intel_pstate.c 71.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * intel_pstate.c: Native P state management for Intel processors
4 5 6 7 8
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 */

J
Joe Perches 已提交
9 10
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

11 12 13 14 15 16 17
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
18
#include <linux/sched/cpufreq.h>
19 20 21 22 23 24
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
25
#include <linux/acpi.h>
26
#include <linux/vmalloc.h>
27
#include <linux/pm_qos.h>
28 29 30 31 32
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
33
#include <asm/cpufeature.h>
34
#include <asm/intel-family.h>
35

36
#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
37

38
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
39
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
40

41 42
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
43
#include <acpi/cppc_acpi.h>
44 45
#endif

46
#define FRAC_BITS 8
47 48
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
49

50 51
#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))

52 53
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
54 55
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
56

57 58 59 60 61
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

62
static inline int32_t div_fp(s64 x, s64 y)
63
{
64
	return div64_s64((int64_t)x << FRAC_BITS, y);
65 66
}

67 68 69 70 71 72 73 74 75 76 77
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

78 79 80 81 82
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

83 84 85 86 87 88 89 90 91 92
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

93 94 95 96 97
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

98 99
/**
 * struct sample -	Store performance sample
100
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
101 102
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
103
 *			P state. This can be different than core_avg_perf
104 105 106 107 108 109 110 111 112 113 114 115
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
116
struct sample {
117
	int32_t core_avg_perf;
118
	int32_t busy_scaled;
119 120
	u64 aperf;
	u64 mperf;
121
	u64 tsc;
122
	u64 time;
123 124
};

125 126 127 128 129 130 131 132 133 134 135
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
136 137
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
138 139 140
 *
 * Stores the per cpu model P state limits and current P state.
 */
141 142 143 144
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
145
	int	max_pstate_physical;
146
	int	scaling;
147
	int	turbo_pstate;
148 149
	unsigned int max_freq;
	unsigned int turbo_freq;
150 151
};

152 153 154 155 156 157 158 159 160 161 162 163 164
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
165
struct vid_data {
166 167 168
	int min;
	int max;
	int turbo;
169 170 171
	int32_t ratio;
};

172 173 174
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
175
 * @turbo_disabled:	Whether or not turbo P-states are available at all,
176 177 178
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
179
 * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
180 181 182 183 184 185 186 187
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
188
	bool turbo_disabled_mf;
189 190
	int max_perf_pct;
	int min_perf_pct;
191 192
};

193 194 195
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
196
 * @policy:		CPUFreq policy value
197
 * @update_util:	CPUFreq utility callback information
198
 * @update_util_set:	CPUFreq utility callback is set
199 200
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
201 202 203
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @last_sample_time:	Last Sample time
204
 * @aperf_mperf_shift:	APERF vs MPERF counting frequency difference
205 206 207 208 209 210
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
211 212
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
213 214
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
215 216 217
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
218
 * @epp_policy:		Last saved policy used to set EPP/EPB
219 220 221 222
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
223 224
 * @hwp_req_cached:	Cached value of the last HWP Request MSR
 * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
225 226
 * @last_io_update:	Last time when IO wake flag was set
 * @sched_flags:	Store scheduler flags for possible cross CPU update
227
 * @hwp_boost_min:	Last HWP boosted min performance
228 229 230
 *
 * This structure stores per CPU instance data for all CPUs.
 */
231 232 233
struct cpudata {
	int cpu;

234
	unsigned int policy;
235
	struct update_util_data update_util;
236
	bool   update_util_set;
237 238

	struct pstate_data pstate;
239
	struct vid_data vid;
240

241
	u64	last_update;
242
	u64	last_sample_time;
243
	u64	aperf_mperf_shift;
244 245
	u64	prev_aperf;
	u64	prev_mperf;
246
	u64	prev_tsc;
247
	u64	prev_cummulative_iowait;
248
	struct sample sample;
249 250
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
251 252 253 254
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
255
	unsigned int iowait_boost;
256
	s16 epp_powersave;
257
	s16 epp_policy;
258 259
	s16 epp_default;
	s16 epp_saved;
260 261
	u64 hwp_req_cached;
	u64 hwp_cap_cached;
262 263
	u64 last_io_update;
	unsigned int sched_flags;
264
	u32 hwp_boost_min;
265 266 267
};

static struct cpudata **all_cpu_data;
268 269 270 271 272 273 274 275

/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
276
 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
277 278 279 280 281 282
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
283 284
struct pstate_funcs {
	int (*get_max)(void);
285
	int (*get_max_physical)(void);
286 287
	int (*get_min)(void);
	int (*get_turbo)(void);
288
	int (*get_scaling)(void);
289
	int (*get_aperf_mperf_shift)(void);
290
	u64 (*get_val)(struct cpudata*, int pstate);
291
	void (*get_vid)(struct cpudata *);
292 293
};

294
static struct pstate_funcs pstate_funcs __read_mostly;
295

296
static int hwp_active __read_mostly;
297
static int hwp_mode_bdw __read_mostly;
298
static bool per_cpu_limits __read_mostly;
299
static bool hwp_boost __read_mostly;
300

301
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302

303 304 305
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
306

307
static struct global_params global;
308

309
static DEFINE_MUTEX(intel_pstate_driver_lock);
310 311
static DEFINE_MUTEX(intel_pstate_limits_lock);

312
#ifdef CONFIG_ACPI
313

314
static bool intel_pstate_acpi_pm_profile_server(void)
315 316 317 318 319
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

320 321 322 323 324 325 326 327
	return false;
}

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (intel_pstate_acpi_pm_profile_server())
		return true;

328 329 330
	return acpi_ppc;
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
376 377 378 379 380 381 382 383 384 385

static int intel_pstate_get_cppc_guranteed(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return ret;

386 387 388 389
	if (cppc_perf.guaranteed_perf)
		return cppc_perf.guaranteed_perf;

	return cppc_perf.nominal_perf;
390 391
}

392
#else /* CONFIG_ACPI_CPPC_LIB */
393 394 395
static void intel_pstate_set_itmt_prio(int cpu)
{
}
396
#endif /* CONFIG_ACPI_CPPC_LIB */
397

398 399 400 401 402 403
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

404 405
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
406
		return;
407
	}
408

409
	if (!intel_pstate_get_ppc_enable_status())
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
452
	 * correct max turbo frequency based on the turbo state.
453 454
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
455
	if (!global.turbo_disabled)
456 457 458
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
459
	pr_debug("_PPC limits will be enforced\n");
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
478
#else /* CONFIG_ACPI */
479
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
480 481 482
{
}

483
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
484 485
{
}
486 487 488 489 490

static inline bool intel_pstate_acpi_pm_profile_server(void)
{
	return false;
}
491 492 493 494 495 496 497 498
#endif /* CONFIG_ACPI */

#ifndef CONFIG_ACPI_CPPC_LIB
static int intel_pstate_get_cppc_guranteed(int cpu)
{
	return -ENOTSUPP;
}
#endif /* CONFIG_ACPI_CPPC_LIB */
499

500 501 502 503 504 505 506
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
507
	global.turbo_disabled =
508 509 510 511
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

512 513 514
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
515
	int turbo_pstate = cpu->pstate.turbo_pstate;
516

517
	return turbo_pstate ?
518
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
519 520
}

521 522 523 524 525
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

526
	if (!boot_cpu_has(X86_FEATURE_EPB))
527 528 529 530 531 532 533 534 535 536 537 538 539
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

540
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
541 542 543 544 545 546 547 548 549 550
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
551
		epp = (hwp_req_data >> 24) & 0xff;
552
	} else {
553 554
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
555
	}
556 557 558 559

	return epp;
}

560
static int intel_pstate_set_epb(int cpu, s16 pref)
561 562
{
	u64 epb;
563
	int ret;
564

565
	if (!boot_cpu_has(X86_FEATURE_EPB))
566
		return -ENXIO;
567

568 569 570
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
571 572 573

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
574 575

	return 0;
576 577
}

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
597 598 599 600 601 602
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
603

604
static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
605 606 607 608
{
	s16 epp;
	int index = -EINVAL;

609
	*raw_epp = 0;
610 611 612 613
	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

614
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
615 616
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
617
		if (epp == HWP_EPP_BALANCE_PERFORMANCE)
618
			return 2;
619
		if (epp == HWP_EPP_BALANCE_POWERSAVE)
620
			return 3;
621
		if (epp == HWP_EPP_POWERSAVE)
622
			return 4;
623 624
		*raw_epp = epp;
		return 0;
625
	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
643 644
					      int pref_index, bool use_raw,
					      u32 raw_epp)
645 646 647 648 649 650 651 652 653
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

654
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
655 656 657 658 659 660 661 662
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

663 664 665 666 667 668 669 670 671 672
		if (use_raw) {
			if (raw_epp > 255) {
				ret = -EINVAL;
				goto return_pref;
			}
			value |= (u64)raw_epp << 24;
			ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
			goto return_pref;
		}

673
		if (epp == -EINVAL)
674
			epp = epp_values[pref_index - 1];
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
710
	bool raw = false;
711
	u32 epp = 0;
712
	int ret;
713 714 715 716 717

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

718
	ret = match_string(energy_perf_strings, -1, str_preference);
719 720 721 722 723 724 725 726 727 728 729 730 731
	if (ret < 0) {
		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
			return ret;

		ret = kstrtouint(buf, 10, &epp);
		if (ret)
			return ret;

		raw = true;
	}

	ret = intel_pstate_set_energy_pref_index(cpu_data, ret, raw, epp);
	if (ret)
732
		return ret;
733

734
	return count;
735 736 737 738 739 740
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
741
	int preference, raw_epp;
742

743
	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
744 745 746
	if (preference < 0)
		return preference;

747 748 749 750
	if (raw_epp)
		return  sprintf(buf, "%d\n", raw_epp);
	else
		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
751 752 753 754
}

cpufreq_freq_attr_rw(energy_performance_preference);

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu;
	u64 cap;
	int ratio;

	ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
	if (ratio <= 0) {
		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
		ratio = HWP_GUARANTEED_PERF(cap);
	}

	cpu = all_cpu_data[policy->cpu];

	return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
}

cpufreq_freq_attr_ro(base_frequency);

774 775 776
static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
777
	&base_frequency,
778 779 780
	NULL,
};

781 782
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
783
{
784
	u64 cap;
785

786
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
787
	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
788
	if (global.no_turbo)
789
		*current_max = HWP_GUARANTEED_PERF(cap);
790
	else
791 792 793 794 795 796 797 798 799 800 801 802 803 804
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
805

806 807
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
808

809
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
810

811 812
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
813

814 815
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
816

817 818
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
819

820
	cpu_data->epp_policy = cpu_data->policy;
821

822 823 824 825 826
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
827

828 829 830 831 832 833
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
834

835 836 837 838 839
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
840

841 842 843 844 845 846 847 848 849 850
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
851

852 853
		epp = cpu_data->epp_powersave;
	}
854
update_epp:
855
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
856 857 858 859
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
860
	}
861
skip_epp:
862
	WRITE_ONCE(cpu_data->hwp_req_cached, value);
863
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
864
}
D
Dirk Brandewie 已提交
865

866 867 868 869 870 871 872 873 874 875 876 877 878
static void intel_pstate_hwp_force_min_perf(int cpu)
{
	u64 value;
	int min_perf;

	value = all_cpu_data[cpu]->hwp_req_cached;
	value &= ~GENMASK_ULL(31, 0);
	min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);

	/* Set hwp_max = hwp_min */
	value |= HWP_MAX_PERF(min_perf);
	value |= HWP_MIN_PERF(min_perf);

879
	/* Set EPP to min */
880
	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
881 882 883 884 885
		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);

	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
}

886 887 888 889 890 891 892 893 894 895 896 897
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
#define POWER_CTL_EE_ENABLE	1
#define POWER_CTL_EE_DISABLE	2

static int power_ctl_ee_state;

static void set_power_ctl_ee_state(bool input)
{
	u64 power_ctl;

	mutex_lock(&intel_pstate_driver_lock);
	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
	if (input) {
		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
	} else {
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
	}
	wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
	mutex_unlock(&intel_pstate_driver_lock);
}

920 921
static void intel_pstate_hwp_enable(struct cpudata *cpudata);

922 923
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
924 925 926 927 928 929 930

	/* Only restore if the system default is changed */
	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
		set_power_ctl_ee_state(true);
	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
		set_power_ctl_ee_state(false);

931 932 933
	if (!hwp_active)
		return 0;

934 935
	mutex_lock(&intel_pstate_limits_lock);

936 937 938
	if (policy->cpu == 0)
		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);

939
	all_cpu_data[policy->cpu]->epp_policy = 0;
940
	intel_pstate_hwp_set(policy->cpu);
941 942 943

	mutex_unlock(&intel_pstate_limits_lock);

944
	return 0;
945 946
}

947
static void intel_pstate_update_policies(void)
948
{
949 950 951 952
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
953 954
}

955 956 957 958 959 960 961 962 963 964 965 966
static void intel_pstate_update_max_freq(unsigned int cpu)
{
	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
	struct cpudata *cpudata;

	if (!policy)
		return;

	cpudata = all_cpu_data[cpu];
	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;

967
	refresh_frequency_limits(policy);
968 969 970 971

	cpufreq_cpu_release(policy);
}

972 973 974 975 976 977 978 979 980
static void intel_pstate_update_limits(unsigned int cpu)
{
	mutex_lock(&intel_pstate_driver_lock);

	update_turbo_state();
	/*
	 * If turbo has been turned on or off globally, policy limits for
	 * all CPUs need to be updated to reflect that.
	 */
981 982
	if (global.turbo_disabled_mf != global.turbo_disabled) {
		global.turbo_disabled_mf = global.turbo_disabled;
983
		arch_set_max_freq_ratio(global.turbo_disabled);
984 985
		for_each_possible_cpu(cpu)
			intel_pstate_update_max_freq(cpu);
986 987 988 989 990 991 992
	} else {
		cpufreq_update_policy(cpu);
	}

	mutex_unlock(&intel_pstate_driver_lock);
}

993 994 995
/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
996
	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
997
	{								\
998
		return sprintf(buf, "%u\n", global.object);		\
999 1000
	}

1001 1002 1003 1004
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
1005
			   struct kobj_attribute *attr, char *buf)
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

1016
static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

1029
static ssize_t show_turbo_pct(struct kobject *kobj,
1030
				struct kobj_attribute *attr, char *buf)
1031 1032 1033 1034 1035
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1036 1037
	mutex_lock(&intel_pstate_driver_lock);

1038
	if (!intel_pstate_driver) {
1039 1040 1041 1042
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1043 1044 1045 1046
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1047
	turbo_fp = div_fp(no_turbo, total);
1048
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1049 1050 1051

	mutex_unlock(&intel_pstate_driver_lock);

1052 1053 1054
	return sprintf(buf, "%u\n", turbo_pct);
}

1055
static ssize_t show_num_pstates(struct kobject *kobj,
1056
				struct kobj_attribute *attr, char *buf)
1057 1058 1059 1060
{
	struct cpudata *cpu;
	int total;

1061 1062
	mutex_lock(&intel_pstate_driver_lock);

1063
	if (!intel_pstate_driver) {
1064 1065 1066 1067
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1068 1069
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1070 1071 1072

	mutex_unlock(&intel_pstate_driver_lock);

1073 1074 1075
	return sprintf(buf, "%u\n", total);
}

1076
static ssize_t show_no_turbo(struct kobject *kobj,
1077
			     struct kobj_attribute *attr, char *buf)
1078 1079 1080
{
	ssize_t ret;

1081 1082
	mutex_lock(&intel_pstate_driver_lock);

1083
	if (!intel_pstate_driver) {
1084 1085 1086 1087
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1088
	update_turbo_state();
1089 1090
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1091
	else
1092
		ret = sprintf(buf, "%u\n", global.no_turbo);
1093

1094 1095
	mutex_unlock(&intel_pstate_driver_lock);

1096 1097 1098
	return ret;
}

1099
static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1100
			      const char *buf, size_t count)
1101 1102 1103
{
	unsigned int input;
	int ret;
1104

1105 1106 1107
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1108

1109 1110
	mutex_lock(&intel_pstate_driver_lock);

1111
	if (!intel_pstate_driver) {
1112 1113 1114 1115
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1116 1117
	mutex_lock(&intel_pstate_limits_lock);

1118
	update_turbo_state();
1119
	if (global.turbo_disabled) {
1120
		pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1121
		mutex_unlock(&intel_pstate_limits_lock);
1122
		mutex_unlock(&intel_pstate_driver_lock);
1123
		return -EPERM;
1124
	}
D
Dirk Brandewie 已提交
1125

1126
	global.no_turbo = clamp_t(int, input, 0, 1);
1127

1128 1129 1130 1131 1132 1133 1134 1135 1136
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1137 1138
	mutex_unlock(&intel_pstate_limits_lock);

1139 1140
	intel_pstate_update_policies();

1141 1142
	mutex_unlock(&intel_pstate_driver_lock);

1143 1144 1145
	return count;
}

1146 1147
static struct cpufreq_driver intel_pstate;

1148
static void update_qos_request(enum freq_qos_req_type type)
1149 1150
{
	int max_state, turbo_max, freq, i, perf_pct;
1151
	struct freq_qos_request *req;
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	struct cpufreq_policy *policy;

	for_each_possible_cpu(i) {
		struct cpudata *cpu = all_cpu_data[i];

		policy = cpufreq_cpu_get(i);
		if (!policy)
			continue;

		req = policy->driver_data;
		cpufreq_cpu_put(policy);

		if (!req)
			continue;

		if (hwp_active)
			intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
		else
			turbo_max = cpu->pstate.turbo_pstate;

1172
		if (type == FREQ_QOS_MIN) {
1173 1174 1175 1176 1177 1178 1179 1180 1181
			perf_pct = global.min_perf_pct;
		} else {
			req++;
			perf_pct = global.max_perf_pct;
		}

		freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
		freq *= cpu->pstate.scaling;

1182
		if (freq_qos_update_request(req, freq) < 0)
1183 1184 1185 1186
			pr_warn("Failed to update freq constraint: CPU%d\n", i);
	}
}

1187
static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1188
				  const char *buf, size_t count)
1189 1190 1191
{
	unsigned int input;
	int ret;
1192

1193 1194 1195 1196
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1197 1198
	mutex_lock(&intel_pstate_driver_lock);

1199
	if (!intel_pstate_driver) {
1200 1201 1202 1203
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1204 1205
	mutex_lock(&intel_pstate_limits_lock);

1206
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1207

1208 1209
	mutex_unlock(&intel_pstate_limits_lock);

1210 1211 1212
	if (intel_pstate_driver == &intel_pstate)
		intel_pstate_update_policies();
	else
1213
		update_qos_request(FREQ_QOS_MAX);
1214

1215 1216
	mutex_unlock(&intel_pstate_driver_lock);

1217 1218 1219
	return count;
}

1220
static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1221
				  const char *buf, size_t count)
1222 1223 1224
{
	unsigned int input;
	int ret;
1225

1226 1227 1228
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1229

1230 1231
	mutex_lock(&intel_pstate_driver_lock);

1232
	if (!intel_pstate_driver) {
1233 1234 1235 1236
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1237 1238
	mutex_lock(&intel_pstate_limits_lock);

1239 1240
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1241

1242 1243
	mutex_unlock(&intel_pstate_limits_lock);

1244 1245 1246
	if (intel_pstate_driver == &intel_pstate)
		intel_pstate_update_policies();
	else
1247
		update_qos_request(FREQ_QOS_MIN);
1248

1249 1250
	mutex_unlock(&intel_pstate_driver_lock);

1251 1252 1253
	return count;
}

1254
static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1255
				struct kobj_attribute *attr, char *buf)
1256 1257 1258 1259
{
	return sprintf(buf, "%u\n", hwp_boost);
}

1260 1261
static ssize_t store_hwp_dynamic_boost(struct kobject *a,
				       struct kobj_attribute *b,
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
				       const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = kstrtouint(buf, 10, &input);
	if (ret)
		return ret;

	mutex_lock(&intel_pstate_driver_lock);
	hwp_boost = !!input;
	intel_pstate_update_policies();
	mutex_unlock(&intel_pstate_driver_lock);

	return count;
}

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
				      char *buf)
{
	u64 power_ctl;
	int enable;

	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
	return sprintf(buf, "%d\n", !enable);
}

static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
				       const char *buf, size_t count)
{
	bool input;
	int ret;

	ret = kstrtobool(buf, &input);
	if (ret)
		return ret;

	set_power_ctl_ee_state(input);

	return count;
}

1305 1306 1307
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1308
define_one_global_rw(status);
1309 1310 1311
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1312
define_one_global_ro(turbo_pct);
1313
define_one_global_ro(num_pstates);
1314
define_one_global_rw(hwp_dynamic_boost);
1315
define_one_global_rw(energy_efficiency);
1316 1317

static struct attribute *intel_pstate_attributes[] = {
1318
	&status.attr,
1319
	&no_turbo.attr,
1320
	&turbo_pct.attr,
1321
	&num_pstates.attr,
1322 1323 1324
	NULL
};

1325
static const struct attribute_group intel_pstate_attr_group = {
1326 1327 1328
	.attrs = intel_pstate_attributes,
};

1329 1330
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];

1331
static void __init intel_pstate_sysfs_expose_params(void)
1332
{
1333
	struct kobject *intel_pstate_kobject;
1334 1335 1336 1337
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1338 1339 1340
	if (WARN_ON(!intel_pstate_kobject))
		return;

1341
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1358 1359 1360 1361 1362
	if (hwp_active) {
		rc = sysfs_create_file(intel_pstate_kobject,
				       &hwp_dynamic_boost.attr);
		WARN_ON(rc);
	}
1363 1364 1365 1366 1367

	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
		WARN_ON(rc);
	}
1368 1369
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1370

1371
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1372
{
1373
	/* First disable HWP notification interrupt as we don't process them */
1374
	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1375
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1376

1377
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1378
	cpudata->epp_policy = 0;
1379 1380
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1381 1382
}

1383
static int atom_get_min_pstate(void)
1384 1385
{
	u64 value;
1386

1387
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1388
	return (value >> 8) & 0x7F;
1389 1390
}

1391
static int atom_get_max_pstate(void)
1392 1393
{
	u64 value;
1394

1395
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1396
	return (value >> 16) & 0x7F;
1397
}
1398

1399
static int atom_get_turbo_pstate(void)
1400 1401
{
	u64 value;
1402

1403
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1404
	return value & 0x7F;
1405 1406
}

1407
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1408 1409 1410 1411 1412
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1413
	val = (u64)pstate << 8;
1414
	if (global.no_turbo && !global.turbo_disabled)
1415 1416 1417 1418 1419 1420 1421
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1422
	vid = ceiling_fp(vid_fp);
1423

1424 1425 1426
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1427
	return val | vid;
1428 1429
}

1430
static int silvermont_get_scaling(void)
1431 1432 1433
{
	u64 value;
	int i;
1434 1435 1436
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1437 1438

	rdmsrl(MSR_FSB_FREQ, value);
1439 1440
	i = value & 0x7;
	WARN_ON(i > 4);
1441

1442 1443
	return silvermont_freq_table[i];
}
1444

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1459 1460
}

1461
static void atom_get_vid(struct cpudata *cpudata)
1462 1463 1464
{
	u64 value;

1465
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1466 1467
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1468 1469 1470 1471
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1472

1473
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1474
	cpudata->vid.turbo = value & 0x7f;
1475 1476
}

1477
static int core_get_min_pstate(void)
1478 1479
{
	u64 value;
1480

1481
	rdmsrl(MSR_PLATFORM_INFO, value);
1482 1483 1484
	return (value >> 40) & 0xFF;
}

1485
static int core_get_max_pstate_physical(void)
1486 1487
{
	u64 value;
1488

1489
	rdmsrl(MSR_PLATFORM_INFO, value);
1490 1491 1492
	return (value >> 8) & 0xFF;
}

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1526
static int core_get_max_pstate(void)
1527
{
1528 1529 1530
	u64 tar;
	u64 plat_info;
	int max_pstate;
1531
	int tdp_ratio;
1532 1533 1534 1535 1536
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1537 1538 1539 1540 1541 1542 1543 1544 1545
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1546 1547
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1548 1549
		int tar_levels;

1550
		/* Do some sanity checking for safety */
1551 1552 1553 1554
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1555 1556
		}
	}
1557

1558
	return max_pstate;
1559 1560
}

1561
static int core_get_turbo_pstate(void)
1562 1563 1564
{
	u64 value;
	int nont, ret;
1565

1566
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1567
	nont = core_get_max_pstate();
1568
	ret = (value) & 255;
1569 1570 1571 1572 1573
	if (ret <= nont)
		ret = nont;
	return ret;
}

1574 1575 1576 1577 1578
static inline int core_get_scaling(void)
{
	return 100000;
}

1579
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1580 1581 1582
{
	u64 val;

1583
	val = (u64)pstate << 8;
1584
	if (global.no_turbo && !global.turbo_disabled)
1585 1586
		val |= (u64)1 << 32;

1587
	return val;
1588 1589
}

1590 1591 1592 1593 1594
static int knl_get_aperf_mperf_shift(void)
{
	return 10;
}

1595 1596 1597 1598 1599
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1600
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1601 1602 1603 1604 1605 1606 1607
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1608
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1609
{
1610 1611
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1612 1613 1614 1615 1616 1617 1618
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1619 1620
}

1621 1622 1623 1624 1625 1626 1627
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1628
	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1629 1630

	update_turbo_state();
1631
	intel_pstate_set_pstate(cpu, pstate);
1632 1633
}

1634 1635
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1636 1637
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1638
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1639
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1640
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1641
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1642 1643 1644 1645 1646 1647 1648 1649 1650

	if (hwp_active && !hwp_mode_bdw) {
		unsigned int phy_max, current_max;

		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
	} else {
		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
	}
1651

1652 1653 1654
	if (pstate_funcs.get_aperf_mperf_shift)
		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();

1655 1656
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1657 1658

	intel_pstate_set_min_pstate(cpu);
1659 1660
}

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
/*
 * Long hold time will keep high perf limits for long time,
 * which negatively impacts perf/watt for some workloads,
 * like specpower. 3ms is based on experiements on some
 * workoads.
 */
static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;

static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
{
	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
	u32 max_limit = (hwp_req & 0xff00) >> 8;
	u32 min_limit = (hwp_req & 0xff);
	u32 boost_level1;

	/*
	 * Cases to consider (User changes via sysfs or boot time):
	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
	 *	No boost, return.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
	 *     Should result in one level boost only for P0.
	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
	 *     Should result in two level boost:
	 *         (min + p1)/2 and P1.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
	 *     Should result in three level boost:
	 *        (min + p1)/2, P1 and P0.
	 */

	/* If max and min are equal or already at max, nothing to boost */
	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
		return;

	if (!cpu->hwp_boost_min)
		cpu->hwp_boost_min = min_limit;

	/* level at half way mark between min and guranteed */
	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;

	if (cpu->hwp_boost_min < boost_level1)
		cpu->hwp_boost_min = boost_level1;
	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = max_limit;
	else
		return;

	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
	wrmsrl(MSR_HWP_REQUEST, hwp_req);
	cpu->last_update = cpu->sample.time;
}

static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
{
	if (cpu->hwp_boost_min) {
		bool expired;

		/* Check if we are idle for hold time to boost down */
		expired = time_after64(cpu->sample.time, cpu->last_update +
				       hwp_boost_hold_time_ns);
		if (expired) {
			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
			cpu->hwp_boost_min = 0;
		}
	}
	cpu->last_update = cpu->sample.time;
}

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
						      u64 time)
{
	cpu->sample.time = time;

	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
		bool do_io = false;

		cpu->sched_flags = 0;
		/*
		 * Set iowait_boost flag and update time. Since IO WAIT flag
		 * is set all the time, we can't just conclude that there is
		 * some IO bound activity is scheduled on this CPU with just
		 * one occurrence. If we receive at least two in two
		 * consecutive ticks, then we treat as boost candidate.
		 */
		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
			do_io = true;

		cpu->last_io_update = time;

		if (do_io)
			intel_pstate_hwp_boost_up(cpu);

	} else {
		intel_pstate_hwp_boost_down(cpu);
	}
}

1760 1761 1762
static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
						u64 time, unsigned int flags)
{
1763 1764 1765 1766 1767 1768
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);

	cpu->sched_flags |= flags;

	if (smp_processor_id() == cpu->cpu)
		intel_pstate_update_util_hwp_local(cpu, time);
1769 1770
}

1771
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1772
{
1773
	struct sample *sample = &cpu->sample;
1774

1775
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1776 1777
}

1778
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1779 1780
{
	u64 aperf, mperf;
1781
	unsigned long flags;
1782
	u64 tsc;
1783

1784
	local_irq_save(flags);
1785 1786
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1787
	tsc = rdtsc();
1788
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1789
		local_irq_restore(flags);
1790
		return false;
1791
	}
1792
	local_irq_restore(flags);
1793

1794
	cpu->last_sample_time = cpu->sample.time;
1795
	cpu->sample.time = time;
1796 1797
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1798
	cpu->sample.tsc =  tsc;
1799 1800
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1801
	cpu->sample.tsc -= cpu->prev_tsc;
1802

1803 1804
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1805
	cpu->prev_tsc = tsc;
1806 1807 1808 1809 1810 1811 1812
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1813 1814 1815 1816 1817
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1818 1819
}

1820 1821
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1822
	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1823 1824
}

1825 1826
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1827 1828
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1829 1830
}

1831
static inline int32_t get_target_pstate(struct cpudata *cpu)
1832 1833
{
	struct sample *sample = &cpu->sample;
1834
	int32_t busy_frac;
1835
	int target, avg_pstate;
1836

1837 1838
	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
			   sample->tsc);
1839

1840 1841
	if (busy_frac < cpu->iowait_boost)
		busy_frac = cpu->iowait_boost;
1842

1843
	sample->busy_scaled = busy_frac * 100;
1844

1845
	target = global.no_turbo || global.turbo_disabled ?
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1864 1865
}

1866
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1867
{
1868 1869
	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1870

1871
	return clamp_t(int, pstate, min_pstate, max_pstate);
1872 1873 1874 1875
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1876 1877 1878
	if (pstate == cpu->pstate.current_pstate)
		return;

1879
	cpu->pstate.current_pstate = pstate;
1880 1881 1882
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1883
static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1884
{
1885
	int from = cpu->pstate.current_pstate;
1886
	struct sample *sample;
1887
	int target_pstate;
1888

1889 1890
	update_turbo_state();

1891
	target_pstate = get_target_pstate(cpu);
1892 1893
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1894
	intel_pstate_update_pstate(cpu, target_pstate);
1895 1896

	sample = &cpu->sample;
1897
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1898
		fp_toint(sample->busy_scaled),
1899 1900 1901 1902 1903
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1904 1905
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1906 1907
}

1908
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1909
				     unsigned int flags)
1910
{
1911
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1912 1913
	u64 delta_ns;

1914 1915 1916 1917
	/* Don't allow remote callbacks */
	if (smp_processor_id() != cpu->cpu)
		return;

1918
	delta_ns = time - cpu->last_update;
1919
	if (flags & SCHED_CPUFREQ_IOWAIT) {
1920 1921 1922
		/* Start over if the CPU may have been idle. */
		if (delta_ns > TICK_NSEC) {
			cpu->iowait_boost = ONE_EIGHTH_FP;
1923
		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1924 1925 1926 1927 1928 1929
			cpu->iowait_boost <<= 1;
			if (cpu->iowait_boost > int_tofp(1))
				cpu->iowait_boost = int_tofp(1);
		} else {
			cpu->iowait_boost = ONE_EIGHTH_FP;
		}
1930 1931 1932 1933
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1934 1935
		else
			cpu->iowait_boost >>= 1;
1936
	}
1937
	cpu->last_update = time;
1938
	delta_ns = time - cpu->sample.time;
1939
	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1940
		return;
1941

1942 1943
	if (intel_pstate_sample(cpu, time))
		intel_pstate_adjust_pstate(cpu);
1944
}
1945

1946 1947 1948 1949 1950 1951 1952
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1953 1954
};

1955 1956 1957 1958 1959 1960 1961 1962
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
1963 1964
};

1965 1966 1967 1968 1969 1970 1971 1972
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
1973 1974
};

1975 1976 1977 1978 1979
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
1980
	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1981 1982
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1983 1984
};

1985 1986 1987
#define X86_MATCH(model, policy)					 \
	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
					   X86_FEATURE_APERFMPERF, &policy)
1988 1989

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	X86_MATCH(SANDYBRIDGE,		core_funcs),
	X86_MATCH(SANDYBRIDGE_X,	core_funcs),
	X86_MATCH(ATOM_SILVERMONT,	silvermont_funcs),
	X86_MATCH(IVYBRIDGE,		core_funcs),
	X86_MATCH(HASWELL,		core_funcs),
	X86_MATCH(BROADWELL,		core_funcs),
	X86_MATCH(IVYBRIDGE_X,		core_funcs),
	X86_MATCH(HASWELL_X,		core_funcs),
	X86_MATCH(HASWELL_L,		core_funcs),
	X86_MATCH(HASWELL_G,		core_funcs),
	X86_MATCH(BROADWELL_G,		core_funcs),
	X86_MATCH(ATOM_AIRMONT,		airmont_funcs),
	X86_MATCH(SKYLAKE_L,		core_funcs),
	X86_MATCH(BROADWELL_X,		core_funcs),
	X86_MATCH(SKYLAKE,		core_funcs),
	X86_MATCH(BROADWELL_D,		core_funcs),
	X86_MATCH(XEON_PHI_KNL,		knl_funcs),
	X86_MATCH(XEON_PHI_KNM,		knl_funcs),
	X86_MATCH(ATOM_GOLDMONT,	core_funcs),
	X86_MATCH(ATOM_GOLDMONT_PLUS,	core_funcs),
	X86_MATCH(SKYLAKE_X,		core_funcs),
2011 2012 2013 2014
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

2015
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2016 2017 2018
	X86_MATCH(BROADWELL_D,		core_funcs),
	X86_MATCH(BROADWELL_X,		core_funcs),
	X86_MATCH(SKYLAKE_X,		core_funcs),
D
Dirk Brandewie 已提交
2019 2020 2021
	{}
};

2022
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2023
	X86_MATCH(KABYLAKE,		core_funcs),
2024 2025 2026
	{}
};

2027
static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2028 2029
	X86_MATCH(SKYLAKE_X,		core_funcs),
	X86_MATCH(SKYLAKE,		core_funcs),
2030 2031 2032
	{}
};

2033 2034 2035 2036
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

2037 2038 2039
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
2040
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2041 2042 2043 2044 2045
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

2046 2047 2048
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
2049
	}
2050 2051 2052 2053

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
2054

2055
	if (hwp_active) {
2056 2057
		const struct x86_cpu_id *id;

2058
		intel_pstate_hwp_enable(cpu);
2059 2060

		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2061
		if (id && intel_pstate_acpi_pm_profile_server())
2062
			hwp_boost = true;
2063
	}
2064

2065
	intel_pstate_get_cpu_pstates(cpu);
2066

J
Joe Perches 已提交
2067
	pr_debug("controlling: cpu %d\n", cpunum);
2068 2069 2070 2071

	return 0;
}

2072
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2073
{
2074 2075
	struct cpudata *cpu = all_cpu_data[cpu_num];

2076
	if (hwp_active && !hwp_boost)
2077 2078
		return;

2079 2080 2081
	if (cpu->update_util_set)
		return;

2082 2083
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
2084
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2085 2086 2087
				     (hwp_active ?
				      intel_pstate_update_util_hwp :
				      intel_pstate_update_util));
2088
	cpu->update_util_set = true;
2089 2090 2091 2092
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
2093 2094 2095 2096 2097
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

2098
	cpufreq_remove_update_util_hook(cpu);
2099
	cpu_data->update_util_set = false;
2100
	synchronize_rcu();
2101 2102
}

2103 2104 2105 2106 2107 2108
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

2109 2110 2111
static void intel_pstate_update_perf_limits(struct cpudata *cpu,
					    unsigned int policy_min,
					    unsigned int policy_max)
2112
{
2113
	int max_freq = intel_pstate_get_max_freq(cpu);
2114
	int32_t max_policy_perf, min_policy_perf;
2115
	int max_state, turbo_max;
2116

2117 2118 2119 2120 2121 2122 2123 2124
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
2125 2126
		max_state = global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2127 2128 2129
		turbo_max = cpu->pstate.turbo_pstate;
	}

2130 2131
	max_policy_perf = max_state * policy_max / max_freq;
	if (policy_max == policy_min) {
2132
		min_policy_perf = max_policy_perf;
2133
	} else {
2134
		min_policy_perf = max_state * policy_min / max_freq;
2135 2136
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
2137
	}
2138

2139
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2140
		 cpu->cpu, max_state, min_policy_perf, max_policy_perf);
2141

2142
	/* Normalize user input to [min_perf, max_perf] */
2143
	if (per_cpu_limits) {
2144 2145
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
2146 2147 2148 2149
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
2150 2151
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2152
		global_min = clamp_t(int32_t, global_min, 0, global_max);
2153

2154
		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2155
			 global_min, global_max);
2156

2157 2158 2159 2160
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2161

2162 2163 2164
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
2165

2166
	}
2167
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2168 2169
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
2170 2171
}

2172 2173
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2174 2175
	struct cpudata *cpu;

2176 2177 2178
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2179 2180 2181
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2182
	cpu = all_cpu_data[policy->cpu];
2183 2184
	cpu->policy = policy->policy;

2185 2186
	mutex_lock(&intel_pstate_limits_lock);

2187
	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2188

2189
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2190 2191 2192 2193 2194 2195
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
2196 2197
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
2198 2199
	}

2200 2201 2202 2203 2204 2205 2206 2207
	if (hwp_active) {
		/*
		 * When hwp_boost was active before and dynamically it
		 * was turned off, in that case we need to clear the
		 * update util hook.
		 */
		if (!hwp_boost)
			intel_pstate_clear_update_util_hook(policy->cpu);
2208
		intel_pstate_hwp_set(policy->cpu);
2209
	}
D
Dirk Brandewie 已提交
2210

2211 2212
	mutex_unlock(&intel_pstate_limits_lock);

2213 2214 2215
	return 0;
}

2216 2217
static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
					   struct cpufreq_policy_data *policy)
2218
{
2219 2220
	if (!hwp_active &&
	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2221 2222 2223 2224 2225 2226 2227
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2228 2229
static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
					   struct cpufreq_policy_data *policy)
2230
{
2231
	update_turbo_state();
2232 2233
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2234

2235
	intel_pstate_adjust_policy_max(cpu, policy);
2236 2237 2238 2239 2240
}

static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
{
	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2241

2242 2243 2244
	return 0;
}

2245 2246 2247 2248 2249
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2250
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2251
{
2252
	pr_debug("CPU %d exiting\n", policy->cpu);
2253

2254
	intel_pstate_clear_update_util_hook(policy->cpu);
2255
	if (hwp_active) {
2256
		intel_pstate_hwp_save_state(policy);
2257 2258
		intel_pstate_hwp_force_min_perf(policy->cpu);
	} else {
2259
		intel_cpufreq_stop_cpu(policy);
2260
	}
2261
}
2262

2263 2264 2265
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2266

2267
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2268

2269
	return 0;
2270 2271
}

2272
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2273 2274
{
	struct cpudata *cpu;
2275
	int rc;
2276 2277 2278 2279 2280 2281 2282

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2283 2284
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
2285

2286 2287
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2288 2289

	/* cpuinfo and default policy values */
2290
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2291
	update_turbo_state();
2292
	global.turbo_disabled_mf = global.turbo_disabled;
2293
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2294 2295 2296
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2297 2298 2299 2300 2301 2302 2303 2304 2305
	if (hwp_active) {
		unsigned int max_freq;

		max_freq = global.turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
		if (max_freq < policy->cpuinfo.max_freq)
			policy->cpuinfo.max_freq = max_freq;
	}

2306
	intel_pstate_init_acpi_perf_limits(policy);
2307

2308 2309
	policy->fast_switch_possible = true;

2310 2311 2312
	return 0;
}

2313
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2314
{
2315 2316 2317 2318 2319
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

2320 2321 2322 2323 2324
	/*
	 * Set the policy to powersave to provide a valid fallback value in case
	 * the default cpufreq governor is neither powersave nor performance.
	 */
	policy->policy = CPUFREQ_POLICY_POWERSAVE;
2325 2326 2327 2328

	return 0;
}

2329
static struct cpufreq_driver intel_pstate = {
2330 2331 2332
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2333
	.suspend	= intel_pstate_hwp_save_state,
2334
	.resume		= intel_pstate_resume,
2335
	.init		= intel_pstate_cpu_init,
2336
	.exit		= intel_pstate_cpu_exit,
2337
	.stop_cpu	= intel_pstate_stop_cpu,
2338
	.update_limits	= intel_pstate_update_limits,
2339 2340 2341
	.name		= "intel_pstate",
};

2342
static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2343 2344 2345
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

2346
	intel_pstate_verify_cpu_policy(cpu, policy);
2347
	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2348

2349 2350 2351
	return 0;
}

2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
/* Use of trace in passive mode:
 *
 * In passive mode the trace core_busy field (also known as the
 * performance field, and lablelled as such on the graphs; also known as
 * core_avg_perf) is not needed and so is re-assigned to indicate if the
 * driver call was via the normal or fast switch path. Various graphs
 * output from the intel_pstate_tracer.py utility that include core_busy
 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
 * so we use 10 to indicate the the normal path through the driver, and
 * 90 to indicate the fast switch path through the driver.
 * The scaled_busy field is not used, and is set to 0.
 */

#define	INTEL_PSTATE_TRACE_TARGET 10
#define	INTEL_PSTATE_TRACE_FAST_SWITCH 90

static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
{
	struct sample *sample;

	if (!trace_pstate_sample_enabled())
		return;

	if (!intel_pstate_sample(cpu, ktime_get()))
		return;

	sample = &cpu->sample;
	trace_pstate_sample(trace_type,
		0,
		old_pstate,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
}

2390 2391 2392 2393 2394 2395
static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
2396
	int target_pstate, old_pstate;
2397

2398 2399
	update_turbo_state();

2400
	freqs.old = policy->cur;
2401
	freqs.new = target_freq;
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2416
	old_pstate = cpu->pstate.current_pstate;
2417 2418 2419 2420 2421
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2422
	freqs.new = target_pstate * cpu->pstate.scaling;
2423
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2424 2425 2426 2427 2428 2429 2430 2431 2432
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
2433
	int target_pstate, old_pstate;
2434

2435 2436
	update_turbo_state();

2437
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2438
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2439
	old_pstate = cpu->pstate.current_pstate;
2440
	intel_pstate_update_pstate(cpu, target_pstate);
2441
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2442
	return target_pstate * cpu->pstate.scaling;
2443 2444 2445 2446
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
2447
	int max_state, turbo_max, min_freq, max_freq, ret;
2448
	struct freq_qos_request *req;
2449 2450 2451 2452 2453 2454
	struct cpudata *cpu;
	struct device *dev;

	dev = get_cpu_device(policy->cpu);
	if (!dev)
		return -ENODEV;
2455

2456
	ret = __intel_pstate_cpu_init(policy);
2457 2458 2459 2460
	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2461
	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2462 2463 2464
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
	if (!req) {
		ret = -ENOMEM;
		goto pstate_exit;
	}

	cpu = all_cpu_data[policy->cpu];

	if (hwp_active)
		intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
	else
		turbo_max = cpu->pstate.turbo_pstate;

	min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
	min_freq *= cpu->pstate.scaling;
	max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
	max_freq *= cpu->pstate.scaling;

2483 2484
	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
				   min_freq);
2485 2486 2487 2488 2489
	if (ret < 0) {
		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
		goto free_req;
	}

2490 2491
	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
				   max_freq);
2492 2493 2494 2495 2496 2497 2498
	if (ret < 0) {
		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
		goto remove_min_req;
	}

	policy->driver_data = req;

2499
	return 0;
2500 2501

remove_min_req:
2502
	freq_qos_remove_request(req);
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
free_req:
	kfree(req);
pstate_exit:
	intel_pstate_exit_perf_limits(policy);

	return ret;
}

static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
{
2513
	struct freq_qos_request *req;
2514 2515 2516

	req = policy->driver_data;

2517 2518
	freq_qos_remove_request(req + 1);
	freq_qos_remove_request(req);
2519 2520 2521
	kfree(req);

	return intel_pstate_cpu_exit(policy);
2522 2523 2524 2525 2526 2527 2528 2529
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
2530
	.exit		= intel_cpufreq_cpu_exit,
2531
	.stop_cpu	= intel_cpufreq_stop_cpu,
2532
	.update_limits	= intel_pstate_update_limits,
2533 2534 2535
	.name		= "intel_cpufreq",
};

2536
static struct cpufreq_driver *default_driver = &intel_pstate;
2537

2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2553
	intel_pstate_driver = NULL;
2554 2555
}

2556
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2557 2558 2559
{
	int ret;

2560 2561
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2562

2563
	intel_pstate_driver = driver;
2564 2565 2566 2567 2568 2569
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2570 2571
	global.min_perf_pct = min_perf_pct_min();

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2588
	if (!intel_pstate_driver)
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2600
		return intel_pstate_driver ?
2601 2602 2603
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2604
		if (intel_pstate_driver) {
2605 2606 2607 2608 2609 2610 2611 2612
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2613
		return intel_pstate_register_driver(&intel_pstate);
2614 2615 2616
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2617
		if (intel_pstate_driver) {
2618
			if (intel_pstate_driver == &intel_cpufreq)
2619 2620 2621 2622 2623 2624 2625
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2626
		return intel_pstate_register_driver(&intel_cpufreq);
2627 2628 2629 2630 2631
	}

	return -EINVAL;
}

2632 2633 2634
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2635
static unsigned int force_load __initdata;
2636

2637
static int __init intel_pstate_msrs_not_valid(void)
2638
{
2639
	if (!pstate_funcs.get_max() ||
2640 2641
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2642 2643 2644 2645
		return -ENODEV;

	return 0;
}
2646

2647
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2648 2649
{
	pstate_funcs.get_max   = funcs->get_max;
2650
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2651 2652
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2653
	pstate_funcs.get_scaling = funcs->get_scaling;
2654
	pstate_funcs.get_val   = funcs->get_val;
2655
	pstate_funcs.get_vid   = funcs->get_vid;
2656
	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2657 2658
}

2659
#ifdef CONFIG_ACPI
2660

2661
static bool __init intel_pstate_no_acpi_pss(void)
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

2687
	pr_debug("ACPI _PSS not found\n");
2688 2689 2690
	return true;
}

2691 2692 2693 2694 2695 2696 2697
static bool __init intel_pstate_no_acpi_pcch(void)
{
	acpi_status status;
	acpi_handle handle;

	status = acpi_get_handle(NULL, "\\_SB", &handle);
	if (ACPI_FAILURE(status))
2698 2699 2700 2701
		goto not_found;

	if (acpi_has_method(handle, "PCCH"))
		return false;
2702

2703 2704 2705
not_found:
	pr_debug("ACPI PCCH not found\n");
	return true;
2706 2707
}

2708
static bool __init intel_pstate_has_acpi_ppc(void)
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
2720
	pr_debug("ACPI _PPC not found\n");
2721 2722 2723 2724 2725 2726 2727 2728
	return false;
}

enum {
	PSS,
	PPC,
};

2729
/* Hardware vendor-specific info that has its own power management modes */
2730
static struct acpi_platform_list plat_info[] __initdata = {
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2746
	{ } /* End */
2747 2748
};

2749 2750
#define BITMASK_OOB	(BIT(8) | BIT(18))

2751
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2752
{
D
Dirk Brandewie 已提交
2753 2754
	const struct x86_cpu_id *id;
	u64 misc_pwr;
2755
	int idx;
D
Dirk Brandewie 已提交
2756 2757 2758 2759

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2760 2761 2762
		if (misc_pwr & BITMASK_OOB) {
			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
D
Dirk Brandewie 已提交
2763
			return true;
2764
		}
D
Dirk Brandewie 已提交
2765
	}
2766

2767 2768
	idx = acpi_match_platform_list(plat_info);
	if (idx < 0)
2769 2770
		return false;

2771 2772
	switch (plat_info[idx].data) {
	case PSS:
2773 2774 2775 2776
		if (!intel_pstate_no_acpi_pss())
			return false;

		return intel_pstate_no_acpi_pcch();
2777 2778
	case PPC:
		return intel_pstate_has_acpi_ppc() && !force_load;
2779 2780 2781 2782
	}

	return false;
}
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2793 2794
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2795
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2796
static inline void intel_pstate_request_control_from_smm(void) {}
2797 2798
#endif /* CONFIG_ACPI */

2799 2800
#define INTEL_PSTATE_HWP_BROADWELL	0x01

2801 2802
#define X86_MATCH_HWP(model, hwp_mode)					\
	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2803
					   X86_FEATURE_HWP, hwp_mode)
2804

2805
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2806 2807 2808
	X86_MATCH_HWP(BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
	X86_MATCH_HWP(BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
	X86_MATCH_HWP(ANY,		0),
2809 2810 2811
	{}
};

2812 2813
static int __init intel_pstate_init(void)
{
2814
	const struct x86_cpu_id *id;
2815
	int rc;
2816

2817 2818 2819
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return -ENODEV;

2820 2821 2822
	if (no_load)
		return -ENODEV;

2823 2824
	id = x86_match_cpu(hwp_support_ids);
	if (id) {
2825
		copy_cpu_funcs(&core_funcs);
2826
		if (!no_hwp) {
2827
			hwp_active++;
2828
			hwp_mode_bdw = id->driver_data;
2829 2830 2831 2832 2833
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		id = x86_match_cpu(intel_pstate_cpu_ids);
2834
		if (!id) {
2835
			pr_info("CPU model not supported\n");
2836
			return -ENODEV;
2837
		}
2838

2839
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2840
	}
2841

2842 2843
	if (intel_pstate_msrs_not_valid()) {
		pr_info("Invalid MSRs\n");
2844
		return -ENODEV;
2845
	}
2846 2847
	/* Without HWP start in the passive mode. */
	default_driver = &intel_cpufreq;
2848

2849 2850 2851 2852 2853
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
2854 2855
	if (intel_pstate_platform_pwr_mgmt_exists()) {
		pr_info("P-states controlled by the platform\n");
2856
		return -ENODEV;
2857
	}
2858

2859 2860 2861
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2862
	pr_info("Intel P-state driver initializing\n");
2863

2864
	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2865 2866 2867
	if (!all_cpu_data)
		return -ENOMEM;

2868 2869
	intel_pstate_request_control_from_smm();

2870
	intel_pstate_sysfs_expose_params();
2871

2872
	mutex_lock(&intel_pstate_driver_lock);
2873
	rc = intel_pstate_register_driver(default_driver);
2874
	mutex_unlock(&intel_pstate_driver_lock);
2875 2876
	if (rc)
		return rc;
2877

2878 2879 2880 2881 2882 2883 2884 2885 2886
	if (hwp_active) {
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id) {
			set_power_ctl_ee_state(false);
			pr_info("Disabling energy efficiency optimization\n");
		}

J
Joe Perches 已提交
2887
		pr_info("HWP enabled\n");
2888
	}
2889

2890
	return 0;
2891 2892 2893
}
device_initcall(intel_pstate_init);

2894 2895 2896 2897 2898
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2899
	if (!strcmp(str, "disable")) {
2900
		no_load = 1;
2901
	} else if (!strcmp(str, "passive")) {
2902
		default_driver = &intel_cpufreq;
2903 2904
		no_hwp = 1;
	}
2905
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2906
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2907
		no_hwp = 1;
2908
	}
2909 2910
	if (!strcmp(str, "force"))
		force_load = 1;
2911 2912
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2913 2914
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2915 2916 2917 2918 2919 2920

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2921 2922 2923 2924
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2925 2926 2927
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");