intel_pstate.c 66.5 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
29
#include <linux/acpi.h>
30
#include <linux/vmalloc.h>
31 32 33 34 35
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
36
#include <asm/cpufeature.h>
37
#include <asm/intel-family.h>
38

39
#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
40

41
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
42
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
43

44 45
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
46
#include <acpi/cppc_acpi.h>
47 48
#endif

49
#define FRAC_BITS 8
50 51
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
52

53 54
#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))

55 56
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 58
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59

60 61 62 63 64
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

65
static inline int32_t div_fp(s64 x, s64 y)
66
{
67
	return div64_s64((int64_t)x << FRAC_BITS, y);
68 69
}

70 71 72 73 74 75 76 77 78 79 80
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

81 82 83 84 85
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

86 87 88 89 90 91 92 93 94 95
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

96 97 98 99 100
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

101 102
/**
 * struct sample -	Store performance sample
103
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
104 105
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
106
 *			P state. This can be different than core_avg_perf
107 108 109 110 111 112 113 114 115 116 117 118
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
119
struct sample {
120
	int32_t core_avg_perf;
121
	int32_t busy_scaled;
122 123
	u64 aperf;
	u64 mperf;
124
	u64 tsc;
125
	u64 time;
126 127
};

128 129 130 131 132 133 134 135 136 137 138
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
139 140
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
141 142 143
 *
 * Stores the per cpu model P state limits and current P state.
 */
144 145 146 147
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
148
	int	max_pstate_physical;
149
	int	scaling;
150
	int	turbo_pstate;
151 152
	unsigned int max_freq;
	unsigned int turbo_freq;
153 154
};

155 156 157 158 159 160 161 162 163 164 165 166 167
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
168
struct vid_data {
169 170 171
	int min;
	int max;
	int turbo;
172 173 174
	int32_t ratio;
};

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
192 193
};

194 195 196
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
197
 * @policy:		CPUFreq policy value
198
 * @update_util:	CPUFreq utility callback information
199
 * @update_util_set:	CPUFreq utility callback is set
200 201
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
202 203 204
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @last_sample_time:	Last Sample time
205 206 207
 * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
 *			This shift is a multiplier to mperf delta to
 *			calculate CPU busy.
208 209 210 211 212 213
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
214 215
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
216 217
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
218 219 220
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
221
 * @epp_policy:		Last saved policy used to set EPP/EPB
222 223 224 225
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
226 227
 * @hwp_req_cached:	Cached value of the last HWP Request MSR
 * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
228 229
 * @last_io_update:	Last time when IO wake flag was set
 * @sched_flags:	Store scheduler flags for possible cross CPU update
230
 * @hwp_boost_min:	Last HWP boosted min performance
231 232 233
 *
 * This structure stores per CPU instance data for all CPUs.
 */
234 235 236
struct cpudata {
	int cpu;

237
	unsigned int policy;
238
	struct update_util_data update_util;
239
	bool   update_util_set;
240 241

	struct pstate_data pstate;
242
	struct vid_data vid;
243

244
	u64	last_update;
245
	u64	last_sample_time;
246
	u64	aperf_mperf_shift;
247 248
	u64	prev_aperf;
	u64	prev_mperf;
249
	u64	prev_tsc;
250
	u64	prev_cummulative_iowait;
251
	struct sample sample;
252 253
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
254 255 256 257
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
258
	unsigned int iowait_boost;
259
	s16 epp_powersave;
260
	s16 epp_policy;
261 262
	s16 epp_default;
	s16 epp_saved;
263 264
	u64 hwp_req_cached;
	u64 hwp_cap_cached;
265 266
	u64 last_io_update;
	unsigned int sched_flags;
267
	u32 hwp_boost_min;
268 269 270
};

static struct cpudata **all_cpu_data;
271 272 273 274 275 276 277 278 279 280 281 282 283 284

/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
285 286
struct pstate_funcs {
	int (*get_max)(void);
287
	int (*get_max_physical)(void);
288 289
	int (*get_min)(void);
	int (*get_turbo)(void);
290
	int (*get_scaling)(void);
291
	int (*get_aperf_mperf_shift)(void);
292
	u64 (*get_val)(struct cpudata*, int pstate);
293
	void (*get_vid)(struct cpudata *);
294 295
};

296
static struct pstate_funcs pstate_funcs __read_mostly;
297

298
static int hwp_active __read_mostly;
299
static int hwp_mode_bdw __read_mostly;
300
static bool per_cpu_limits __read_mostly;
301
static bool hwp_boost __read_mostly;
302

303
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
304

305 306 307
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
308

309
static struct global_params global;
310

311
static DEFINE_MUTEX(intel_pstate_driver_lock);
312 313
static DEFINE_MUTEX(intel_pstate_limits_lock);

314
#ifdef CONFIG_ACPI
315

316
static bool intel_pstate_acpi_pm_profile_server(void)
317 318 319 320 321
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

322 323 324 325 326 327 328 329
	return false;
}

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (intel_pstate_acpi_pm_profile_server())
		return true;

330 331 332
	return acpi_ppc;
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
378 379 380 381 382 383 384 385 386 387

static int intel_pstate_get_cppc_guranteed(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return ret;

388 389 390 391
	if (cppc_perf.guaranteed_perf)
		return cppc_perf.guaranteed_perf;

	return cppc_perf.nominal_perf;
392 393
}

394
#else /* CONFIG_ACPI_CPPC_LIB */
395 396 397
static void intel_pstate_set_itmt_prio(int cpu)
{
}
398
#endif /* CONFIG_ACPI_CPPC_LIB */
399

400 401 402 403 404 405
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

406 407
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
408
		return;
409
	}
410

411
	if (!intel_pstate_get_ppc_enable_status())
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
454
	 * correct max turbo frequency based on the turbo state.
455 456
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
457
	if (!global.turbo_disabled)
458 459 460
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
461
	pr_debug("_PPC limits will be enforced\n");
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
480
#else /* CONFIG_ACPI */
481
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
482 483 484
{
}

485
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
486 487
{
}
488 489 490 491 492

static inline bool intel_pstate_acpi_pm_profile_server(void)
{
	return false;
}
493 494 495 496 497 498 499 500
#endif /* CONFIG_ACPI */

#ifndef CONFIG_ACPI_CPPC_LIB
static int intel_pstate_get_cppc_guranteed(int cpu)
{
	return -ENOTSUPP;
}
#endif /* CONFIG_ACPI_CPPC_LIB */
501

502 503 504 505 506 507 508
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
509
	global.turbo_disabled =
510 511 512 513
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

514 515 516
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
517
	int turbo_pstate = cpu->pstate.turbo_pstate;
518

519
	return turbo_pstate ?
520
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
521 522
}

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

542 543 544 545 546 547 548 549 550 551 552
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
553
		epp = (hwp_req_data >> 24) & 0xff;
554
	} else {
555 556
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
557
	}
558 559 560 561

	return epp;
}

562
static int intel_pstate_set_epb(int cpu, s16 pref)
563 564
{
	u64 epb;
565
	int ret;
566 567

	if (!static_cpu_has(X86_FEATURE_EPB))
568
		return -ENXIO;
569

570 571 572
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
573 574 575

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
576 577

	return 0;
578 579
}

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
599 600 601 602 603 604
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
605 606 607 608 609 610 611 612 613 614 615

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
616 617 618 619 620 621 622 623
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
			return 2;
		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
			return 3;
		else
			return 4;
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		if (epp == -EINVAL)
662
			epp = epp_values[pref_index - 1];
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
698
	int ret;
699 700 701 702 703

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

704 705 706
	ret = match_string(energy_perf_strings, -1, str_preference);
	if (ret < 0)
		return ret;
707

708 709
	intel_pstate_set_energy_pref_index(cpu_data, ret);
	return count;
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu;
	u64 cap;
	int ratio;

	ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
	if (ratio <= 0) {
		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
		ratio = HWP_GUARANTEED_PERF(cap);
	}

	cpu = all_cpu_data[policy->cpu];

	return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
}

cpufreq_freq_attr_ro(base_frequency);

746 747 748
static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
749
	&base_frequency,
750 751 752
	NULL,
};

753 754
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
755
{
756
	u64 cap;
757

758
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
759
	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
760
	if (global.no_turbo)
761
		*current_max = HWP_GUARANTEED_PERF(cap);
762
	else
763 764 765 766 767 768 769 770 771 772 773 774 775 776
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
777

778 779
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
780

781
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
782

783 784
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
785

786 787
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
788

789 790
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
791

792
	cpu_data->epp_policy = cpu_data->policy;
793

794 795 796 797 798
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
799

800 801 802 803 804 805
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
806

807 808 809 810 811
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
812

813 814 815 816 817 818 819 820 821 822
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
823

824 825
		epp = cpu_data->epp_powersave;
	}
826
update_epp:
827 828 829 830 831
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
832
	}
833
skip_epp:
834
	WRITE_ONCE(cpu_data->hwp_req_cached, value);
835
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
836
}
D
Dirk Brandewie 已提交
837

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
static void intel_pstate_hwp_force_min_perf(int cpu)
{
	u64 value;
	int min_perf;

	value = all_cpu_data[cpu]->hwp_req_cached;
	value &= ~GENMASK_ULL(31, 0);
	min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);

	/* Set hwp_max = hwp_min */
	value |= HWP_MAX_PERF(min_perf);
	value |= HWP_MIN_PERF(min_perf);

	/* Set EPP/EPB to min */
	if (static_cpu_has(X86_FEATURE_HWP_EPP))
		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
	else
		intel_pstate_set_epb(cpu, HWP_EPP_BALANCE_POWERSAVE);

	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
}

860 861 862 863 864 865 866 867 868 869 870 871
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

872 873
static void intel_pstate_hwp_enable(struct cpudata *cpudata);

874 875 876 877 878
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

879 880
	mutex_lock(&intel_pstate_limits_lock);

881 882 883
	if (policy->cpu == 0)
		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);

884
	all_cpu_data[policy->cpu]->epp_policy = 0;
885
	intel_pstate_hwp_set(policy->cpu);
886 887 888

	mutex_unlock(&intel_pstate_limits_lock);

889
	return 0;
890 891
}

892
static void intel_pstate_update_policies(void)
893
{
894 895 896 897
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
898 899
}

900 901 902
/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
903
	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
904
	{								\
905
		return sprintf(buf, "%u\n", global.object);		\
906 907
	}

908 909 910 911
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
912
			   struct kobj_attribute *attr, char *buf)
913 914 915 916 917 918 919 920 921 922
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

923
static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
924 925 926 927 928 929 930 931 932 933 934 935
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

936
static ssize_t show_turbo_pct(struct kobject *kobj,
937
				struct kobj_attribute *attr, char *buf)
938 939 940 941 942
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

943 944
	mutex_lock(&intel_pstate_driver_lock);

945
	if (!intel_pstate_driver) {
946 947 948 949
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

950 951 952 953
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
954
	turbo_fp = div_fp(no_turbo, total);
955
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
956 957 958

	mutex_unlock(&intel_pstate_driver_lock);

959 960 961
	return sprintf(buf, "%u\n", turbo_pct);
}

962
static ssize_t show_num_pstates(struct kobject *kobj,
963
				struct kobj_attribute *attr, char *buf)
964 965 966 967
{
	struct cpudata *cpu;
	int total;

968 969
	mutex_lock(&intel_pstate_driver_lock);

970
	if (!intel_pstate_driver) {
971 972 973 974
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

975 976
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
977 978 979

	mutex_unlock(&intel_pstate_driver_lock);

980 981 982
	return sprintf(buf, "%u\n", total);
}

983
static ssize_t show_no_turbo(struct kobject *kobj,
984
			     struct kobj_attribute *attr, char *buf)
985 986 987
{
	ssize_t ret;

988 989
	mutex_lock(&intel_pstate_driver_lock);

990
	if (!intel_pstate_driver) {
991 992 993 994
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

995
	update_turbo_state();
996 997
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
998
	else
999
		ret = sprintf(buf, "%u\n", global.no_turbo);
1000

1001 1002
	mutex_unlock(&intel_pstate_driver_lock);

1003 1004 1005
	return ret;
}

1006
static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1007
			      const char *buf, size_t count)
1008 1009 1010
{
	unsigned int input;
	int ret;
1011

1012 1013 1014
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1015

1016 1017
	mutex_lock(&intel_pstate_driver_lock);

1018
	if (!intel_pstate_driver) {
1019 1020 1021 1022
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1023 1024
	mutex_lock(&intel_pstate_limits_lock);

1025
	update_turbo_state();
1026
	if (global.turbo_disabled) {
J
Joe Perches 已提交
1027
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1028
		mutex_unlock(&intel_pstate_limits_lock);
1029
		mutex_unlock(&intel_pstate_driver_lock);
1030
		return -EPERM;
1031
	}
D
Dirk Brandewie 已提交
1032

1033
	global.no_turbo = clamp_t(int, input, 0, 1);
1034

1035 1036 1037 1038 1039 1040 1041 1042 1043
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1044 1045
	mutex_unlock(&intel_pstate_limits_lock);

1046 1047
	intel_pstate_update_policies();

1048 1049
	mutex_unlock(&intel_pstate_driver_lock);

1050 1051 1052
	return count;
}

1053
static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1054
				  const char *buf, size_t count)
1055 1056 1057
{
	unsigned int input;
	int ret;
1058

1059 1060 1061 1062
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1063 1064
	mutex_lock(&intel_pstate_driver_lock);

1065
	if (!intel_pstate_driver) {
1066 1067 1068 1069
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1070 1071
	mutex_lock(&intel_pstate_limits_lock);

1072
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1073

1074 1075
	mutex_unlock(&intel_pstate_limits_lock);

1076 1077
	intel_pstate_update_policies();

1078 1079
	mutex_unlock(&intel_pstate_driver_lock);

1080 1081 1082
	return count;
}

1083
static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1084
				  const char *buf, size_t count)
1085 1086 1087
{
	unsigned int input;
	int ret;
1088

1089 1090 1091
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1092

1093 1094
	mutex_lock(&intel_pstate_driver_lock);

1095
	if (!intel_pstate_driver) {
1096 1097 1098 1099
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1100 1101
	mutex_lock(&intel_pstate_limits_lock);

1102 1103
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1104

1105 1106
	mutex_unlock(&intel_pstate_limits_lock);

1107 1108
	intel_pstate_update_policies();

1109 1110
	mutex_unlock(&intel_pstate_driver_lock);

1111 1112 1113
	return count;
}

1114
static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1115
				struct kobj_attribute *attr, char *buf)
1116 1117 1118 1119
{
	return sprintf(buf, "%u\n", hwp_boost);
}

1120 1121
static ssize_t store_hwp_dynamic_boost(struct kobject *a,
				       struct kobj_attribute *b,
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
				       const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = kstrtouint(buf, 10, &input);
	if (ret)
		return ret;

	mutex_lock(&intel_pstate_driver_lock);
	hwp_boost = !!input;
	intel_pstate_update_policies();
	mutex_unlock(&intel_pstate_driver_lock);

	return count;
}

1139 1140 1141
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1142
define_one_global_rw(status);
1143 1144 1145
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1146
define_one_global_ro(turbo_pct);
1147
define_one_global_ro(num_pstates);
1148
define_one_global_rw(hwp_dynamic_boost);
1149 1150

static struct attribute *intel_pstate_attributes[] = {
1151
	&status.attr,
1152
	&no_turbo.attr,
1153
	&turbo_pct.attr,
1154
	&num_pstates.attr,
1155 1156 1157
	NULL
};

1158
static const struct attribute_group intel_pstate_attr_group = {
1159 1160 1161
	.attrs = intel_pstate_attributes,
};

1162
static void __init intel_pstate_sysfs_expose_params(void)
1163
{
1164
	struct kobject *intel_pstate_kobject;
1165 1166 1167 1168
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1169 1170 1171
	if (WARN_ON(!intel_pstate_kobject))
		return;

1172
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1189 1190 1191 1192 1193
	if (hwp_active) {
		rc = sysfs_create_file(intel_pstate_kobject,
				       &hwp_dynamic_boost.attr);
		WARN_ON(rc);
	}
1194 1195
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1196

1197
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1198
{
1199
	/* First disable HWP notification interrupt as we don't process them */
1200 1201
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1202

1203
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1204
	cpudata->epp_policy = 0;
1205 1206
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1207 1208
}

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1228
static int atom_get_min_pstate(void)
1229 1230
{
	u64 value;
1231

1232
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1233
	return (value >> 8) & 0x7F;
1234 1235
}

1236
static int atom_get_max_pstate(void)
1237 1238
{
	u64 value;
1239

1240
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1241
	return (value >> 16) & 0x7F;
1242
}
1243

1244
static int atom_get_turbo_pstate(void)
1245 1246
{
	u64 value;
1247

1248
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1249
	return value & 0x7F;
1250 1251
}

1252
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1253 1254 1255 1256 1257
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1258
	val = (u64)pstate << 8;
1259
	if (global.no_turbo && !global.turbo_disabled)
1260 1261 1262 1263 1264 1265 1266
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1267
	vid = ceiling_fp(vid_fp);
1268

1269 1270 1271
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1272
	return val | vid;
1273 1274
}

1275
static int silvermont_get_scaling(void)
1276 1277 1278
{
	u64 value;
	int i;
1279 1280 1281
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1282 1283

	rdmsrl(MSR_FSB_FREQ, value);
1284 1285
	i = value & 0x7;
	WARN_ON(i > 4);
1286

1287 1288
	return silvermont_freq_table[i];
}
1289

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1304 1305
}

1306
static void atom_get_vid(struct cpudata *cpudata)
1307 1308 1309
{
	u64 value;

1310
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1311 1312
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1313 1314 1315 1316
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1317

1318
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1319
	cpudata->vid.turbo = value & 0x7f;
1320 1321
}

1322
static int core_get_min_pstate(void)
1323 1324
{
	u64 value;
1325

1326
	rdmsrl(MSR_PLATFORM_INFO, value);
1327 1328 1329
	return (value >> 40) & 0xFF;
}

1330
static int core_get_max_pstate_physical(void)
1331 1332
{
	u64 value;
1333

1334
	rdmsrl(MSR_PLATFORM_INFO, value);
1335 1336 1337
	return (value >> 8) & 0xFF;
}

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1371
static int core_get_max_pstate(void)
1372
{
1373 1374 1375
	u64 tar;
	u64 plat_info;
	int max_pstate;
1376
	int tdp_ratio;
1377 1378 1379 1380 1381
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1382 1383 1384 1385 1386 1387 1388 1389 1390
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1391 1392
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1393 1394
		int tar_levels;

1395
		/* Do some sanity checking for safety */
1396 1397 1398 1399
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1400 1401
		}
	}
1402

1403
	return max_pstate;
1404 1405
}

1406
static int core_get_turbo_pstate(void)
1407 1408 1409
{
	u64 value;
	int nont, ret;
1410

1411
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1412
	nont = core_get_max_pstate();
1413
	ret = (value) & 255;
1414 1415 1416 1417 1418
	if (ret <= nont)
		ret = nont;
	return ret;
}

1419 1420 1421 1422 1423
static inline int core_get_scaling(void)
{
	return 100000;
}

1424
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1425 1426 1427
{
	u64 val;

1428
	val = (u64)pstate << 8;
1429
	if (global.no_turbo && !global.turbo_disabled)
1430 1431
		val |= (u64)1 << 32;

1432
	return val;
1433 1434
}

1435 1436 1437 1438 1439
static int knl_get_aperf_mperf_shift(void)
{
	return 10;
}

1440 1441 1442 1443 1444
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1445
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1446 1447 1448 1449 1450 1451 1452
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1453
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1454
{
1455 1456
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1457 1458 1459 1460 1461 1462 1463
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1464 1465
}

1466 1467 1468 1469 1470 1471 1472
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1473
	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1474 1475

	update_turbo_state();
1476
	intel_pstate_set_pstate(cpu, pstate);
1477 1478
}

1479 1480
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1481 1482
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1483
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1484
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1485
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1486
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1487 1488 1489 1490 1491 1492 1493 1494 1495

	if (hwp_active && !hwp_mode_bdw) {
		unsigned int phy_max, current_max;

		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
	} else {
		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
	}
1496

1497 1498 1499
	if (pstate_funcs.get_aperf_mperf_shift)
		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();

1500 1501
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1502 1503

	intel_pstate_set_min_pstate(cpu);
1504 1505
}

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
/*
 * Long hold time will keep high perf limits for long time,
 * which negatively impacts perf/watt for some workloads,
 * like specpower. 3ms is based on experiements on some
 * workoads.
 */
static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;

static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
{
	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
	u32 max_limit = (hwp_req & 0xff00) >> 8;
	u32 min_limit = (hwp_req & 0xff);
	u32 boost_level1;

	/*
	 * Cases to consider (User changes via sysfs or boot time):
	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
	 *	No boost, return.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
	 *     Should result in one level boost only for P0.
	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
	 *     Should result in two level boost:
	 *         (min + p1)/2 and P1.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
	 *     Should result in three level boost:
	 *        (min + p1)/2, P1 and P0.
	 */

	/* If max and min are equal or already at max, nothing to boost */
	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
		return;

	if (!cpu->hwp_boost_min)
		cpu->hwp_boost_min = min_limit;

	/* level at half way mark between min and guranteed */
	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;

	if (cpu->hwp_boost_min < boost_level1)
		cpu->hwp_boost_min = boost_level1;
	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = max_limit;
	else
		return;

	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
	wrmsrl(MSR_HWP_REQUEST, hwp_req);
	cpu->last_update = cpu->sample.time;
}

static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
{
	if (cpu->hwp_boost_min) {
		bool expired;

		/* Check if we are idle for hold time to boost down */
		expired = time_after64(cpu->sample.time, cpu->last_update +
				       hwp_boost_hold_time_ns);
		if (expired) {
			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
			cpu->hwp_boost_min = 0;
		}
	}
	cpu->last_update = cpu->sample.time;
}

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
						      u64 time)
{
	cpu->sample.time = time;

	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
		bool do_io = false;

		cpu->sched_flags = 0;
		/*
		 * Set iowait_boost flag and update time. Since IO WAIT flag
		 * is set all the time, we can't just conclude that there is
		 * some IO bound activity is scheduled on this CPU with just
		 * one occurrence. If we receive at least two in two
		 * consecutive ticks, then we treat as boost candidate.
		 */
		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
			do_io = true;

		cpu->last_io_update = time;

		if (do_io)
			intel_pstate_hwp_boost_up(cpu);

	} else {
		intel_pstate_hwp_boost_down(cpu);
	}
}

1605 1606 1607
static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
						u64 time, unsigned int flags)
{
1608 1609 1610 1611 1612 1613
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);

	cpu->sched_flags |= flags;

	if (smp_processor_id() == cpu->cpu)
		intel_pstate_update_util_hwp_local(cpu, time);
1614 1615
}

1616
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1617
{
1618
	struct sample *sample = &cpu->sample;
1619

1620
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1621 1622
}

1623
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1624 1625
{
	u64 aperf, mperf;
1626
	unsigned long flags;
1627
	u64 tsc;
1628

1629
	local_irq_save(flags);
1630 1631
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1632
	tsc = rdtsc();
1633
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1634
		local_irq_restore(flags);
1635
		return false;
1636
	}
1637
	local_irq_restore(flags);
1638

1639
	cpu->last_sample_time = cpu->sample.time;
1640
	cpu->sample.time = time;
1641 1642
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1643
	cpu->sample.tsc =  tsc;
1644 1645
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1646
	cpu->sample.tsc -= cpu->prev_tsc;
1647

1648 1649
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1650
	cpu->prev_tsc = tsc;
1651 1652 1653 1654 1655 1656 1657
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1658 1659 1660 1661 1662
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1663 1664
}

1665 1666
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1667
	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1668 1669
}

1670 1671
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1672 1673
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1674 1675
}

1676
static inline int32_t get_target_pstate(struct cpudata *cpu)
1677 1678
{
	struct sample *sample = &cpu->sample;
1679
	int32_t busy_frac;
1680
	int target, avg_pstate;
1681

1682 1683
	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
			   sample->tsc);
1684

1685 1686
	if (busy_frac < cpu->iowait_boost)
		busy_frac = cpu->iowait_boost;
1687

1688
	sample->busy_scaled = busy_frac * 100;
1689

1690
	target = global.no_turbo || global.turbo_disabled ?
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1709 1710
}

1711
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1712
{
1713 1714
	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1715

1716
	return clamp_t(int, pstate, min_pstate, max_pstate);
1717 1718 1719 1720
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1721 1722 1723
	if (pstate == cpu->pstate.current_pstate)
		return;

1724
	cpu->pstate.current_pstate = pstate;
1725 1726 1727
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1728
static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1729
{
1730
	int from = cpu->pstate.current_pstate;
1731
	struct sample *sample;
1732
	int target_pstate;
1733

1734 1735
	update_turbo_state();

1736
	target_pstate = get_target_pstate(cpu);
1737 1738
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1739
	intel_pstate_update_pstate(cpu, target_pstate);
1740 1741

	sample = &cpu->sample;
1742
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1743
		fp_toint(sample->busy_scaled),
1744 1745 1746 1747 1748
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1749 1750
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1751 1752
}

1753
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1754
				     unsigned int flags)
1755
{
1756
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1757 1758
	u64 delta_ns;

1759 1760 1761 1762
	/* Don't allow remote callbacks */
	if (smp_processor_id() != cpu->cpu)
		return;

1763
	delta_ns = time - cpu->last_update;
1764
	if (flags & SCHED_CPUFREQ_IOWAIT) {
1765 1766 1767
		/* Start over if the CPU may have been idle. */
		if (delta_ns > TICK_NSEC) {
			cpu->iowait_boost = ONE_EIGHTH_FP;
1768
		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1769 1770 1771 1772 1773 1774
			cpu->iowait_boost <<= 1;
			if (cpu->iowait_boost > int_tofp(1))
				cpu->iowait_boost = int_tofp(1);
		} else {
			cpu->iowait_boost = ONE_EIGHTH_FP;
		}
1775 1776 1777 1778
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1779 1780
		else
			cpu->iowait_boost >>= 1;
1781
	}
1782
	cpu->last_update = time;
1783
	delta_ns = time - cpu->sample.time;
1784
	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1785
		return;
1786

1787 1788
	if (intel_pstate_sample(cpu, time))
		intel_pstate_adjust_pstate(cpu);
1789
}
1790

1791 1792 1793 1794 1795 1796 1797
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1798 1799
};

1800 1801 1802 1803 1804 1805 1806 1807
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
1808 1809
};

1810 1811 1812 1813 1814 1815 1816 1817
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
1818 1819
};

1820 1821 1822 1823 1824
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
1825
	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1826 1827
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1828 1829
};

1830
#define ICPU(model, policy) \
1831 1832
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1833 1834

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1835 1836
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
1837
	ICPU(INTEL_FAM6_ATOM_SILVERMONT,	silvermont_funcs),
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1853
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		core_funcs),
1854
	ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS,     core_funcs),
1855
	ICPU(INTEL_FAM6_SKYLAKE_X,		core_funcs),
1856 1857 1858 1859
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1860
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1861 1862 1863
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
D
Dirk Brandewie 已提交
1864 1865 1866
	{}
};

1867
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1868
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1869 1870 1871
	{}
};

1872 1873 1874 1875 1876 1877
static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
	{}
};

1878 1879 1880 1881
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1882 1883 1884
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1885
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1886 1887 1888 1889 1890
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1891 1892 1893
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1894
	}
1895 1896 1897 1898

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1899

1900
	if (hwp_active) {
1901 1902 1903 1904 1905 1906
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1907
		intel_pstate_hwp_enable(cpu);
1908 1909

		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1910
		if (id && intel_pstate_acpi_pm_profile_server())
1911
			hwp_boost = true;
1912
	}
1913

1914
	intel_pstate_get_cpu_pstates(cpu);
1915

J
Joe Perches 已提交
1916
	pr_debug("controlling: cpu %d\n", cpunum);
1917 1918 1919 1920

	return 0;
}

1921
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1922
{
1923 1924
	struct cpudata *cpu = all_cpu_data[cpu_num];

1925
	if (hwp_active && !hwp_boost)
1926 1927
		return;

1928 1929 1930
	if (cpu->update_util_set)
		return;

1931 1932
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1933
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1934 1935 1936
				     (hwp_active ?
				      intel_pstate_update_util_hwp :
				      intel_pstate_update_util));
1937
	cpu->update_util_set = true;
1938 1939 1940 1941
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1942 1943 1944 1945 1946
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1947
	cpufreq_remove_update_util_hook(cpu);
1948
	cpu_data->update_util_set = false;
1949
	synchronize_rcu();
1950 1951
}

1952 1953 1954 1955 1956 1957
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

1958
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1959
					    struct cpudata *cpu)
1960
{
1961
	int max_freq = intel_pstate_get_max_freq(cpu);
1962
	int32_t max_policy_perf, min_policy_perf;
1963
	int max_state, turbo_max;
1964

1965 1966 1967 1968 1969 1970 1971 1972
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
1973 1974
		max_state = global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1975 1976 1977 1978
		turbo_max = cpu->pstate.turbo_pstate;
	}

	max_policy_perf = max_state * policy->max / max_freq;
1979
	if (policy->max == policy->min) {
1980
		min_policy_perf = max_policy_perf;
1981
	} else {
1982
		min_policy_perf = max_state * policy->min / max_freq;
1983 1984
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
1985
	}
1986

1987 1988 1989 1990
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
		 policy->cpu, max_state,
		 min_policy_perf, max_policy_perf);

1991
	/* Normalize user input to [min_perf, max_perf] */
1992
	if (per_cpu_limits) {
1993 1994
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
1995 1996 1997 1998
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
1999 2000
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2001
		global_min = clamp_t(int32_t, global_min, 0, global_max);
2002

2003 2004
		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
			 global_min, global_max);
2005

2006 2007 2008 2009
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2010

2011 2012 2013
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
2014

2015 2016 2017 2018
	}
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
2019 2020
}

2021 2022
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2023 2024
	struct cpudata *cpu;

2025 2026 2027
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2028 2029 2030
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2031
	cpu = all_cpu_data[policy->cpu];
2032 2033
	cpu->policy = policy->policy;

2034 2035
	mutex_lock(&intel_pstate_limits_lock);

2036
	intel_pstate_update_perf_limits(policy, cpu);
2037

2038
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2039 2040 2041 2042 2043 2044
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
2045 2046
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
2047 2048
	}

2049 2050 2051 2052 2053 2054 2055 2056
	if (hwp_active) {
		/*
		 * When hwp_boost was active before and dynamically it
		 * was turned off, in that case we need to clear the
		 * update util hook.
		 */
		if (!hwp_boost)
			intel_pstate_clear_update_util_hook(policy->cpu);
2057
		intel_pstate_hwp_set(policy->cpu);
2058
	}
D
Dirk Brandewie 已提交
2059

2060 2061
	mutex_unlock(&intel_pstate_limits_lock);

2062 2063 2064
	return 0;
}

2065 2066 2067
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
2068 2069
	if (!hwp_active &&
	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2070 2071 2072 2073 2074 2075 2076
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2077 2078
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2079 2080 2081
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2082 2083
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2084

2085
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2086
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2087 2088
		return -EINVAL;

2089 2090
	intel_pstate_adjust_policy_max(policy, cpu);

2091 2092 2093
	return 0;
}

2094 2095 2096 2097 2098
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2099
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2100
{
2101
	pr_debug("CPU %d exiting\n", policy->cpu);
2102

2103
	intel_pstate_clear_update_util_hook(policy->cpu);
2104
	if (hwp_active) {
2105
		intel_pstate_hwp_save_state(policy);
2106 2107
		intel_pstate_hwp_force_min_perf(policy->cpu);
	} else {
2108
		intel_cpufreq_stop_cpu(policy);
2109
	}
2110
}
2111

2112 2113 2114
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2115

2116
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2117

2118
	return 0;
2119 2120
}

2121
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2122 2123
{
	struct cpudata *cpu;
2124
	int rc;
2125 2126 2127 2128 2129 2130 2131

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2132 2133
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
2134

2135 2136
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2137 2138

	/* cpuinfo and default policy values */
2139
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2140
	update_turbo_state();
2141
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2142 2143 2144
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2145 2146 2147 2148 2149 2150 2151 2152 2153
	if (hwp_active) {
		unsigned int max_freq;

		max_freq = global.turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
		if (max_freq < policy->cpuinfo.max_freq)
			policy->cpuinfo.max_freq = max_freq;
	}

2154
	intel_pstate_init_acpi_perf_limits(policy);
2155

2156 2157
	policy->fast_switch_possible = true;

2158 2159 2160
	return 0;
}

2161
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2162
{
2163 2164 2165 2166 2167
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

2168
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2169 2170 2171
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2172 2173 2174 2175

	return 0;
}

2176
static struct cpufreq_driver intel_pstate = {
2177 2178 2179
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2180
	.suspend	= intel_pstate_hwp_save_state,
2181
	.resume		= intel_pstate_resume,
2182
	.init		= intel_pstate_cpu_init,
2183
	.exit		= intel_pstate_cpu_exit,
2184
	.stop_cpu	= intel_pstate_stop_cpu,
2185 2186 2187
	.name		= "intel_pstate",
};

2188 2189 2190 2191 2192
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2193 2194
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2195

2196
	intel_pstate_adjust_policy_max(policy, cpu);
2197

2198 2199
	intel_pstate_update_perf_limits(policy, cpu);

2200 2201 2202
	return 0;
}

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
/* Use of trace in passive mode:
 *
 * In passive mode the trace core_busy field (also known as the
 * performance field, and lablelled as such on the graphs; also known as
 * core_avg_perf) is not needed and so is re-assigned to indicate if the
 * driver call was via the normal or fast switch path. Various graphs
 * output from the intel_pstate_tracer.py utility that include core_busy
 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
 * so we use 10 to indicate the the normal path through the driver, and
 * 90 to indicate the fast switch path through the driver.
 * The scaled_busy field is not used, and is set to 0.
 */

#define	INTEL_PSTATE_TRACE_TARGET 10
#define	INTEL_PSTATE_TRACE_FAST_SWITCH 90

static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
{
	struct sample *sample;

	if (!trace_pstate_sample_enabled())
		return;

	if (!intel_pstate_sample(cpu, ktime_get()))
		return;

	sample = &cpu->sample;
	trace_pstate_sample(trace_type,
		0,
		old_pstate,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
}

2241 2242 2243 2244 2245 2246
static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
2247
	int target_pstate, old_pstate;
2248

2249 2250
	update_turbo_state();

2251
	freqs.old = policy->cur;
2252
	freqs.new = target_freq;
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2267
	old_pstate = cpu->pstate.current_pstate;
2268 2269 2270 2271 2272
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2273
	freqs.new = target_pstate * cpu->pstate.scaling;
2274
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2275 2276 2277 2278 2279 2280 2281 2282 2283
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
2284
	int target_pstate, old_pstate;
2285

2286 2287
	update_turbo_state();

2288
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2289
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2290
	old_pstate = cpu->pstate.current_pstate;
2291
	intel_pstate_update_pstate(cpu, target_pstate);
2292
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2293
	return target_pstate * cpu->pstate.scaling;
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2304
	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

2322
static struct cpufreq_driver *default_driver = &intel_pstate;
2323

2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2339
	intel_pstate_driver = NULL;
2340 2341
}

2342
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2343 2344 2345
{
	int ret;

2346 2347
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2348

2349
	intel_pstate_driver = driver;
2350 2351 2352 2353 2354 2355
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2356 2357
	global.min_perf_pct = min_perf_pct_min();

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2374
	if (!intel_pstate_driver)
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2386
		return intel_pstate_driver ?
2387 2388 2389
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2390
		if (intel_pstate_driver) {
2391 2392 2393 2394 2395 2396 2397 2398
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2399
		return intel_pstate_register_driver(&intel_pstate);
2400 2401 2402
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2403
		if (intel_pstate_driver) {
2404
			if (intel_pstate_driver == &intel_cpufreq)
2405 2406 2407 2408 2409 2410 2411
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2412
		return intel_pstate_register_driver(&intel_cpufreq);
2413 2414 2415 2416 2417
	}

	return -EINVAL;
}

2418 2419 2420
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2421
static unsigned int force_load __initdata;
2422

2423
static int __init intel_pstate_msrs_not_valid(void)
2424
{
2425
	if (!pstate_funcs.get_max() ||
2426 2427
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2428 2429 2430 2431
		return -ENODEV;

	return 0;
}
2432

2433
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2434 2435
{
	pstate_funcs.get_max   = funcs->get_max;
2436
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2437 2438
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2439
	pstate_funcs.get_scaling = funcs->get_scaling;
2440
	pstate_funcs.get_val   = funcs->get_val;
2441
	pstate_funcs.get_vid   = funcs->get_vid;
2442
	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2443 2444
}

2445
#ifdef CONFIG_ACPI
2446

2447
static bool __init intel_pstate_no_acpi_pss(void)
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

2473
	pr_debug("ACPI _PSS not found\n");
2474 2475 2476
	return true;
}

2477 2478 2479 2480 2481 2482 2483
static bool __init intel_pstate_no_acpi_pcch(void)
{
	acpi_status status;
	acpi_handle handle;

	status = acpi_get_handle(NULL, "\\_SB", &handle);
	if (ACPI_FAILURE(status))
2484 2485 2486 2487
		goto not_found;

	if (acpi_has_method(handle, "PCCH"))
		return false;
2488

2489 2490 2491
not_found:
	pr_debug("ACPI PCCH not found\n");
	return true;
2492 2493
}

2494
static bool __init intel_pstate_has_acpi_ppc(void)
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
2506
	pr_debug("ACPI _PPC not found\n");
2507 2508 2509 2510 2511 2512 2513 2514
	return false;
}

enum {
	PSS,
	PPC,
};

2515
/* Hardware vendor-specific info that has its own power management modes */
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
static struct acpi_platform_list plat_info[] __initdata = {
	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{ } /* End */
2533 2534
};

2535
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2536
{
D
Dirk Brandewie 已提交
2537 2538
	const struct x86_cpu_id *id;
	u64 misc_pwr;
2539
	int idx;
D
Dirk Brandewie 已提交
2540 2541 2542 2543

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2544 2545
		if (misc_pwr & (1 << 8)) {
			pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
D
Dirk Brandewie 已提交
2546
			return true;
2547
		}
D
Dirk Brandewie 已提交
2548
	}
2549

2550 2551
	idx = acpi_match_platform_list(plat_info);
	if (idx < 0)
2552 2553
		return false;

2554 2555
	switch (plat_info[idx].data) {
	case PSS:
2556 2557 2558 2559
		if (!intel_pstate_no_acpi_pss())
			return false;

		return intel_pstate_no_acpi_pcch();
2560 2561
	case PPC:
		return intel_pstate_has_acpi_ppc() && !force_load;
2562 2563 2564 2565
	}

	return false;
}
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2576 2577
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2578
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2579
static inline void intel_pstate_request_control_from_smm(void) {}
2580 2581
#endif /* CONFIG_ACPI */

2582 2583 2584 2585 2586
#define INTEL_PSTATE_HWP_BROADWELL	0x01

#define ICPU_HWP(model, hwp_mode) \
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }

2587
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2588 2589 2590
	ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
	ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
	ICPU_HWP(X86_MODEL_ANY, 0),
2591 2592 2593
	{}
};

2594 2595
static int __init intel_pstate_init(void)
{
2596
	const struct x86_cpu_id *id;
2597
	int rc;
2598

2599 2600 2601
	if (no_load)
		return -ENODEV;

2602 2603
	id = x86_match_cpu(hwp_support_ids);
	if (id) {
2604
		copy_cpu_funcs(&core_funcs);
2605
		if (!no_hwp) {
2606
			hwp_active++;
2607
			hwp_mode_bdw = id->driver_data;
2608 2609 2610 2611 2612
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		id = x86_match_cpu(intel_pstate_cpu_ids);
2613 2614
		if (!id) {
			pr_info("CPU ID not supported\n");
2615
			return -ENODEV;
2616
		}
2617

2618
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2619
	}
2620

2621 2622
	if (intel_pstate_msrs_not_valid()) {
		pr_info("Invalid MSRs\n");
2623
		return -ENODEV;
2624
	}
2625

2626 2627 2628 2629 2630
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
2631 2632
	if (intel_pstate_platform_pwr_mgmt_exists()) {
		pr_info("P-states controlled by the platform\n");
2633
		return -ENODEV;
2634
	}
2635

2636 2637 2638
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2639
	pr_info("Intel P-state driver initializing\n");
2640

2641
	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2642 2643 2644
	if (!all_cpu_data)
		return -ENOMEM;

2645 2646
	intel_pstate_request_control_from_smm();

2647
	intel_pstate_sysfs_expose_params();
2648

2649
	mutex_lock(&intel_pstate_driver_lock);
2650
	rc = intel_pstate_register_driver(default_driver);
2651
	mutex_unlock(&intel_pstate_driver_lock);
2652 2653
	if (rc)
		return rc;
2654

2655
	if (hwp_active)
J
Joe Perches 已提交
2656
		pr_info("HWP enabled\n");
2657

2658
	return 0;
2659 2660 2661
}
device_initcall(intel_pstate_init);

2662 2663 2664 2665 2666
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2667
	if (!strcmp(str, "disable")) {
2668
		no_load = 1;
2669 2670
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2671
		default_driver = &intel_cpufreq;
2672 2673
		no_hwp = 1;
	}
2674
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2675
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2676
		no_hwp = 1;
2677
	}
2678 2679
	if (!strcmp(str, "force"))
		force_load = 1;
2680 2681
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2682 2683
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2684 2685 2686 2687 2688 2689

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2690 2691 2692 2693
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2694 2695 2696
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");