intel_pstate.c 65.4 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
29
#include <linux/acpi.h>
30
#include <linux/vmalloc.h>
31 32 33 34 35
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
36
#include <asm/cpufeature.h>
37
#include <asm/intel-family.h>
38

39
#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
40

41
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
42
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
43

44 45
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
46
#include <acpi/cppc_acpi.h>
47 48
#endif

49
#define FRAC_BITS 8
50 51
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
52

53 54
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 56
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57

58 59 60 61 62
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

63
static inline int32_t div_fp(s64 x, s64 y)
64
{
65
	return div64_s64((int64_t)x << FRAC_BITS, y);
66 67
}

68 69 70 71 72 73 74 75 76 77 78
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

79 80 81 82 83
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

84 85 86 87 88 89 90 91 92 93
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

94 95 96 97 98
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

99 100
/**
 * struct sample -	Store performance sample
101
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
102 103
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
104
 *			P state. This can be different than core_avg_perf
105 106 107 108 109 110 111 112 113 114 115 116
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
117
struct sample {
118
	int32_t core_avg_perf;
119
	int32_t busy_scaled;
120 121
	u64 aperf;
	u64 mperf;
122
	u64 tsc;
123
	u64 time;
124 125
};

126 127 128 129 130 131 132 133 134 135 136
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
137 138
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
139 140 141
 *
 * Stores the per cpu model P state limits and current P state.
 */
142 143 144 145
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
146
	int	max_pstate_physical;
147
	int	scaling;
148
	int	turbo_pstate;
149 150
	unsigned int max_freq;
	unsigned int turbo_freq;
151 152
};

153 154 155 156 157 158 159 160 161 162 163 164 165
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
166
struct vid_data {
167 168 169
	int min;
	int max;
	int turbo;
170 171 172
	int32_t ratio;
};

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
190 191
};

192 193 194
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
195
 * @policy:		CPUFreq policy value
196
 * @update_util:	CPUFreq utility callback information
197
 * @update_util_set:	CPUFreq utility callback is set
198 199
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
200 201 202
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @last_sample_time:	Last Sample time
203 204 205
 * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
 *			This shift is a multiplier to mperf delta to
 *			calculate CPU busy.
206 207 208 209 210 211
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
212 213
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
214 215
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
216 217 218
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
219
 * @epp_policy:		Last saved policy used to set EPP/EPB
220 221 222 223
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
224 225
 * @hwp_req_cached:	Cached value of the last HWP Request MSR
 * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
226 227
 * @last_io_update:	Last time when IO wake flag was set
 * @sched_flags:	Store scheduler flags for possible cross CPU update
228
 * @hwp_boost_min:	Last HWP boosted min performance
229 230 231
 *
 * This structure stores per CPU instance data for all CPUs.
 */
232 233 234
struct cpudata {
	int cpu;

235
	unsigned int policy;
236
	struct update_util_data update_util;
237
	bool   update_util_set;
238 239

	struct pstate_data pstate;
240
	struct vid_data vid;
241

242
	u64	last_update;
243
	u64	last_sample_time;
244
	u64	aperf_mperf_shift;
245 246
	u64	prev_aperf;
	u64	prev_mperf;
247
	u64	prev_tsc;
248
	u64	prev_cummulative_iowait;
249
	struct sample sample;
250 251
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
252 253 254 255
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
256
	unsigned int iowait_boost;
257
	s16 epp_powersave;
258
	s16 epp_policy;
259 260
	s16 epp_default;
	s16 epp_saved;
261 262
	u64 hwp_req_cached;
	u64 hwp_cap_cached;
263 264
	u64 last_io_update;
	unsigned int sched_flags;
265
	u32 hwp_boost_min;
266 267 268
};

static struct cpudata **all_cpu_data;
269 270 271 272 273 274 275 276 277 278 279 280 281 282

/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
283 284
struct pstate_funcs {
	int (*get_max)(void);
285
	int (*get_max_physical)(void);
286 287
	int (*get_min)(void);
	int (*get_turbo)(void);
288
	int (*get_scaling)(void);
289
	int (*get_aperf_mperf_shift)(void);
290
	u64 (*get_val)(struct cpudata*, int pstate);
291
	void (*get_vid)(struct cpudata *);
292 293
};

294
static struct pstate_funcs pstate_funcs __read_mostly;
295

296
static int hwp_active __read_mostly;
297
static int hwp_mode_bdw __read_mostly;
298
static bool per_cpu_limits __read_mostly;
299
static bool hwp_boost __read_mostly;
300

301
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302

303 304 305
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
306

307
static struct global_params global;
308

309
static DEFINE_MUTEX(intel_pstate_driver_lock);
310 311
static DEFINE_MUTEX(intel_pstate_limits_lock);

312
#ifdef CONFIG_ACPI
313

314
static bool intel_pstate_acpi_pm_profile_server(void)
315 316 317 318 319
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

320 321 322 323 324 325 326 327
	return false;
}

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (intel_pstate_acpi_pm_profile_server())
		return true;

328 329 330
	return acpi_ppc;
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
376 377 378 379 380 381 382 383 384 385 386 387 388

static int intel_pstate_get_cppc_guranteed(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return ret;

	return cppc_perf.guaranteed_perf;
}

389 390 391 392
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
393 394 395 396 397

static int intel_pstate_get_cppc_guranteed(int cpu)
{
	return -ENOTSUPP;
}
398 399
#endif

400 401 402 403 404 405
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

406 407
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
408
		return;
409
	}
410

411
	if (!intel_pstate_get_ppc_enable_status())
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
454
	 * correct max turbo frequency based on the turbo state.
455 456
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
457
	if (!global.turbo_disabled)
458 459 460
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
461
	pr_debug("_PPC limits will be enforced\n");
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
481
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
482 483 484
{
}

485
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
486 487
{
}
488 489 490 491 492

static inline bool intel_pstate_acpi_pm_profile_server(void)
{
	return false;
}
493 494
#endif

495 496 497 498 499 500 501
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
502
	global.turbo_disabled =
503 504 505 506
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

507 508 509
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
510
	int turbo_pstate = cpu->pstate.turbo_pstate;
511

512
	return turbo_pstate ?
513
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
514 515
}

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

535 536 537 538 539 540 541 542 543 544 545
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
546
		epp = (hwp_req_data >> 24) & 0xff;
547
	} else {
548 549
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
550
	}
551 552 553 554

	return epp;
}

555
static int intel_pstate_set_epb(int cpu, s16 pref)
556 557
{
	u64 epb;
558
	int ret;
559 560

	if (!static_cpu_has(X86_FEATURE_EPB))
561
		return -ENXIO;
562

563 564 565
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
566 567 568

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
569 570

	return 0;
571 572
}

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
592 593 594 595 596 597
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
598 599 600 601 602 603 604 605 606 607 608

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
609 610 611 612 613 614 615 616
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
			return 2;
		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
			return 3;
		else
			return 4;
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		if (epp == -EINVAL)
655
			epp = epp_values[pref_index - 1];
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
691
	int ret;
692 693 694 695 696

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

697 698 699
	ret = match_string(energy_perf_strings, -1, str_preference);
	if (ret < 0)
		return ret;
700

701 702
	intel_pstate_set_energy_pref_index(cpu_data, ret);
	return count;
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu;
	u64 cap;
	int ratio;

	ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
	if (ratio <= 0) {
		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
		ratio = HWP_GUARANTEED_PERF(cap);
	}

	cpu = all_cpu_data[policy->cpu];

	return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
}

cpufreq_freq_attr_ro(base_frequency);

739 740 741
static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
742
	&base_frequency,
743 744 745
	NULL,
};

746 747
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
748
{
749
	u64 cap;
750

751
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
752
	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
753
	if (global.no_turbo)
754
		*current_max = HWP_GUARANTEED_PERF(cap);
755
	else
756 757 758 759 760 761 762 763 764 765 766 767 768 769
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
770

771 772
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
773

774
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
775

776 777
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
778

779 780
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
781

782 783
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
784

785
	cpu_data->epp_policy = cpu_data->policy;
786

787 788 789 790 791
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
792

793 794 795 796 797 798
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
799

800 801 802 803 804
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
805

806 807 808 809 810 811 812 813 814 815
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
816

817 818
		epp = cpu_data->epp_powersave;
	}
819
update_epp:
820 821 822 823 824
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
825
	}
826
skip_epp:
827
	WRITE_ONCE(cpu_data->hwp_req_cached, value);
828
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
829
}
D
Dirk Brandewie 已提交
830

831 832 833 834 835 836 837 838 839 840 841 842
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

843 844
static void intel_pstate_hwp_enable(struct cpudata *cpudata);

845 846 847 848 849
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

850 851
	mutex_lock(&intel_pstate_limits_lock);

852 853 854
	if (policy->cpu == 0)
		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);

855
	all_cpu_data[policy->cpu]->epp_policy = 0;
856
	intel_pstate_hwp_set(policy->cpu);
857 858 859

	mutex_unlock(&intel_pstate_limits_lock);

860
	return 0;
861 862
}

863
static void intel_pstate_update_policies(void)
864
{
865 866 867 868
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
869 870
}

871 872 873 874 875
/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
876
		return sprintf(buf, "%u\n", global.object);		\
877 878
	}

879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

907 908 909 910 911 912 913
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

914 915
	mutex_lock(&intel_pstate_driver_lock);

916
	if (!intel_pstate_driver) {
917 918 919 920
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

921 922 923 924
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
925
	turbo_fp = div_fp(no_turbo, total);
926
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
927 928 929

	mutex_unlock(&intel_pstate_driver_lock);

930 931 932
	return sprintf(buf, "%u\n", turbo_pct);
}

933 934 935 936 937 938
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

939 940
	mutex_lock(&intel_pstate_driver_lock);

941
	if (!intel_pstate_driver) {
942 943 944 945
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

946 947
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
948 949 950

	mutex_unlock(&intel_pstate_driver_lock);

951 952 953
	return sprintf(buf, "%u\n", total);
}

954 955 956 957 958
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

959 960
	mutex_lock(&intel_pstate_driver_lock);

961
	if (!intel_pstate_driver) {
962 963 964 965
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

966
	update_turbo_state();
967 968
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
969
	else
970
		ret = sprintf(buf, "%u\n", global.no_turbo);
971

972 973
	mutex_unlock(&intel_pstate_driver_lock);

974 975 976
	return ret;
}

977
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
978
			      const char *buf, size_t count)
979 980 981
{
	unsigned int input;
	int ret;
982

983 984 985
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
986

987 988
	mutex_lock(&intel_pstate_driver_lock);

989
	if (!intel_pstate_driver) {
990 991 992 993
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

994 995
	mutex_lock(&intel_pstate_limits_lock);

996
	update_turbo_state();
997
	if (global.turbo_disabled) {
J
Joe Perches 已提交
998
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
999
		mutex_unlock(&intel_pstate_limits_lock);
1000
		mutex_unlock(&intel_pstate_driver_lock);
1001
		return -EPERM;
1002
	}
D
Dirk Brandewie 已提交
1003

1004
	global.no_turbo = clamp_t(int, input, 0, 1);
1005

1006 1007 1008 1009 1010 1011 1012 1013 1014
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1015 1016
	mutex_unlock(&intel_pstate_limits_lock);

1017 1018
	intel_pstate_update_policies();

1019 1020
	mutex_unlock(&intel_pstate_driver_lock);

1021 1022 1023 1024
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1025
				  const char *buf, size_t count)
1026 1027 1028
{
	unsigned int input;
	int ret;
1029

1030 1031 1032 1033
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1034 1035
	mutex_lock(&intel_pstate_driver_lock);

1036
	if (!intel_pstate_driver) {
1037 1038 1039 1040
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1041 1042
	mutex_lock(&intel_pstate_limits_lock);

1043
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1044

1045 1046
	mutex_unlock(&intel_pstate_limits_lock);

1047 1048
	intel_pstate_update_policies();

1049 1050
	mutex_unlock(&intel_pstate_driver_lock);

1051 1052 1053 1054
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1055
				  const char *buf, size_t count)
1056 1057 1058
{
	unsigned int input;
	int ret;
1059

1060 1061 1062
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1063

1064 1065
	mutex_lock(&intel_pstate_driver_lock);

1066
	if (!intel_pstate_driver) {
1067 1068 1069 1070
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1071 1072
	mutex_lock(&intel_pstate_limits_lock);

1073 1074
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1075

1076 1077
	mutex_unlock(&intel_pstate_limits_lock);

1078 1079
	intel_pstate_update_policies();

1080 1081
	mutex_unlock(&intel_pstate_driver_lock);

1082 1083 1084
	return count;
}

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	return sprintf(buf, "%u\n", hwp_boost);
}

static ssize_t store_hwp_dynamic_boost(struct kobject *a, struct attribute *b,
				       const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = kstrtouint(buf, 10, &input);
	if (ret)
		return ret;

	mutex_lock(&intel_pstate_driver_lock);
	hwp_boost = !!input;
	intel_pstate_update_policies();
	mutex_unlock(&intel_pstate_driver_lock);

	return count;
}

1109 1110 1111
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1112
define_one_global_rw(status);
1113 1114 1115
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1116
define_one_global_ro(turbo_pct);
1117
define_one_global_ro(num_pstates);
1118
define_one_global_rw(hwp_dynamic_boost);
1119 1120

static struct attribute *intel_pstate_attributes[] = {
1121
	&status.attr,
1122
	&no_turbo.attr,
1123
	&turbo_pct.attr,
1124
	&num_pstates.attr,
1125 1126 1127
	NULL
};

1128
static const struct attribute_group intel_pstate_attr_group = {
1129 1130 1131
	.attrs = intel_pstate_attributes,
};

1132
static void __init intel_pstate_sysfs_expose_params(void)
1133
{
1134
	struct kobject *intel_pstate_kobject;
1135 1136 1137 1138
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1139 1140 1141
	if (WARN_ON(!intel_pstate_kobject))
		return;

1142
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1159 1160 1161 1162 1163
	if (hwp_active) {
		rc = sysfs_create_file(intel_pstate_kobject,
				       &hwp_dynamic_boost.attr);
		WARN_ON(rc);
	}
1164 1165
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1166

1167
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1168
{
1169
	/* First disable HWP notification interrupt as we don't process them */
1170 1171
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1172

1173
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1174
	cpudata->epp_policy = 0;
1175 1176
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1177 1178
}

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1198
static int atom_get_min_pstate(void)
1199 1200
{
	u64 value;
1201

1202
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1203
	return (value >> 8) & 0x7F;
1204 1205
}

1206
static int atom_get_max_pstate(void)
1207 1208
{
	u64 value;
1209

1210
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1211
	return (value >> 16) & 0x7F;
1212
}
1213

1214
static int atom_get_turbo_pstate(void)
1215 1216
{
	u64 value;
1217

1218
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1219
	return value & 0x7F;
1220 1221
}

1222
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1223 1224 1225 1226 1227
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1228
	val = (u64)pstate << 8;
1229
	if (global.no_turbo && !global.turbo_disabled)
1230 1231 1232 1233 1234 1235 1236
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1237
	vid = ceiling_fp(vid_fp);
1238

1239 1240 1241
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1242
	return val | vid;
1243 1244
}

1245
static int silvermont_get_scaling(void)
1246 1247 1248
{
	u64 value;
	int i;
1249 1250 1251
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1252 1253

	rdmsrl(MSR_FSB_FREQ, value);
1254 1255
	i = value & 0x7;
	WARN_ON(i > 4);
1256

1257 1258
	return silvermont_freq_table[i];
}
1259

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1274 1275
}

1276
static void atom_get_vid(struct cpudata *cpudata)
1277 1278 1279
{
	u64 value;

1280
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1281 1282
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1283 1284 1285 1286
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1287

1288
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1289
	cpudata->vid.turbo = value & 0x7f;
1290 1291
}

1292
static int core_get_min_pstate(void)
1293 1294
{
	u64 value;
1295

1296
	rdmsrl(MSR_PLATFORM_INFO, value);
1297 1298 1299
	return (value >> 40) & 0xFF;
}

1300
static int core_get_max_pstate_physical(void)
1301 1302
{
	u64 value;
1303

1304
	rdmsrl(MSR_PLATFORM_INFO, value);
1305 1306 1307
	return (value >> 8) & 0xFF;
}

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1341
static int core_get_max_pstate(void)
1342
{
1343 1344 1345
	u64 tar;
	u64 plat_info;
	int max_pstate;
1346
	int tdp_ratio;
1347 1348 1349 1350 1351
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1352 1353 1354 1355 1356 1357 1358 1359 1360
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1361 1362
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1363 1364
		int tar_levels;

1365
		/* Do some sanity checking for safety */
1366 1367 1368 1369
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1370 1371
		}
	}
1372

1373
	return max_pstate;
1374 1375
}

1376
static int core_get_turbo_pstate(void)
1377 1378 1379
{
	u64 value;
	int nont, ret;
1380

1381
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1382
	nont = core_get_max_pstate();
1383
	ret = (value) & 255;
1384 1385 1386 1387 1388
	if (ret <= nont)
		ret = nont;
	return ret;
}

1389 1390 1391 1392 1393
static inline int core_get_scaling(void)
{
	return 100000;
}

1394
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1395 1396 1397
{
	u64 val;

1398
	val = (u64)pstate << 8;
1399
	if (global.no_turbo && !global.turbo_disabled)
1400 1401
		val |= (u64)1 << 32;

1402
	return val;
1403 1404
}

1405 1406 1407 1408 1409
static int knl_get_aperf_mperf_shift(void)
{
	return 10;
}

1410 1411 1412 1413 1414
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1415
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1416 1417 1418 1419 1420 1421 1422
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1423
static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1424
{
1425 1426
	return global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1427 1428
}

1429
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1430
{
1431 1432
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1433 1434 1435 1436 1437 1438 1439
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1440 1441
}

1442 1443 1444 1445 1446 1447 1448
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1449
	int pstate;
1450 1451

	update_turbo_state();
1452
	pstate = intel_pstate_get_base_pstate(cpu);
1453
	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1454
	intel_pstate_set_pstate(cpu, pstate);
1455 1456
}

1457 1458
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1459 1460
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1461
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1462
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1463
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1464
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1465 1466 1467 1468 1469 1470 1471 1472 1473

	if (hwp_active && !hwp_mode_bdw) {
		unsigned int phy_max, current_max;

		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
	} else {
		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
	}
1474

1475 1476 1477
	if (pstate_funcs.get_aperf_mperf_shift)
		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();

1478 1479
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1480 1481

	intel_pstate_set_min_pstate(cpu);
1482 1483
}

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
/*
 * Long hold time will keep high perf limits for long time,
 * which negatively impacts perf/watt for some workloads,
 * like specpower. 3ms is based on experiements on some
 * workoads.
 */
static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;

static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
{
	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
	u32 max_limit = (hwp_req & 0xff00) >> 8;
	u32 min_limit = (hwp_req & 0xff);
	u32 boost_level1;

	/*
	 * Cases to consider (User changes via sysfs or boot time):
	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
	 *	No boost, return.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
	 *     Should result in one level boost only for P0.
	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
	 *     Should result in two level boost:
	 *         (min + p1)/2 and P1.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
	 *     Should result in three level boost:
	 *        (min + p1)/2, P1 and P0.
	 */

	/* If max and min are equal or already at max, nothing to boost */
	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
		return;

	if (!cpu->hwp_boost_min)
		cpu->hwp_boost_min = min_limit;

	/* level at half way mark between min and guranteed */
	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;

	if (cpu->hwp_boost_min < boost_level1)
		cpu->hwp_boost_min = boost_level1;
	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = max_limit;
	else
		return;

	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
	wrmsrl(MSR_HWP_REQUEST, hwp_req);
	cpu->last_update = cpu->sample.time;
}

static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
{
	if (cpu->hwp_boost_min) {
		bool expired;

		/* Check if we are idle for hold time to boost down */
		expired = time_after64(cpu->sample.time, cpu->last_update +
				       hwp_boost_hold_time_ns);
		if (expired) {
			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
			cpu->hwp_boost_min = 0;
		}
	}
	cpu->last_update = cpu->sample.time;
}

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
						      u64 time)
{
	cpu->sample.time = time;

	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
		bool do_io = false;

		cpu->sched_flags = 0;
		/*
		 * Set iowait_boost flag and update time. Since IO WAIT flag
		 * is set all the time, we can't just conclude that there is
		 * some IO bound activity is scheduled on this CPU with just
		 * one occurrence. If we receive at least two in two
		 * consecutive ticks, then we treat as boost candidate.
		 */
		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
			do_io = true;

		cpu->last_io_update = time;

		if (do_io)
			intel_pstate_hwp_boost_up(cpu);

	} else {
		intel_pstate_hwp_boost_down(cpu);
	}
}

1583 1584 1585
static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
						u64 time, unsigned int flags)
{
1586 1587 1588 1589 1590 1591
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);

	cpu->sched_flags |= flags;

	if (smp_processor_id() == cpu->cpu)
		intel_pstate_update_util_hwp_local(cpu, time);
1592 1593
}

1594
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1595
{
1596
	struct sample *sample = &cpu->sample;
1597

1598
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1599 1600
}

1601
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1602 1603
{
	u64 aperf, mperf;
1604
	unsigned long flags;
1605
	u64 tsc;
1606

1607
	local_irq_save(flags);
1608 1609
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1610
	tsc = rdtsc();
1611
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1612
		local_irq_restore(flags);
1613
		return false;
1614
	}
1615
	local_irq_restore(flags);
1616

1617
	cpu->last_sample_time = cpu->sample.time;
1618
	cpu->sample.time = time;
1619 1620
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1621
	cpu->sample.tsc =  tsc;
1622 1623
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1624
	cpu->sample.tsc -= cpu->prev_tsc;
1625

1626 1627
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1628
	cpu->prev_tsc = tsc;
1629 1630 1631 1632 1633 1634 1635
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1636 1637 1638 1639 1640
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1641 1642
}

1643 1644
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1645
	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1646 1647
}

1648 1649
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1650 1651
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1652 1653
}

1654
static inline int32_t get_target_pstate(struct cpudata *cpu)
1655 1656
{
	struct sample *sample = &cpu->sample;
1657
	int32_t busy_frac, boost;
1658
	int target, avg_pstate;
1659

1660 1661
	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
			   sample->tsc);
1662

1663 1664
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1665

1666 1667
	if (busy_frac < boost)
		busy_frac = boost;
1668

1669
	sample->busy_scaled = busy_frac * 100;
1670

1671
	target = global.no_turbo || global.turbo_disabled ?
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1690 1691
}

1692
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1693
{
1694 1695
	int max_pstate = intel_pstate_get_base_pstate(cpu);
	int min_pstate;
1696

1697 1698
	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1699
	return clamp_t(int, pstate, min_pstate, max_pstate);
1700 1701 1702 1703
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1704 1705 1706
	if (pstate == cpu->pstate.current_pstate)
		return;

1707
	cpu->pstate.current_pstate = pstate;
1708 1709 1710
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1711
static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1712
{
1713
	int from = cpu->pstate.current_pstate;
1714
	struct sample *sample;
1715
	int target_pstate;
1716

1717 1718
	update_turbo_state();

1719
	target_pstate = get_target_pstate(cpu);
1720 1721
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1722
	intel_pstate_update_pstate(cpu, target_pstate);
1723 1724

	sample = &cpu->sample;
1725
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1726
		fp_toint(sample->busy_scaled),
1727 1728 1729 1730 1731
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1732 1733
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1734 1735
}

1736
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1737
				     unsigned int flags)
1738
{
1739
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1740 1741
	u64 delta_ns;

1742 1743 1744 1745
	/* Don't allow remote callbacks */
	if (smp_processor_id() != cpu->cpu)
		return;

1746 1747
	if (flags & SCHED_CPUFREQ_IOWAIT) {
		cpu->iowait_boost = int_tofp(1);
1748 1749 1750 1751 1752 1753 1754 1755 1756
		cpu->last_update = time;
		/*
		 * The last time the busy was 100% so P-state was max anyway
		 * so avoid overhead of computation.
		 */
		if (fp_toint(cpu->sample.busy_scaled) == 100)
			return;

		goto set_pstate;
1757 1758 1759 1760 1761
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		delta_ns = time - cpu->last_update;
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1762
	}
1763
	cpu->last_update = time;
1764
	delta_ns = time - cpu->sample.time;
1765
	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1766
		return;
1767

1768
set_pstate:
1769 1770
	if (intel_pstate_sample(cpu, time))
		intel_pstate_adjust_pstate(cpu);
1771
}
1772

1773 1774 1775 1776 1777 1778 1779
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1780 1781
};

1782 1783 1784 1785 1786 1787 1788 1789
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
1790 1791
};

1792 1793 1794 1795 1796 1797 1798 1799
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
1800 1801
};

1802 1803 1804 1805 1806
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
1807
	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1808 1809
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1810 1811
};

1812
#define ICPU(model, policy) \
1813 1814
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1815 1816

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1817 1818
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
1819
	ICPU(INTEL_FAM6_ATOM_SILVERMONT,	silvermont_funcs),
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1835
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		core_funcs),
1836
	ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS,     core_funcs),
1837
	ICPU(INTEL_FAM6_SKYLAKE_X,		core_funcs),
1838 1839 1840 1841
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1842
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1843 1844 1845
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
D
Dirk Brandewie 已提交
1846 1847 1848
	{}
};

1849
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1850
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1851 1852 1853
	{}
};

1854 1855 1856 1857 1858 1859
static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
	{}
};

1860 1861 1862 1863
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1864 1865 1866
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1867
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1868 1869 1870 1871 1872
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1873 1874 1875
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1876
	}
1877 1878 1879 1880

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1881

1882
	if (hwp_active) {
1883 1884 1885 1886 1887 1888
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1889
		intel_pstate_hwp_enable(cpu);
1890 1891

		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1892
		if (id && intel_pstate_acpi_pm_profile_server())
1893
			hwp_boost = true;
1894
	}
1895

1896
	intel_pstate_get_cpu_pstates(cpu);
1897

J
Joe Perches 已提交
1898
	pr_debug("controlling: cpu %d\n", cpunum);
1899 1900 1901 1902

	return 0;
}

1903
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1904
{
1905 1906
	struct cpudata *cpu = all_cpu_data[cpu_num];

1907
	if (hwp_active && !hwp_boost)
1908 1909
		return;

1910 1911 1912
	if (cpu->update_util_set)
		return;

1913 1914
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1915
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1916 1917 1918
				     (hwp_active ?
				      intel_pstate_update_util_hwp :
				      intel_pstate_update_util));
1919
	cpu->update_util_set = true;
1920 1921 1922 1923
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1924 1925 1926 1927 1928
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1929
	cpufreq_remove_update_util_hook(cpu);
1930
	cpu_data->update_util_set = false;
1931 1932 1933
	synchronize_sched();
}

1934 1935 1936 1937 1938 1939
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

1940
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1941
					    struct cpudata *cpu)
1942
{
1943
	int max_freq = intel_pstate_get_max_freq(cpu);
1944
	int32_t max_policy_perf, min_policy_perf;
1945
	int max_state, turbo_max;
1946

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
		max_state = intel_pstate_get_base_pstate(cpu);
		turbo_max = cpu->pstate.turbo_pstate;
	}

	max_policy_perf = max_state * policy->max / max_freq;
1960
	if (policy->max == policy->min) {
1961
		min_policy_perf = max_policy_perf;
1962
	} else {
1963
		min_policy_perf = max_state * policy->min / max_freq;
1964 1965
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
1966
	}
1967

1968 1969 1970 1971
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
		 policy->cpu, max_state,
		 min_policy_perf, max_policy_perf);

1972
	/* Normalize user input to [min_perf, max_perf] */
1973
	if (per_cpu_limits) {
1974 1975
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
1976 1977 1978 1979
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
1980 1981
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1982
		global_min = clamp_t(int32_t, global_min, 0, global_max);
1983

1984 1985
		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
			 global_min, global_max);
1986

1987 1988 1989 1990
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1991

1992 1993 1994
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
1995

1996 1997 1998 1999
	}
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
2000 2001
}

2002 2003
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2004 2005
	struct cpudata *cpu;

2006 2007 2008
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2009 2010 2011
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2012
	cpu = all_cpu_data[policy->cpu];
2013 2014
	cpu->policy = policy->policy;

2015 2016
	mutex_lock(&intel_pstate_limits_lock);

2017
	intel_pstate_update_perf_limits(policy, cpu);
2018

2019
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2020 2021 2022 2023 2024 2025
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
2026 2027
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
2028 2029
	}

2030 2031 2032 2033 2034 2035 2036 2037
	if (hwp_active) {
		/*
		 * When hwp_boost was active before and dynamically it
		 * was turned off, in that case we need to clear the
		 * update util hook.
		 */
		if (!hwp_boost)
			intel_pstate_clear_update_util_hook(policy->cpu);
2038
		intel_pstate_hwp_set(policy->cpu);
2039
	}
D
Dirk Brandewie 已提交
2040

2041 2042
	mutex_unlock(&intel_pstate_limits_lock);

2043 2044 2045
	return 0;
}

2046 2047 2048
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
2049 2050
	if (!hwp_active &&
	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2051 2052 2053 2054 2055 2056 2057
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2058 2059
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2060 2061 2062
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2063 2064
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2065

2066
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2067
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2068 2069
		return -EINVAL;

2070 2071
	intel_pstate_adjust_policy_max(policy, cpu);

2072 2073 2074
	return 0;
}

2075 2076 2077 2078 2079
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2080
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2081
{
2082
	pr_debug("CPU %d exiting\n", policy->cpu);
2083

2084
	intel_pstate_clear_update_util_hook(policy->cpu);
2085 2086 2087
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2088 2089
		intel_cpufreq_stop_cpu(policy);
}
2090

2091 2092 2093
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2094

2095
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2096

2097
	return 0;
2098 2099
}

2100
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2101 2102
{
	struct cpudata *cpu;
2103
	int rc;
2104 2105 2106 2107 2108 2109 2110

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2111 2112
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
2113

2114 2115
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2116 2117

	/* cpuinfo and default policy values */
2118
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2119
	update_turbo_state();
2120
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2121 2122 2123
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2124 2125 2126 2127 2128 2129 2130 2131 2132
	if (hwp_active) {
		unsigned int max_freq;

		max_freq = global.turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
		if (max_freq < policy->cpuinfo.max_freq)
			policy->cpuinfo.max_freq = max_freq;
	}

2133
	intel_pstate_init_acpi_perf_limits(policy);
2134

2135 2136
	policy->fast_switch_possible = true;

2137 2138 2139
	return 0;
}

2140
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2141
{
2142 2143 2144 2145 2146
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

2147
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2148 2149 2150
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2151 2152 2153 2154

	return 0;
}

2155
static struct cpufreq_driver intel_pstate = {
2156 2157 2158
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2159
	.suspend	= intel_pstate_hwp_save_state,
2160
	.resume		= intel_pstate_resume,
2161
	.init		= intel_pstate_cpu_init,
2162
	.exit		= intel_pstate_cpu_exit,
2163
	.stop_cpu	= intel_pstate_stop_cpu,
2164 2165 2166
	.name		= "intel_pstate",
};

2167 2168 2169 2170 2171
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2172 2173
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2174

2175
	intel_pstate_adjust_policy_max(policy, cpu);
2176

2177 2178
	intel_pstate_update_perf_limits(policy, cpu);

2179 2180 2181
	return 0;
}

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
/* Use of trace in passive mode:
 *
 * In passive mode the trace core_busy field (also known as the
 * performance field, and lablelled as such on the graphs; also known as
 * core_avg_perf) is not needed and so is re-assigned to indicate if the
 * driver call was via the normal or fast switch path. Various graphs
 * output from the intel_pstate_tracer.py utility that include core_busy
 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
 * so we use 10 to indicate the the normal path through the driver, and
 * 90 to indicate the fast switch path through the driver.
 * The scaled_busy field is not used, and is set to 0.
 */

#define	INTEL_PSTATE_TRACE_TARGET 10
#define	INTEL_PSTATE_TRACE_FAST_SWITCH 90

static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
{
	struct sample *sample;

	if (!trace_pstate_sample_enabled())
		return;

	if (!intel_pstate_sample(cpu, ktime_get()))
		return;

	sample = &cpu->sample;
	trace_pstate_sample(trace_type,
		0,
		old_pstate,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
}

2220 2221 2222 2223 2224 2225
static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
2226
	int target_pstate, old_pstate;
2227

2228 2229
	update_turbo_state();

2230
	freqs.old = policy->cur;
2231
	freqs.new = target_freq;
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2246
	old_pstate = cpu->pstate.current_pstate;
2247 2248 2249 2250 2251
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2252
	freqs.new = target_pstate * cpu->pstate.scaling;
2253
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2254 2255 2256 2257 2258 2259 2260 2261 2262
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
2263
	int target_pstate, old_pstate;
2264

2265 2266
	update_turbo_state();

2267
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2268
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2269
	old_pstate = cpu->pstate.current_pstate;
2270
	intel_pstate_update_pstate(cpu, target_pstate);
2271
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2272
	return target_pstate * cpu->pstate.scaling;
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2283
	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

2301
static struct cpufreq_driver *default_driver = &intel_pstate;
2302

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2318
	intel_pstate_driver = NULL;
2319 2320
}

2321
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2322 2323 2324
{
	int ret;

2325 2326
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2327

2328
	intel_pstate_driver = driver;
2329 2330 2331 2332 2333 2334
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2335 2336
	global.min_perf_pct = min_perf_pct_min();

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2353
	if (!intel_pstate_driver)
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2365
		return intel_pstate_driver ?
2366 2367 2368
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2369
		if (intel_pstate_driver) {
2370 2371 2372 2373 2374 2375 2376 2377
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2378
		return intel_pstate_register_driver(&intel_pstate);
2379 2380 2381
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2382
		if (intel_pstate_driver) {
2383
			if (intel_pstate_driver == &intel_cpufreq)
2384 2385 2386 2387 2388 2389 2390
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2391
		return intel_pstate_register_driver(&intel_cpufreq);
2392 2393 2394 2395 2396
	}

	return -EINVAL;
}

2397 2398 2399
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2400
static unsigned int force_load __initdata;
2401

2402
static int __init intel_pstate_msrs_not_valid(void)
2403
{
2404
	if (!pstate_funcs.get_max() ||
2405 2406
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2407 2408 2409 2410
		return -ENODEV;

	return 0;
}
2411

2412
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2413 2414
{
	pstate_funcs.get_max   = funcs->get_max;
2415
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2416 2417
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2418
	pstate_funcs.get_scaling = funcs->get_scaling;
2419
	pstate_funcs.get_val   = funcs->get_val;
2420
	pstate_funcs.get_vid   = funcs->get_vid;
2421
	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2422 2423
}

2424
#ifdef CONFIG_ACPI
2425

2426
static bool __init intel_pstate_no_acpi_pss(void)
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
static bool __init intel_pstate_no_acpi_pcch(void)
{
	acpi_status status;
	acpi_handle handle;

	status = acpi_get_handle(NULL, "\\_SB", &handle);
	if (ACPI_FAILURE(status))
		return true;

	return !acpi_has_method(handle, "PCCH");
}

2467
static bool __init intel_pstate_has_acpi_ppc(void)
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2487
/* Hardware vendor-specific info that has its own power management modes */
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
static struct acpi_platform_list plat_info[] __initdata = {
	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{ } /* End */
2505 2506
};

2507
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2508
{
D
Dirk Brandewie 已提交
2509 2510
	const struct x86_cpu_id *id;
	u64 misc_pwr;
2511
	int idx;
D
Dirk Brandewie 已提交
2512 2513 2514 2515 2516 2517 2518

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2519

2520 2521
	idx = acpi_match_platform_list(plat_info);
	if (idx < 0)
2522 2523
		return false;

2524 2525
	switch (plat_info[idx].data) {
	case PSS:
2526 2527 2528 2529
		if (!intel_pstate_no_acpi_pss())
			return false;

		return intel_pstate_no_acpi_pcch();
2530 2531
	case PPC:
		return intel_pstate_has_acpi_ppc() && !force_load;
2532 2533 2534 2535
	}

	return false;
}
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2546 2547
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2548
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2549
static inline void intel_pstate_request_control_from_smm(void) {}
2550 2551
#endif /* CONFIG_ACPI */

2552 2553 2554 2555 2556
#define INTEL_PSTATE_HWP_BROADWELL	0x01

#define ICPU_HWP(model, hwp_mode) \
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }

2557
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2558 2559 2560
	ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
	ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
	ICPU_HWP(X86_MODEL_ANY, 0),
2561 2562 2563
	{}
};

2564 2565
static int __init intel_pstate_init(void)
{
2566
	const struct x86_cpu_id *id;
2567
	int rc;
2568

2569 2570 2571
	if (no_load)
		return -ENODEV;

2572 2573
	id = x86_match_cpu(hwp_support_ids);
	if (id) {
2574
		copy_cpu_funcs(&core_funcs);
2575
		if (!no_hwp) {
2576
			hwp_active++;
2577
			hwp_mode_bdw = id->driver_data;
2578 2579 2580 2581 2582 2583 2584
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		id = x86_match_cpu(intel_pstate_cpu_ids);
		if (!id)
			return -ENODEV;
2585

2586
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2587
	}
2588

2589 2590 2591
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2592 2593 2594 2595 2596 2597 2598 2599
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2600 2601 2602
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2603
	pr_info("Intel P-state driver initializing\n");
2604

2605
	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2606 2607 2608
	if (!all_cpu_data)
		return -ENOMEM;

2609 2610
	intel_pstate_request_control_from_smm();

2611
	intel_pstate_sysfs_expose_params();
2612

2613
	mutex_lock(&intel_pstate_driver_lock);
2614
	rc = intel_pstate_register_driver(default_driver);
2615
	mutex_unlock(&intel_pstate_driver_lock);
2616 2617
	if (rc)
		return rc;
2618

2619
	if (hwp_active)
J
Joe Perches 已提交
2620
		pr_info("HWP enabled\n");
2621

2622
	return 0;
2623 2624 2625
}
device_initcall(intel_pstate_init);

2626 2627 2628 2629 2630
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2631
	if (!strcmp(str, "disable")) {
2632
		no_load = 1;
2633 2634
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2635
		default_driver = &intel_cpufreq;
2636 2637
		no_hwp = 1;
	}
2638
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2639
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2640
		no_hwp = 1;
2641
	}
2642 2643
	if (!strcmp(str, "force"))
		force_load = 1;
2644 2645
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2646 2647
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2648 2649 2650 2651 2652 2653

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2654 2655 2656 2657
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2658 2659 2660
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");