intel_pstate.c 67.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * intel_pstate.c: Native P state management for Intel processors
4 5 6 7 8
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 */

J
Joe Perches 已提交
9 10
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

11 12 13 14 15 16 17
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
18
#include <linux/sched/cpufreq.h>
19 20 21 22 23 24
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
25
#include <linux/acpi.h>
26
#include <linux/vmalloc.h>
27 28 29 30 31
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
32
#include <asm/cpufeature.h>
33
#include <asm/intel-family.h>
34

35
#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
36

37
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
38
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
39

40 41
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
42
#include <acpi/cppc_acpi.h>
43 44
#endif

45
#define FRAC_BITS 8
46 47
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
48

49 50
#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))

51 52
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53 54
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55

56 57 58 59 60
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

61
static inline int32_t div_fp(s64 x, s64 y)
62
{
63
	return div64_s64((int64_t)x << FRAC_BITS, y);
64 65
}

66 67 68 69 70 71 72 73 74 75 76
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

77 78 79 80 81
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

82 83 84 85 86 87 88 89 90 91
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

92 93 94 95 96
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

97 98
/**
 * struct sample -	Store performance sample
99
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
100 101
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
102
 *			P state. This can be different than core_avg_perf
103 104 105 106 107 108 109 110 111 112 113 114
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
115
struct sample {
116
	int32_t core_avg_perf;
117
	int32_t busy_scaled;
118 119
	u64 aperf;
	u64 mperf;
120
	u64 tsc;
121
	u64 time;
122 123
};

124 125 126 127 128 129 130 131 132 133 134
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
135 136
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
137 138 139
 *
 * Stores the per cpu model P state limits and current P state.
 */
140 141 142 143
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
144
	int	max_pstate_physical;
145
	int	scaling;
146
	int	turbo_pstate;
147 148
	unsigned int max_freq;
	unsigned int turbo_freq;
149 150
};

151 152 153 154 155 156 157 158 159 160 161 162 163
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
164
struct vid_data {
165 166 167
	int min;
	int max;
	int turbo;
168 169 170
	int32_t ratio;
};

171 172 173 174 175 176 177
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
178
 * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
179 180 181 182 183 184 185 186
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
187
	bool turbo_disabled_mf;
188 189
	int max_perf_pct;
	int min_perf_pct;
190 191
};

192 193 194
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
195
 * @policy:		CPUFreq policy value
196
 * @update_util:	CPUFreq utility callback information
197
 * @update_util_set:	CPUFreq utility callback is set
198 199
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
200 201 202
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @last_sample_time:	Last Sample time
203 204 205
 * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
 *			This shift is a multiplier to mperf delta to
 *			calculate CPU busy.
206 207 208 209 210 211
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
212 213
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
214 215
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
216 217 218
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
219
 * @epp_policy:		Last saved policy used to set EPP/EPB
220 221 222 223
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
224 225
 * @hwp_req_cached:	Cached value of the last HWP Request MSR
 * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
226 227
 * @last_io_update:	Last time when IO wake flag was set
 * @sched_flags:	Store scheduler flags for possible cross CPU update
228
 * @hwp_boost_min:	Last HWP boosted min performance
229 230 231
 *
 * This structure stores per CPU instance data for all CPUs.
 */
232 233 234
struct cpudata {
	int cpu;

235
	unsigned int policy;
236
	struct update_util_data update_util;
237
	bool   update_util_set;
238 239

	struct pstate_data pstate;
240
	struct vid_data vid;
241

242
	u64	last_update;
243
	u64	last_sample_time;
244
	u64	aperf_mperf_shift;
245 246
	u64	prev_aperf;
	u64	prev_mperf;
247
	u64	prev_tsc;
248
	u64	prev_cummulative_iowait;
249
	struct sample sample;
250 251
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
252 253 254 255
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
256
	unsigned int iowait_boost;
257
	s16 epp_powersave;
258
	s16 epp_policy;
259 260
	s16 epp_default;
	s16 epp_saved;
261 262
	u64 hwp_req_cached;
	u64 hwp_cap_cached;
263 264
	u64 last_io_update;
	unsigned int sched_flags;
265
	u32 hwp_boost_min;
266 267 268
};

static struct cpudata **all_cpu_data;
269 270 271 272 273 274 275 276 277 278 279 280 281 282

/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
283 284
struct pstate_funcs {
	int (*get_max)(void);
285
	int (*get_max_physical)(void);
286 287
	int (*get_min)(void);
	int (*get_turbo)(void);
288
	int (*get_scaling)(void);
289
	int (*get_aperf_mperf_shift)(void);
290
	u64 (*get_val)(struct cpudata*, int pstate);
291
	void (*get_vid)(struct cpudata *);
292 293
};

294
static struct pstate_funcs pstate_funcs __read_mostly;
295

296
static int hwp_active __read_mostly;
297
static int hwp_mode_bdw __read_mostly;
298
static bool per_cpu_limits __read_mostly;
299
static bool hwp_boost __read_mostly;
300

301
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302

303 304 305
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
306

307
static struct global_params global;
308

309
static DEFINE_MUTEX(intel_pstate_driver_lock);
310 311
static DEFINE_MUTEX(intel_pstate_limits_lock);

312
#ifdef CONFIG_ACPI
313

314
static bool intel_pstate_acpi_pm_profile_server(void)
315 316 317 318 319
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

320 321 322 323 324 325 326 327
	return false;
}

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (intel_pstate_acpi_pm_profile_server())
		return true;

328 329 330
	return acpi_ppc;
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
376 377 378 379 380 381 382 383 384 385

static int intel_pstate_get_cppc_guranteed(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return ret;

386 387 388 389
	if (cppc_perf.guaranteed_perf)
		return cppc_perf.guaranteed_perf;

	return cppc_perf.nominal_perf;
390 391
}

392
#else /* CONFIG_ACPI_CPPC_LIB */
393 394 395
static void intel_pstate_set_itmt_prio(int cpu)
{
}
396
#endif /* CONFIG_ACPI_CPPC_LIB */
397

398 399 400 401 402 403
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

404 405
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
406
		return;
407
	}
408

409
	if (!intel_pstate_get_ppc_enable_status())
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
452
	 * correct max turbo frequency based on the turbo state.
453 454
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
455
	if (!global.turbo_disabled)
456 457 458
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
459
	pr_debug("_PPC limits will be enforced\n");
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
478
#else /* CONFIG_ACPI */
479
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
480 481 482
{
}

483
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
484 485
{
}
486 487 488 489 490

static inline bool intel_pstate_acpi_pm_profile_server(void)
{
	return false;
}
491 492 493 494 495 496 497 498
#endif /* CONFIG_ACPI */

#ifndef CONFIG_ACPI_CPPC_LIB
static int intel_pstate_get_cppc_guranteed(int cpu)
{
	return -ENOTSUPP;
}
#endif /* CONFIG_ACPI_CPPC_LIB */
499

500 501 502 503 504 505 506
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
507
	global.turbo_disabled =
508 509 510 511
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

512 513 514
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
515
	int turbo_pstate = cpu->pstate.turbo_pstate;
516

517
	return turbo_pstate ?
518
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
519 520
}

521 522 523 524 525
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

526
	if (!boot_cpu_has(X86_FEATURE_EPB))
527 528 529 530 531 532 533 534 535 536 537 538 539
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

540
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
541 542 543 544 545 546 547 548 549 550
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
551
		epp = (hwp_req_data >> 24) & 0xff;
552
	} else {
553 554
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
555
	}
556 557 558 559

	return epp;
}

560
static int intel_pstate_set_epb(int cpu, s16 pref)
561 562
{
	u64 epb;
563
	int ret;
564

565
	if (!boot_cpu_has(X86_FEATURE_EPB))
566
		return -ENXIO;
567

568 569 570
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
571 572 573

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
574 575

	return 0;
576 577
}

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
597 598 599 600 601 602
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
603 604 605 606 607 608 609 610 611 612

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

613
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
614 615 616 617 618 619 620 621
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
			return 2;
		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
			return 3;
		else
			return 4;
622
	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

650
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
651 652 653 654 655 656 657 658 659
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		if (epp == -EINVAL)
660
			epp = epp_values[pref_index - 1];
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
696
	int ret;
697 698 699 700 701

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

702 703 704
	ret = match_string(energy_perf_strings, -1, str_preference);
	if (ret < 0)
		return ret;
705

706 707
	intel_pstate_set_energy_pref_index(cpu_data, ret);
	return count;
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu;
	u64 cap;
	int ratio;

	ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
	if (ratio <= 0) {
		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
		ratio = HWP_GUARANTEED_PERF(cap);
	}

	cpu = all_cpu_data[policy->cpu];

	return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
}

cpufreq_freq_attr_ro(base_frequency);

744 745 746
static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
747
	&base_frequency,
748 749 750
	NULL,
};

751 752
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
753
{
754
	u64 cap;
755

756
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
757
	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
758
	if (global.no_turbo)
759
		*current_max = HWP_GUARANTEED_PERF(cap);
760
	else
761 762 763 764 765 766 767 768 769 770 771 772 773 774
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
775

776 777
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
778

779
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
780

781 782
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
783

784 785
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
786

787 788
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
789

790
	cpu_data->epp_policy = cpu_data->policy;
791

792 793 794 795 796
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
797

798 799 800 801 802 803
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
804

805 806 807 808 809
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
810

811 812 813 814 815 816 817 818 819 820
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
821

822 823
		epp = cpu_data->epp_powersave;
	}
824
update_epp:
825
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
826 827 828 829
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
830
	}
831
skip_epp:
832
	WRITE_ONCE(cpu_data->hwp_req_cached, value);
833
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
834
}
D
Dirk Brandewie 已提交
835

836 837 838 839 840 841 842 843 844 845 846 847 848 849
static void intel_pstate_hwp_force_min_perf(int cpu)
{
	u64 value;
	int min_perf;

	value = all_cpu_data[cpu]->hwp_req_cached;
	value &= ~GENMASK_ULL(31, 0);
	min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);

	/* Set hwp_max = hwp_min */
	value |= HWP_MAX_PERF(min_perf);
	value |= HWP_MIN_PERF(min_perf);

	/* Set EPP/EPB to min */
850
	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
851 852 853 854 855 856 857
		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
	else
		intel_pstate_set_epb(cpu, HWP_EPP_BALANCE_POWERSAVE);

	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
}

858 859 860 861 862 863 864 865 866 867 868 869
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

870 871
static void intel_pstate_hwp_enable(struct cpudata *cpudata);

872 873 874 875 876
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

877 878
	mutex_lock(&intel_pstate_limits_lock);

879 880 881
	if (policy->cpu == 0)
		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);

882
	all_cpu_data[policy->cpu]->epp_policy = 0;
883
	intel_pstate_hwp_set(policy->cpu);
884 885 886

	mutex_unlock(&intel_pstate_limits_lock);

887
	return 0;
888 889
}

890
static void intel_pstate_update_policies(void)
891
{
892 893 894 895
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
896 897
}

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
static void intel_pstate_update_max_freq(unsigned int cpu)
{
	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
	struct cpufreq_policy new_policy;
	struct cpudata *cpudata;

	if (!policy)
		return;

	cpudata = all_cpu_data[cpu];
	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;

	memcpy(&new_policy, policy, sizeof(*policy));
	new_policy.max = min(policy->user_policy.max, policy->cpuinfo.max_freq);
	new_policy.min = min(policy->user_policy.min, new_policy.max);

	cpufreq_set_policy(policy, &new_policy);

	cpufreq_cpu_release(policy);
}

920 921 922 923 924 925 926 927 928
static void intel_pstate_update_limits(unsigned int cpu)
{
	mutex_lock(&intel_pstate_driver_lock);

	update_turbo_state();
	/*
	 * If turbo has been turned on or off globally, policy limits for
	 * all CPUs need to be updated to reflect that.
	 */
929 930 931 932
	if (global.turbo_disabled_mf != global.turbo_disabled) {
		global.turbo_disabled_mf = global.turbo_disabled;
		for_each_possible_cpu(cpu)
			intel_pstate_update_max_freq(cpu);
933 934 935 936 937 938 939
	} else {
		cpufreq_update_policy(cpu);
	}

	mutex_unlock(&intel_pstate_driver_lock);
}

940 941 942
/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
943
	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
944
	{								\
945
		return sprintf(buf, "%u\n", global.object);		\
946 947
	}

948 949 950 951
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
952
			   struct kobj_attribute *attr, char *buf)
953 954 955 956 957 958 959 960 961 962
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

963
static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
964 965 966 967 968 969 970 971 972 973 974 975
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

976
static ssize_t show_turbo_pct(struct kobject *kobj,
977
				struct kobj_attribute *attr, char *buf)
978 979 980 981 982
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

983 984
	mutex_lock(&intel_pstate_driver_lock);

985
	if (!intel_pstate_driver) {
986 987 988 989
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

990 991 992 993
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
994
	turbo_fp = div_fp(no_turbo, total);
995
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
996 997 998

	mutex_unlock(&intel_pstate_driver_lock);

999 1000 1001
	return sprintf(buf, "%u\n", turbo_pct);
}

1002
static ssize_t show_num_pstates(struct kobject *kobj,
1003
				struct kobj_attribute *attr, char *buf)
1004 1005 1006 1007
{
	struct cpudata *cpu;
	int total;

1008 1009
	mutex_lock(&intel_pstate_driver_lock);

1010
	if (!intel_pstate_driver) {
1011 1012 1013 1014
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1015 1016
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1017 1018 1019

	mutex_unlock(&intel_pstate_driver_lock);

1020 1021 1022
	return sprintf(buf, "%u\n", total);
}

1023
static ssize_t show_no_turbo(struct kobject *kobj,
1024
			     struct kobj_attribute *attr, char *buf)
1025 1026 1027
{
	ssize_t ret;

1028 1029
	mutex_lock(&intel_pstate_driver_lock);

1030
	if (!intel_pstate_driver) {
1031 1032 1033 1034
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1035
	update_turbo_state();
1036 1037
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1038
	else
1039
		ret = sprintf(buf, "%u\n", global.no_turbo);
1040

1041 1042
	mutex_unlock(&intel_pstate_driver_lock);

1043 1044 1045
	return ret;
}

1046
static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1047
			      const char *buf, size_t count)
1048 1049 1050
{
	unsigned int input;
	int ret;
1051

1052 1053 1054
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1055

1056 1057
	mutex_lock(&intel_pstate_driver_lock);

1058
	if (!intel_pstate_driver) {
1059 1060 1061 1062
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1063 1064
	mutex_lock(&intel_pstate_limits_lock);

1065
	update_turbo_state();
1066
	if (global.turbo_disabled) {
J
Joe Perches 已提交
1067
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1068
		mutex_unlock(&intel_pstate_limits_lock);
1069
		mutex_unlock(&intel_pstate_driver_lock);
1070
		return -EPERM;
1071
	}
D
Dirk Brandewie 已提交
1072

1073
	global.no_turbo = clamp_t(int, input, 0, 1);
1074

1075 1076 1077 1078 1079 1080 1081 1082 1083
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1084 1085
	mutex_unlock(&intel_pstate_limits_lock);

1086 1087
	intel_pstate_update_policies();

1088 1089
	mutex_unlock(&intel_pstate_driver_lock);

1090 1091 1092
	return count;
}

1093
static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1094
				  const char *buf, size_t count)
1095 1096 1097
{
	unsigned int input;
	int ret;
1098

1099 1100 1101 1102
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1103 1104
	mutex_lock(&intel_pstate_driver_lock);

1105
	if (!intel_pstate_driver) {
1106 1107 1108 1109
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1110 1111
	mutex_lock(&intel_pstate_limits_lock);

1112
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1113

1114 1115
	mutex_unlock(&intel_pstate_limits_lock);

1116 1117
	intel_pstate_update_policies();

1118 1119
	mutex_unlock(&intel_pstate_driver_lock);

1120 1121 1122
	return count;
}

1123
static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1124
				  const char *buf, size_t count)
1125 1126 1127
{
	unsigned int input;
	int ret;
1128

1129 1130 1131
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1132

1133 1134
	mutex_lock(&intel_pstate_driver_lock);

1135
	if (!intel_pstate_driver) {
1136 1137 1138 1139
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1140 1141
	mutex_lock(&intel_pstate_limits_lock);

1142 1143
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1144

1145 1146
	mutex_unlock(&intel_pstate_limits_lock);

1147 1148
	intel_pstate_update_policies();

1149 1150
	mutex_unlock(&intel_pstate_driver_lock);

1151 1152 1153
	return count;
}

1154
static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1155
				struct kobj_attribute *attr, char *buf)
1156 1157 1158 1159
{
	return sprintf(buf, "%u\n", hwp_boost);
}

1160 1161
static ssize_t store_hwp_dynamic_boost(struct kobject *a,
				       struct kobj_attribute *b,
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
				       const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = kstrtouint(buf, 10, &input);
	if (ret)
		return ret;

	mutex_lock(&intel_pstate_driver_lock);
	hwp_boost = !!input;
	intel_pstate_update_policies();
	mutex_unlock(&intel_pstate_driver_lock);

	return count;
}

1179 1180 1181
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1182
define_one_global_rw(status);
1183 1184 1185
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1186
define_one_global_ro(turbo_pct);
1187
define_one_global_ro(num_pstates);
1188
define_one_global_rw(hwp_dynamic_boost);
1189 1190

static struct attribute *intel_pstate_attributes[] = {
1191
	&status.attr,
1192
	&no_turbo.attr,
1193
	&turbo_pct.attr,
1194
	&num_pstates.attr,
1195 1196 1197
	NULL
};

1198
static const struct attribute_group intel_pstate_attr_group = {
1199 1200 1201
	.attrs = intel_pstate_attributes,
};

1202
static void __init intel_pstate_sysfs_expose_params(void)
1203
{
1204
	struct kobject *intel_pstate_kobject;
1205 1206 1207 1208
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1209 1210 1211
	if (WARN_ON(!intel_pstate_kobject))
		return;

1212
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1229 1230 1231 1232 1233
	if (hwp_active) {
		rc = sysfs_create_file(intel_pstate_kobject,
				       &hwp_dynamic_boost.attr);
		WARN_ON(rc);
	}
1234 1235
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1236

1237
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1238
{
1239
	/* First disable HWP notification interrupt as we don't process them */
1240
	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1241
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1242

1243
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1244
	cpudata->epp_policy = 0;
1245 1246
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1247 1248
}

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1268
static int atom_get_min_pstate(void)
1269 1270
{
	u64 value;
1271

1272
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1273
	return (value >> 8) & 0x7F;
1274 1275
}

1276
static int atom_get_max_pstate(void)
1277 1278
{
	u64 value;
1279

1280
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1281
	return (value >> 16) & 0x7F;
1282
}
1283

1284
static int atom_get_turbo_pstate(void)
1285 1286
{
	u64 value;
1287

1288
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1289
	return value & 0x7F;
1290 1291
}

1292
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1293 1294 1295 1296 1297
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1298
	val = (u64)pstate << 8;
1299
	if (global.no_turbo && !global.turbo_disabled)
1300 1301 1302 1303 1304 1305 1306
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1307
	vid = ceiling_fp(vid_fp);
1308

1309 1310 1311
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1312
	return val | vid;
1313 1314
}

1315
static int silvermont_get_scaling(void)
1316 1317 1318
{
	u64 value;
	int i;
1319 1320 1321
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1322 1323

	rdmsrl(MSR_FSB_FREQ, value);
1324 1325
	i = value & 0x7;
	WARN_ON(i > 4);
1326

1327 1328
	return silvermont_freq_table[i];
}
1329

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1344 1345
}

1346
static void atom_get_vid(struct cpudata *cpudata)
1347 1348 1349
{
	u64 value;

1350
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1351 1352
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1353 1354 1355 1356
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1357

1358
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1359
	cpudata->vid.turbo = value & 0x7f;
1360 1361
}

1362
static int core_get_min_pstate(void)
1363 1364
{
	u64 value;
1365

1366
	rdmsrl(MSR_PLATFORM_INFO, value);
1367 1368 1369
	return (value >> 40) & 0xFF;
}

1370
static int core_get_max_pstate_physical(void)
1371 1372
{
	u64 value;
1373

1374
	rdmsrl(MSR_PLATFORM_INFO, value);
1375 1376 1377
	return (value >> 8) & 0xFF;
}

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1411
static int core_get_max_pstate(void)
1412
{
1413 1414 1415
	u64 tar;
	u64 plat_info;
	int max_pstate;
1416
	int tdp_ratio;
1417 1418 1419 1420 1421
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1422 1423 1424 1425 1426 1427 1428 1429 1430
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1431 1432
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1433 1434
		int tar_levels;

1435
		/* Do some sanity checking for safety */
1436 1437 1438 1439
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1440 1441
		}
	}
1442

1443
	return max_pstate;
1444 1445
}

1446
static int core_get_turbo_pstate(void)
1447 1448 1449
{
	u64 value;
	int nont, ret;
1450

1451
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1452
	nont = core_get_max_pstate();
1453
	ret = (value) & 255;
1454 1455 1456 1457 1458
	if (ret <= nont)
		ret = nont;
	return ret;
}

1459 1460 1461 1462 1463
static inline int core_get_scaling(void)
{
	return 100000;
}

1464
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1465 1466 1467
{
	u64 val;

1468
	val = (u64)pstate << 8;
1469
	if (global.no_turbo && !global.turbo_disabled)
1470 1471
		val |= (u64)1 << 32;

1472
	return val;
1473 1474
}

1475 1476 1477 1478 1479
static int knl_get_aperf_mperf_shift(void)
{
	return 10;
}

1480 1481 1482 1483 1484
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1485
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1486 1487 1488 1489 1490 1491 1492
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1493
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1494
{
1495 1496
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1497 1498 1499 1500 1501 1502 1503
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1504 1505
}

1506 1507 1508 1509 1510 1511 1512
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1513
	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1514 1515

	update_turbo_state();
1516
	intel_pstate_set_pstate(cpu, pstate);
1517 1518
}

1519 1520
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1521 1522
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1523
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1524
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1525
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1526
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1527 1528 1529 1530 1531 1532 1533 1534 1535

	if (hwp_active && !hwp_mode_bdw) {
		unsigned int phy_max, current_max;

		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
	} else {
		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
	}
1536

1537 1538 1539
	if (pstate_funcs.get_aperf_mperf_shift)
		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();

1540 1541
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1542 1543

	intel_pstate_set_min_pstate(cpu);
1544 1545
}

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
/*
 * Long hold time will keep high perf limits for long time,
 * which negatively impacts perf/watt for some workloads,
 * like specpower. 3ms is based on experiements on some
 * workoads.
 */
static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;

static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
{
	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
	u32 max_limit = (hwp_req & 0xff00) >> 8;
	u32 min_limit = (hwp_req & 0xff);
	u32 boost_level1;

	/*
	 * Cases to consider (User changes via sysfs or boot time):
	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
	 *	No boost, return.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
	 *     Should result in one level boost only for P0.
	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
	 *     Should result in two level boost:
	 *         (min + p1)/2 and P1.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
	 *     Should result in three level boost:
	 *        (min + p1)/2, P1 and P0.
	 */

	/* If max and min are equal or already at max, nothing to boost */
	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
		return;

	if (!cpu->hwp_boost_min)
		cpu->hwp_boost_min = min_limit;

	/* level at half way mark between min and guranteed */
	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;

	if (cpu->hwp_boost_min < boost_level1)
		cpu->hwp_boost_min = boost_level1;
	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = max_limit;
	else
		return;

	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
	wrmsrl(MSR_HWP_REQUEST, hwp_req);
	cpu->last_update = cpu->sample.time;
}

static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
{
	if (cpu->hwp_boost_min) {
		bool expired;

		/* Check if we are idle for hold time to boost down */
		expired = time_after64(cpu->sample.time, cpu->last_update +
				       hwp_boost_hold_time_ns);
		if (expired) {
			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
			cpu->hwp_boost_min = 0;
		}
	}
	cpu->last_update = cpu->sample.time;
}

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
						      u64 time)
{
	cpu->sample.time = time;

	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
		bool do_io = false;

		cpu->sched_flags = 0;
		/*
		 * Set iowait_boost flag and update time. Since IO WAIT flag
		 * is set all the time, we can't just conclude that there is
		 * some IO bound activity is scheduled on this CPU with just
		 * one occurrence. If we receive at least two in two
		 * consecutive ticks, then we treat as boost candidate.
		 */
		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
			do_io = true;

		cpu->last_io_update = time;

		if (do_io)
			intel_pstate_hwp_boost_up(cpu);

	} else {
		intel_pstate_hwp_boost_down(cpu);
	}
}

1645 1646 1647
static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
						u64 time, unsigned int flags)
{
1648 1649 1650 1651 1652 1653
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);

	cpu->sched_flags |= flags;

	if (smp_processor_id() == cpu->cpu)
		intel_pstate_update_util_hwp_local(cpu, time);
1654 1655
}

1656
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1657
{
1658
	struct sample *sample = &cpu->sample;
1659

1660
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1661 1662
}

1663
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1664 1665
{
	u64 aperf, mperf;
1666
	unsigned long flags;
1667
	u64 tsc;
1668

1669
	local_irq_save(flags);
1670 1671
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1672
	tsc = rdtsc();
1673
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1674
		local_irq_restore(flags);
1675
		return false;
1676
	}
1677
	local_irq_restore(flags);
1678

1679
	cpu->last_sample_time = cpu->sample.time;
1680
	cpu->sample.time = time;
1681 1682
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1683
	cpu->sample.tsc =  tsc;
1684 1685
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1686
	cpu->sample.tsc -= cpu->prev_tsc;
1687

1688 1689
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1690
	cpu->prev_tsc = tsc;
1691 1692 1693 1694 1695 1696 1697
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1698 1699 1700 1701 1702
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1703 1704
}

1705 1706
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1707
	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1708 1709
}

1710 1711
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1712 1713
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1714 1715
}

1716
static inline int32_t get_target_pstate(struct cpudata *cpu)
1717 1718
{
	struct sample *sample = &cpu->sample;
1719
	int32_t busy_frac;
1720
	int target, avg_pstate;
1721

1722 1723
	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
			   sample->tsc);
1724

1725 1726
	if (busy_frac < cpu->iowait_boost)
		busy_frac = cpu->iowait_boost;
1727

1728
	sample->busy_scaled = busy_frac * 100;
1729

1730
	target = global.no_turbo || global.turbo_disabled ?
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1749 1750
}

1751
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1752
{
1753 1754
	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1755

1756
	return clamp_t(int, pstate, min_pstate, max_pstate);
1757 1758 1759 1760
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1761 1762 1763
	if (pstate == cpu->pstate.current_pstate)
		return;

1764
	cpu->pstate.current_pstate = pstate;
1765 1766 1767
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1768
static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1769
{
1770
	int from = cpu->pstate.current_pstate;
1771
	struct sample *sample;
1772
	int target_pstate;
1773

1774 1775
	update_turbo_state();

1776
	target_pstate = get_target_pstate(cpu);
1777 1778
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1779
	intel_pstate_update_pstate(cpu, target_pstate);
1780 1781

	sample = &cpu->sample;
1782
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1783
		fp_toint(sample->busy_scaled),
1784 1785 1786 1787 1788
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1789 1790
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1791 1792
}

1793
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1794
				     unsigned int flags)
1795
{
1796
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1797 1798
	u64 delta_ns;

1799 1800 1801 1802
	/* Don't allow remote callbacks */
	if (smp_processor_id() != cpu->cpu)
		return;

1803
	delta_ns = time - cpu->last_update;
1804
	if (flags & SCHED_CPUFREQ_IOWAIT) {
1805 1806 1807
		/* Start over if the CPU may have been idle. */
		if (delta_ns > TICK_NSEC) {
			cpu->iowait_boost = ONE_EIGHTH_FP;
1808
		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1809 1810 1811 1812 1813 1814
			cpu->iowait_boost <<= 1;
			if (cpu->iowait_boost > int_tofp(1))
				cpu->iowait_boost = int_tofp(1);
		} else {
			cpu->iowait_boost = ONE_EIGHTH_FP;
		}
1815 1816 1817 1818
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1819 1820
		else
			cpu->iowait_boost >>= 1;
1821
	}
1822
	cpu->last_update = time;
1823
	delta_ns = time - cpu->sample.time;
1824
	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1825
		return;
1826

1827 1828
	if (intel_pstate_sample(cpu, time))
		intel_pstate_adjust_pstate(cpu);
1829
}
1830

1831 1832 1833 1834 1835 1836 1837
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1838 1839
};

1840 1841 1842 1843 1844 1845 1846 1847
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
1848 1849
};

1850 1851 1852 1853 1854 1855 1856 1857
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
1858 1859
};

1860 1861 1862 1863 1864
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
1865
	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1866 1867
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1868 1869
};

1870
#define ICPU(model, policy) \
1871 1872
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1873 1874

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1875 1876
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
1877
	ICPU(INTEL_FAM6_ATOM_SILVERMONT,	silvermont_funcs),
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1893
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		core_funcs),
1894
	ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS,     core_funcs),
1895
	ICPU(INTEL_FAM6_SKYLAKE_X,		core_funcs),
1896 1897 1898 1899
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1900
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1901 1902 1903
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
D
Dirk Brandewie 已提交
1904 1905 1906
	{}
};

1907
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1908
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1909 1910 1911
	{}
};

1912 1913 1914 1915 1916 1917
static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
	{}
};

1918 1919 1920 1921
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1922 1923 1924
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1925
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1926 1927 1928 1929 1930
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1931 1932 1933
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1934
	}
1935 1936 1937 1938

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1939

1940
	if (hwp_active) {
1941 1942 1943 1944 1945 1946
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1947
		intel_pstate_hwp_enable(cpu);
1948 1949

		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1950
		if (id && intel_pstate_acpi_pm_profile_server())
1951
			hwp_boost = true;
1952
	}
1953

1954
	intel_pstate_get_cpu_pstates(cpu);
1955

J
Joe Perches 已提交
1956
	pr_debug("controlling: cpu %d\n", cpunum);
1957 1958 1959 1960

	return 0;
}

1961
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1962
{
1963 1964
	struct cpudata *cpu = all_cpu_data[cpu_num];

1965
	if (hwp_active && !hwp_boost)
1966 1967
		return;

1968 1969 1970
	if (cpu->update_util_set)
		return;

1971 1972
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1973
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1974 1975 1976
				     (hwp_active ?
				      intel_pstate_update_util_hwp :
				      intel_pstate_update_util));
1977
	cpu->update_util_set = true;
1978 1979 1980 1981
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1982 1983 1984 1985 1986
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1987
	cpufreq_remove_update_util_hook(cpu);
1988
	cpu_data->update_util_set = false;
1989
	synchronize_rcu();
1990 1991
}

1992 1993 1994 1995 1996 1997
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

1998
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1999
					    struct cpudata *cpu)
2000
{
2001
	int max_freq = intel_pstate_get_max_freq(cpu);
2002
	int32_t max_policy_perf, min_policy_perf;
2003
	int max_state, turbo_max;
2004

2005 2006 2007 2008 2009 2010 2011 2012
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
2013 2014
		max_state = global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2015 2016 2017 2018
		turbo_max = cpu->pstate.turbo_pstate;
	}

	max_policy_perf = max_state * policy->max / max_freq;
2019
	if (policy->max == policy->min) {
2020
		min_policy_perf = max_policy_perf;
2021
	} else {
2022
		min_policy_perf = max_state * policy->min / max_freq;
2023 2024
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
2025
	}
2026

2027 2028 2029 2030
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
		 policy->cpu, max_state,
		 min_policy_perf, max_policy_perf);

2031
	/* Normalize user input to [min_perf, max_perf] */
2032
	if (per_cpu_limits) {
2033 2034
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
2035 2036 2037 2038
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
2039 2040
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2041
		global_min = clamp_t(int32_t, global_min, 0, global_max);
2042

2043 2044
		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
			 global_min, global_max);
2045

2046 2047 2048 2049
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2050

2051 2052 2053
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
2054

2055 2056 2057 2058
	}
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
2059 2060
}

2061 2062
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2063 2064
	struct cpudata *cpu;

2065 2066 2067
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2068 2069 2070
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2071
	cpu = all_cpu_data[policy->cpu];
2072 2073
	cpu->policy = policy->policy;

2074 2075
	mutex_lock(&intel_pstate_limits_lock);

2076
	intel_pstate_update_perf_limits(policy, cpu);
2077

2078
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2079 2080 2081 2082 2083 2084
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
2085 2086
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
2087 2088
	}

2089 2090 2091 2092 2093 2094 2095 2096
	if (hwp_active) {
		/*
		 * When hwp_boost was active before and dynamically it
		 * was turned off, in that case we need to clear the
		 * update util hook.
		 */
		if (!hwp_boost)
			intel_pstate_clear_update_util_hook(policy->cpu);
2097
		intel_pstate_hwp_set(policy->cpu);
2098
	}
D
Dirk Brandewie 已提交
2099

2100 2101
	mutex_unlock(&intel_pstate_limits_lock);

2102 2103 2104
	return 0;
}

2105 2106 2107
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
2108 2109
	if (!hwp_active &&
	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2110 2111 2112 2113 2114 2115 2116
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2117 2118
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2119 2120 2121
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2122 2123
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2124

2125
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2126
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2127 2128
		return -EINVAL;

2129 2130
	intel_pstate_adjust_policy_max(policy, cpu);

2131 2132 2133
	return 0;
}

2134 2135 2136 2137 2138
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2139
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2140
{
2141
	pr_debug("CPU %d exiting\n", policy->cpu);
2142

2143
	intel_pstate_clear_update_util_hook(policy->cpu);
2144
	if (hwp_active) {
2145
		intel_pstate_hwp_save_state(policy);
2146 2147
		intel_pstate_hwp_force_min_perf(policy->cpu);
	} else {
2148
		intel_cpufreq_stop_cpu(policy);
2149
	}
2150
}
2151

2152 2153 2154
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2155

2156
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2157

2158
	return 0;
2159 2160
}

2161
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2162 2163
{
	struct cpudata *cpu;
2164
	int rc;
2165 2166 2167 2168 2169 2170 2171

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2172 2173
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
2174

2175 2176
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2177 2178

	/* cpuinfo and default policy values */
2179
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2180
	update_turbo_state();
2181
	global.turbo_disabled_mf = global.turbo_disabled;
2182
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2183 2184 2185
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2186 2187 2188 2189 2190 2191 2192 2193 2194
	if (hwp_active) {
		unsigned int max_freq;

		max_freq = global.turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
		if (max_freq < policy->cpuinfo.max_freq)
			policy->cpuinfo.max_freq = max_freq;
	}

2195
	intel_pstate_init_acpi_perf_limits(policy);
2196

2197 2198
	policy->fast_switch_possible = true;

2199 2200 2201
	return 0;
}

2202
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2203
{
2204 2205 2206 2207 2208
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

2209
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2210 2211 2212
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2213 2214 2215 2216

	return 0;
}

2217
static struct cpufreq_driver intel_pstate = {
2218 2219 2220
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2221
	.suspend	= intel_pstate_hwp_save_state,
2222
	.resume		= intel_pstate_resume,
2223
	.init		= intel_pstate_cpu_init,
2224
	.exit		= intel_pstate_cpu_exit,
2225
	.stop_cpu	= intel_pstate_stop_cpu,
2226
	.update_limits	= intel_pstate_update_limits,
2227 2228 2229
	.name		= "intel_pstate",
};

2230 2231 2232 2233 2234
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2235 2236
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2237

2238
	intel_pstate_adjust_policy_max(policy, cpu);
2239

2240 2241
	intel_pstate_update_perf_limits(policy, cpu);

2242 2243 2244
	return 0;
}

2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
/* Use of trace in passive mode:
 *
 * In passive mode the trace core_busy field (also known as the
 * performance field, and lablelled as such on the graphs; also known as
 * core_avg_perf) is not needed and so is re-assigned to indicate if the
 * driver call was via the normal or fast switch path. Various graphs
 * output from the intel_pstate_tracer.py utility that include core_busy
 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
 * so we use 10 to indicate the the normal path through the driver, and
 * 90 to indicate the fast switch path through the driver.
 * The scaled_busy field is not used, and is set to 0.
 */

#define	INTEL_PSTATE_TRACE_TARGET 10
#define	INTEL_PSTATE_TRACE_FAST_SWITCH 90

static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
{
	struct sample *sample;

	if (!trace_pstate_sample_enabled())
		return;

	if (!intel_pstate_sample(cpu, ktime_get()))
		return;

	sample = &cpu->sample;
	trace_pstate_sample(trace_type,
		0,
		old_pstate,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
}

2283 2284 2285 2286 2287 2288
static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
2289
	int target_pstate, old_pstate;
2290

2291 2292
	update_turbo_state();

2293
	freqs.old = policy->cur;
2294
	freqs.new = target_freq;
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2309
	old_pstate = cpu->pstate.current_pstate;
2310 2311 2312 2313 2314
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2315
	freqs.new = target_pstate * cpu->pstate.scaling;
2316
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2317 2318 2319 2320 2321 2322 2323 2324 2325
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
2326
	int target_pstate, old_pstate;
2327

2328 2329
	update_turbo_state();

2330
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2331
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2332
	old_pstate = cpu->pstate.current_pstate;
2333
	intel_pstate_update_pstate(cpu, target_pstate);
2334
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2335
	return target_pstate * cpu->pstate.scaling;
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2346
	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
2361
	.update_limits	= intel_pstate_update_limits,
2362 2363 2364
	.name		= "intel_cpufreq",
};

2365
static struct cpufreq_driver *default_driver = &intel_pstate;
2366

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2382
	intel_pstate_driver = NULL;
2383 2384
}

2385
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2386 2387 2388
{
	int ret;

2389 2390
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2391

2392
	intel_pstate_driver = driver;
2393 2394 2395 2396 2397 2398
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2399 2400
	global.min_perf_pct = min_perf_pct_min();

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2417
	if (!intel_pstate_driver)
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2429
		return intel_pstate_driver ?
2430 2431 2432
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2433
		if (intel_pstate_driver) {
2434 2435 2436 2437 2438 2439 2440 2441
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2442
		return intel_pstate_register_driver(&intel_pstate);
2443 2444 2445
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2446
		if (intel_pstate_driver) {
2447
			if (intel_pstate_driver == &intel_cpufreq)
2448 2449 2450 2451 2452 2453 2454
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2455
		return intel_pstate_register_driver(&intel_cpufreq);
2456 2457 2458 2459 2460
	}

	return -EINVAL;
}

2461 2462 2463
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2464
static unsigned int force_load __initdata;
2465

2466
static int __init intel_pstate_msrs_not_valid(void)
2467
{
2468
	if (!pstate_funcs.get_max() ||
2469 2470
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2471 2472 2473 2474
		return -ENODEV;

	return 0;
}
2475

2476
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2477 2478
{
	pstate_funcs.get_max   = funcs->get_max;
2479
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2480 2481
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2482
	pstate_funcs.get_scaling = funcs->get_scaling;
2483
	pstate_funcs.get_val   = funcs->get_val;
2484
	pstate_funcs.get_vid   = funcs->get_vid;
2485
	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2486 2487
}

2488
#ifdef CONFIG_ACPI
2489

2490
static bool __init intel_pstate_no_acpi_pss(void)
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

2516
	pr_debug("ACPI _PSS not found\n");
2517 2518 2519
	return true;
}

2520 2521 2522 2523 2524 2525 2526
static bool __init intel_pstate_no_acpi_pcch(void)
{
	acpi_status status;
	acpi_handle handle;

	status = acpi_get_handle(NULL, "\\_SB", &handle);
	if (ACPI_FAILURE(status))
2527 2528 2529 2530
		goto not_found;

	if (acpi_has_method(handle, "PCCH"))
		return false;
2531

2532 2533 2534
not_found:
	pr_debug("ACPI PCCH not found\n");
	return true;
2535 2536
}

2537
static bool __init intel_pstate_has_acpi_ppc(void)
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
2549
	pr_debug("ACPI _PPC not found\n");
2550 2551 2552 2553 2554 2555 2556 2557
	return false;
}

enum {
	PSS,
	PPC,
};

2558
/* Hardware vendor-specific info that has its own power management modes */
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
static struct acpi_platform_list plat_info[] __initdata = {
	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{ } /* End */
2576 2577
};

2578
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2579
{
D
Dirk Brandewie 已提交
2580 2581
	const struct x86_cpu_id *id;
	u64 misc_pwr;
2582
	int idx;
D
Dirk Brandewie 已提交
2583 2584 2585 2586

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2587 2588
		if (misc_pwr & (1 << 8)) {
			pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
D
Dirk Brandewie 已提交
2589
			return true;
2590
		}
D
Dirk Brandewie 已提交
2591
	}
2592

2593 2594
	idx = acpi_match_platform_list(plat_info);
	if (idx < 0)
2595 2596
		return false;

2597 2598
	switch (plat_info[idx].data) {
	case PSS:
2599 2600 2601 2602
		if (!intel_pstate_no_acpi_pss())
			return false;

		return intel_pstate_no_acpi_pcch();
2603 2604
	case PPC:
		return intel_pstate_has_acpi_ppc() && !force_load;
2605 2606 2607 2608
	}

	return false;
}
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2619 2620
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2621
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2622
static inline void intel_pstate_request_control_from_smm(void) {}
2623 2624
#endif /* CONFIG_ACPI */

2625 2626 2627 2628 2629
#define INTEL_PSTATE_HWP_BROADWELL	0x01

#define ICPU_HWP(model, hwp_mode) \
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }

2630
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2631 2632 2633
	ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
	ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
	ICPU_HWP(X86_MODEL_ANY, 0),
2634 2635 2636
	{}
};

2637 2638
static int __init intel_pstate_init(void)
{
2639
	const struct x86_cpu_id *id;
2640
	int rc;
2641

2642 2643 2644
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return -ENODEV;

2645 2646 2647
	if (no_load)
		return -ENODEV;

2648 2649
	id = x86_match_cpu(hwp_support_ids);
	if (id) {
2650
		copy_cpu_funcs(&core_funcs);
2651
		if (!no_hwp) {
2652
			hwp_active++;
2653
			hwp_mode_bdw = id->driver_data;
2654 2655 2656 2657 2658
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		id = x86_match_cpu(intel_pstate_cpu_ids);
2659
		if (!id) {
2660
			pr_info("CPU model not supported\n");
2661
			return -ENODEV;
2662
		}
2663

2664
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2665
	}
2666

2667 2668
	if (intel_pstate_msrs_not_valid()) {
		pr_info("Invalid MSRs\n");
2669
		return -ENODEV;
2670
	}
2671

2672 2673 2674 2675 2676
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
2677 2678
	if (intel_pstate_platform_pwr_mgmt_exists()) {
		pr_info("P-states controlled by the platform\n");
2679
		return -ENODEV;
2680
	}
2681

2682 2683 2684
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2685
	pr_info("Intel P-state driver initializing\n");
2686

2687
	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2688 2689 2690
	if (!all_cpu_data)
		return -ENOMEM;

2691 2692
	intel_pstate_request_control_from_smm();

2693
	intel_pstate_sysfs_expose_params();
2694

2695
	mutex_lock(&intel_pstate_driver_lock);
2696
	rc = intel_pstate_register_driver(default_driver);
2697
	mutex_unlock(&intel_pstate_driver_lock);
2698 2699
	if (rc)
		return rc;
2700

2701
	if (hwp_active)
J
Joe Perches 已提交
2702
		pr_info("HWP enabled\n");
2703

2704
	return 0;
2705 2706 2707
}
device_initcall(intel_pstate_init);

2708 2709 2710 2711 2712
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2713
	if (!strcmp(str, "disable")) {
2714
		no_load = 1;
2715 2716
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2717
		default_driver = &intel_cpufreq;
2718 2719
		no_hwp = 1;
	}
2720
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2721
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2722
		no_hwp = 1;
2723
	}
2724 2725
	if (!strcmp(str, "force"))
		force_load = 1;
2726 2727
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2728 2729
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2730 2731 2732 2733 2734 2735

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2736 2737 2738 2739
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2740 2741 2742
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");