intel_pstate.c 65.6 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
29
#include <linux/acpi.h>
30
#include <linux/vmalloc.h>
31 32 33 34 35
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
36
#include <asm/cpufeature.h>
37
#include <asm/intel-family.h>
38

39
#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
40

41
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
42
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
43

44 45
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
46
#include <acpi/cppc_acpi.h>
47 48
#endif

49
#define FRAC_BITS 8
50 51
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
52

53 54
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 56
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57

58 59 60 61 62
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

63
static inline int32_t div_fp(s64 x, s64 y)
64
{
65
	return div64_s64((int64_t)x << FRAC_BITS, y);
66 67
}

68 69 70 71 72 73 74 75 76 77 78
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

79 80 81 82 83
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

84 85 86 87 88 89 90 91 92 93
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

94 95 96 97 98
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

99 100
/**
 * struct sample -	Store performance sample
101
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
102 103
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
104
 *			P state. This can be different than core_avg_perf
105 106 107 108 109 110 111 112 113 114 115 116
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
117
struct sample {
118
	int32_t core_avg_perf;
119
	int32_t busy_scaled;
120 121
	u64 aperf;
	u64 mperf;
122
	u64 tsc;
123
	u64 time;
124 125
};

126 127 128 129 130 131 132 133 134 135 136
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
137 138
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
139 140 141
 *
 * Stores the per cpu model P state limits and current P state.
 */
142 143 144 145
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
146
	int	max_pstate_physical;
147
	int	scaling;
148
	int	turbo_pstate;
149 150
	unsigned int max_freq;
	unsigned int turbo_freq;
151 152
};

153 154 155 156 157 158 159 160 161 162 163 164 165
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
166
struct vid_data {
167 168 169
	int min;
	int max;
	int turbo;
170 171 172
	int32_t ratio;
};

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
190 191
};

192 193 194
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
195
 * @policy:		CPUFreq policy value
196
 * @update_util:	CPUFreq utility callback information
197
 * @update_util_set:	CPUFreq utility callback is set
198 199
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
200 201 202
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @last_sample_time:	Last Sample time
203 204 205
 * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
 *			This shift is a multiplier to mperf delta to
 *			calculate CPU busy.
206 207 208 209 210 211
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
212 213
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
214 215
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
216 217 218
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
219
 * @epp_policy:		Last saved policy used to set EPP/EPB
220 221 222 223
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
224 225
 * @hwp_req_cached:	Cached value of the last HWP Request MSR
 * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
226 227
 * @last_io_update:	Last time when IO wake flag was set
 * @sched_flags:	Store scheduler flags for possible cross CPU update
228
 * @hwp_boost_min:	Last HWP boosted min performance
229 230 231
 *
 * This structure stores per CPU instance data for all CPUs.
 */
232 233 234
struct cpudata {
	int cpu;

235
	unsigned int policy;
236
	struct update_util_data update_util;
237
	bool   update_util_set;
238 239

	struct pstate_data pstate;
240
	struct vid_data vid;
241

242
	u64	last_update;
243
	u64	last_sample_time;
244
	u64	aperf_mperf_shift;
245 246
	u64	prev_aperf;
	u64	prev_mperf;
247
	u64	prev_tsc;
248
	u64	prev_cummulative_iowait;
249
	struct sample sample;
250 251
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
252 253 254 255
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
256
	unsigned int iowait_boost;
257
	s16 epp_powersave;
258
	s16 epp_policy;
259 260
	s16 epp_default;
	s16 epp_saved;
261 262
	u64 hwp_req_cached;
	u64 hwp_cap_cached;
263 264
	u64 last_io_update;
	unsigned int sched_flags;
265
	u32 hwp_boost_min;
266 267 268
};

static struct cpudata **all_cpu_data;
269 270 271 272 273 274 275 276 277 278 279 280 281 282

/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
283 284
struct pstate_funcs {
	int (*get_max)(void);
285
	int (*get_max_physical)(void);
286 287
	int (*get_min)(void);
	int (*get_turbo)(void);
288
	int (*get_scaling)(void);
289
	int (*get_aperf_mperf_shift)(void);
290
	u64 (*get_val)(struct cpudata*, int pstate);
291
	void (*get_vid)(struct cpudata *);
292 293
};

294
static struct pstate_funcs pstate_funcs __read_mostly;
295

296
static int hwp_active __read_mostly;
297
static int hwp_mode_bdw __read_mostly;
298
static bool per_cpu_limits __read_mostly;
299
static bool hwp_boost __read_mostly;
300

301
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302

303 304 305
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
306

307
static struct global_params global;
308

309
static DEFINE_MUTEX(intel_pstate_driver_lock);
310 311
static DEFINE_MUTEX(intel_pstate_limits_lock);

312
#ifdef CONFIG_ACPI
313

314
static bool intel_pstate_acpi_pm_profile_server(void)
315 316 317 318 319
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

320 321 322 323 324 325 326 327
	return false;
}

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (intel_pstate_acpi_pm_profile_server())
		return true;

328 329 330
	return acpi_ppc;
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
376 377 378 379 380 381 382 383 384 385 386 387 388

static int intel_pstate_get_cppc_guranteed(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return ret;

	return cppc_perf.guaranteed_perf;
}

389
#else /* CONFIG_ACPI_CPPC_LIB */
390 391 392
static void intel_pstate_set_itmt_prio(int cpu)
{
}
393
#endif /* CONFIG_ACPI_CPPC_LIB */
394

395 396 397 398 399 400
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

401 402
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
403
		return;
404
	}
405

406
	if (!intel_pstate_get_ppc_enable_status())
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
449
	 * correct max turbo frequency based on the turbo state.
450 451
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
452
	if (!global.turbo_disabled)
453 454 455
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
456
	pr_debug("_PPC limits will be enforced\n");
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
475
#else /* CONFIG_ACPI */
476
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
477 478 479
{
}

480
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
481 482
{
}
483 484 485 486 487

static inline bool intel_pstate_acpi_pm_profile_server(void)
{
	return false;
}
488 489 490 491 492 493 494 495
#endif /* CONFIG_ACPI */

#ifndef CONFIG_ACPI_CPPC_LIB
static int intel_pstate_get_cppc_guranteed(int cpu)
{
	return -ENOTSUPP;
}
#endif /* CONFIG_ACPI_CPPC_LIB */
496

497 498 499 500 501 502 503
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
504
	global.turbo_disabled =
505 506 507 508
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

509 510 511
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
512
	int turbo_pstate = cpu->pstate.turbo_pstate;
513

514
	return turbo_pstate ?
515
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
516 517
}

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

537 538 539 540 541 542 543 544 545 546 547
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
548
		epp = (hwp_req_data >> 24) & 0xff;
549
	} else {
550 551
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
552
	}
553 554 555 556

	return epp;
}

557
static int intel_pstate_set_epb(int cpu, s16 pref)
558 559
{
	u64 epb;
560
	int ret;
561 562

	if (!static_cpu_has(X86_FEATURE_EPB))
563
		return -ENXIO;
564

565 566 567
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
568 569 570

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
571 572

	return 0;
573 574
}

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
594 595 596 597 598 599
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
600 601 602 603 604 605 606 607 608 609 610

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
611 612 613 614 615 616 617 618
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
			return 2;
		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
			return 3;
		else
			return 4;
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		if (epp == -EINVAL)
657
			epp = epp_values[pref_index - 1];
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
693
	int ret;
694 695 696 697 698

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

699 700 701
	ret = match_string(energy_perf_strings, -1, str_preference);
	if (ret < 0)
		return ret;
702

703 704
	intel_pstate_set_energy_pref_index(cpu_data, ret);
	return count;
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu;
	u64 cap;
	int ratio;

	ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
	if (ratio <= 0) {
		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
		ratio = HWP_GUARANTEED_PERF(cap);
	}

	cpu = all_cpu_data[policy->cpu];

	return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
}

cpufreq_freq_attr_ro(base_frequency);

741 742 743
static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
744
	&base_frequency,
745 746 747
	NULL,
};

748 749
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
750
{
751
	u64 cap;
752

753
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
754
	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
755
	if (global.no_turbo)
756
		*current_max = HWP_GUARANTEED_PERF(cap);
757
	else
758 759 760 761 762 763 764 765 766 767 768 769 770 771
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
772

773 774
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
775

776
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
777

778 779
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
780

781 782
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
783

784 785
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
786

787
	cpu_data->epp_policy = cpu_data->policy;
788

789 790 791 792 793
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
794

795 796 797 798 799 800
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
801

802 803 804 805 806
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
807

808 809 810 811 812 813 814 815 816 817
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
818

819 820
		epp = cpu_data->epp_powersave;
	}
821
update_epp:
822 823 824 825 826
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
827
	}
828
skip_epp:
829
	WRITE_ONCE(cpu_data->hwp_req_cached, value);
830
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
831
}
D
Dirk Brandewie 已提交
832

833 834 835 836 837 838 839 840 841 842 843 844
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

845 846
static void intel_pstate_hwp_enable(struct cpudata *cpudata);

847 848 849 850 851
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

852 853
	mutex_lock(&intel_pstate_limits_lock);

854 855 856
	if (policy->cpu == 0)
		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);

857
	all_cpu_data[policy->cpu]->epp_policy = 0;
858
	intel_pstate_hwp_set(policy->cpu);
859 860 861

	mutex_unlock(&intel_pstate_limits_lock);

862
	return 0;
863 864
}

865
static void intel_pstate_update_policies(void)
866
{
867 868 869 870
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
871 872
}

873 874 875 876 877
/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
878
		return sprintf(buf, "%u\n", global.object);		\
879 880
	}

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

909 910 911 912 913 914 915
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

916 917
	mutex_lock(&intel_pstate_driver_lock);

918
	if (!intel_pstate_driver) {
919 920 921 922
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

923 924 925 926
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
927
	turbo_fp = div_fp(no_turbo, total);
928
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
929 930 931

	mutex_unlock(&intel_pstate_driver_lock);

932 933 934
	return sprintf(buf, "%u\n", turbo_pct);
}

935 936 937 938 939 940
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

941 942
	mutex_lock(&intel_pstate_driver_lock);

943
	if (!intel_pstate_driver) {
944 945 946 947
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

948 949
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
950 951 952

	mutex_unlock(&intel_pstate_driver_lock);

953 954 955
	return sprintf(buf, "%u\n", total);
}

956 957 958 959 960
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

961 962
	mutex_lock(&intel_pstate_driver_lock);

963
	if (!intel_pstate_driver) {
964 965 966 967
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

968
	update_turbo_state();
969 970
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
971
	else
972
		ret = sprintf(buf, "%u\n", global.no_turbo);
973

974 975
	mutex_unlock(&intel_pstate_driver_lock);

976 977 978
	return ret;
}

979
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
980
			      const char *buf, size_t count)
981 982 983
{
	unsigned int input;
	int ret;
984

985 986 987
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
988

989 990
	mutex_lock(&intel_pstate_driver_lock);

991
	if (!intel_pstate_driver) {
992 993 994 995
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

996 997
	mutex_lock(&intel_pstate_limits_lock);

998
	update_turbo_state();
999
	if (global.turbo_disabled) {
J
Joe Perches 已提交
1000
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1001
		mutex_unlock(&intel_pstate_limits_lock);
1002
		mutex_unlock(&intel_pstate_driver_lock);
1003
		return -EPERM;
1004
	}
D
Dirk Brandewie 已提交
1005

1006
	global.no_turbo = clamp_t(int, input, 0, 1);
1007

1008 1009 1010 1011 1012 1013 1014 1015 1016
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1017 1018
	mutex_unlock(&intel_pstate_limits_lock);

1019 1020
	intel_pstate_update_policies();

1021 1022
	mutex_unlock(&intel_pstate_driver_lock);

1023 1024 1025 1026
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1027
				  const char *buf, size_t count)
1028 1029 1030
{
	unsigned int input;
	int ret;
1031

1032 1033 1034 1035
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1036 1037
	mutex_lock(&intel_pstate_driver_lock);

1038
	if (!intel_pstate_driver) {
1039 1040 1041 1042
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1043 1044
	mutex_lock(&intel_pstate_limits_lock);

1045
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1046

1047 1048
	mutex_unlock(&intel_pstate_limits_lock);

1049 1050
	intel_pstate_update_policies();

1051 1052
	mutex_unlock(&intel_pstate_driver_lock);

1053 1054 1055 1056
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1057
				  const char *buf, size_t count)
1058 1059 1060
{
	unsigned int input;
	int ret;
1061

1062 1063 1064
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1065

1066 1067
	mutex_lock(&intel_pstate_driver_lock);

1068
	if (!intel_pstate_driver) {
1069 1070 1071 1072
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1073 1074
	mutex_lock(&intel_pstate_limits_lock);

1075 1076
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1077

1078 1079
	mutex_unlock(&intel_pstate_limits_lock);

1080 1081
	intel_pstate_update_policies();

1082 1083
	mutex_unlock(&intel_pstate_driver_lock);

1084 1085 1086
	return count;
}

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	return sprintf(buf, "%u\n", hwp_boost);
}

static ssize_t store_hwp_dynamic_boost(struct kobject *a, struct attribute *b,
				       const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = kstrtouint(buf, 10, &input);
	if (ret)
		return ret;

	mutex_lock(&intel_pstate_driver_lock);
	hwp_boost = !!input;
	intel_pstate_update_policies();
	mutex_unlock(&intel_pstate_driver_lock);

	return count;
}

1111 1112 1113
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1114
define_one_global_rw(status);
1115 1116 1117
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1118
define_one_global_ro(turbo_pct);
1119
define_one_global_ro(num_pstates);
1120
define_one_global_rw(hwp_dynamic_boost);
1121 1122

static struct attribute *intel_pstate_attributes[] = {
1123
	&status.attr,
1124
	&no_turbo.attr,
1125
	&turbo_pct.attr,
1126
	&num_pstates.attr,
1127 1128 1129
	NULL
};

1130
static const struct attribute_group intel_pstate_attr_group = {
1131 1132 1133
	.attrs = intel_pstate_attributes,
};

1134
static void __init intel_pstate_sysfs_expose_params(void)
1135
{
1136
	struct kobject *intel_pstate_kobject;
1137 1138 1139 1140
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1141 1142 1143
	if (WARN_ON(!intel_pstate_kobject))
		return;

1144
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1161 1162 1163 1164 1165
	if (hwp_active) {
		rc = sysfs_create_file(intel_pstate_kobject,
				       &hwp_dynamic_boost.attr);
		WARN_ON(rc);
	}
1166 1167
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1168

1169
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1170
{
1171
	/* First disable HWP notification interrupt as we don't process them */
1172 1173
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1174

1175
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1176
	cpudata->epp_policy = 0;
1177 1178
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1179 1180
}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1200
static int atom_get_min_pstate(void)
1201 1202
{
	u64 value;
1203

1204
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1205
	return (value >> 8) & 0x7F;
1206 1207
}

1208
static int atom_get_max_pstate(void)
1209 1210
{
	u64 value;
1211

1212
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1213
	return (value >> 16) & 0x7F;
1214
}
1215

1216
static int atom_get_turbo_pstate(void)
1217 1218
{
	u64 value;
1219

1220
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1221
	return value & 0x7F;
1222 1223
}

1224
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1225 1226 1227 1228 1229
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1230
	val = (u64)pstate << 8;
1231
	if (global.no_turbo && !global.turbo_disabled)
1232 1233 1234 1235 1236 1237 1238
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1239
	vid = ceiling_fp(vid_fp);
1240

1241 1242 1243
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1244
	return val | vid;
1245 1246
}

1247
static int silvermont_get_scaling(void)
1248 1249 1250
{
	u64 value;
	int i;
1251 1252 1253
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1254 1255

	rdmsrl(MSR_FSB_FREQ, value);
1256 1257
	i = value & 0x7;
	WARN_ON(i > 4);
1258

1259 1260
	return silvermont_freq_table[i];
}
1261

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1276 1277
}

1278
static void atom_get_vid(struct cpudata *cpudata)
1279 1280 1281
{
	u64 value;

1282
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1283 1284
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1285 1286 1287 1288
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1289

1290
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1291
	cpudata->vid.turbo = value & 0x7f;
1292 1293
}

1294
static int core_get_min_pstate(void)
1295 1296
{
	u64 value;
1297

1298
	rdmsrl(MSR_PLATFORM_INFO, value);
1299 1300 1301
	return (value >> 40) & 0xFF;
}

1302
static int core_get_max_pstate_physical(void)
1303 1304
{
	u64 value;
1305

1306
	rdmsrl(MSR_PLATFORM_INFO, value);
1307 1308 1309
	return (value >> 8) & 0xFF;
}

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1343
static int core_get_max_pstate(void)
1344
{
1345 1346 1347
	u64 tar;
	u64 plat_info;
	int max_pstate;
1348
	int tdp_ratio;
1349 1350 1351 1352 1353
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1354 1355 1356 1357 1358 1359 1360 1361 1362
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1363 1364
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1365 1366
		int tar_levels;

1367
		/* Do some sanity checking for safety */
1368 1369 1370 1371
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1372 1373
		}
	}
1374

1375
	return max_pstate;
1376 1377
}

1378
static int core_get_turbo_pstate(void)
1379 1380 1381
{
	u64 value;
	int nont, ret;
1382

1383
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1384
	nont = core_get_max_pstate();
1385
	ret = (value) & 255;
1386 1387 1388 1389 1390
	if (ret <= nont)
		ret = nont;
	return ret;
}

1391 1392 1393 1394 1395
static inline int core_get_scaling(void)
{
	return 100000;
}

1396
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1397 1398 1399
{
	u64 val;

1400
	val = (u64)pstate << 8;
1401
	if (global.no_turbo && !global.turbo_disabled)
1402 1403
		val |= (u64)1 << 32;

1404
	return val;
1405 1406
}

1407 1408 1409 1410 1411
static int knl_get_aperf_mperf_shift(void)
{
	return 10;
}

1412 1413 1414 1415 1416
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1417
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1418 1419 1420 1421 1422 1423 1424
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1425
static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1426
{
1427 1428
	return global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1429 1430
}

1431
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1432
{
1433 1434
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1435 1436 1437 1438 1439 1440 1441
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1442 1443
}

1444 1445 1446 1447 1448 1449 1450
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1451
	int pstate;
1452 1453

	update_turbo_state();
1454
	pstate = intel_pstate_get_base_pstate(cpu);
1455
	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1456
	intel_pstate_set_pstate(cpu, pstate);
1457 1458
}

1459 1460
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1461 1462
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1463
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1464
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1465
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1466
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1467 1468 1469 1470 1471 1472 1473 1474 1475

	if (hwp_active && !hwp_mode_bdw) {
		unsigned int phy_max, current_max;

		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
	} else {
		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
	}
1476

1477 1478 1479
	if (pstate_funcs.get_aperf_mperf_shift)
		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();

1480 1481
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1482 1483

	intel_pstate_set_min_pstate(cpu);
1484 1485
}

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
/*
 * Long hold time will keep high perf limits for long time,
 * which negatively impacts perf/watt for some workloads,
 * like specpower. 3ms is based on experiements on some
 * workoads.
 */
static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;

static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
{
	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
	u32 max_limit = (hwp_req & 0xff00) >> 8;
	u32 min_limit = (hwp_req & 0xff);
	u32 boost_level1;

	/*
	 * Cases to consider (User changes via sysfs or boot time):
	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
	 *	No boost, return.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
	 *     Should result in one level boost only for P0.
	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
	 *     Should result in two level boost:
	 *         (min + p1)/2 and P1.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
	 *     Should result in three level boost:
	 *        (min + p1)/2, P1 and P0.
	 */

	/* If max and min are equal or already at max, nothing to boost */
	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
		return;

	if (!cpu->hwp_boost_min)
		cpu->hwp_boost_min = min_limit;

	/* level at half way mark between min and guranteed */
	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;

	if (cpu->hwp_boost_min < boost_level1)
		cpu->hwp_boost_min = boost_level1;
	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = max_limit;
	else
		return;

	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
	wrmsrl(MSR_HWP_REQUEST, hwp_req);
	cpu->last_update = cpu->sample.time;
}

static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
{
	if (cpu->hwp_boost_min) {
		bool expired;

		/* Check if we are idle for hold time to boost down */
		expired = time_after64(cpu->sample.time, cpu->last_update +
				       hwp_boost_hold_time_ns);
		if (expired) {
			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
			cpu->hwp_boost_min = 0;
		}
	}
	cpu->last_update = cpu->sample.time;
}

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
						      u64 time)
{
	cpu->sample.time = time;

	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
		bool do_io = false;

		cpu->sched_flags = 0;
		/*
		 * Set iowait_boost flag and update time. Since IO WAIT flag
		 * is set all the time, we can't just conclude that there is
		 * some IO bound activity is scheduled on this CPU with just
		 * one occurrence. If we receive at least two in two
		 * consecutive ticks, then we treat as boost candidate.
		 */
		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
			do_io = true;

		cpu->last_io_update = time;

		if (do_io)
			intel_pstate_hwp_boost_up(cpu);

	} else {
		intel_pstate_hwp_boost_down(cpu);
	}
}

1585 1586 1587
static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
						u64 time, unsigned int flags)
{
1588 1589 1590 1591 1592 1593
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);

	cpu->sched_flags |= flags;

	if (smp_processor_id() == cpu->cpu)
		intel_pstate_update_util_hwp_local(cpu, time);
1594 1595
}

1596
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1597
{
1598
	struct sample *sample = &cpu->sample;
1599

1600
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1601 1602
}

1603
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1604 1605
{
	u64 aperf, mperf;
1606
	unsigned long flags;
1607
	u64 tsc;
1608

1609
	local_irq_save(flags);
1610 1611
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1612
	tsc = rdtsc();
1613
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1614
		local_irq_restore(flags);
1615
		return false;
1616
	}
1617
	local_irq_restore(flags);
1618

1619
	cpu->last_sample_time = cpu->sample.time;
1620
	cpu->sample.time = time;
1621 1622
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1623
	cpu->sample.tsc =  tsc;
1624 1625
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1626
	cpu->sample.tsc -= cpu->prev_tsc;
1627

1628 1629
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1630
	cpu->prev_tsc = tsc;
1631 1632 1633 1634 1635 1636 1637
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1638 1639 1640 1641 1642
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1643 1644
}

1645 1646
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1647
	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1648 1649
}

1650 1651
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1652 1653
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1654 1655
}

1656
static inline int32_t get_target_pstate(struct cpudata *cpu)
1657 1658
{
	struct sample *sample = &cpu->sample;
1659
	int32_t busy_frac, boost;
1660
	int target, avg_pstate;
1661

1662 1663
	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
			   sample->tsc);
1664

1665 1666
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1667

1668 1669
	if (busy_frac < boost)
		busy_frac = boost;
1670

1671
	sample->busy_scaled = busy_frac * 100;
1672

1673
	target = global.no_turbo || global.turbo_disabled ?
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1692 1693
}

1694
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1695
{
1696 1697
	int max_pstate = intel_pstate_get_base_pstate(cpu);
	int min_pstate;
1698

1699 1700
	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1701
	return clamp_t(int, pstate, min_pstate, max_pstate);
1702 1703 1704 1705
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1706 1707 1708
	if (pstate == cpu->pstate.current_pstate)
		return;

1709
	cpu->pstate.current_pstate = pstate;
1710 1711 1712
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1713
static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1714
{
1715
	int from = cpu->pstate.current_pstate;
1716
	struct sample *sample;
1717
	int target_pstate;
1718

1719 1720
	update_turbo_state();

1721
	target_pstate = get_target_pstate(cpu);
1722 1723
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1724
	intel_pstate_update_pstate(cpu, target_pstate);
1725 1726

	sample = &cpu->sample;
1727
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1728
		fp_toint(sample->busy_scaled),
1729 1730 1731 1732 1733
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1734 1735
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1736 1737
}

1738
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1739
				     unsigned int flags)
1740
{
1741
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1742 1743
	u64 delta_ns;

1744 1745 1746 1747
	/* Don't allow remote callbacks */
	if (smp_processor_id() != cpu->cpu)
		return;

1748 1749
	if (flags & SCHED_CPUFREQ_IOWAIT) {
		cpu->iowait_boost = int_tofp(1);
1750 1751 1752 1753 1754 1755 1756 1757 1758
		cpu->last_update = time;
		/*
		 * The last time the busy was 100% so P-state was max anyway
		 * so avoid overhead of computation.
		 */
		if (fp_toint(cpu->sample.busy_scaled) == 100)
			return;

		goto set_pstate;
1759 1760 1761 1762 1763
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		delta_ns = time - cpu->last_update;
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1764
	}
1765
	cpu->last_update = time;
1766
	delta_ns = time - cpu->sample.time;
1767
	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1768
		return;
1769

1770
set_pstate:
1771 1772
	if (intel_pstate_sample(cpu, time))
		intel_pstate_adjust_pstate(cpu);
1773
}
1774

1775 1776 1777 1778 1779 1780 1781
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1782 1783
};

1784 1785 1786 1787 1788 1789 1790 1791
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
1792 1793
};

1794 1795 1796 1797 1798 1799 1800 1801
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
1802 1803
};

1804 1805 1806 1807 1808
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
1809
	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1810 1811
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1812 1813
};

1814
#define ICPU(model, policy) \
1815 1816
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1817 1818

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1819 1820
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
1821
	ICPU(INTEL_FAM6_ATOM_SILVERMONT,	silvermont_funcs),
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1837
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		core_funcs),
1838
	ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS,     core_funcs),
1839
	ICPU(INTEL_FAM6_SKYLAKE_X,		core_funcs),
1840 1841 1842 1843
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1844
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1845 1846 1847
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
D
Dirk Brandewie 已提交
1848 1849 1850
	{}
};

1851
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1852
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1853 1854 1855
	{}
};

1856 1857 1858 1859 1860 1861
static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
	{}
};

1862 1863 1864 1865
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1866 1867 1868
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1869
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1870 1871 1872 1873 1874
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1875 1876 1877
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1878
	}
1879 1880 1881 1882

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1883

1884
	if (hwp_active) {
1885 1886 1887 1888 1889 1890
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1891
		intel_pstate_hwp_enable(cpu);
1892 1893

		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1894
		if (id && intel_pstate_acpi_pm_profile_server())
1895
			hwp_boost = true;
1896
	}
1897

1898
	intel_pstate_get_cpu_pstates(cpu);
1899

J
Joe Perches 已提交
1900
	pr_debug("controlling: cpu %d\n", cpunum);
1901 1902 1903 1904

	return 0;
}

1905
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1906
{
1907 1908
	struct cpudata *cpu = all_cpu_data[cpu_num];

1909
	if (hwp_active && !hwp_boost)
1910 1911
		return;

1912 1913 1914
	if (cpu->update_util_set)
		return;

1915 1916
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1917
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1918 1919 1920
				     (hwp_active ?
				      intel_pstate_update_util_hwp :
				      intel_pstate_update_util));
1921
	cpu->update_util_set = true;
1922 1923 1924 1925
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1926 1927 1928 1929 1930
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1931
	cpufreq_remove_update_util_hook(cpu);
1932
	cpu_data->update_util_set = false;
1933 1934 1935
	synchronize_sched();
}

1936 1937 1938 1939 1940 1941
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

1942
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1943
					    struct cpudata *cpu)
1944
{
1945
	int max_freq = intel_pstate_get_max_freq(cpu);
1946
	int32_t max_policy_perf, min_policy_perf;
1947
	int max_state, turbo_max;
1948

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
		max_state = intel_pstate_get_base_pstate(cpu);
		turbo_max = cpu->pstate.turbo_pstate;
	}

	max_policy_perf = max_state * policy->max / max_freq;
1962
	if (policy->max == policy->min) {
1963
		min_policy_perf = max_policy_perf;
1964
	} else {
1965
		min_policy_perf = max_state * policy->min / max_freq;
1966 1967
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
1968
	}
1969

1970 1971 1972 1973
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
		 policy->cpu, max_state,
		 min_policy_perf, max_policy_perf);

1974
	/* Normalize user input to [min_perf, max_perf] */
1975
	if (per_cpu_limits) {
1976 1977
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
1978 1979 1980 1981
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
1982 1983
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1984
		global_min = clamp_t(int32_t, global_min, 0, global_max);
1985

1986 1987
		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
			 global_min, global_max);
1988

1989 1990 1991 1992
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1993

1994 1995 1996
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
1997

1998 1999 2000 2001
	}
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
2002 2003
}

2004 2005
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2006 2007
	struct cpudata *cpu;

2008 2009 2010
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2011 2012 2013
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2014
	cpu = all_cpu_data[policy->cpu];
2015 2016
	cpu->policy = policy->policy;

2017 2018
	mutex_lock(&intel_pstate_limits_lock);

2019
	intel_pstate_update_perf_limits(policy, cpu);
2020

2021
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2022 2023 2024 2025 2026 2027
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
2028 2029
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
2030 2031
	}

2032 2033 2034 2035 2036 2037 2038 2039
	if (hwp_active) {
		/*
		 * When hwp_boost was active before and dynamically it
		 * was turned off, in that case we need to clear the
		 * update util hook.
		 */
		if (!hwp_boost)
			intel_pstate_clear_update_util_hook(policy->cpu);
2040
		intel_pstate_hwp_set(policy->cpu);
2041
	}
D
Dirk Brandewie 已提交
2042

2043 2044
	mutex_unlock(&intel_pstate_limits_lock);

2045 2046 2047
	return 0;
}

2048 2049 2050
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
2051 2052
	if (!hwp_active &&
	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2053 2054 2055 2056 2057 2058 2059
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2060 2061
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2062 2063 2064
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2065 2066
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2067

2068
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2069
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2070 2071
		return -EINVAL;

2072 2073
	intel_pstate_adjust_policy_max(policy, cpu);

2074 2075 2076
	return 0;
}

2077 2078 2079 2080 2081
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2082
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2083
{
2084
	pr_debug("CPU %d exiting\n", policy->cpu);
2085

2086
	intel_pstate_clear_update_util_hook(policy->cpu);
2087 2088 2089
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2090 2091
		intel_cpufreq_stop_cpu(policy);
}
2092

2093 2094 2095
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2096

2097
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2098

2099
	return 0;
2100 2101
}

2102
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2103 2104
{
	struct cpudata *cpu;
2105
	int rc;
2106 2107 2108 2109 2110 2111 2112

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2113 2114
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
2115

2116 2117
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2118 2119

	/* cpuinfo and default policy values */
2120
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2121
	update_turbo_state();
2122
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2123 2124 2125
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2126 2127 2128 2129 2130 2131 2132 2133 2134
	if (hwp_active) {
		unsigned int max_freq;

		max_freq = global.turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
		if (max_freq < policy->cpuinfo.max_freq)
			policy->cpuinfo.max_freq = max_freq;
	}

2135
	intel_pstate_init_acpi_perf_limits(policy);
2136

2137 2138
	policy->fast_switch_possible = true;

2139 2140 2141
	return 0;
}

2142
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2143
{
2144 2145 2146 2147 2148
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

2149
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2150 2151 2152
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2153 2154 2155 2156

	return 0;
}

2157
static struct cpufreq_driver intel_pstate = {
2158 2159 2160
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2161
	.suspend	= intel_pstate_hwp_save_state,
2162
	.resume		= intel_pstate_resume,
2163
	.init		= intel_pstate_cpu_init,
2164
	.exit		= intel_pstate_cpu_exit,
2165
	.stop_cpu	= intel_pstate_stop_cpu,
2166 2167 2168
	.name		= "intel_pstate",
};

2169 2170 2171 2172 2173
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2174 2175
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2176

2177
	intel_pstate_adjust_policy_max(policy, cpu);
2178

2179 2180
	intel_pstate_update_perf_limits(policy, cpu);

2181 2182 2183
	return 0;
}

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
/* Use of trace in passive mode:
 *
 * In passive mode the trace core_busy field (also known as the
 * performance field, and lablelled as such on the graphs; also known as
 * core_avg_perf) is not needed and so is re-assigned to indicate if the
 * driver call was via the normal or fast switch path. Various graphs
 * output from the intel_pstate_tracer.py utility that include core_busy
 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
 * so we use 10 to indicate the the normal path through the driver, and
 * 90 to indicate the fast switch path through the driver.
 * The scaled_busy field is not used, and is set to 0.
 */

#define	INTEL_PSTATE_TRACE_TARGET 10
#define	INTEL_PSTATE_TRACE_FAST_SWITCH 90

static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
{
	struct sample *sample;

	if (!trace_pstate_sample_enabled())
		return;

	if (!intel_pstate_sample(cpu, ktime_get()))
		return;

	sample = &cpu->sample;
	trace_pstate_sample(trace_type,
		0,
		old_pstate,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
}

2222 2223 2224 2225 2226 2227
static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
2228
	int target_pstate, old_pstate;
2229

2230 2231
	update_turbo_state();

2232
	freqs.old = policy->cur;
2233
	freqs.new = target_freq;
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2248
	old_pstate = cpu->pstate.current_pstate;
2249 2250 2251 2252 2253
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2254
	freqs.new = target_pstate * cpu->pstate.scaling;
2255
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2256 2257 2258 2259 2260 2261 2262 2263 2264
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
2265
	int target_pstate, old_pstate;
2266

2267 2268
	update_turbo_state();

2269
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2270
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2271
	old_pstate = cpu->pstate.current_pstate;
2272
	intel_pstate_update_pstate(cpu, target_pstate);
2273
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2274
	return target_pstate * cpu->pstate.scaling;
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2285
	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

2303
static struct cpufreq_driver *default_driver = &intel_pstate;
2304

2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2320
	intel_pstate_driver = NULL;
2321 2322
}

2323
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2324 2325 2326
{
	int ret;

2327 2328
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2329

2330
	intel_pstate_driver = driver;
2331 2332 2333 2334 2335 2336
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2337 2338
	global.min_perf_pct = min_perf_pct_min();

2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2355
	if (!intel_pstate_driver)
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2367
		return intel_pstate_driver ?
2368 2369 2370
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2371
		if (intel_pstate_driver) {
2372 2373 2374 2375 2376 2377 2378 2379
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2380
		return intel_pstate_register_driver(&intel_pstate);
2381 2382 2383
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2384
		if (intel_pstate_driver) {
2385
			if (intel_pstate_driver == &intel_cpufreq)
2386 2387 2388 2389 2390 2391 2392
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2393
		return intel_pstate_register_driver(&intel_cpufreq);
2394 2395 2396 2397 2398
	}

	return -EINVAL;
}

2399 2400 2401
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2402
static unsigned int force_load __initdata;
2403

2404
static int __init intel_pstate_msrs_not_valid(void)
2405
{
2406
	if (!pstate_funcs.get_max() ||
2407 2408
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2409 2410 2411 2412
		return -ENODEV;

	return 0;
}
2413

2414
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2415 2416
{
	pstate_funcs.get_max   = funcs->get_max;
2417
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2418 2419
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2420
	pstate_funcs.get_scaling = funcs->get_scaling;
2421
	pstate_funcs.get_val   = funcs->get_val;
2422
	pstate_funcs.get_vid   = funcs->get_vid;
2423
	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2424 2425
}

2426
#ifdef CONFIG_ACPI
2427

2428
static bool __init intel_pstate_no_acpi_pss(void)
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
static bool __init intel_pstate_no_acpi_pcch(void)
{
	acpi_status status;
	acpi_handle handle;

	status = acpi_get_handle(NULL, "\\_SB", &handle);
	if (ACPI_FAILURE(status))
		return true;

	return !acpi_has_method(handle, "PCCH");
}

2469
static bool __init intel_pstate_has_acpi_ppc(void)
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2489
/* Hardware vendor-specific info that has its own power management modes */
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
static struct acpi_platform_list plat_info[] __initdata = {
	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{ } /* End */
2507 2508
};

2509
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2510
{
D
Dirk Brandewie 已提交
2511 2512
	const struct x86_cpu_id *id;
	u64 misc_pwr;
2513
	int idx;
D
Dirk Brandewie 已提交
2514 2515 2516 2517 2518 2519 2520

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2521

2522 2523
	idx = acpi_match_platform_list(plat_info);
	if (idx < 0)
2524 2525
		return false;

2526 2527
	switch (plat_info[idx].data) {
	case PSS:
2528 2529 2530 2531
		if (!intel_pstate_no_acpi_pss())
			return false;

		return intel_pstate_no_acpi_pcch();
2532 2533
	case PPC:
		return intel_pstate_has_acpi_ppc() && !force_load;
2534 2535 2536 2537
	}

	return false;
}
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2548 2549
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2550
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2551
static inline void intel_pstate_request_control_from_smm(void) {}
2552 2553
#endif /* CONFIG_ACPI */

2554 2555 2556 2557 2558
#define INTEL_PSTATE_HWP_BROADWELL	0x01

#define ICPU_HWP(model, hwp_mode) \
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }

2559
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2560 2561 2562
	ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
	ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
	ICPU_HWP(X86_MODEL_ANY, 0),
2563 2564 2565
	{}
};

2566 2567
static int __init intel_pstate_init(void)
{
2568
	const struct x86_cpu_id *id;
2569
	int rc;
2570

2571 2572 2573
	if (no_load)
		return -ENODEV;

2574 2575
	id = x86_match_cpu(hwp_support_ids);
	if (id) {
2576
		copy_cpu_funcs(&core_funcs);
2577
		if (!no_hwp) {
2578
			hwp_active++;
2579
			hwp_mode_bdw = id->driver_data;
2580 2581 2582 2583 2584 2585 2586
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		id = x86_match_cpu(intel_pstate_cpu_ids);
		if (!id)
			return -ENODEV;
2587

2588
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2589
	}
2590

2591 2592 2593
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2594 2595 2596 2597 2598 2599 2600 2601
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2602 2603 2604
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2605
	pr_info("Intel P-state driver initializing\n");
2606

2607
	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2608 2609 2610
	if (!all_cpu_data)
		return -ENOMEM;

2611 2612
	intel_pstate_request_control_from_smm();

2613
	intel_pstate_sysfs_expose_params();
2614

2615
	mutex_lock(&intel_pstate_driver_lock);
2616
	rc = intel_pstate_register_driver(default_driver);
2617
	mutex_unlock(&intel_pstate_driver_lock);
2618 2619
	if (rc)
		return rc;
2620

2621
	if (hwp_active)
J
Joe Perches 已提交
2622
		pr_info("HWP enabled\n");
2623

2624
	return 0;
2625 2626 2627
}
device_initcall(intel_pstate_init);

2628 2629 2630 2631 2632
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2633
	if (!strcmp(str, "disable")) {
2634
		no_load = 1;
2635 2636
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2637
		default_driver = &intel_cpufreq;
2638 2639
		no_hwp = 1;
	}
2640
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2641
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2642
		no_hwp = 1;
2643
	}
2644 2645
	if (!strcmp(str, "force"))
		force_load = 1;
2646 2647
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2648 2649
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2650 2651 2652 2653 2654 2655

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2656 2657 2658 2659
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2660 2661 2662
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");