_epp = epp;
		return 0;
628
	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

645 646
static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
{
647 648
	int ret;

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
	/*
	 * Use the cached HWP Request MSR value, because in the active mode the
	 * register itself may be updated by intel_pstate_hwp_boost_up() or
	 * intel_pstate_hwp_boost_down() at any time.
	 */
	u64 value = READ_ONCE(cpu->hwp_req_cached);

	value &= ~GENMASK_ULL(31, 24);
	value |= (u64)epp << 24;
	/*
	 * The only other updater of hwp_req_cached in the active mode,
	 * intel_pstate_hwp_set(), is called under the same lock as this
	 * function, so it cannot run in parallel with the update below.
	 */
	WRITE_ONCE(cpu->hwp_req_cached, value);
664 665 666 667 668
	ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
	if (!ret)
		cpu->epp_cached = epp;

	return ret;
669 670
}

671
static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
672 673
					      int pref_index, bool use_raw,
					      u32 raw_epp)
674 675 676 677 678 679 680
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

681
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
682 683 684
		if (use_raw)
			epp = raw_epp;
		else if (epp == -EINVAL)
685
			epp = epp_values[pref_index - 1];
686

687
		ret = intel_pstate_set_epp(cpu_data, epp);
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

713 714
static struct cpufreq_driver intel_pstate;

715 716 717
static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
718
	struct cpudata *cpu = all_cpu_data[policy->cpu];
719
	char str_preference[21];
720
	bool raw = false;
721
	ssize_t ret;
722
	u32 epp = 0;
723 724 725 726 727

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

728
	ret = match_string(energy_perf_strings, -1, str_preference);
729 730 731 732 733 734 735 736
	if (ret < 0) {
		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
			return ret;

		ret = kstrtouint(buf, 10, &epp);
		if (ret)
			return ret;

737 738 739
		if (epp > 255)
			return -EINVAL;

740 741 742
		raw = true;
	}

743 744 745 746 747 748 749 750
	/*
	 * This function runs with the policy R/W semaphore held, which
	 * guarantees that the driver pointer will not change while it is
	 * running.
	 */
	if (!intel_pstate_driver)
		return -EAGAIN;

751 752
	mutex_lock(&intel_pstate_limits_lock);

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
	if (intel_pstate_driver == &intel_pstate) {
		ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
	} else {
		/*
		 * In the passive mode the governor needs to be stopped on the
		 * target CPU before the EPP update and restarted after it,
		 * which is super-heavy-weight, so make sure it is worth doing
		 * upfront.
		 */
		if (!raw)
			epp = ret ? epp_values[ret - 1] : cpu->epp_default;

		if (cpu->epp_cached != epp) {
			int err;

			cpufreq_stop_governor(policy);
			ret = intel_pstate_set_epp(cpu, epp);
			err = cpufreq_start_governor(policy);
771
			if (!ret)
772 773 774
				ret = err;
		}
	}
775 776

	mutex_unlock(&intel_pstate_limits_lock);
777

778
	return ret ?: count;
779 780 781 782 783 784
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
785
	int preference, raw_epp;
786

787
	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
788 789 790
	if (preference < 0)
		return preference;

791 792 793 794
	if (raw_epp)
		return  sprintf(buf, "%d\n", raw_epp);
	else
		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
795 796 797 798
}

cpufreq_freq_attr_rw(energy_performance_preference);

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu;
	u64 cap;
	int ratio;

	ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
	if (ratio <= 0) {
		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
		ratio = HWP_GUARANTEED_PERF(cap);
	}

	cpu = all_cpu_data[policy->cpu];

	return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
}

cpufreq_freq_attr_ro(base_frequency);

818 819 820
static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
821
	&base_frequency,
822 823 824
	NULL,
};

825 826
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
827
{
828
	u64 cap;
829

830
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
831
	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
832
	if (global.no_turbo)
833
		*current_max = HWP_GUARANTEED_PERF(cap);
834
	else
835 836 837 838 839 840 841 842 843 844 845 846 847 848
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
849

850 851
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
852

853
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
854

855 856
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
857

858 859
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
860

861 862
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
863

864
	cpu_data->epp_policy = cpu_data->policy;
865

866 867 868 869 870
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
871

872 873 874 875 876 877
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
878

879 880 881 882 883
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
884

885 886 887 888 889 890 891 892 893 894
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
895

896 897
		epp = cpu_data->epp_powersave;
	}
898
update_epp:
899
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
900 901 902 903
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
904
	}
905
skip_epp:
906
	WRITE_ONCE(cpu_data->hwp_req_cached, value);
907
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
908
}
D
Dirk Brandewie 已提交
909

910 911 912 913 914 915 916 917 918 919 920 921 922
static void intel_pstate_hwp_force_min_perf(int cpu)
{
	u64 value;
	int min_perf;

	value = all_cpu_data[cpu]->hwp_req_cached;
	value &= ~GENMASK_ULL(31, 0);
	min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);

	/* Set hwp_max = hwp_min */
	value |= HWP_MAX_PERF(min_perf);
	value |= HWP_MIN_PERF(min_perf);

923
	/* Set EPP to min */
924
	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
925 926 927 928 929
		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);

	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
}

930 931 932 933 934 935 936 937 938 939 940 941
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
#define POWER_CTL_EE_ENABLE	1
#define POWER_CTL_EE_DISABLE	2

static int power_ctl_ee_state;

static void set_power_ctl_ee_state(bool input)
{
	u64 power_ctl;

	mutex_lock(&intel_pstate_driver_lock);
	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
	if (input) {
		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
	} else {
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
	}
	wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
	mutex_unlock(&intel_pstate_driver_lock);
}

964 965
static void intel_pstate_hwp_enable(struct cpudata *cpudata);

966 967
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
968 969 970 971 972 973 974

	/* Only restore if the system default is changed */
	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
		set_power_ctl_ee_state(true);
	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
		set_power_ctl_ee_state(false);

975 976 977
	if (!hwp_active)
		return 0;

978 979
	mutex_lock(&intel_pstate_limits_lock);

980 981 982
	if (policy->cpu == 0)
		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);

983
	all_cpu_data[policy->cpu]->epp_policy = 0;
984
	intel_pstate_hwp_set(policy->cpu);
985 986 987

	mutex_unlock(&intel_pstate_limits_lock);

988
	return 0;
989 990
}

991
static void intel_pstate_update_policies(void)
992
{
993 994 995 996
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
997 998
}

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
static void intel_pstate_update_max_freq(unsigned int cpu)
{
	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
	struct cpudata *cpudata;

	if (!policy)
		return;

	cpudata = all_cpu_data[cpu];
	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;

1011
	refresh_frequency_limits(policy);
1012 1013 1014 1015

	cpufreq_cpu_release(policy);
}

1016 1017 1018 1019 1020 1021 1022 1023 1024
static void intel_pstate_update_limits(unsigned int cpu)
{
	mutex_lock(&intel_pstate_driver_lock);

	update_turbo_state();
	/*
	 * If turbo has been turned on or off globally, policy limits for
	 * all CPUs need to be updated to reflect that.
	 */
1025 1026
	if (global.turbo_disabled_mf != global.turbo_disabled) {
		global.turbo_disabled_mf = global.turbo_disabled;
1027
		arch_set_max_freq_ratio(global.turbo_disabled);
1028 1029
		for_each_possible_cpu(cpu)
			intel_pstate_update_max_freq(cpu);
1030 1031 1032 1033 1034 1035 1036
	} else {
		cpufreq_update_policy(cpu);
	}

	mutex_unlock(&intel_pstate_driver_lock);
}

1037 1038 1039
/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
1040
	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
1041
	{								\
1042
		return sprintf(buf, "%u\n", global.object);		\
1043 1044
	}

1045 1046 1047 1048
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
1049
			   struct kobj_attribute *attr, char *buf)
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

1060
static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

1073
static ssize_t show_turbo_pct(struct kobject *kobj,
1074
				struct kobj_attribute *attr, char *buf)
1075 1076 1077 1078 1079
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1080 1081
	mutex_lock(&intel_pstate_driver_lock);

1082
	if (!intel_pstate_driver) {
1083 1084 1085 1086
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1087 1088 1089 1090
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1091
	turbo_fp = div_fp(no_turbo, total);
1092
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1093 1094 1095

	mutex_unlock(&intel_pstate_driver_lock);

1096 1097 1098
	return sprintf(buf, "%u\n", turbo_pct);
}

1099
static ssize_t show_num_pstates(struct kobject *kobj,
1100
				struct kobj_attribute *attr, char *buf)
1101 1102 1103 1104
{
	struct cpudata *cpu;
	int total;

1105 1106
	mutex_lock(&intel_pstate_driver_lock);

1107
	if (!intel_pstate_driver) {
1108 1109 1110 1111
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1112 1113
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1114 1115 1116

	mutex_unlock(&intel_pstate_driver_lock);

1117 1118 1119
	return sprintf(buf, "%u\n", total);
}

1120
static ssize_t show_no_turbo(struct kobject *kobj,
1121
			     struct kobj_attribute *attr, char *buf)
1122 1123 1124
{
	ssize_t ret;

1125 1126
	mutex_lock(&intel_pstate_driver_lock);

1127
	if (!intel_pstate_driver) {
1128 1129 1130 1131
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1132
	update_turbo_state();
1133 1134
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1135
	else
1136
		ret = sprintf(buf, "%u\n", global.no_turbo);
1137

1138 1139
	mutex_unlock(&intel_pstate_driver_lock);

1140 1141 1142
	return ret;
}

1143
static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1144
			      const char *buf, size_t count)
1145 1146 1147
{
	unsigned int input;
	int ret;
1148

1149 1150 1151
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1152

1153 1154
	mutex_lock(&intel_pstate_driver_lock);

1155
	if (!intel_pstate_driver) {
1156 1157 1158 1159
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1160 1161
	mutex_lock(&intel_pstate_limits_lock);

1162
	update_turbo_state();
1163
	if (global.turbo_disabled) {
1164
		pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1165
		mutex_unlock(&intel_pstate_limits_lock);
1166
		mutex_unlock(&intel_pstate_driver_lock);
1167
		return -EPERM;
1168
	}
D
Dirk Brandewie 已提交
1169

1170
	global.no_turbo = clamp_t(int, input, 0, 1);
1171

1172 1173 1174 1175 1176 1177 1178 1179 1180
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1181 1182
	mutex_unlock(&intel_pstate_limits_lock);

1183 1184
	intel_pstate_update_policies();

1185 1186
	mutex_unlock(&intel_pstate_driver_lock);

1187 1188 1189
	return count;
}

1190
static void update_qos_request(enum freq_qos_req_type type)
1191 1192
{
	int max_state, turbo_max, freq, i, perf_pct;
1193
	struct freq_qos_request *req;
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	struct cpufreq_policy *policy;

	for_each_possible_cpu(i) {
		struct cpudata *cpu = all_cpu_data[i];

		policy = cpufreq_cpu_get(i);
		if (!policy)
			continue;

		req = policy->driver_data;
		cpufreq_cpu_put(policy);

		if (!req)
			continue;

		if (hwp_active)
			intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
		else
			turbo_max = cpu->pstate.turbo_pstate;

1214
		if (type == FREQ_QOS_MIN) {
1215 1216 1217 1218 1219 1220 1221 1222 1223
			perf_pct = global.min_perf_pct;
		} else {
			req++;
			perf_pct = global.max_perf_pct;
		}

		freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
		freq *= cpu->pstate.scaling;

1224
		if (freq_qos_update_request(req, freq) < 0)
1225 1226 1227 1228
			pr_warn("Failed to update freq constraint: CPU%d\n", i);
	}
}

1229
static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1230
				  const char *buf, size_t count)
1231 1232 1233
{
	unsigned int input;
	int ret;
1234

1235 1236 1237 1238
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1239 1240
	mutex_lock(&intel_pstate_driver_lock);

1241
	if (!intel_pstate_driver) {
1242 1243 1244 1245
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1246 1247
	mutex_lock(&intel_pstate_limits_lock);

1248
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1249

1250 1251
	mutex_unlock(&intel_pstate_limits_lock);

1252 1253 1254
	if (intel_pstate_driver == &intel_pstate)
		intel_pstate_update_policies();
	else
1255
		update_qos_request(FREQ_QOS_MAX);
1256

1257 1258
	mutex_unlock(&intel_pstate_driver_lock);

1259 1260 1261
	return count;
}

1262
static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1263
				  const char *buf, size_t count)
1264 1265 1266
{
	unsigned int input;
	int ret;
1267

1268 1269 1270
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1271

1272 1273
	mutex_lock(&intel_pstate_driver_lock);

1274
	if (!intel_pstate_driver) {
1275 1276 1277 1278
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1279 1280
	mutex_lock(&intel_pstate_limits_lock);

1281 1282
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1283

1284 1285
	mutex_unlock(&intel_pstate_limits_lock);

1286 1287 1288
	if (intel_pstate_driver == &intel_pstate)
		intel_pstate_update_policies();
	else
1289
		update_qos_request(FREQ_QOS_MIN);
1290

1291 1292
	mutex_unlock(&intel_pstate_driver_lock);

1293 1294 1295
	return count;
}

1296
static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1297
				struct kobj_attribute *attr, char *buf)
1298 1299 1300 1301
{
	return sprintf(buf, "%u\n", hwp_boost);
}

1302 1303
static ssize_t store_hwp_dynamic_boost(struct kobject *a,
				       struct kobj_attribute *b,
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
				       const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = kstrtouint(buf, 10, &input);
	if (ret)
		return ret;

	mutex_lock(&intel_pstate_driver_lock);
	hwp_boost = !!input;
	intel_pstate_update_policies();
	mutex_unlock(&intel_pstate_driver_lock);

	return count;
}

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
				      char *buf)
{
	u64 power_ctl;
	int enable;

	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
	return sprintf(buf, "%d\n", !enable);
}

static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
				       const char *buf, size_t count)
{
	bool input;
	int ret;

	ret = kstrtobool(buf, &input);
	if (ret)
		return ret;

	set_power_ctl_ee_state(input);

	return count;
}

1347 1348 1349
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1350
define_one_global_rw(status);
1351 1352 1353
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1354
define_one_global_ro(turbo_pct);
1355
define_one_global_ro(num_pstates);
1356
define_one_global_rw(hwp_dynamic_boost);
1357
define_one_global_rw(energy_efficiency);
1358 1359

static struct attribute *intel_pstate_attributes[] = {
1360
	&status.attr,
1361
	&no_turbo.attr,
1362
	&turbo_pct.attr,
1363
	&num_pstates.attr,
1364 1365 1366
	NULL
};

1367
static const struct attribute_group intel_pstate_attr_group = {
1368 1369 1370
	.attrs = intel_pstate_attributes,
};

1371 1372
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];

1373 1374
static struct kobject *intel_pstate_kobject;

1375
static void __init intel_pstate_sysfs_expose_params(void)
1376 1377 1378 1379 1380
{
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1381 1382 1383
	if (WARN_ON(!intel_pstate_kobject))
		return;

1384
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1401 1402 1403 1404
	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
		WARN_ON(rc);
	}
1405
}
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425

static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
{
	int rc;

	if (!hwp_active)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
	WARN_ON_ONCE(rc);
}

static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
{
	if (!hwp_active)
		return;

	sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
}

1426
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1427

1428
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1429
{
1430
	/* First disable HWP notification interrupt as we don't process them */
1431
	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1432
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1433

1434
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1435
	cpudata->epp_policy = 0;
1436 1437
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1438 1439
}

1440
static int atom_get_min_pstate(void)
1441 1442
{
	u64 value;
1443

1444
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1445
	return (value >> 8) & 0x7F;
1446 1447
}

1448
static int atom_get_max_pstate(void)
1449 1450
{
	u64 value;
1451

1452
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1453
	return (value >> 16) & 0x7F;
1454
}
1455

1456
static int atom_get_turbo_pstate(void)
1457 1458
{
	u64 value;
1459

1460
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1461
	return value & 0x7F;
1462 1463
}

1464
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1465 1466 1467 1468 1469
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1470
	val = (u64)pstate << 8;
1471
	if (global.no_turbo && !global.turbo_disabled)
1472 1473 1474 1475 1476 1477 1478
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1479
	vid = ceiling_fp(vid_fp);
1480

1481 1482 1483
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1484
	return val | vid;
1485 1486
}

1487
static int silvermont_get_scaling(void)
1488 1489 1490
{
	u64 value;
	int i;
1491 1492 1493
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1494 1495

	rdmsrl(MSR_FSB_FREQ, value);
1496 1497
	i = value & 0x7;
	WARN_ON(i > 4);
1498

1499 1500
	return silvermont_freq_table[i];
}
1501

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1516 1517
}

1518
static void atom_get_vid(struct cpudata *cpudata)
1519 1520 1521
{
	u64 value;

1522
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1523 1524
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1525 1526 1527 1528
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1529

1530
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1531
	cpudata->vid.turbo = value & 0x7f;
1532 1533
}

1534
static int core_get_min_pstate(void)
1535 1536
{
	u64 value;
1537

1538
	rdmsrl(MSR_PLATFORM_INFO, value);
1539 1540 1541
	return (value >> 40) & 0xFF;
}

1542
static int core_get_max_pstate_physical(void)
1543 1544
{
	u64 value;
1545

1546
	rdmsrl(MSR_PLATFORM_INFO, value);
1547 1548 1549
	return (value >> 8) & 0xFF;
}

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1583
static int core_get_max_pstate(void)
1584
{
1585 1586 1587
	u64 tar;
	u64 plat_info;
	int max_pstate;
1588
	int tdp_ratio;
1589 1590 1591 1592 1593
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1594 1595 1596 1597 1598 1599 1600 1601 1602
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1603 1604
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1605 1606
		int tar_levels;

1607
		/* Do some sanity checking for safety */
1608 1609 1610 1611
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1612 1613
		}
	}
1614

1615
	return max_pstate;
1616 1617
}

1618
static int core_get_turbo_pstate(void)
1619 1620 1621
{
	u64 value;
	int nont, ret;
1622

1623
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1624
	nont = core_get_max_pstate();
1625
	ret = (value) & 255;
1626 1627 1628 1629 1630
	if (ret <= nont)
		ret = nont;
	return ret;
}

1631 1632 1633 1634 1635
static inline int core_get_scaling(void)
{
	return 100000;
}

1636
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1637 1638 1639
{
	u64 val;

1640
	val = (u64)pstate << 8;
1641
	if (global.no_turbo && !global.turbo_disabled)
1642 1643
		val |= (u64)1 << 32;

1644
	return val;
1645 1646
}

1647 1648 1649 1650 1651
static int knl_get_aperf_mperf_shift(void)
{
	return 10;
}

1652 1653 1654 1655 1656
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1657
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1658 1659 1660 1661 1662 1663 1664
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1665
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1666
{
1667 1668
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1669 1670 1671 1672 1673 1674 1675
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1676 1677
}

1678 1679 1680 1681 1682 1683 1684
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1685
	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1686 1687

	update_turbo_state();
1688
	intel_pstate_set_pstate(cpu, pstate);
1689 1690
}

1691 1692
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1693 1694
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1695
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1696
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1697
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1698
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1699 1700 1701 1702 1703 1704

	if (hwp_active && !hwp_mode_bdw) {
		unsigned int phy_max, current_max;

		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1705
		cpu->pstate.turbo_pstate = phy_max;
1706 1707 1708
	} else {
		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
	}
1709

1710 1711 1712
	if (pstate_funcs.get_aperf_mperf_shift)
		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();

1713 1714
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1715 1716

	intel_pstate_set_min_pstate(cpu);
1717 1718
}

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
/*
 * Long hold time will keep high perf limits for long time,
 * which negatively impacts perf/watt for some workloads,
 * like specpower. 3ms is based on experiements on some
 * workoads.
 */
static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;

static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
{
	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
	u32 max_limit = (hwp_req & 0xff00) >> 8;
	u32 min_limit = (hwp_req & 0xff);
	u32 boost_level1;

	/*
	 * Cases to consider (User changes via sysfs or boot time):
	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
	 *	No boost, return.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
	 *     Should result in one level boost only for P0.
	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
	 *     Should result in two level boost:
	 *         (min + p1)/2 and P1.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
	 *     Should result in three level boost:
	 *        (min + p1)/2, P1 and P0.
	 */

	/* If max and min are equal or already at max, nothing to boost */
	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
		return;

	if (!cpu->hwp_boost_min)
		cpu->hwp_boost_min = min_limit;

	/* level at half way mark between min and guranteed */
	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;

	if (cpu->hwp_boost_min < boost_level1)
		cpu->hwp_boost_min = boost_level1;
	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = max_limit;
	else
		return;

	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
	wrmsrl(MSR_HWP_REQUEST, hwp_req);
	cpu->last_update = cpu->sample.time;
}

static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
{
	if (cpu->hwp_boost_min) {
		bool expired;

		/* Check if we are idle for hold time to boost down */
		expired = time_after64(cpu->sample.time, cpu->last_update +
				       hwp_boost_hold_time_ns);
		if (expired) {
			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
			cpu->hwp_boost_min = 0;
		}
	}
	cpu->last_update = cpu->sample.time;
}

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
						      u64 time)
{
	cpu->sample.time = time;

	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
		bool do_io = false;

		cpu->sched_flags = 0;
		/*
		 * Set iowait_boost flag and update time. Since IO WAIT flag
		 * is set all the time, we can't just conclude that there is
		 * some IO bound activity is scheduled on this CPU with just
		 * one occurrence. If we receive at least two in two
		 * consecutive ticks, then we treat as boost candidate.
		 */
		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
			do_io = true;

		cpu->last_io_update = time;

		if (do_io)
			intel_pstate_hwp_boost_up(cpu);

	} else {
		intel_pstate_hwp_boost_down(cpu);
	}
}

1818 1819 1820
static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
						u64 time, unsigned int flags)
{
1821 1822 1823 1824 1825 1826
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);

	cpu->sched_flags |= flags;

	if (smp_processor_id() == cpu->cpu)
		intel_pstate_update_util_hwp_local(cpu, time);
1827 1828
}

1829
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1830
{
1831
	struct sample *sample = &cpu->sample;
1832

1833
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1834 1835
}

1836
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1837 1838
{
	u64 aperf, mperf;
1839
	unsigned long flags;
1840
	u64 tsc;
1841

1842
	local_irq_save(flags);
1843 1844
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1845
	tsc = rdtsc();
1846
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1847
		local_irq_restore(flags);
1848
		return false;
1849
	}
1850
	local_irq_restore(flags);
1851

1852
	cpu->last_sample_time = cpu->sample.time;
1853
	cpu->sample.time = time;
1854 1855
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1856
	cpu->sample.tsc =  tsc;
1857 1858
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1859
	cpu->sample.tsc -= cpu->prev_tsc;
1860

1861 1862
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1863
	cpu->prev_tsc = tsc;
1864 1865 1866 1867 1868 1869 1870
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1871 1872 1873 1874 1875
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1876 1877
}

1878 1879
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1880
	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1881 1882
}

1883 1884
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1885 1886
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1887 1888
}

1889
static inline int32_t get_target_pstate(struct cpudata *cpu)
1890 1891
{
	struct sample *sample = &cpu->sample;
1892
	int32_t busy_frac;
1893
	int target, avg_pstate;
1894

1895 1896
	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
			   sample->tsc);
1897

1898 1899
	if (busy_frac < cpu->iowait_boost)
		busy_frac = cpu->iowait_boost;
1900

1901
	sample->busy_scaled = busy_frac * 100;
1902

1903
	target = global.no_turbo || global.turbo_disabled ?
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1922 1923
}

1924
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1925
{
1926 1927
	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1928

1929
	return clamp_t(int, pstate, min_pstate, max_pstate);
1930 1931 1932 1933
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1934 1935 1936
	if (pstate == cpu->pstate.current_pstate)
		return;

1937
	cpu->pstate.current_pstate = pstate;
1938 1939 1940
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1941
static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1942
{
1943
	int from = cpu->pstate.current_pstate;
1944
	struct sample *sample;
1945
	int target_pstate;
1946

1947 1948
	update_turbo_state();

1949
	target_pstate = get_target_pstate(cpu);
1950 1951
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1952
	intel_pstate_update_pstate(cpu, target_pstate);
1953 1954

	sample = &cpu->sample;
1955
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1956
		fp_toint(sample->busy_scaled),
1957 1958 1959 1960 1961
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1962 1963
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1964 1965
}

1966
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1967
				     unsigned int flags)
1968
{
1969
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1970 1971
	u64 delta_ns;

1972 1973 1974 1975
	/* Don't allow remote callbacks */
	if (smp_processor_id() != cpu->cpu)
		return;

1976
	delta_ns = time - cpu->last_update;
1977
	if (flags & SCHED_CPUFREQ_IOWAIT) {
1978 1979 1980
		/* Start over if the CPU may have been idle. */
		if (delta_ns > TICK_NSEC) {
			cpu->iowait_boost = ONE_EIGHTH_FP;
1981
		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1982 1983 1984 1985 1986 1987
			cpu->iowait_boost <<= 1;
			if (cpu->iowait_boost > int_tofp(1))
				cpu->iowait_boost = int_tofp(1);
		} else {
			cpu->iowait_boost = ONE_EIGHTH_FP;
		}
1988 1989 1990 1991
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1992 1993
		else
			cpu->iowait_boost >>= 1;
1994
	}
1995
	cpu->last_update = time;
1996
	delta_ns = time - cpu->sample.time;
1997
	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1998
		return;
1999

2000 2001
	if (intel_pstate_sample(cpu, time))
		intel_pstate_adjust_pstate(cpu);
2002
}
2003

2004 2005 2006 2007 2008 2009 2010
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
2011 2012
};

2013 2014 2015 2016 2017 2018 2019 2020
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
2021 2022
};

2023 2024 2025 2026 2027 2028 2029 2030
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
2031 2032
};

2033 2034 2035 2036 2037
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
2038
	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2039 2040
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
2041 2042
};

2043 2044 2045
#define X86_MATCH(model, policy)					 \
	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
					   X86_FEATURE_APERFMPERF, &policy)
2046 2047

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
	X86_MATCH(SANDYBRIDGE,		core_funcs),
	X86_MATCH(SANDYBRIDGE_X,	core_funcs),
	X86_MATCH(ATOM_SILVERMONT,	silvermont_funcs),
	X86_MATCH(IVYBRIDGE,		core_funcs),
	X86_MATCH(HASWELL,		core_funcs),
	X86_MATCH(BROADWELL,		core_funcs),
	X86_MATCH(IVYBRIDGE_X,		core_funcs),
	X86_MATCH(HASWELL_X,		core_funcs),
	X86_MATCH(HASWELL_L,		core_funcs),
	X86_MATCH(HASWELL_G,		core_funcs),
	X86_MATCH(BROADWELL_G,		core_funcs),
	X86_MATCH(ATOM_AIRMONT,		airmont_funcs),
	X86_MATCH(SKYLAKE_L,		core_funcs),
	X86_MATCH(BROADWELL_X,		core_funcs),
	X86_MATCH(SKYLAKE,		core_funcs),
	X86_MATCH(BROADWELL_D,		core_funcs),
	X86_MATCH(XEON_PHI_KNL,		knl_funcs),
	X86_MATCH(XEON_PHI_KNM,		knl_funcs),
	X86_MATCH(ATOM_GOLDMONT,	core_funcs),
	X86_MATCH(ATOM_GOLDMONT_PLUS,	core_funcs),
	X86_MATCH(SKYLAKE_X,		core_funcs),
2069 2070 2071 2072
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

2073
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2074 2075 2076
	X86_MATCH(BROADWELL_D,		core_funcs),
	X86_MATCH(BROADWELL_X,		core_funcs),
	X86_MATCH(SKYLAKE_X,		core_funcs),
D
Dirk Brandewie 已提交
2077 2078 2079
	{}
};

2080
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2081
	X86_MATCH(KABYLAKE,		core_funcs),
2082 2083 2084
	{}
};

2085
static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2086 2087
	X86_MATCH(SKYLAKE_X,		core_funcs),
	X86_MATCH(SKYLAKE,		core_funcs),
2088 2089 2090
	{}
};

2091 2092 2093 2094
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

2095 2096 2097
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
2098
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2099 2100 2101 2102 2103
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

2104 2105 2106
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
2107
	}
2108 2109 2110 2111

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
2112

2113
	if (hwp_active) {
2114 2115
		const struct x86_cpu_id *id;

2116
		intel_pstate_hwp_enable(cpu);
2117 2118

		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2119
		if (id && intel_pstate_acpi_pm_profile_server())
2120
			hwp_boost = true;
2121
	}
2122

2123
	intel_pstate_get_cpu_pstates(cpu);
2124

J
Joe Perches 已提交
2125
	pr_debug("controlling: cpu %d\n", cpunum);
2126 2127 2128 2129

	return 0;
}

2130
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2131
{
2132 2133
	struct cpudata *cpu = all_cpu_data[cpu_num];

2134
	if (hwp_active && !hwp_boost)
2135 2136
		return;

2137 2138 2139
	if (cpu->update_util_set)
		return;

2140 2141
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
2142
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2143 2144 2145
				     (hwp_active ?
				      intel_pstate_update_util_hwp :
				      intel_pstate_update_util));
2146
	cpu->update_util_set = true;
2147 2148 2149 2150
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
2151 2152 2153 2154 2155
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

2156
	cpufreq_remove_update_util_hook(cpu);
2157
	cpu_data->update_util_set = false;
2158
	synchronize_rcu();
2159 2160
}

2161 2162 2163 2164 2165 2166
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

2167 2168 2169
static void intel_pstate_update_perf_limits(struct cpudata *cpu,
					    unsigned int policy_min,
					    unsigned int policy_max)
2170
{
2171
	int max_freq = intel_pstate_get_max_freq(cpu);
2172
	int32_t max_policy_perf, min_policy_perf;
2173
	int max_state, turbo_max;
2174

2175 2176 2177 2178 2179 2180 2181 2182
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
2183 2184
		max_state = global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2185 2186 2187
		turbo_max = cpu->pstate.turbo_pstate;
	}

2188 2189
	max_policy_perf = max_state * policy_max / max_freq;
	if (policy_max == policy_min) {
2190
		min_policy_perf = max_policy_perf;
2191
	} else {
2192
		min_policy_perf = max_state * policy_min / max_freq;
2193 2194
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
2195
	}
2196

2197
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2198
		 cpu->cpu, max_state, min_policy_perf, max_policy_perf);
2199

2200
	/* Normalize user input to [min_perf, max_perf] */
2201
	if (per_cpu_limits) {
2202 2203
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
2204 2205 2206 2207
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
2208 2209
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2210
		global_min = clamp_t(int32_t, global_min, 0, global_max);
2211

2212
		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2213
			 global_min, global_max);
2214

2215 2216 2217 2218
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2219

2220 2221 2222
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
2223

2224
	}
2225
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2226 2227
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
2228 2229
}

2230 2231
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2232 2233
	struct cpudata *cpu;

2234 2235 2236
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2237 2238 2239
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2240
	cpu = all_cpu_data[policy->cpu];
2241 2242
	cpu->policy = policy->policy;

2243 2244
	mutex_lock(&intel_pstate_limits_lock);

2245
	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2246

2247
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2248 2249 2250 2251 2252 2253
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
2254 2255
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
2256 2257
	}

2258 2259 2260 2261 2262 2263 2264 2265
	if (hwp_active) {
		/*
		 * When hwp_boost was active before and dynamically it
		 * was turned off, in that case we need to clear the
		 * update util hook.
		 */
		if (!hwp_boost)
			intel_pstate_clear_update_util_hook(policy->cpu);
2266
		intel_pstate_hwp_set(policy->cpu);
2267
	}
D
Dirk Brandewie 已提交
2268

2269 2270
	mutex_unlock(&intel_pstate_limits_lock);

2271 2272 2273
	return 0;
}

2274 2275
static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
					   struct cpufreq_policy_data *policy)
2276
{
2277 2278
	if (!hwp_active &&
	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2279 2280 2281 2282 2283 2284 2285
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2286 2287
static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
					   struct cpufreq_policy_data *policy)
2288
{
2289
	update_turbo_state();
2290 2291
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2292

2293
	intel_pstate_adjust_policy_max(cpu, policy);
2294 2295 2296 2297 2298
}

static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
{
	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2299

2300 2301 2302
	return 0;
}

2303 2304
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
2305 2306 2307 2308
	if (hwp_active)
		intel_pstate_hwp_force_min_perf(policy->cpu);
	else
		intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2309 2310
}

2311
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2312
{
2313
	pr_debug("CPU %d exiting\n", policy->cpu);
2314

2315
	intel_pstate_clear_update_util_hook(policy->cpu);
2316
	if (hwp_active)
2317
		intel_pstate_hwp_save_state(policy);
2318 2319

	intel_cpufreq_stop_cpu(policy);
2320
}
2321

2322 2323 2324
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2325

2326
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2327

2328
	return 0;
2329 2330
}

2331
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2332 2333
{
	struct cpudata *cpu;
2334
	int rc;
2335 2336 2337 2338 2339 2340 2341

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2342 2343
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
2344

2345 2346
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2347 2348

	/* cpuinfo and default policy values */
2349
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2350
	update_turbo_state();
2351
	global.turbo_disabled_mf = global.turbo_disabled;
2352
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2353 2354 2355
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2356 2357 2358 2359 2360 2361 2362 2363 2364
	if (hwp_active) {
		unsigned int max_freq;

		max_freq = global.turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
		if (max_freq < policy->cpuinfo.max_freq)
			policy->cpuinfo.max_freq = max_freq;
	}

2365
	intel_pstate_init_acpi_perf_limits(policy);
2366

2367 2368
	policy->fast_switch_possible = true;

2369 2370 2371
	return 0;
}

2372
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2373
{
2374 2375 2376 2377 2378
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

2379 2380 2381 2382 2383
	/*
	 * Set the policy to powersave to provide a valid fallback value in case
	 * the default cpufreq governor is neither powersave nor performance.
	 */
	policy->policy = CPUFREQ_POLICY_POWERSAVE;
2384

2385 2386 2387 2388 2389 2390
	if (hwp_active) {
		struct cpudata *cpu = all_cpu_data[policy->cpu];

		cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
	}

2391 2392 2393
	return 0;
}

2394
static struct cpufreq_driver intel_pstate = {
2395 2396 2397
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2398
	.suspend	= intel_pstate_hwp_save_state,
2399
	.resume		= intel_pstate_resume,
2400
	.init		= intel_pstate_cpu_init,
2401
	.exit		= intel_pstate_cpu_exit,
2402
	.stop_cpu	= intel_pstate_stop_cpu,
2403
	.update_limits	= intel_pstate_update_limits,
2404 2405 2406
	.name		= "intel_pstate",
};

2407
static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2408 2409 2410
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

2411
	intel_pstate_verify_cpu_policy(cpu, policy);
2412
	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2413

2414 2415 2416
	return 0;
}

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
/* Use of trace in passive mode:
 *
 * In passive mode the trace core_busy field (also known as the
 * performance field, and lablelled as such on the graphs; also known as
 * core_avg_perf) is not needed and so is re-assigned to indicate if the
 * driver call was via the normal or fast switch path. Various graphs
 * output from the intel_pstate_tracer.py utility that include core_busy
 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
 * so we use 10 to indicate the the normal path through the driver, and
 * 90 to indicate the fast switch path through the driver.
 * The scaled_busy field is not used, and is set to 0.
 */

#define	INTEL_PSTATE_TRACE_TARGET 10
#define	INTEL_PSTATE_TRACE_FAST_SWITCH 90

static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
{
	struct sample *sample;

	if (!trace_pstate_sample_enabled())
		return;

	if (!intel_pstate_sample(cpu, ktime_get()))
		return;

	sample = &cpu->sample;
	trace_pstate_sample(trace_type,
		0,
		old_pstate,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
}

2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
static void intel_cpufreq_adjust_hwp(struct cpudata *cpu, u32 target_pstate,
				     bool fast_switch)
{
	u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;

	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(target_pstate);

	/*
	 * The entire MSR needs to be updated in order to update the HWP min
	 * field in it, so opportunistically update the max too if needed.
	 */
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(cpu->max_perf_ratio);

	if (value == prev)
		return;

	WRITE_ONCE(cpu->hwp_req_cached, value);
	if (fast_switch)
		wrmsrl(MSR_HWP_REQUEST, value);
	else
		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
}

static void intel_cpufreq_adjust_perf_ctl(struct cpudata *cpu,
					  u32 target_pstate, bool fast_switch)
{
	if (fast_switch)
		wrmsrl(MSR_IA32_PERF_CTL,
		       pstate_funcs.get_val(cpu, target_pstate));
	else
		wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
}

static int intel_cpufreq_update_pstate(struct cpudata *cpu, int target_pstate,
				       bool fast_switch)
{
	int old_pstate = cpu->pstate.current_pstate;

	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != old_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		if (hwp_active)
			intel_cpufreq_adjust_hwp(cpu, target_pstate,
						 fast_switch);
		else
			intel_cpufreq_adjust_perf_ctl(cpu, target_pstate,
						      fast_switch);
	}

	intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
			    INTEL_PSTATE_TRACE_TARGET, old_pstate);

	return target_pstate;
}

2513 2514 2515 2516 2517 2518
static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
2519
	int target_pstate;
2520

2521 2522
	update_turbo_state();

2523
	freqs.old = policy->cur;
2524
	freqs.new = target_freq;
2525 2526

	cpufreq_freq_transition_begin(policy, &freqs);
2527

2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
2539 2540 2541

	target_pstate = intel_cpufreq_update_pstate(cpu, target_pstate, false);

2542
	freqs.new = target_pstate * cpu->pstate.scaling;
2543

2544 2545 2546 2547 2548 2549 2550 2551 2552
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
2553
	int target_pstate;
2554

2555 2556
	update_turbo_state();

2557
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2558 2559 2560

	target_pstate = intel_cpufreq_update_pstate(cpu, target_pstate, true);

2561
	return target_pstate * cpu->pstate.scaling;
2562 2563 2564 2565
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
2566
	int max_state, turbo_max, min_freq, max_freq, ret;
2567
	struct freq_qos_request *req;
2568 2569 2570 2571 2572 2573
	struct cpudata *cpu;
	struct device *dev;

	dev = get_cpu_device(policy->cpu);
	if (!dev)
		return -ENODEV;
2574

2575
	ret = __intel_pstate_cpu_init(policy);
2576 2577 2578 2579 2580 2581 2582
	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

2583 2584 2585 2586 2587 2588 2589 2590
	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
	if (!req) {
		ret = -ENOMEM;
		goto pstate_exit;
	}

	cpu = all_cpu_data[policy->cpu];

2591 2592 2593
	if (hwp_active) {
		u64 value;

2594
		intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
2595 2596 2597
		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
		rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
		WRITE_ONCE(cpu->hwp_req_cached, value);
2598
		cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2599
	} else {
2600
		turbo_max = cpu->pstate.turbo_pstate;
2601 2602
		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
	}
2603 2604 2605 2606 2607 2608

	min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
	min_freq *= cpu->pstate.scaling;
	max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
	max_freq *= cpu->pstate.scaling;

2609 2610
	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
				   min_freq);
2611 2612 2613 2614 2615
	if (ret < 0) {
		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
		goto free_req;
	}

2616 2617
	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
				   max_freq);
2618 2619 2620 2621 2622 2623 2624
	if (ret < 0) {
		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
		goto remove_min_req;
	}

	policy->driver_data = req;

2625
	return 0;
2626 2627

remove_min_req:
2628
	freq_qos_remove_request(req);
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
free_req:
	kfree(req);
pstate_exit:
	intel_pstate_exit_perf_limits(policy);

	return ret;
}

static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
{
2639
	struct freq_qos_request *req;
2640 2641 2642

	req = policy->driver_data;

2643 2644
	freq_qos_remove_request(req + 1);
	freq_qos_remove_request(req);
2645 2646 2647
	kfree(req);

	return intel_pstate_cpu_exit(policy);
2648 2649 2650 2651 2652 2653 2654 2655
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
2656
	.exit		= intel_cpufreq_cpu_exit,
2657
	.stop_cpu	= intel_cpufreq_stop_cpu,
2658
	.update_limits	= intel_pstate_update_limits,
2659 2660 2661
	.name		= "intel_cpufreq",
};

2662
static struct cpufreq_driver *default_driver;
2663

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2679 2680 2681 2682

	if (intel_pstate_driver == &intel_pstate)
		intel_pstate_sysfs_hide_hwp_dynamic_boost();

2683
	intel_pstate_driver = NULL;
2684 2685
}

2686
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2687 2688 2689
{
	int ret;

2690 2691 2692
	if (driver == &intel_pstate)
		intel_pstate_sysfs_expose_hwp_dynamic_boost();

2693 2694
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2695

2696
	intel_pstate_driver = driver;
2697 2698 2699 2700 2701 2702
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2703 2704
	global.min_perf_pct = min_perf_pct_min();

2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2718
	if (!intel_pstate_driver)
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

2729 2730 2731 2732 2733 2734 2735 2736 2737
	if (size == 3 && !strncmp(buf, "off", size)) {
		if (!intel_pstate_driver)
			return -EINVAL;

		if (hwp_active)
			return -EBUSY;

		return intel_pstate_unregister_driver();
	}
2738 2739

	if (size == 6 && !strncmp(buf, "active", size)) {
2740
		if (intel_pstate_driver) {
2741 2742 2743 2744 2745 2746 2747 2748
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2749
		return intel_pstate_register_driver(&intel_pstate);
2750 2751 2752
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2753
		if (intel_pstate_driver) {
2754
			if (intel_pstate_driver == &intel_cpufreq)
2755 2756 2757 2758 2759 2760 2761
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2762
		return intel_pstate_register_driver(&intel_cpufreq);
2763 2764 2765 2766 2767
	}

	return -EINVAL;
}

2768 2769 2770
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2771
static unsigned int force_load __initdata;
2772

2773
static int __init intel_pstate_msrs_not_valid(void)
2774
{
2775
	if (!pstate_funcs.get_max() ||
2776 2777
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2778 2779 2780 2781
		return -ENODEV;

	return 0;
}
2782

2783
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2784 2785
{
	pstate_funcs.get_max   = funcs->get_max;
2786
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2787 2788
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2789
	pstate_funcs.get_scaling = funcs->get_scaling;
2790
	pstate_funcs.get_val   = funcs->get_val;
2791
	pstate_funcs.get_vid   = funcs->get_vid;
2792
	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2793 2794
}

2795
#ifdef CONFIG_ACPI
2796

2797
static bool __init intel_pstate_no_acpi_pss(void)
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

2823
	pr_debug("ACPI _PSS not found\n");
2824 2825 2826
	return true;
}

2827 2828 2829 2830 2831 2832 2833
static bool __init intel_pstate_no_acpi_pcch(void)
{
	acpi_status status;
	acpi_handle handle;

	status = acpi_get_handle(NULL, "\\_SB", &handle);
	if (ACPI_FAILURE(status))
2834 2835 2836 2837
		goto not_found;

	if (acpi_has_method(handle, "PCCH"))
		return false;
2838

2839 2840 2841
not_found:
	pr_debug("ACPI PCCH not found\n");
	return true;
2842 2843
}

2844
static bool __init intel_pstate_has_acpi_ppc(void)
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
2856
	pr_debug("ACPI _PPC not found\n");
2857 2858 2859 2860 2861 2862 2863 2864
	return false;
}

enum {
	PSS,
	PPC,
};

2865
/* Hardware vendor-specific info that has its own power management modes */
2866
static struct acpi_platform_list plat_info[] __initdata = {
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2882
	{ } /* End */
2883 2884
};

2885 2886
#define BITMASK_OOB	(BIT(8) | BIT(18))

2887
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2888
{
D
Dirk Brandewie 已提交
2889 2890
	const struct x86_cpu_id *id;
	u64 misc_pwr;
2891
	int idx;
D
Dirk Brandewie 已提交
2892 2893 2894 2895

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2896 2897 2898
		if (misc_pwr & BITMASK_OOB) {
			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
D
Dirk Brandewie 已提交
2899
			return true;
2900
		}
D
Dirk Brandewie 已提交
2901
	}
2902

2903 2904
	idx = acpi_match_platform_list(plat_info);
	if (idx < 0)
2905 2906
		return false;

2907 2908
	switch (plat_info[idx].data) {
	case PSS:
2909 2910 2911 2912
		if (!intel_pstate_no_acpi_pss())
			return false;

		return intel_pstate_no_acpi_pcch();
2913 2914
	case PPC:
		return intel_pstate_has_acpi_ppc() && !force_load;
2915 2916 2917 2918
	}

	return false;
}
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2929 2930
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2931
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2932
static inline void intel_pstate_request_control_from_smm(void) {}
2933 2934
#endif /* CONFIG_ACPI */

2935 2936
#define INTEL_PSTATE_HWP_BROADWELL	0x01

2937 2938
#define X86_MATCH_HWP(model, hwp_mode)					\
	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2939
					   X86_FEATURE_HWP, hwp_mode)
2940

2941
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2942 2943 2944
	X86_MATCH_HWP(BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
	X86_MATCH_HWP(BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
	X86_MATCH_HWP(ANY,		0),
2945 2946 2947
	{}
};

2948 2949
static int __init intel_pstate_init(void)
{
2950
	const struct x86_cpu_id *id;
2951
	int rc;
2952

2953 2954 2955
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return -ENODEV;

2956 2957 2958
	if (no_load)
		return -ENODEV;

2959 2960
	id = x86_match_cpu(hwp_support_ids);
	if (id) {
2961
		copy_cpu_funcs(&core_funcs);
2962 2963 2964 2965 2966 2967
		/*
		 * Avoid enabling HWP for processors without EPP support,
		 * because that means incomplete HWP implementation which is a
		 * corner case and supporting it is generally problematic.
		 */
		if (!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) {
2968
			hwp_active++;
2969
			hwp_mode_bdw = id->driver_data;
2970
			intel_pstate.attr = hwp_cpufreq_attrs;
2971 2972 2973 2974
			intel_cpufreq.attr = hwp_cpufreq_attrs;
			if (!default_driver)
				default_driver = &intel_pstate;

2975 2976 2977 2978
			goto hwp_cpu_matched;
		}
	} else {
		id = x86_match_cpu(intel_pstate_cpu_ids);
2979
		if (!id) {
2980
			pr_info("CPU model not supported\n");
2981
			return -ENODEV;
2982
		}
2983

2984
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2985
	}
2986

2987 2988
	if (intel_pstate_msrs_not_valid()) {
		pr_info("Invalid MSRs\n");
2989
		return -ENODEV;
2990
	}
2991
	/* Without HWP start in the passive mode. */
2992 2993
	if (!default_driver)
		default_driver = &intel_cpufreq;
2994

2995 2996 2997 2998 2999
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
3000 3001
	if (intel_pstate_platform_pwr_mgmt_exists()) {
		pr_info("P-states controlled by the platform\n");
3002
		return -ENODEV;
3003
	}
3004

3005 3006 3007
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
3008
	pr_info("Intel P-state driver initializing\n");
3009

3010
	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3011 3012 3013
	if (!all_cpu_data)
		return -ENOMEM;

3014 3015
	intel_pstate_request_control_from_smm();

3016
	intel_pstate_sysfs_expose_params();
3017

3018
	mutex_lock(&intel_pstate_driver_lock);
3019
	rc = intel_pstate_register_driver(default_driver);
3020
	mutex_unlock(&intel_pstate_driver_lock);
3021 3022
	if (rc)
		return rc;
3023

3024 3025 3026 3027 3028 3029 3030 3031 3032
	if (hwp_active) {
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id) {
			set_power_ctl_ee_state(false);
			pr_info("Disabling energy efficiency optimization\n");
		}

J
Joe Perches 已提交
3033
		pr_info("HWP enabled\n");
3034
	}
3035

3036
	return 0;
3037 3038 3039
}
device_initcall(intel_pstate_init);

3040 3041 3042 3043 3044
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

3045
	if (!strcmp(str, "disable"))
3046
		no_load = 1;
3047
	else if (!strcmp(str, "active"))
3048
		default_driver = &intel_pstate;
3049
	else if (!strcmp(str, "passive"))
3050
		default_driver = &intel_cpufreq;
3051

3052
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
3053
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
3054
		no_hwp = 1;
3055
	}
3056 3057
	if (!strcmp(str, "force"))
		force_load = 1;
3058 3059
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
3060 3061
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
3062 3063 3064 3065 3066 3067

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

3068 3069 3070 3071
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

3072 3073 3074
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");