intel_pstate.c 76.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * intel_pstate.c: Native P state management for Intel processors
4 5 6 7 8
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 */

J
Joe Perches 已提交
9 10
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

11 12 13 14 15 16 17
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
18
#include <linux/sched/cpufreq.h>
19 20 21 22 23 24
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
25
#include <linux/acpi.h>
26
#include <linux/vmalloc.h>
27
#include <linux/pm_qos.h>
28 29 30 31 32
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
33
#include <asm/cpufeature.h>
34
#include <asm/intel-family.h>
35

36
#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
37

38
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
39
#define INTEL_CPUFREQ_TRANSITION_DELAY_HWP	5000
40
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
41

42 43
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
44
#include <acpi/cppc_acpi.h>
45 46
#endif

47
#define FRAC_BITS 8
48 49
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
50

51 52
#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))

53 54
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 56
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57

58 59 60 61 62
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

63
static inline int32_t div_fp(s64 x, s64 y)
64
{
65
	return div64_s64((int64_t)x << FRAC_BITS, y);
66 67
}

68 69 70 71 72 73 74 75 76 77 78
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

79 80 81 82 83
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

84 85 86 87 88 89 90 91 92 93
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

94 95 96 97 98
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

99 100
/**
 * struct sample -	Store performance sample
101
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
102 103
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
104
 *			P state. This can be different than core_avg_perf
105 106 107 108 109 110 111 112 113 114 115 116
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
117
struct sample {
118
	int32_t core_avg_perf;
119
	int32_t busy_scaled;
120 121
	u64 aperf;
	u64 mperf;
122
	u64 tsc;
123
	u64 time;
124 125
};

126 127 128 129 130 131 132 133 134 135 136
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
137 138
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
139 140 141
 *
 * Stores the per cpu model P state limits and current P state.
 */
142 143 144 145
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
146
	int	max_pstate_physical;
147
	int	scaling;
148
	int	turbo_pstate;
149 150
	unsigned int max_freq;
	unsigned int turbo_freq;
151 152
};

153 154 155 156 157 158 159 160 161 162 163 164 165
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
166
struct vid_data {
167 168 169
	int min;
	int max;
	int turbo;
170 171 172
	int32_t ratio;
};

173 174 175
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
176
 * @turbo_disabled:	Whether or not turbo P-states are available at all,
177 178 179
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
180
 * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
181 182 183 184 185 186 187 188
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
189
	bool turbo_disabled_mf;
190 191
	int max_perf_pct;
	int min_perf_pct;
192 193
};

194 195 196
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
197
 * @policy:		CPUFreq policy value
198
 * @update_util:	CPUFreq utility callback information
199
 * @update_util_set:	CPUFreq utility callback is set
200 201
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
202 203 204
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @last_sample_time:	Last Sample time
205
 * @aperf_mperf_shift:	APERF vs MPERF counting frequency difference
206 207 208 209 210 211
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
212 213
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
214 215
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
216 217 218
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
219
 * @epp_policy:		Last saved policy used to set EPP/EPB
220 221
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
222
 * @epp_cached		Cached HWP energy-performance preference value
223 224
 * @hwp_req_cached:	Cached value of the last HWP Request MSR
 * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
225 226
 * @last_io_update:	Last time when IO wake flag was set
 * @sched_flags:	Store scheduler flags for possible cross CPU update
227
 * @hwp_boost_min:	Last HWP boosted min performance
228
 * @suspended:		Whether or not the driver has been suspended.
229 230 231
 *
 * This structure stores per CPU instance data for all CPUs.
 */
232 233 234
struct cpudata {
	int cpu;

235
	unsigned int policy;
236
	struct update_util_data update_util;
237
	bool   update_util_set;
238 239

	struct pstate_data pstate;
240
	struct vid_data vid;
241

242
	u64	last_update;
243
	u64	last_sample_time;
244
	u64	aperf_mperf_shift;
245 246
	u64	prev_aperf;
	u64	prev_mperf;
247
	u64	prev_tsc;
248
	u64	prev_cummulative_iowait;
249
	struct sample sample;
250 251
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
252 253 254 255
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
256
	unsigned int iowait_boost;
257
	s16 epp_powersave;
258
	s16 epp_policy;
259
	s16 epp_default;
260
	s16 epp_cached;
261 262
	u64 hwp_req_cached;
	u64 hwp_cap_cached;
263 264
	u64 last_io_update;
	unsigned int sched_flags;
265
	u32 hwp_boost_min;
266
	bool suspended;
267 268 269
};

static struct cpudata **all_cpu_data;
270 271 272 273 274 275 276 277

/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
278
 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
279 280 281 282 283 284
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
285 286
struct pstate_funcs {
	int (*get_max)(void);
287
	int (*get_max_physical)(void);
288 289
	int (*get_min)(void);
	int (*get_turbo)(void);
290
	int (*get_scaling)(void);
291
	int (*get_aperf_mperf_shift)(void);
292
	u64 (*get_val)(struct cpudata*, int pstate);
293
	void (*get_vid)(struct cpudata *);
294 295
};

296
static struct pstate_funcs pstate_funcs __read_mostly;
297

298
static int hwp_active __read_mostly;
299
static int hwp_mode_bdw __read_mostly;
300
static bool per_cpu_limits __read_mostly;
301
static bool hwp_boost __read_mostly;
302

303
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
304

305 306 307
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
308

309
static struct global_params global;
310

311
static DEFINE_MUTEX(intel_pstate_driver_lock);
312 313
static DEFINE_MUTEX(intel_pstate_limits_lock);

314
#ifdef CONFIG_ACPI
315

316
static bool intel_pstate_acpi_pm_profile_server(void)
317 318 319 320 321
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

322 323 324 325 326 327 328 329
	return false;
}

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (intel_pstate_acpi_pm_profile_server())
		return true;

330 331 332
	return acpi_ppc;
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
378 379 380 381 382 383 384 385 386 387

static int intel_pstate_get_cppc_guranteed(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return ret;

388 389 390 391
	if (cppc_perf.guaranteed_perf)
		return cppc_perf.guaranteed_perf;

	return cppc_perf.nominal_perf;
392 393
}

394
#else /* CONFIG_ACPI_CPPC_LIB */
395 396 397
static void intel_pstate_set_itmt_prio(int cpu)
{
}
398
#endif /* CONFIG_ACPI_CPPC_LIB */
399

400 401 402 403 404 405
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

406 407
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
408
		return;
409
	}
410

411
	if (!intel_pstate_get_ppc_enable_status())
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
454
	 * correct max turbo frequency based on the turbo state.
455 456
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
457
	if (!global.turbo_disabled)
458 459 460
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
461
	pr_debug("_PPC limits will be enforced\n");
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
480
#else /* CONFIG_ACPI */
481
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
482 483 484
{
}

485
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
486 487
{
}
488 489 490 491 492

static inline bool intel_pstate_acpi_pm_profile_server(void)
{
	return false;
}
493 494 495 496 497 498 499 500
#endif /* CONFIG_ACPI */

#ifndef CONFIG_ACPI_CPPC_LIB
static int intel_pstate_get_cppc_guranteed(int cpu)
{
	return -ENOTSUPP;
}
#endif /* CONFIG_ACPI_CPPC_LIB */
501

502 503 504 505 506 507 508
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
509
	global.turbo_disabled =
510 511 512 513
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

514 515 516
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
517
	int turbo_pstate = cpu->pstate.turbo_pstate;
518

519
	return turbo_pstate ?
520
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
521 522
}

523 524 525 526 527
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

528
	if (!boot_cpu_has(X86_FEATURE_EPB))
529 530 531 532 533 534 535 536 537 538 539 540 541
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

542
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
543 544 545 546 547 548 549 550 551 552
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
553
		epp = (hwp_req_data >> 24) & 0xff;
554
	} else {
555 556
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
557
	}
558 559 560 561

	return epp;
}

562
static int intel_pstate_set_epb(int cpu, s16 pref)
563 564
{
	u64 epb;
565
	int ret;
566

567
	if (!boot_cpu_has(X86_FEATURE_EPB))
568
		return -ENXIO;
569

570 571 572
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
573 574 575

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
576 577

	return 0;
578 579
}

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
599 600 601 602 603 604
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
605

606
static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
607 608 609 610
{
	s16 epp;
	int index = -EINVAL;

611
	*raw_epp = 0;
612 613 614 615
	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

616
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
617 618
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
619
		if (epp == HWP_EPP_BALANCE_PERFORMANCE)
620
			return 2;
621
		if (epp == HWP_EPP_BALANCE_POWERSAVE)
622
			return 3;
623
		if (epp == HWP_EPP_POWERSAVE)
624
			return 4;
625 626
		*raw_epp = epp;
		return 0;
627
	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

644 645
static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
{
646 647
	int ret;

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
	/*
	 * Use the cached HWP Request MSR value, because in the active mode the
	 * register itself may be updated by intel_pstate_hwp_boost_up() or
	 * intel_pstate_hwp_boost_down() at any time.
	 */
	u64 value = READ_ONCE(cpu->hwp_req_cached);

	value &= ~GENMASK_ULL(31, 24);
	value |= (u64)epp << 24;
	/*
	 * The only other updater of hwp_req_cached in the active mode,
	 * intel_pstate_hwp_set(), is called under the same lock as this
	 * function, so it cannot run in parallel with the update below.
	 */
	WRITE_ONCE(cpu->hwp_req_cached, value);
663 664 665 666 667
	ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
	if (!ret)
		cpu->epp_cached = epp;

	return ret;
668 669
}

670
static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
671 672
					      int pref_index, bool use_raw,
					      u32 raw_epp)
673 674 675 676 677 678 679
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

680
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
681 682 683
		if (use_raw)
			epp = raw_epp;
		else if (epp == -EINVAL)
684
			epp = epp_values[pref_index - 1];
685

686 687 688 689 690 691 692 693
		/*
		 * To avoid confusion, refuse to set EPP to any values different
		 * from 0 (performance) if the current policy is "performance",
		 * because those values would be overridden.
		 */
		if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
			return -EBUSY;

694
		ret = intel_pstate_set_epp(cpu_data, epp);
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

720 721
static struct cpufreq_driver intel_pstate;

722 723 724
static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
725
	struct cpudata *cpu = all_cpu_data[policy->cpu];
726
	char str_preference[21];
727
	bool raw = false;
728
	ssize_t ret;
729
	u32 epp = 0;
730 731 732 733 734

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

735
	ret = match_string(energy_perf_strings, -1, str_preference);
736 737 738 739 740 741 742 743
	if (ret < 0) {
		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
			return ret;

		ret = kstrtouint(buf, 10, &epp);
		if (ret)
			return ret;

744 745 746
		if (epp > 255)
			return -EINVAL;

747 748 749
		raw = true;
	}

750 751 752 753 754 755 756 757
	/*
	 * This function runs with the policy R/W semaphore held, which
	 * guarantees that the driver pointer will not change while it is
	 * running.
	 */
	if (!intel_pstate_driver)
		return -EAGAIN;

758 759
	mutex_lock(&intel_pstate_limits_lock);

760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
	if (intel_pstate_driver == &intel_pstate) {
		ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
	} else {
		/*
		 * In the passive mode the governor needs to be stopped on the
		 * target CPU before the EPP update and restarted after it,
		 * which is super-heavy-weight, so make sure it is worth doing
		 * upfront.
		 */
		if (!raw)
			epp = ret ? epp_values[ret - 1] : cpu->epp_default;

		if (cpu->epp_cached != epp) {
			int err;

			cpufreq_stop_governor(policy);
			ret = intel_pstate_set_epp(cpu, epp);
			err = cpufreq_start_governor(policy);
778
			if (!ret)
779 780 781
				ret = err;
		}
	}
782 783

	mutex_unlock(&intel_pstate_limits_lock);
784

785
	return ret ?: count;
786 787 788 789 790 791
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
792
	int preference, raw_epp;
793

794
	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
795 796 797
	if (preference < 0)
		return preference;

798 799 800 801
	if (raw_epp)
		return  sprintf(buf, "%d\n", raw_epp);
	else
		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
802 803 804 805
}

cpufreq_freq_attr_rw(energy_performance_preference);

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu;
	u64 cap;
	int ratio;

	ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
	if (ratio <= 0) {
		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
		ratio = HWP_GUARANTEED_PERF(cap);
	}

	cpu = all_cpu_data[policy->cpu];

	return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
}

cpufreq_freq_attr_ro(base_frequency);

825 826 827
static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
828
	&base_frequency,
829 830 831
	NULL,
};

832 833
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
834
{
835
	u64 cap;
836

837
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
838
	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
839
	if (global.no_turbo)
840
		*current_max = HWP_GUARANTEED_PERF(cap);
841
	else
842 843 844 845 846 847 848 849 850 851 852 853 854 855
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
856

857 858
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
859

860
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
861

862 863
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
864

865 866
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
867

868 869
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
870

871
	cpu_data->epp_policy = cpu_data->policy;
872

873 874 875 876 877 878
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
879

880 881 882 883 884
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
885

886 887 888 889 890 891 892 893 894 895
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
896

897 898
		epp = cpu_data->epp_powersave;
	}
899
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
900 901 902 903
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
904
	}
905
skip_epp:
906
	WRITE_ONCE(cpu_data->hwp_req_cached, value);
907
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
908
}
D
Dirk Brandewie 已提交
909

910
static void intel_pstate_hwp_offline(struct cpudata *cpu)
911
{
912
	u64 value = READ_ONCE(cpu->hwp_req_cached);
913 914
	int min_perf;

915 916 917 918 919 920 921 922 923 924 925
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * In case the EPP has been set to "performance" by the
		 * active mode "performance" scaling algorithm, replace that
		 * temporary value with the cached EPP one.
		 */
		value &= ~GENMASK_ULL(31, 24);
		value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
		WRITE_ONCE(cpu->hwp_req_cached, value);
	}

926
	value &= ~GENMASK_ULL(31, 0);
927
	min_perf = HWP_LOWEST_PERF(cpu->hwp_cap_cached);
928 929 930 931 932

	/* Set hwp_max = hwp_min */
	value |= HWP_MAX_PERF(min_perf);
	value |= HWP_MIN_PERF(min_perf);

933
	/* Set EPP to min */
934
	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
935 936
		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);

937
	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
938 939
}

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
#define POWER_CTL_EE_ENABLE	1
#define POWER_CTL_EE_DISABLE	2

static int power_ctl_ee_state;

static void set_power_ctl_ee_state(bool input)
{
	u64 power_ctl;

	mutex_lock(&intel_pstate_driver_lock);
	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
	if (input) {
		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
	} else {
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
	}
	wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
	mutex_unlock(&intel_pstate_driver_lock);
}

962 963
static void intel_pstate_hwp_enable(struct cpudata *cpudata);

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
static void intel_pstate_hwp_reenable(struct cpudata *cpu)
{
	intel_pstate_hwp_enable(cpu);
	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
}

static int intel_pstate_suspend(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	pr_debug("CPU %d suspending\n", cpu->cpu);

	cpu->suspended = true;

	return 0;
}

981 982
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
983 984 985
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	pr_debug("CPU %d resuming\n", cpu->cpu);
986 987 988 989 990 991 992

	/* Only restore if the system default is changed */
	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
		set_power_ctl_ee_state(true);
	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
		set_power_ctl_ee_state(false);

993 994
	if (cpu->suspended && hwp_active) {
		mutex_lock(&intel_pstate_limits_lock);
995

996 997
		/* Re-enable HWP, because "online" has not done that. */
		intel_pstate_hwp_reenable(cpu);
998

999 1000
		mutex_unlock(&intel_pstate_limits_lock);
	}
1001

1002
	cpu->suspended = false;
1003

1004
	return 0;
1005 1006
}

1007
static void intel_pstate_update_policies(void)
1008
{
1009 1010 1011 1012
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
1013 1014
}

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
static void intel_pstate_update_max_freq(unsigned int cpu)
{
	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
	struct cpudata *cpudata;

	if (!policy)
		return;

	cpudata = all_cpu_data[cpu];
	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;

1027
	refresh_frequency_limits(policy);
1028 1029 1030 1031

	cpufreq_cpu_release(policy);
}

1032 1033 1034 1035 1036 1037 1038 1039 1040
static void intel_pstate_update_limits(unsigned int cpu)
{
	mutex_lock(&intel_pstate_driver_lock);

	update_turbo_state();
	/*
	 * If turbo has been turned on or off globally, policy limits for
	 * all CPUs need to be updated to reflect that.
	 */
1041 1042
	if (global.turbo_disabled_mf != global.turbo_disabled) {
		global.turbo_disabled_mf = global.turbo_disabled;
1043
		arch_set_max_freq_ratio(global.turbo_disabled);
1044 1045
		for_each_possible_cpu(cpu)
			intel_pstate_update_max_freq(cpu);
1046 1047 1048 1049 1050 1051 1052
	} else {
		cpufreq_update_policy(cpu);
	}

	mutex_unlock(&intel_pstate_driver_lock);
}

1053 1054 1055
/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
1056
	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
1057
	{								\
1058
		return sprintf(buf, "%u\n", global.object);		\
1059 1060
	}

1061 1062 1063 1064
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
1065
			   struct kobj_attribute *attr, char *buf)
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

1076
static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

1089
static ssize_t show_turbo_pct(struct kobject *kobj,
1090
				struct kobj_attribute *attr, char *buf)
1091 1092 1093 1094 1095
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1096 1097
	mutex_lock(&intel_pstate_driver_lock);

1098
	if (!intel_pstate_driver) {
1099 1100 1101 1102
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1103 1104 1105 1106
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1107
	turbo_fp = div_fp(no_turbo, total);
1108
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1109 1110 1111

	mutex_unlock(&intel_pstate_driver_lock);

1112 1113 1114
	return sprintf(buf, "%u\n", turbo_pct);
}

1115
static ssize_t show_num_pstates(struct kobject *kobj,
1116
				struct kobj_attribute *attr, char *buf)
1117 1118 1119 1120
{
	struct cpudata *cpu;
	int total;

1121 1122
	mutex_lock(&intel_pstate_driver_lock);

1123
	if (!intel_pstate_driver) {
1124 1125 1126 1127
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1128 1129
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1130 1131 1132

	mutex_unlock(&intel_pstate_driver_lock);

1133 1134 1135
	return sprintf(buf, "%u\n", total);
}

1136
static ssize_t show_no_turbo(struct kobject *kobj,
1137
			     struct kobj_attribute *attr, char *buf)
1138 1139 1140
{
	ssize_t ret;

1141 1142
	mutex_lock(&intel_pstate_driver_lock);

1143
	if (!intel_pstate_driver) {
1144 1145 1146 1147
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1148
	update_turbo_state();
1149 1150
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1151
	else
1152
		ret = sprintf(buf, "%u\n", global.no_turbo);
1153

1154 1155
	mutex_unlock(&intel_pstate_driver_lock);

1156 1157 1158
	return ret;
}

1159
static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1160
			      const char *buf, size_t count)
1161 1162 1163
{
	unsigned int input;
	int ret;
1164

1165 1166 1167
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1168

1169 1170
	mutex_lock(&intel_pstate_driver_lock);

1171
	if (!intel_pstate_driver) {
1172 1173 1174 1175
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1176 1177
	mutex_lock(&intel_pstate_limits_lock);

1178
	update_turbo_state();
1179
	if (global.turbo_disabled) {
1180
		pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1181
		mutex_unlock(&intel_pstate_limits_lock);
1182
		mutex_unlock(&intel_pstate_driver_lock);
1183
		return -EPERM;
1184
	}
D
Dirk Brandewie 已提交
1185

1186
	global.no_turbo = clamp_t(int, input, 0, 1);
1187

1188 1189 1190 1191 1192 1193 1194 1195 1196
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1197 1198
	mutex_unlock(&intel_pstate_limits_lock);

1199 1200
	intel_pstate_update_policies();

1201 1202
	mutex_unlock(&intel_pstate_driver_lock);

1203 1204 1205
	return count;
}

1206
static void update_qos_request(enum freq_qos_req_type type)
1207 1208
{
	int max_state, turbo_max, freq, i, perf_pct;
1209
	struct freq_qos_request *req;
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	struct cpufreq_policy *policy;

	for_each_possible_cpu(i) {
		struct cpudata *cpu = all_cpu_data[i];

		policy = cpufreq_cpu_get(i);
		if (!policy)
			continue;

		req = policy->driver_data;
		cpufreq_cpu_put(policy);

		if (!req)
			continue;

		if (hwp_active)
			intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
		else
			turbo_max = cpu->pstate.turbo_pstate;

1230
		if (type == FREQ_QOS_MIN) {
1231 1232 1233 1234 1235 1236 1237 1238 1239
			perf_pct = global.min_perf_pct;
		} else {
			req++;
			perf_pct = global.max_perf_pct;
		}

		freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
		freq *= cpu->pstate.scaling;

1240
		if (freq_qos_update_request(req, freq) < 0)
1241 1242 1243 1244
			pr_warn("Failed to update freq constraint: CPU%d\n", i);
	}
}

1245
static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1246
				  const char *buf, size_t count)
1247 1248 1249
{
	unsigned int input;
	int ret;
1250

1251 1252 1253 1254
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1255 1256
	mutex_lock(&intel_pstate_driver_lock);

1257
	if (!intel_pstate_driver) {
1258 1259 1260 1261
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1262 1263
	mutex_lock(&intel_pstate_limits_lock);

1264
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1265

1266 1267
	mutex_unlock(&intel_pstate_limits_lock);

1268 1269 1270
	if (intel_pstate_driver == &intel_pstate)
		intel_pstate_update_policies();
	else
1271
		update_qos_request(FREQ_QOS_MAX);
1272

1273 1274
	mutex_unlock(&intel_pstate_driver_lock);

1275 1276 1277
	return count;
}

1278
static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1279
				  const char *buf, size_t count)
1280 1281 1282
{
	unsigned int input;
	int ret;
1283

1284 1285 1286
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1287

1288 1289
	mutex_lock(&intel_pstate_driver_lock);

1290
	if (!intel_pstate_driver) {
1291 1292 1293 1294
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1295 1296
	mutex_lock(&intel_pstate_limits_lock);

1297 1298
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1299

1300 1301
	mutex_unlock(&intel_pstate_limits_lock);

1302 1303 1304
	if (intel_pstate_driver == &intel_pstate)
		intel_pstate_update_policies();
	else
1305
		update_qos_request(FREQ_QOS_MIN);
1306

1307 1308
	mutex_unlock(&intel_pstate_driver_lock);

1309 1310 1311
	return count;
}

1312
static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1313
				struct kobj_attribute *attr, char *buf)
1314 1315 1316 1317
{
	return sprintf(buf, "%u\n", hwp_boost);
}

1318 1319
static ssize_t store_hwp_dynamic_boost(struct kobject *a,
				       struct kobj_attribute *b,
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
				       const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = kstrtouint(buf, 10, &input);
	if (ret)
		return ret;

	mutex_lock(&intel_pstate_driver_lock);
	hwp_boost = !!input;
	intel_pstate_update_policies();
	mutex_unlock(&intel_pstate_driver_lock);

	return count;
}

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
				      char *buf)
{
	u64 power_ctl;
	int enable;

	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
	return sprintf(buf, "%d\n", !enable);
}

static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
				       const char *buf, size_t count)
{
	bool input;
	int ret;

	ret = kstrtobool(buf, &input);
	if (ret)
		return ret;

	set_power_ctl_ee_state(input);

	return count;
}

1363 1364 1365
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1366
define_one_global_rw(status);
1367 1368 1369
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1370
define_one_global_ro(turbo_pct);
1371
define_one_global_ro(num_pstates);
1372
define_one_global_rw(hwp_dynamic_boost);
1373
define_one_global_rw(energy_efficiency);
1374 1375

static struct attribute *intel_pstate_attributes[] = {
1376
	&status.attr,
1377
	&no_turbo.attr,
1378
	&turbo_pct.attr,
1379
	&num_pstates.attr,
1380 1381 1382
	NULL
};

1383
static const struct attribute_group intel_pstate_attr_group = {
1384 1385 1386
	.attrs = intel_pstate_attributes,
};

1387 1388
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];

1389 1390
static struct kobject *intel_pstate_kobject;

1391
static void __init intel_pstate_sysfs_expose_params(void)
1392 1393 1394 1395 1396
{
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1397 1398 1399
	if (WARN_ON(!intel_pstate_kobject))
		return;

1400
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1417 1418 1419 1420
	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
		WARN_ON(rc);
	}
1421
}
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441

static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
{
	int rc;

	if (!hwp_active)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
	WARN_ON_ONCE(rc);
}

static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
{
	if (!hwp_active)
		return;

	sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
}

1442
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1443

1444
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1445
{
1446
	/* First disable HWP notification interrupt as we don't process them */
1447
	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1448
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1449

1450
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1451 1452
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1453 1454
}

1455
static int atom_get_min_pstate(void)
1456 1457
{
	u64 value;
1458

1459
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1460
	return (value >> 8) & 0x7F;
1461 1462
}

1463
static int atom_get_max_pstate(void)
1464 1465
{
	u64 value;
1466

1467
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1468
	return (value >> 16) & 0x7F;
1469
}
1470

1471
static int atom_get_turbo_pstate(void)
1472 1473
{
	u64 value;
1474

1475
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1476
	return value & 0x7F;
1477 1478
}

1479
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1480 1481 1482 1483 1484
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1485
	val = (u64)pstate << 8;
1486
	if (global.no_turbo && !global.turbo_disabled)
1487 1488 1489 1490 1491 1492 1493
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1494
	vid = ceiling_fp(vid_fp);
1495

1496 1497 1498
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1499
	return val | vid;
1500 1501
}

1502
static int silvermont_get_scaling(void)
1503 1504 1505
{
	u64 value;
	int i;
1506 1507 1508
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1509 1510

	rdmsrl(MSR_FSB_FREQ, value);
1511 1512
	i = value & 0x7;
	WARN_ON(i > 4);
1513

1514 1515
	return silvermont_freq_table[i];
}
1516

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1531 1532
}

1533
static void atom_get_vid(struct cpudata *cpudata)
1534 1535 1536
{
	u64 value;

1537
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1538 1539
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1540 1541 1542 1543
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1544

1545
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1546
	cpudata->vid.turbo = value & 0x7f;
1547 1548
}

1549
static int core_get_min_pstate(void)
1550 1551
{
	u64 value;
1552

1553
	rdmsrl(MSR_PLATFORM_INFO, value);
1554 1555 1556
	return (value >> 40) & 0xFF;
}

1557
static int core_get_max_pstate_physical(void)
1558 1559
{
	u64 value;
1560

1561
	rdmsrl(MSR_PLATFORM_INFO, value);
1562 1563 1564
	return (value >> 8) & 0xFF;
}

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1598
static int core_get_max_pstate(void)
1599
{
1600 1601 1602
	u64 tar;
	u64 plat_info;
	int max_pstate;
1603
	int tdp_ratio;
1604 1605 1606 1607 1608
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1609 1610 1611 1612 1613 1614 1615 1616 1617
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1618 1619
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1620 1621
		int tar_levels;

1622
		/* Do some sanity checking for safety */
1623 1624 1625 1626
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1627 1628
		}
	}
1629

1630
	return max_pstate;
1631 1632
}

1633
static int core_get_turbo_pstate(void)
1634 1635 1636
{
	u64 value;
	int nont, ret;
1637

1638
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1639
	nont = core_get_max_pstate();
1640
	ret = (value) & 255;
1641 1642 1643 1644 1645
	if (ret <= nont)
		ret = nont;
	return ret;
}

1646 1647 1648 1649 1650
static inline int core_get_scaling(void)
{
	return 100000;
}

1651
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1652 1653 1654
{
	u64 val;

1655
	val = (u64)pstate << 8;
1656
	if (global.no_turbo && !global.turbo_disabled)
1657 1658
		val |= (u64)1 << 32;

1659
	return val;
1660 1661
}

1662 1663 1664 1665 1666
static int knl_get_aperf_mperf_shift(void)
{
	return 10;
}

1667 1668 1669 1670 1671
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1672
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1673 1674 1675 1676 1677 1678 1679
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1680
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1681
{
1682 1683
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1684 1685 1686 1687 1688 1689 1690
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1691 1692
}

1693 1694 1695 1696 1697 1698 1699
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1700
	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1701 1702

	update_turbo_state();
1703
	intel_pstate_set_pstate(cpu, pstate);
1704 1705
}

1706 1707
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1708 1709
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1710
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1711
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1712
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1713
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1714 1715 1716 1717 1718 1719

	if (hwp_active && !hwp_mode_bdw) {
		unsigned int phy_max, current_max;

		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1720
		cpu->pstate.turbo_pstate = phy_max;
1721 1722 1723
	} else {
		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
	}
1724

1725 1726 1727
	if (pstate_funcs.get_aperf_mperf_shift)
		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();

1728 1729
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1730 1731

	intel_pstate_set_min_pstate(cpu);
1732 1733
}

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
/*
 * Long hold time will keep high perf limits for long time,
 * which negatively impacts perf/watt for some workloads,
 * like specpower. 3ms is based on experiements on some
 * workoads.
 */
static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;

static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
{
	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
	u32 max_limit = (hwp_req & 0xff00) >> 8;
	u32 min_limit = (hwp_req & 0xff);
	u32 boost_level1;

	/*
	 * Cases to consider (User changes via sysfs or boot time):
	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
	 *	No boost, return.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
	 *     Should result in one level boost only for P0.
	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
	 *     Should result in two level boost:
	 *         (min + p1)/2 and P1.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
	 *     Should result in three level boost:
	 *        (min + p1)/2, P1 and P0.
	 */

	/* If max and min are equal or already at max, nothing to boost */
	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
		return;

	if (!cpu->hwp_boost_min)
		cpu->hwp_boost_min = min_limit;

	/* level at half way mark between min and guranteed */
	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;

	if (cpu->hwp_boost_min < boost_level1)
		cpu->hwp_boost_min = boost_level1;
	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = max_limit;
	else
		return;

	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
	wrmsrl(MSR_HWP_REQUEST, hwp_req);
	cpu->last_update = cpu->sample.time;
}

static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
{
	if (cpu->hwp_boost_min) {
		bool expired;

		/* Check if we are idle for hold time to boost down */
		expired = time_after64(cpu->sample.time, cpu->last_update +
				       hwp_boost_hold_time_ns);
		if (expired) {
			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
			cpu->hwp_boost_min = 0;
		}
	}
	cpu->last_update = cpu->sample.time;
}

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
						      u64 time)
{
	cpu->sample.time = time;

	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
		bool do_io = false;

		cpu->sched_flags = 0;
		/*
		 * Set iowait_boost flag and update time. Since IO WAIT flag
		 * is set all the time, we can't just conclude that there is
		 * some IO bound activity is scheduled on this CPU with just
		 * one occurrence. If we receive at least two in two
		 * consecutive ticks, then we treat as boost candidate.
		 */
		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
			do_io = true;

		cpu->last_io_update = time;

		if (do_io)
			intel_pstate_hwp_boost_up(cpu);

	} else {
		intel_pstate_hwp_boost_down(cpu);
	}
}

1833 1834 1835
static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
						u64 time, unsigned int flags)
{
1836 1837 1838 1839 1840 1841
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);

	cpu->sched_flags |= flags;

	if (smp_processor_id() == cpu->cpu)
		intel_pstate_update_util_hwp_local(cpu, time);
1842 1843
}

1844
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1845
{
1846
	struct sample *sample = &cpu->sample;
1847

1848
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1849 1850
}

1851
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1852 1853
{
	u64 aperf, mperf;
1854
	unsigned long flags;
1855
	u64 tsc;
1856

1857
	local_irq_save(flags);
1858 1859
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1860
	tsc = rdtsc();
1861
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1862
		local_irq_restore(flags);
1863
		return false;
1864
	}
1865
	local_irq_restore(flags);
1866

1867
	cpu->last_sample_time = cpu->sample.time;
1868
	cpu->sample.time = time;
1869 1870
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1871
	cpu->sample.tsc =  tsc;
1872 1873
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1874
	cpu->sample.tsc -= cpu->prev_tsc;
1875

1876 1877
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1878
	cpu->prev_tsc = tsc;
1879 1880 1881 1882 1883 1884 1885
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1886 1887 1888 1889 1890
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1891 1892
}

1893 1894
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1895
	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1896 1897
}

1898 1899
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1900 1901
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1902 1903
}

1904
static inline int32_t get_target_pstate(struct cpudata *cpu)
1905 1906
{
	struct sample *sample = &cpu->sample;
1907
	int32_t busy_frac;
1908
	int target, avg_pstate;
1909

1910 1911
	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
			   sample->tsc);
1912

1913 1914
	if (busy_frac < cpu->iowait_boost)
		busy_frac = cpu->iowait_boost;
1915

1916
	sample->busy_scaled = busy_frac * 100;
1917

1918
	target = global.no_turbo || global.turbo_disabled ?
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1937 1938
}

1939
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1940
{
1941 1942
	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1943

1944
	return clamp_t(int, pstate, min_pstate, max_pstate);
1945 1946 1947 1948
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1949 1950 1951
	if (pstate == cpu->pstate.current_pstate)
		return;

1952
	cpu->pstate.current_pstate = pstate;
1953 1954 1955
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1956
static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1957
{
1958
	int from = cpu->pstate.current_pstate;
1959
	struct sample *sample;
1960
	int target_pstate;
1961

1962 1963
	update_turbo_state();

1964
	target_pstate = get_target_pstate(cpu);
1965 1966
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1967
	intel_pstate_update_pstate(cpu, target_pstate);
1968 1969

	sample = &cpu->sample;
1970
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1971
		fp_toint(sample->busy_scaled),
1972 1973 1974 1975 1976
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1977 1978
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1979 1980
}

1981
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1982
				     unsigned int flags)
1983
{
1984
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1985 1986
	u64 delta_ns;

1987 1988 1989 1990
	/* Don't allow remote callbacks */
	if (smp_processor_id() != cpu->cpu)
		return;

1991
	delta_ns = time - cpu->last_update;
1992
	if (flags & SCHED_CPUFREQ_IOWAIT) {
1993 1994 1995
		/* Start over if the CPU may have been idle. */
		if (delta_ns > TICK_NSEC) {
			cpu->iowait_boost = ONE_EIGHTH_FP;
1996
		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1997 1998 1999 2000 2001 2002
			cpu->iowait_boost <<= 1;
			if (cpu->iowait_boost > int_tofp(1))
				cpu->iowait_boost = int_tofp(1);
		} else {
			cpu->iowait_boost = ONE_EIGHTH_FP;
		}
2003 2004 2005 2006
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
2007 2008
		else
			cpu->iowait_boost >>= 1;
2009
	}
2010
	cpu->last_update = time;
2011
	delta_ns = time - cpu->sample.time;
2012
	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2013
		return;
2014

2015 2016
	if (intel_pstate_sample(cpu, time))
		intel_pstate_adjust_pstate(cpu);
2017
}
2018

2019 2020 2021 2022 2023 2024 2025
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
2026 2027
};

2028 2029 2030 2031 2032 2033 2034 2035
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
2036 2037
};

2038 2039 2040 2041 2042 2043 2044 2045
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
2046 2047
};

2048 2049 2050 2051 2052
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
2053
	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2054 2055
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
2056 2057
};

2058 2059 2060
#define X86_MATCH(model, policy)					 \
	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
					   X86_FEATURE_APERFMPERF, &policy)
2061 2062

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
	X86_MATCH(SANDYBRIDGE,		core_funcs),
	X86_MATCH(SANDYBRIDGE_X,	core_funcs),
	X86_MATCH(ATOM_SILVERMONT,	silvermont_funcs),
	X86_MATCH(IVYBRIDGE,		core_funcs),
	X86_MATCH(HASWELL,		core_funcs),
	X86_MATCH(BROADWELL,		core_funcs),
	X86_MATCH(IVYBRIDGE_X,		core_funcs),
	X86_MATCH(HASWELL_X,		core_funcs),
	X86_MATCH(HASWELL_L,		core_funcs),
	X86_MATCH(HASWELL_G,		core_funcs),
	X86_MATCH(BROADWELL_G,		core_funcs),
	X86_MATCH(ATOM_AIRMONT,		airmont_funcs),
	X86_MATCH(SKYLAKE_L,		core_funcs),
	X86_MATCH(BROADWELL_X,		core_funcs),
	X86_MATCH(SKYLAKE,		core_funcs),
	X86_MATCH(BROADWELL_D,		core_funcs),
	X86_MATCH(XEON_PHI_KNL,		knl_funcs),
	X86_MATCH(XEON_PHI_KNM,		knl_funcs),
	X86_MATCH(ATOM_GOLDMONT,	core_funcs),
	X86_MATCH(ATOM_GOLDMONT_PLUS,	core_funcs),
	X86_MATCH(SKYLAKE_X,		core_funcs),
2084 2085 2086 2087
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

2088
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2089 2090 2091
	X86_MATCH(BROADWELL_D,		core_funcs),
	X86_MATCH(BROADWELL_X,		core_funcs),
	X86_MATCH(SKYLAKE_X,		core_funcs),
D
Dirk Brandewie 已提交
2092 2093 2094
	{}
};

2095
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2096
	X86_MATCH(KABYLAKE,		core_funcs),
2097 2098 2099
	{}
};

2100
static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2101 2102
	X86_MATCH(SKYLAKE_X,		core_funcs),
	X86_MATCH(SKYLAKE,		core_funcs),
2103 2104 2105
	{}
};

2106 2107 2108 2109
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

2110 2111 2112
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
2113
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2114 2115 2116 2117 2118
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

2119
		cpu->cpu = cpunum;
2120

2121
		cpu->epp_default = -EINVAL;
2122

2123 2124
		if (hwp_active) {
			const struct x86_cpu_id *id;
2125

2126
			intel_pstate_hwp_enable(cpu);
2127

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
			id = x86_match_cpu(intel_pstate_hwp_boost_ids);
			if (id && intel_pstate_acpi_pm_profile_server())
				hwp_boost = true;
		}
	} else if (hwp_active) {
		/*
		 * Re-enable HWP in case this happens after a resume from ACPI
		 * S3 if the CPU was offline during the whole system/resume
		 * cycle.
		 */
		intel_pstate_hwp_reenable(cpu);
2139
	}
2140

2141 2142 2143
	cpu->epp_powersave = -EINVAL;
	cpu->epp_policy = 0;

2144
	intel_pstate_get_cpu_pstates(cpu);
2145

J
Joe Perches 已提交
2146
	pr_debug("controlling: cpu %d\n", cpunum);
2147 2148 2149 2150

	return 0;
}

2151
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2152
{
2153 2154
	struct cpudata *cpu = all_cpu_data[cpu_num];

2155
	if (hwp_active && !hwp_boost)
2156 2157
		return;

2158 2159 2160
	if (cpu->update_util_set)
		return;

2161 2162
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
2163
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2164 2165 2166
				     (hwp_active ?
				      intel_pstate_update_util_hwp :
				      intel_pstate_update_util));
2167
	cpu->update_util_set = true;
2168 2169 2170 2171
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
2172 2173 2174 2175 2176
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

2177
	cpufreq_remove_update_util_hook(cpu);
2178
	cpu_data->update_util_set = false;
2179
	synchronize_rcu();
2180 2181
}

2182 2183 2184 2185 2186 2187
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

2188 2189 2190
static void intel_pstate_update_perf_limits(struct cpudata *cpu,
					    unsigned int policy_min,
					    unsigned int policy_max)
2191
{
2192
	int max_freq = intel_pstate_get_max_freq(cpu);
2193
	int32_t max_policy_perf, min_policy_perf;
2194
	int max_state, turbo_max;
2195

2196 2197 2198 2199 2200 2201 2202 2203
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
2204 2205
		max_state = global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2206 2207 2208
		turbo_max = cpu->pstate.turbo_pstate;
	}

2209 2210
	max_policy_perf = max_state * policy_max / max_freq;
	if (policy_max == policy_min) {
2211
		min_policy_perf = max_policy_perf;
2212
	} else {
2213
		min_policy_perf = max_state * policy_min / max_freq;
2214 2215
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
2216
	}
2217

2218
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2219
		 cpu->cpu, max_state, min_policy_perf, max_policy_perf);
2220

2221
	/* Normalize user input to [min_perf, max_perf] */
2222
	if (per_cpu_limits) {
2223 2224
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
2225 2226 2227 2228
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
2229 2230
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2231
		global_min = clamp_t(int32_t, global_min, 0, global_max);
2232

2233
		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2234
			 global_min, global_max);
2235

2236 2237 2238 2239
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2240

2241 2242 2243
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
2244

2245
	}
2246
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2247 2248
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
2249 2250
}

2251 2252
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2253 2254
	struct cpudata *cpu;

2255 2256 2257
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2258 2259 2260
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2261
	cpu = all_cpu_data[policy->cpu];
2262 2263
	cpu->policy = policy->policy;

2264 2265
	mutex_lock(&intel_pstate_limits_lock);

2266
	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2267

2268
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2269 2270 2271 2272 2273 2274
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
2275 2276
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
2277 2278
	}

2279 2280 2281 2282 2283 2284 2285 2286
	if (hwp_active) {
		/*
		 * When hwp_boost was active before and dynamically it
		 * was turned off, in that case we need to clear the
		 * update util hook.
		 */
		if (!hwp_boost)
			intel_pstate_clear_update_util_hook(policy->cpu);
2287
		intel_pstate_hwp_set(policy->cpu);
2288
	}
D
Dirk Brandewie 已提交
2289

2290 2291
	mutex_unlock(&intel_pstate_limits_lock);

2292 2293 2294
	return 0;
}

2295 2296
static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
					   struct cpufreq_policy_data *policy)
2297
{
2298 2299
	if (!hwp_active &&
	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2300 2301 2302 2303 2304 2305 2306
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2307 2308
static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
					   struct cpufreq_policy_data *policy)
2309
{
2310
	update_turbo_state();
2311 2312
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2313

2314
	intel_pstate_adjust_policy_max(cpu, policy);
2315 2316 2317 2318 2319
}

static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
{
	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2320

2321 2322 2323
	return 0;
}

2324
static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2325
{
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	pr_debug("CPU %d going offline\n", cpu->cpu);

	if (cpu->suspended)
		return 0;

	/*
	 * If the CPU is an SMT thread and it goes offline with the performance
	 * settings different from the minimum, it will prevent its sibling
	 * from getting to lower performance levels, so force the minimum
	 * performance on CPU offline to prevent that from happening.
	 */
2339
	if (hwp_active)
2340
		intel_pstate_hwp_offline(cpu);
2341
	else
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
		intel_pstate_set_min_pstate(cpu);

	intel_pstate_exit_perf_limits(policy);

	return 0;
}

static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	pr_debug("CPU %d going online\n", cpu->cpu);

	intel_pstate_init_acpi_perf_limits(policy);

	if (hwp_active) {
		/*
		 * Re-enable HWP and clear the "suspended" flag to let "resume"
		 * know that it need not do that.
		 */
		intel_pstate_hwp_reenable(cpu);
		cpu->suspended = false;
	}

	return 0;
2367 2368
}

2369
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2370
{
2371
	pr_debug("CPU %d stopping\n", policy->cpu);
2372

2373 2374
	intel_pstate_clear_update_util_hook(policy->cpu);
}
2375

2376 2377
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
2378
	pr_debug("CPU %d exiting\n", policy->cpu);
2379

2380
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2381

2382
	return 0;
2383 2384
}

2385
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2386 2387
{
	struct cpudata *cpu;
2388
	int rc;
2389 2390 2391 2392 2393 2394 2395

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2396 2397
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
2398

2399 2400
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2401 2402

	/* cpuinfo and default policy values */
2403
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2404
	update_turbo_state();
2405
	global.turbo_disabled_mf = global.turbo_disabled;
2406
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2407 2408 2409
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2410 2411 2412 2413 2414 2415 2416 2417 2418
	if (hwp_active) {
		unsigned int max_freq;

		max_freq = global.turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
		if (max_freq < policy->cpuinfo.max_freq)
			policy->cpuinfo.max_freq = max_freq;
	}

2419
	intel_pstate_init_acpi_perf_limits(policy);
2420

2421 2422
	policy->fast_switch_possible = true;

2423 2424 2425
	return 0;
}

2426
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2427
{
2428 2429 2430 2431 2432
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

2433 2434 2435 2436 2437
	/*
	 * Set the policy to powersave to provide a valid fallback value in case
	 * the default cpufreq governor is neither powersave nor performance.
	 */
	policy->policy = CPUFREQ_POLICY_POWERSAVE;
2438

2439 2440 2441 2442 2443 2444
	if (hwp_active) {
		struct cpudata *cpu = all_cpu_data[policy->cpu];

		cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
	}

2445 2446 2447
	return 0;
}

2448
static struct cpufreq_driver intel_pstate = {
2449 2450 2451
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2452
	.suspend	= intel_pstate_suspend,
2453
	.resume		= intel_pstate_resume,
2454
	.init		= intel_pstate_cpu_init,
2455
	.exit		= intel_pstate_cpu_exit,
2456
	.stop_cpu	= intel_pstate_stop_cpu,
2457 2458
	.offline	= intel_pstate_cpu_offline,
	.online		= intel_pstate_cpu_online,
2459
	.update_limits	= intel_pstate_update_limits,
2460 2461 2462
	.name		= "intel_pstate",
};

2463
static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2464 2465 2466
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

2467
	intel_pstate_verify_cpu_policy(cpu, policy);
2468
	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2469

2470 2471 2472
	return 0;
}

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
/* Use of trace in passive mode:
 *
 * In passive mode the trace core_busy field (also known as the
 * performance field, and lablelled as such on the graphs; also known as
 * core_avg_perf) is not needed and so is re-assigned to indicate if the
 * driver call was via the normal or fast switch path. Various graphs
 * output from the intel_pstate_tracer.py utility that include core_busy
 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
 * so we use 10 to indicate the the normal path through the driver, and
 * 90 to indicate the fast switch path through the driver.
 * The scaled_busy field is not used, and is set to 0.
 */

#define	INTEL_PSTATE_TRACE_TARGET 10
#define	INTEL_PSTATE_TRACE_FAST_SWITCH 90

static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
{
	struct sample *sample;

	if (!trace_pstate_sample_enabled())
		return;

	if (!intel_pstate_sample(cpu, ktime_get()))
		return;

	sample = &cpu->sample;
	trace_pstate_sample(trace_type,
		0,
		old_pstate,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
}

2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
static void intel_cpufreq_adjust_hwp(struct cpudata *cpu, u32 target_pstate,
				     bool fast_switch)
{
	u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;

	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(target_pstate);

	/*
	 * The entire MSR needs to be updated in order to update the HWP min
	 * field in it, so opportunistically update the max too if needed.
	 */
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(cpu->max_perf_ratio);

	if (value == prev)
		return;

	WRITE_ONCE(cpu->hwp_req_cached, value);
	if (fast_switch)
		wrmsrl(MSR_HWP_REQUEST, value);
	else
		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
}

static void intel_cpufreq_adjust_perf_ctl(struct cpudata *cpu,
					  u32 target_pstate, bool fast_switch)
{
	if (fast_switch)
		wrmsrl(MSR_IA32_PERF_CTL,
		       pstate_funcs.get_val(cpu, target_pstate));
	else
		wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
}

static int intel_cpufreq_update_pstate(struct cpudata *cpu, int target_pstate,
				       bool fast_switch)
{
	int old_pstate = cpu->pstate.current_pstate;

	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != old_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		if (hwp_active)
			intel_cpufreq_adjust_hwp(cpu, target_pstate,
						 fast_switch);
		else
			intel_cpufreq_adjust_perf_ctl(cpu, target_pstate,
						      fast_switch);
	}

	intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
			    INTEL_PSTATE_TRACE_TARGET, old_pstate);

	return target_pstate;
}

2569 2570 2571 2572 2573 2574
static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
2575
	int target_pstate;
2576

2577 2578
	update_turbo_state();

2579
	freqs.old = policy->cur;
2580
	freqs.new = target_freq;
2581 2582

	cpufreq_freq_transition_begin(policy, &freqs);
2583

2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
2595 2596 2597

	target_pstate = intel_cpufreq_update_pstate(cpu, target_pstate, false);

2598
	freqs.new = target_pstate * cpu->pstate.scaling;
2599

2600 2601 2602 2603 2604 2605 2606 2607 2608
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
2609
	int target_pstate;
2610

2611 2612
	update_turbo_state();

2613
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2614 2615 2616

	target_pstate = intel_cpufreq_update_pstate(cpu, target_pstate, true);

2617
	return target_pstate * cpu->pstate.scaling;
2618 2619 2620 2621
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
2622
	int max_state, turbo_max, min_freq, max_freq, ret;
2623
	struct freq_qos_request *req;
2624 2625 2626 2627 2628 2629
	struct cpudata *cpu;
	struct device *dev;

	dev = get_cpu_device(policy->cpu);
	if (!dev)
		return -ENODEV;
2630

2631
	ret = __intel_pstate_cpu_init(policy);
2632 2633 2634 2635 2636 2637 2638
	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

2639 2640 2641 2642 2643 2644 2645 2646
	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
	if (!req) {
		ret = -ENOMEM;
		goto pstate_exit;
	}

	cpu = all_cpu_data[policy->cpu];

2647 2648 2649
	if (hwp_active) {
		u64 value;

2650
		intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
2651 2652 2653
		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
		rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
		WRITE_ONCE(cpu->hwp_req_cached, value);
2654
		cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2655
	} else {
2656
		turbo_max = cpu->pstate.turbo_pstate;
2657 2658
		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
	}
2659 2660 2661 2662 2663 2664

	min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
	min_freq *= cpu->pstate.scaling;
	max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
	max_freq *= cpu->pstate.scaling;

2665 2666
	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
				   min_freq);
2667 2668 2669 2670 2671
	if (ret < 0) {
		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
		goto free_req;
	}

2672 2673
	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
				   max_freq);
2674 2675 2676 2677 2678 2679 2680
	if (ret < 0) {
		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
		goto remove_min_req;
	}

	policy->driver_data = req;

2681
	return 0;
2682 2683

remove_min_req:
2684
	freq_qos_remove_request(req);
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
free_req:
	kfree(req);
pstate_exit:
	intel_pstate_exit_perf_limits(policy);

	return ret;
}

static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
{
2695
	struct freq_qos_request *req;
2696 2697 2698

	req = policy->driver_data;

2699 2700
	freq_qos_remove_request(req + 1);
	freq_qos_remove_request(req);
2701 2702 2703
	kfree(req);

	return intel_pstate_cpu_exit(policy);
2704 2705 2706 2707 2708 2709 2710 2711
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
2712
	.exit		= intel_cpufreq_cpu_exit,
2713 2714 2715 2716
	.offline	= intel_pstate_cpu_offline,
	.online		= intel_pstate_cpu_online,
	.suspend	= intel_pstate_suspend,
	.resume		= intel_pstate_resume,
2717
	.update_limits	= intel_pstate_update_limits,
2718 2719 2720
	.name		= "intel_cpufreq",
};

2721
static struct cpufreq_driver *default_driver;
2722

2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2738

2739
	intel_pstate_driver = NULL;
2740 2741
}

2742
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2743 2744 2745
{
	int ret;

2746 2747 2748
	if (driver == &intel_pstate)
		intel_pstate_sysfs_expose_hwp_dynamic_boost();

2749 2750
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2751

2752
	intel_pstate_driver = driver;
2753 2754 2755 2756 2757 2758
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2759 2760
	global.min_perf_pct = min_perf_pct_min();

2761 2762 2763 2764 2765
	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2766
	if (!intel_pstate_driver)
2767 2768 2769 2770 2771 2772 2773 2774
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
2775 2776 2777 2778 2779 2780 2781
	if (size == 3 && !strncmp(buf, "off", size)) {
		if (!intel_pstate_driver)
			return -EINVAL;

		if (hwp_active)
			return -EBUSY;

2782 2783
		cpufreq_unregister_driver(intel_pstate_driver);
		intel_pstate_driver_cleanup();
2784
	}
2785 2786

	if (size == 6 && !strncmp(buf, "active", size)) {
2787
		if (intel_pstate_driver) {
2788 2789 2790
			if (intel_pstate_driver == &intel_pstate)
				return 0;

2791
			cpufreq_unregister_driver(intel_pstate_driver);
2792 2793
		}

2794
		return intel_pstate_register_driver(&intel_pstate);
2795 2796 2797
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2798
		if (intel_pstate_driver) {
2799
			if (intel_pstate_driver == &intel_cpufreq)
2800 2801
				return 0;

2802 2803
			cpufreq_unregister_driver(intel_pstate_driver);
			intel_pstate_sysfs_hide_hwp_dynamic_boost();
2804 2805
		}

2806
		return intel_pstate_register_driver(&intel_cpufreq);
2807 2808 2809 2810 2811
	}

	return -EINVAL;
}

2812 2813 2814
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2815
static unsigned int force_load __initdata;
2816

2817
static int __init intel_pstate_msrs_not_valid(void)
2818
{
2819
	if (!pstate_funcs.get_max() ||
2820 2821
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2822 2823 2824 2825
		return -ENODEV;

	return 0;
}
2826

2827
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2828 2829
{
	pstate_funcs.get_max   = funcs->get_max;
2830
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2831 2832
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2833
	pstate_funcs.get_scaling = funcs->get_scaling;
2834
	pstate_funcs.get_val   = funcs->get_val;
2835
	pstate_funcs.get_vid   = funcs->get_vid;
2836
	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2837 2838
}

2839
#ifdef CONFIG_ACPI
2840

2841
static bool __init intel_pstate_no_acpi_pss(void)
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

2867
	pr_debug("ACPI _PSS not found\n");
2868 2869 2870
	return true;
}

2871 2872 2873 2874 2875 2876 2877
static bool __init intel_pstate_no_acpi_pcch(void)
{
	acpi_status status;
	acpi_handle handle;

	status = acpi_get_handle(NULL, "\\_SB", &handle);
	if (ACPI_FAILURE(status))
2878 2879 2880 2881
		goto not_found;

	if (acpi_has_method(handle, "PCCH"))
		return false;
2882

2883 2884 2885
not_found:
	pr_debug("ACPI PCCH not found\n");
	return true;
2886 2887
}

2888
static bool __init intel_pstate_has_acpi_ppc(void)
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
2900
	pr_debug("ACPI _PPC not found\n");
2901 2902 2903 2904 2905 2906 2907 2908
	return false;
}

enum {
	PSS,
	PPC,
};

2909
/* Hardware vendor-specific info that has its own power management modes */
2910
static struct acpi_platform_list plat_info[] __initdata = {
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2926
	{ } /* End */
2927 2928
};

2929 2930
#define BITMASK_OOB	(BIT(8) | BIT(18))

2931
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2932
{
D
Dirk Brandewie 已提交
2933 2934
	const struct x86_cpu_id *id;
	u64 misc_pwr;
2935
	int idx;
D
Dirk Brandewie 已提交
2936 2937 2938 2939

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2940 2941 2942
		if (misc_pwr & BITMASK_OOB) {
			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
D
Dirk Brandewie 已提交
2943
			return true;
2944
		}
D
Dirk Brandewie 已提交
2945
	}
2946

2947 2948
	idx = acpi_match_platform_list(plat_info);
	if (idx < 0)
2949 2950
		return false;

2951 2952
	switch (plat_info[idx].data) {
	case PSS:
2953 2954 2955 2956
		if (!intel_pstate_no_acpi_pss())
			return false;

		return intel_pstate_no_acpi_pcch();
2957 2958
	case PPC:
		return intel_pstate_has_acpi_ppc() && !force_load;
2959 2960 2961 2962
	}

	return false;
}
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2973 2974
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2975
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2976
static inline void intel_pstate_request_control_from_smm(void) {}
2977 2978
#endif /* CONFIG_ACPI */

2979 2980
#define INTEL_PSTATE_HWP_BROADWELL	0x01

2981 2982
#define X86_MATCH_HWP(model, hwp_mode)					\
	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2983
					   X86_FEATURE_HWP, hwp_mode)
2984

2985
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2986 2987 2988
	X86_MATCH_HWP(BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
	X86_MATCH_HWP(BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
	X86_MATCH_HWP(ANY,		0),
2989 2990 2991
	{}
};

2992 2993
static int __init intel_pstate_init(void)
{
2994
	const struct x86_cpu_id *id;
2995
	int rc;
2996

2997 2998 2999
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return -ENODEV;

3000 3001 3002
	if (no_load)
		return -ENODEV;

3003 3004
	id = x86_match_cpu(hwp_support_ids);
	if (id) {
3005
		copy_cpu_funcs(&core_funcs);
3006 3007 3008 3009 3010 3011
		/*
		 * Avoid enabling HWP for processors without EPP support,
		 * because that means incomplete HWP implementation which is a
		 * corner case and supporting it is generally problematic.
		 */
		if (!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) {
3012
			hwp_active++;
3013
			hwp_mode_bdw = id->driver_data;
3014
			intel_pstate.attr = hwp_cpufreq_attrs;
3015 3016 3017 3018
			intel_cpufreq.attr = hwp_cpufreq_attrs;
			if (!default_driver)
				default_driver = &intel_pstate;

3019 3020 3021 3022
			goto hwp_cpu_matched;
		}
	} else {
		id = x86_match_cpu(intel_pstate_cpu_ids);
3023
		if (!id) {
3024
			pr_info("CPU model not supported\n");
3025
			return -ENODEV;
3026
		}
3027

3028
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3029
	}
3030

3031 3032
	if (intel_pstate_msrs_not_valid()) {
		pr_info("Invalid MSRs\n");
3033
		return -ENODEV;
3034
	}
3035
	/* Without HWP start in the passive mode. */
3036 3037
	if (!default_driver)
		default_driver = &intel_cpufreq;
3038

3039 3040 3041 3042 3043
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
3044 3045
	if (intel_pstate_platform_pwr_mgmt_exists()) {
		pr_info("P-states controlled by the platform\n");
3046
		return -ENODEV;
3047
	}
3048

3049 3050 3051
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
3052
	pr_info("Intel P-state driver initializing\n");
3053

3054
	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3055 3056 3057
	if (!all_cpu_data)
		return -ENOMEM;

3058 3059
	intel_pstate_request_control_from_smm();

3060
	intel_pstate_sysfs_expose_params();
3061

3062
	mutex_lock(&intel_pstate_driver_lock);
3063
	rc = intel_pstate_register_driver(default_driver);
3064
	mutex_unlock(&intel_pstate_driver_lock);
3065 3066
	if (rc)
		return rc;
3067

3068 3069 3070 3071 3072 3073 3074 3075 3076
	if (hwp_active) {
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id) {
			set_power_ctl_ee_state(false);
			pr_info("Disabling energy efficiency optimization\n");
		}

J
Joe Perches 已提交
3077
		pr_info("HWP enabled\n");
3078
	}
3079

3080
	return 0;
3081 3082 3083
}
device_initcall(intel_pstate_init);

3084 3085 3086 3087 3088
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

3089
	if (!strcmp(str, "disable"))
3090
		no_load = 1;
3091
	else if (!strcmp(str, "active"))
3092
		default_driver = &intel_pstate;
3093
	else if (!strcmp(str, "passive"))
3094
		default_driver = &intel_cpufreq;
3095

3096
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
3097
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
3098
		no_hwp = 1;
3099
	}
3100 3101
	if (!strcmp(str, "force"))
		force_load = 1;
3102 3103
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
3104 3105
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
3106 3107 3108 3109 3110 3111

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

3112 3113 3114 3115
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

3116 3117 3118
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");