intel_pstate.c 65.6 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28 29
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41 42
#define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
#define INTEL_PSTATE_HWP_SAMPLING_INTERVAL	(50 * NSEC_PER_MSEC)

43 44
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000

45 46
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
47
#include <acpi/cppc_acpi.h>
48 49
#endif

50
#define FRAC_BITS 8
51 52
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
53

54 55
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
56 57
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58

59 60 61 62 63
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

64
static inline int32_t div_fp(s64 x, s64 y)
65
{
66
	return div64_s64((int64_t)x << FRAC_BITS, y);
67 68
}

69 70 71 72 73 74 75 76 77 78 79
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

80 81 82 83 84
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

85 86 87 88 89 90 91 92 93 94
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

95 96 97 98 99
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

100 101
/**
 * struct sample -	Store performance sample
102
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
103 104
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
105
 *			P state. This can be different than core_avg_perf
106 107 108 109 110 111 112 113 114 115 116 117
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
118
struct sample {
119
	int32_t core_avg_perf;
120
	int32_t busy_scaled;
121 122
	u64 aperf;
	u64 mperf;
123
	u64 tsc;
124
	u64 time;
125 126
};

127 128 129 130 131 132 133 134 135 136 137
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
138 139
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
140 141 142
 *
 * Stores the per cpu model P state limits and current P state.
 */
143 144 145 146
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
147
	int	max_pstate_physical;
148
	int	scaling;
149
	int	turbo_pstate;
150 151
	unsigned int max_freq;
	unsigned int turbo_freq;
152 153
};

154 155 156 157 158 159 160 161 162 163 164 165 166
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
167
struct vid_data {
168 169 170
	int min;
	int max;
	int turbo;
171 172 173
	int32_t ratio;
};

174 175 176 177 178 179 180 181 182 183 184 185
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
186 187 188 189 190 191 192
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
193
	int32_t last_err;
194 195
};

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
213 214
};

215 216 217
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
218
 * @policy:		CPUFreq policy value
219
 * @update_util:	CPUFreq utility callback information
220
 * @update_util_set:	CPUFreq utility callback is set
221 222
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
223 224 225 226 227 228 229 230 231 232
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
233 234 235 236
 * @min_perf:		Minimum capacity limit as a fraction of the maximum
 *			turbo P-state capacity.
 * @max_perf:		Maximum capacity limit as a fraction of the maximum
 *			turbo P-state capacity.
237 238
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
239 240 241
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
242
 * @epp_policy:		Last saved policy used to set EPP/EPB
243 244 245 246
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
247 248 249
 *
 * This structure stores per CPU instance data for all CPUs.
 */
250 251 252
struct cpudata {
	int cpu;

253
	unsigned int policy;
254
	struct update_util_data update_util;
255
	bool   update_util_set;
256 257

	struct pstate_data pstate;
258
	struct vid_data vid;
259 260
	struct _pid pid;

261
	u64	last_update;
262
	u64	last_sample_time;
263 264
	u64	prev_aperf;
	u64	prev_mperf;
265
	u64	prev_tsc;
266
	u64	prev_cummulative_iowait;
267
	struct sample sample;
268 269
	int32_t	min_perf;
	int32_t	max_perf;
270 271 272 273
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
274
	unsigned int iowait_boost;
275
	s16 epp_powersave;
276
	s16 epp_policy;
277 278
	s16 epp_default;
	s16 epp_saved;
279 280 281
};

static struct cpudata **all_cpu_data;
282 283

/**
284
 * struct pstate_adjust_policy - Stores static PID configuration data
285 286 287 288 289 290 291 292 293 294
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
295 296
struct pstate_adjust_policy {
	int sample_rate_ms;
297
	s64 sample_rate_ns;
298 299 300 301 302 303 304
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

305 306 307 308 309 310 311 312 313 314 315 316 317 318
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
319 320
struct pstate_funcs {
	int (*get_max)(void);
321
	int (*get_max_physical)(void);
322 323
	int (*get_min)(void);
	int (*get_turbo)(void);
324
	int (*get_scaling)(void);
325
	u64 (*get_val)(struct cpudata*, int pstate);
326
	void (*get_vid)(struct cpudata *);
327
	int32_t (*get_target_pstate)(struct cpudata *);
328 329
};

330 331 332 333
/**
 * struct cpu_defaults- Per CPU model default config data
 * @funcs:		Callback function data
 */
334 335
struct cpu_defaults {
	struct pstate_funcs funcs;
336 337
};

338
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
339
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
340

341
static struct pstate_funcs pstate_funcs __read_mostly;
342 343 344 345 346 347 348 349 350 351
static struct pstate_adjust_policy pid_params __read_mostly = {
	.sample_rate_ms = 10,
	.sample_rate_ns = 10 * NSEC_PER_MSEC,
	.deadband = 0,
	.setpoint = 97,
	.p_gain_pct = 20,
	.d_gain_pct = 0,
	.i_gain_pct = 0,
};

352
static int hwp_active __read_mostly;
353
static bool per_cpu_limits __read_mostly;
354

355
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
356

357 358 359
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
360

361
static struct global_params global;
362

363
static DEFINE_MUTEX(intel_pstate_driver_lock);
364 365
static DEFINE_MUTEX(intel_pstate_limits_lock);

366
#ifdef CONFIG_ACPI
367 368 369 370 371 372 373 374 375 376

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

428 429 430 431 432 433
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

434 435
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
436
		return;
437
	}
438

439
	if (!intel_pstate_get_ppc_enable_status())
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
482
	 * correct max turbo frequency based on the turbo state.
483 484
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
485
	if (!global.turbo_disabled)
486 487 488
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
489
	pr_debug("_PPC limits will be enforced\n");
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
509
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
510 511 512
{
}

513
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
514 515 516 517
{
}
#endif

518
static signed int pid_calc(struct _pid *pid, int32_t busy)
519
{
520
	signed int result;
521 522 523
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

524
	fp_error = pid->setpoint - busy;
525

526
	if (abs(fp_error) <= pid->deadband)
527 528 529 530 531 532
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

533 534 535 536 537 538 539 540
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
541 542 543 544 545 546
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

547 548
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
549 550

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
551
	result = result + (1 << (FRAC_BITS-1));
552 553 554
	return (signed int)fp_toint(result);
}

555
static inline void intel_pstate_pid_reset(struct cpudata *cpu)
556
{
557
	struct _pid *pid = &cpu->pid;
558

559 560 561 562 563 564 565
	pid->p_gain = percent_fp(pid_params.p_gain_pct);
	pid->d_gain = percent_fp(pid_params.d_gain_pct);
	pid->i_gain = percent_fp(pid_params.i_gain_pct);
	pid->setpoint = int_tofp(pid_params.setpoint);
	pid->last_err  = pid->setpoint - int_tofp(100);
	pid->deadband  = int_tofp(pid_params.deadband);
	pid->integral  = 0;
566 567
}

568 569 570 571 572 573 574
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
575
	global.turbo_disabled =
576 577 578 579
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

580 581 582 583 584 585 586 587
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];

	return DIV_ROUND_UP(cpu->pstate.min_pstate * 100,
			    cpu->pstate.turbo_pstate);
}

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

607 608 609 610 611 612 613 614 615 616 617
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
618
		epp = (hwp_req_data >> 24) & 0xff;
619
	} else {
620 621
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
622
	}
623 624 625 626

	return epp;
}

627
static int intel_pstate_set_epb(int cpu, s16 pref)
628 629
{
	u64 epb;
630
	int ret;
631 632

	if (!static_cpu_has(X86_FEATURE_EPB))
633
		return -ENXIO;
634

635 636 637
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
638 639 640

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
641 642

	return 0;
643 644
}

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * Range:
		 *	0x00-0x3F	:	Performance
		 *	0x40-0x7F	:	Balance performance
		 *	0x80-0xBF	:	Balance power
		 *	0xC0-0xFF	:	Power
		 * The EPP is a 8 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 6) + 1;
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		/*
		 * If epp is not default, convert from index into
		 * energy_perf_strings to epp value, by shifting 6
		 * bits left to use only top two bits in epp.
		 * The resultant epp need to shifted by 24 bits to
		 * epp position in MSR_HWP_REQUEST.
		 */
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 6;

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

805
static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
D
Dirk Brandewie 已提交
806
{
807
	int min, hw_min, max, hw_max, cpu;
808 809
	u64 value, cap;

810
	for_each_cpu(cpu, policy->cpus) {
811 812
		struct cpudata *cpu_data = all_cpu_data[cpu];
		s16 epp;
813

814 815
		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
		hw_min = HWP_LOWEST_PERF(cap);
816
		if (global.no_turbo)
817 818 819
			hw_max = HWP_GUARANTEED_PERF(cap);
		else
			hw_max = HWP_HIGHEST_PERF(cap);
820

821
		max = fp_ext_toint(hw_max * cpu_data->max_perf);
822 823 824
		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
			min = max;
		else
825
			min = fp_ext_toint(hw_max * cpu_data->min_perf);
826

D
Dirk Brandewie 已提交
827
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
828

D
Dirk Brandewie 已提交
829 830 831 832 833
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
834 835 836 837 838 839

		if (cpu_data->epp_policy == cpu_data->policy)
			goto skip_epp;

		cpu_data->epp_policy = cpu_data->policy;

840 841 842 843 844 845
		if (cpu_data->epp_saved >= 0) {
			epp = cpu_data->epp_saved;
			cpu_data->epp_saved = -EINVAL;
			goto update_epp;
		}

846 847
		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
			epp = intel_pstate_get_epp(cpu_data, value);
848
			cpu_data->epp_powersave = epp;
849
			/* If EPP read was failed, then don't try to write */
850
			if (epp < 0)
851 852 853 854 855 856
				goto skip_epp;


			epp = 0;
		} else {
			/* skip setting EPP, when saved value is invalid */
857
			if (cpu_data->epp_powersave < 0)
858 859 860 861 862 863 864 865 866 867 868 869 870
				goto skip_epp;

			/*
			 * No need to restore EPP when it is not zero. This
			 * means:
			 *  - Policy is not changed
			 *  - user has manually changed
			 *  - Error reading EPB
			 */
			epp = intel_pstate_get_epp(cpu_data, value);
			if (epp)
				goto skip_epp;

871
			epp = cpu_data->epp_powersave;
872
		}
873
update_epp:
874 875 876 877 878 879 880
		if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
			value &= ~GENMASK_ULL(31, 24);
			value |= (u64)epp << 24;
		} else {
			intel_pstate_set_epb(cpu, epp);
		}
skip_epp:
D
Dirk Brandewie 已提交
881 882
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
883
}
D
Dirk Brandewie 已提交
884

885 886 887 888 889 890 891 892 893 894 895 896
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

897 898 899 900 901
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

902 903
	mutex_lock(&intel_pstate_limits_lock);

904
	all_cpu_data[policy->cpu]->epp_policy = 0;
905
	intel_pstate_hwp_set(policy);
906 907 908

	mutex_unlock(&intel_pstate_limits_lock);

909
	return 0;
910 911
}

912
static void intel_pstate_update_policies(void)
913
{
914 915 916 917
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
918 919
}

920 921 922
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
923 924
	unsigned int cpu;

925
	*(u32 *)data = val;
926
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
927 928
	for_each_possible_cpu(cpu)
		if (all_cpu_data[cpu])
929
			intel_pstate_pid_reset(all_cpu_data[cpu]);
930

931 932
	return 0;
}
933

934 935 936 937 938
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
939
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
940

941 942
static struct dentry *debugfs_parent;

943 944 945
struct pid_param {
	char *name;
	void *value;
946
	struct dentry *dentry;
947 948 949
};

static struct pid_param pid_files[] = {
950 951 952 953 954 955 956
	{"sample_rate_ms", &pid_params.sample_rate_ms, },
	{"d_gain_pct", &pid_params.d_gain_pct, },
	{"i_gain_pct", &pid_params.i_gain_pct, },
	{"deadband", &pid_params.deadband, },
	{"setpoint", &pid_params.setpoint, },
	{"p_gain_pct", &pid_params.p_gain_pct, },
	{NULL, NULL, }
957 958
};

959
static void intel_pstate_debug_expose_params(void)
960
{
961
	int i;
962 963 964 965

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
966 967 968 969 970 971 972 973 974

	for (i = 0; pid_files[i].name; i++) {
		struct dentry *dentry;

		dentry = debugfs_create_file(pid_files[i].name, 0660,
					     debugfs_parent, pid_files[i].value,
					     &fops_pid_param);
		if (!IS_ERR(dentry))
			pid_files[i].dentry = dentry;
975 976 977
	}
}

978 979 980 981 982 983 984 985 986 987
static void intel_pstate_debug_hide_params(void)
{
	int i;

	if (IS_ERR_OR_NULL(debugfs_parent))
		return;

	for (i = 0; pid_files[i].name; i++) {
		debugfs_remove(pid_files[i].dentry);
		pid_files[i].dentry = NULL;
988
	}
989 990 991

	debugfs_remove(debugfs_parent);
	debugfs_parent = NULL;
992 993 994 995 996 997 998 999 1000
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
1001
		return sprintf(buf, "%u\n", global.object);		\
1002 1003
	}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

1032 1033 1034 1035 1036 1037 1038
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1039 1040
	mutex_lock(&intel_pstate_driver_lock);

1041
	if (!intel_pstate_driver) {
1042 1043 1044 1045
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1046 1047 1048 1049
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1050
	turbo_fp = div_fp(no_turbo, total);
1051
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1052 1053 1054

	mutex_unlock(&intel_pstate_driver_lock);

1055 1056 1057
	return sprintf(buf, "%u\n", turbo_pct);
}

1058 1059 1060 1061 1062 1063
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

1064 1065
	mutex_lock(&intel_pstate_driver_lock);

1066
	if (!intel_pstate_driver) {
1067 1068 1069 1070
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1071 1072
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1073 1074 1075

	mutex_unlock(&intel_pstate_driver_lock);

1076 1077 1078
	return sprintf(buf, "%u\n", total);
}

1079 1080 1081 1082 1083
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

1084 1085
	mutex_lock(&intel_pstate_driver_lock);

1086
	if (!intel_pstate_driver) {
1087 1088 1089 1090
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1091
	update_turbo_state();
1092 1093
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1094
	else
1095
		ret = sprintf(buf, "%u\n", global.no_turbo);
1096

1097 1098
	mutex_unlock(&intel_pstate_driver_lock);

1099 1100 1101
	return ret;
}

1102
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1103
			      const char *buf, size_t count)
1104 1105 1106
{
	unsigned int input;
	int ret;
1107

1108 1109 1110
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1111

1112 1113
	mutex_lock(&intel_pstate_driver_lock);

1114
	if (!intel_pstate_driver) {
1115 1116 1117 1118
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1119 1120
	mutex_lock(&intel_pstate_limits_lock);

1121
	update_turbo_state();
1122
	if (global.turbo_disabled) {
J
Joe Perches 已提交
1123
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1124
		mutex_unlock(&intel_pstate_limits_lock);
1125
		mutex_unlock(&intel_pstate_driver_lock);
1126
		return -EPERM;
1127
	}
D
Dirk Brandewie 已提交
1128

1129
	global.no_turbo = clamp_t(int, input, 0, 1);
1130

1131 1132 1133 1134 1135 1136 1137 1138 1139
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1140 1141
	mutex_unlock(&intel_pstate_limits_lock);

1142 1143
	intel_pstate_update_policies();

1144 1145
	mutex_unlock(&intel_pstate_driver_lock);

1146 1147 1148 1149
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1150
				  const char *buf, size_t count)
1151 1152 1153
{
	unsigned int input;
	int ret;
1154

1155 1156 1157 1158
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1159 1160
	mutex_lock(&intel_pstate_driver_lock);

1161
	if (!intel_pstate_driver) {
1162 1163 1164 1165
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1166 1167
	mutex_lock(&intel_pstate_limits_lock);

1168
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1169

1170 1171
	mutex_unlock(&intel_pstate_limits_lock);

1172 1173
	intel_pstate_update_policies();

1174 1175
	mutex_unlock(&intel_pstate_driver_lock);

1176 1177 1178 1179
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1180
				  const char *buf, size_t count)
1181 1182 1183
{
	unsigned int input;
	int ret;
1184

1185 1186 1187
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1188

1189 1190
	mutex_lock(&intel_pstate_driver_lock);

1191
	if (!intel_pstate_driver) {
1192 1193 1194 1195
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1196 1197
	mutex_lock(&intel_pstate_limits_lock);

1198 1199
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1200

1201 1202
	mutex_unlock(&intel_pstate_limits_lock);

1203 1204
	intel_pstate_update_policies();

1205 1206
	mutex_unlock(&intel_pstate_driver_lock);

1207 1208 1209 1210 1211 1212
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1213
define_one_global_rw(status);
1214 1215 1216
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1217
define_one_global_ro(turbo_pct);
1218
define_one_global_ro(num_pstates);
1219 1220

static struct attribute *intel_pstate_attributes[] = {
1221
	&status.attr,
1222
	&no_turbo.attr,
1223
	&turbo_pct.attr,
1224
	&num_pstates.attr,
1225 1226 1227 1228 1229 1230 1231
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

1232
static void __init intel_pstate_sysfs_expose_params(void)
1233
{
1234
	struct kobject *intel_pstate_kobject;
1235 1236 1237 1238
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1239 1240 1241
	if (WARN_ON(!intel_pstate_kobject))
		return;

1242
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1259 1260
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1261

1262
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1263
{
1264
	/* First disable HWP notification interrupt as we don't process them */
1265 1266
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1267

1268
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1269
	cpudata->epp_policy = 0;
1270 1271
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1272 1273
}

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1293
static int atom_get_min_pstate(void)
1294 1295
{
	u64 value;
1296

1297
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1298
	return (value >> 8) & 0x7F;
1299 1300
}

1301
static int atom_get_max_pstate(void)
1302 1303
{
	u64 value;
1304

1305
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1306
	return (value >> 16) & 0x7F;
1307
}
1308

1309
static int atom_get_turbo_pstate(void)
1310 1311
{
	u64 value;
1312

1313
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1314
	return value & 0x7F;
1315 1316
}

1317
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1318 1319 1320 1321 1322
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1323
	val = (u64)pstate << 8;
1324
	if (global.no_turbo && !global.turbo_disabled)
1325 1326 1327 1328 1329 1330 1331
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1332
	vid = ceiling_fp(vid_fp);
1333

1334 1335 1336
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1337
	return val | vid;
1338 1339
}

1340
static int silvermont_get_scaling(void)
1341 1342 1343
{
	u64 value;
	int i;
1344 1345 1346
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1347 1348

	rdmsrl(MSR_FSB_FREQ, value);
1349 1350
	i = value & 0x7;
	WARN_ON(i > 4);
1351

1352 1353
	return silvermont_freq_table[i];
}
1354

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1369 1370
}

1371
static void atom_get_vid(struct cpudata *cpudata)
1372 1373 1374
{
	u64 value;

1375
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1376 1377
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1378 1379 1380 1381
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1382

1383
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1384
	cpudata->vid.turbo = value & 0x7f;
1385 1386
}

1387
static int core_get_min_pstate(void)
1388 1389
{
	u64 value;
1390

1391
	rdmsrl(MSR_PLATFORM_INFO, value);
1392 1393 1394
	return (value >> 40) & 0xFF;
}

1395
static int core_get_max_pstate_physical(void)
1396 1397
{
	u64 value;
1398

1399
	rdmsrl(MSR_PLATFORM_INFO, value);
1400 1401 1402
	return (value >> 8) & 0xFF;
}

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1436
static int core_get_max_pstate(void)
1437
{
1438 1439 1440
	u64 tar;
	u64 plat_info;
	int max_pstate;
1441
	int tdp_ratio;
1442 1443 1444 1445 1446
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1447 1448 1449 1450 1451 1452 1453 1454 1455
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1456 1457
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1458 1459
		int tar_levels;

1460
		/* Do some sanity checking for safety */
1461 1462 1463 1464
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1465 1466
		}
	}
1467

1468
	return max_pstate;
1469 1470
}

1471
static int core_get_turbo_pstate(void)
1472 1473 1474
{
	u64 value;
	int nont, ret;
1475

1476
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1477
	nont = core_get_max_pstate();
1478
	ret = (value) & 255;
1479 1480 1481 1482 1483
	if (ret <= nont)
		ret = nont;
	return ret;
}

1484 1485 1486 1487 1488
static inline int core_get_scaling(void)
{
	return 100000;
}

1489
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1490 1491 1492
{
	u64 val;

1493
	val = (u64)pstate << 8;
1494
	if (global.no_turbo && !global.turbo_disabled)
1495 1496
		val |= (u64)1 << 32;

1497
	return val;
1498 1499
}

1500 1501 1502 1503 1504
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1505
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1506 1507 1508 1509 1510 1511 1512
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1513 1514 1515
static struct cpu_defaults core_params = {
	.funcs = {
		.get_max = core_get_max_pstate,
1516
		.get_max_physical = core_get_max_pstate_physical,
1517 1518
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1519
		.get_scaling = core_get_scaling,
1520
		.get_val = core_get_val,
1521
		.get_target_pstate = get_target_pstate_use_performance,
1522 1523 1524
	},
};

1525
static const struct cpu_defaults silvermont_params = {
1526 1527 1528 1529 1530
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1531
		.get_val = atom_get_val,
1532 1533
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1534
		.get_target_pstate = get_target_pstate_use_cpu_load,
1535 1536 1537
	},
};

1538
static const struct cpu_defaults airmont_params = {
1539
	.funcs = {
1540 1541 1542 1543
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1544
		.get_val = atom_get_val,
1545
		.get_scaling = airmont_get_scaling,
1546
		.get_vid = atom_get_vid,
1547
		.get_target_pstate = get_target_pstate_use_cpu_load,
1548 1549 1550
	},
};

1551
static const struct cpu_defaults knl_params = {
1552 1553
	.funcs = {
		.get_max = core_get_max_pstate,
1554
		.get_max_physical = core_get_max_pstate_physical,
1555 1556
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1557
		.get_scaling = core_get_scaling,
1558
		.get_val = core_get_val,
1559
		.get_target_pstate = get_target_pstate_use_performance,
1560 1561 1562
	},
};

1563
static const struct cpu_defaults bxt_params = {
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_max_physical = core_get_max_pstate_physical,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.get_val = core_get_val,
		.get_target_pstate = get_target_pstate_use_cpu_load,
	},
};

1575 1576 1577
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1578
	int max_perf_adj;
1579
	int min_perf;
1580

1581
	if (global.no_turbo || global.turbo_disabled)
1582 1583
		max_perf = cpu->pstate.max_pstate;

1584 1585 1586 1587 1588
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1589
	max_perf_adj = fp_ext_toint(max_perf * cpu->max_perf);
1590 1591
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1592

1593
	min_perf = fp_ext_toint(max_perf * cpu->min_perf);
1594
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1595 1596
}

1597
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1598
{
1599 1600
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1601 1602 1603 1604 1605 1606 1607
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1608 1609
}

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
	int min_pstate, max_pstate;

	update_turbo_state();
	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
	intel_pstate_set_pstate(cpu, max_pstate);
}

1624 1625
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1626 1627
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1628
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1629
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1630
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1631 1632
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1633

1634 1635
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1636 1637

	intel_pstate_set_min_pstate(cpu);
1638 1639
}

1640
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1641
{
1642
	struct sample *sample = &cpu->sample;
1643

1644
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1645 1646
}

1647
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1648 1649
{
	u64 aperf, mperf;
1650
	unsigned long flags;
1651
	u64 tsc;
1652

1653
	local_irq_save(flags);
1654 1655
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1656
	tsc = rdtsc();
1657
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1658
		local_irq_restore(flags);
1659
		return false;
1660
	}
1661
	local_irq_restore(flags);
1662

1663
	cpu->last_sample_time = cpu->sample.time;
1664
	cpu->sample.time = time;
1665 1666
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1667
	cpu->sample.tsc =  tsc;
1668 1669
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1670
	cpu->sample.tsc -= cpu->prev_tsc;
1671

1672 1673
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1674
	cpu->prev_tsc = tsc;
1675 1676 1677 1678 1679 1680 1681
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1682 1683 1684 1685 1686
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1687 1688
}

1689 1690
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1691 1692
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1693 1694
}

1695 1696
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1697 1698
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1699 1700
}

1701 1702 1703
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1704
	int32_t busy_frac, boost;
1705
	int target, avg_pstate;
1706

1707
	busy_frac = div_fp(sample->mperf, sample->tsc);
1708

1709 1710
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1711

1712 1713
	if (busy_frac < boost)
		busy_frac = boost;
1714

1715
	sample->busy_scaled = busy_frac * 100;
1716

1717
	target = global.no_turbo || global.turbo_disabled ?
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1736 1737
}

1738
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1739
{
1740
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1741
	u64 duration_ns;
1742

1743
	/*
1744 1745 1746 1747 1748
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1749
	 */
1750 1751
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1752
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1753
			       div_fp(100 * max_pstate, current_pstate));
1754

1755
	/*
1756 1757 1758
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1759
	 * enough period of time to adjust our performance metric.
1760
	 */
1761
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1762
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1763
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1764
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1765 1766 1767
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1768
			perf_scaled = 0;
1769 1770
	}

1771 1772
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1773 1774
}

1775
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1776 1777 1778 1779 1780
{
	int max_perf, min_perf;

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
1781 1782 1783 1784 1785
	return pstate;
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1786 1787 1788
	if (pstate == cpu->pstate.current_pstate)
		return;

1789
	cpu->pstate.current_pstate = pstate;
1790 1791 1792
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1793
static void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1794
{
1795
	int from, target_pstate;
1796 1797 1798
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1799

1800 1801
	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1802

1803 1804
	update_turbo_state();

1805 1806
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1807
	intel_pstate_update_pstate(cpu, target_pstate);
1808 1809

	sample = &cpu->sample;
1810
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1811
		fp_toint(sample->busy_scaled),
1812 1813 1814 1815 1816
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1817 1818
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1819 1820
}

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
static void intel_pstate_update_util_hwp(struct update_util_data *data,
					 u64 time, unsigned int flags)
{
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;

	if ((s64)delta_ns >= INTEL_PSTATE_HWP_SAMPLING_INTERVAL)
		intel_pstate_sample(cpu, time);
}

static void intel_pstate_update_util_pid(struct update_util_data *data,
					 u64 time, unsigned int flags)
{
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;

	if ((s64)delta_ns < pid_params.sample_rate_ns)
		return;

	if (intel_pstate_sample(cpu, time))
		intel_pstate_adjust_busy_pstate(cpu);
}

1844
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1845
				     unsigned int flags)
1846
{
1847
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1848 1849
	u64 delta_ns;

1850 1851 1852 1853 1854 1855 1856
	if (flags & SCHED_CPUFREQ_IOWAIT) {
		cpu->iowait_boost = int_tofp(1);
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		delta_ns = time - cpu->last_update;
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1857
	}
1858
	cpu->last_update = time;
1859
	delta_ns = time - cpu->sample.time;
1860 1861
	if ((s64)delta_ns < INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL)
		return;
1862

1863 1864
	if (intel_pstate_sample(cpu, time))
		intel_pstate_adjust_busy_pstate(cpu);
1865 1866
}

1867 1868 1869 1870
/* Utilization update callback to register in the active mode. */
static void (*update_util_cb)(struct update_util_data *data, u64 time,
			      unsigned int flags) = intel_pstate_update_util;

1871
#define ICPU(model, policy) \
1872 1873
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1874 1875

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1893
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_params),
1894
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1895 1896 1897 1898
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1899
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1900
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1901 1902
	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
D
Dirk Brandewie 已提交
1903 1904 1905
	{}
};

1906 1907 1908 1909 1910
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
	{}
};

1911 1912 1913 1914
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1915 1916 1917
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1918
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1919 1920 1921 1922 1923
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1924 1925 1926
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1927
	}
1928 1929 1930 1931

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1932

1933
	if (hwp_active) {
1934 1935 1936 1937 1938 1939
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1940
		intel_pstate_hwp_enable(cpu);
1941 1942
	} else if (pstate_funcs.get_target_pstate == get_target_pstate_use_performance) {
		intel_pstate_pid_reset(cpu);
1943
	}
1944

1945
	intel_pstate_get_cpu_pstates(cpu);
1946

J
Joe Perches 已提交
1947
	pr_debug("controlling: cpu %d\n", cpunum);
1948 1949 1950 1951 1952 1953

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1954
	struct cpudata *cpu = all_cpu_data[cpu_num];
1955

1956
	return cpu ? get_avg_frequency(cpu) : 0;
1957 1958
}

1959
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1960
{
1961 1962
	struct cpudata *cpu = all_cpu_data[cpu_num];

1963 1964 1965
	if (cpu->update_util_set)
		return;

1966 1967
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1968
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util, update_util_cb);
1969
	cpu->update_util_set = true;
1970 1971 1972 1973
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1974 1975 1976 1977 1978
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1979
	cpufreq_remove_update_util_hook(cpu);
1980
	cpu_data->update_util_set = false;
1981 1982 1983
	synchronize_sched();
}

1984 1985 1986 1987 1988 1989
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

1990
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1991
					    struct cpudata *cpu)
1992
{
1993
	int max_freq = intel_pstate_get_max_freq(cpu);
1994
	int32_t max_policy_perf, min_policy_perf;
1995

1996
	max_policy_perf = div_ext_fp(policy->max, max_freq);
1997
	max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
1998
	if (policy->max == policy->min) {
1999
		min_policy_perf = max_policy_perf;
2000
	} else {
2001
		min_policy_perf = div_ext_fp(policy->min, max_freq);
2002 2003
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
2004
	}
2005

2006
	/* Normalize user input to [min_perf, max_perf] */
2007
	if (per_cpu_limits) {
2008 2009
		cpu->min_perf = min_policy_perf;
		cpu->max_perf = max_policy_perf;
2010 2011 2012 2013 2014 2015
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
		global_max = percent_ext_fp(global.max_perf_pct);
		global_min = percent_ext_fp(global.min_perf_pct);
2016
		if (max_freq != cpu->pstate.turbo_freq) {
2017 2018 2019 2020 2021 2022 2023 2024
			int32_t turbo_factor;

			turbo_factor = div_ext_fp(cpu->pstate.turbo_pstate,
						  cpu->pstate.max_pstate);
			global_min = mul_ext_fp(global_min, turbo_factor);
			global_max = mul_ext_fp(global_max, turbo_factor);
		}
		global_min = clamp_t(int32_t, global_min, 0, global_max);
2025

2026 2027 2028 2029
		cpu->min_perf = max(min_policy_perf, global_min);
		cpu->min_perf = min(cpu->min_perf, max_policy_perf);
		cpu->max_perf = min(max_policy_perf, global_max);
		cpu->max_perf = max(min_policy_perf, cpu->max_perf);
2030 2031

		/* Make sure min_perf <= max_perf */
2032
		cpu->min_perf = min(cpu->min_perf, cpu->max_perf);
2033
	}
2034

2035 2036
	cpu->max_perf = round_up(cpu->max_perf, EXT_FRAC_BITS);
	cpu->min_perf = round_up(cpu->min_perf, EXT_FRAC_BITS);
2037 2038

	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2039 2040
		 fp_ext_toint(cpu->max_perf * 100),
		 fp_ext_toint(cpu->min_perf * 100));
2041 2042
}

2043 2044
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2045 2046
	struct cpudata *cpu;

2047 2048 2049
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2050 2051 2052
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2053
	cpu = all_cpu_data[policy->cpu];
2054 2055
	cpu->policy = policy->policy;

2056 2057
	mutex_lock(&intel_pstate_limits_lock);

2058
	intel_pstate_update_perf_limits(policy, cpu);
2059

2060
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2061 2062 2063 2064 2065 2066 2067 2068
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
	}

2069 2070
	intel_pstate_set_update_util_hook(policy->cpu);

2071 2072
	if (hwp_active)
		intel_pstate_hwp_set(policy);
D
Dirk Brandewie 已提交
2073

2074 2075
	mutex_unlock(&intel_pstate_limits_lock);

2076 2077 2078
	return 0;
}

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2090 2091
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2092 2093 2094
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2095 2096
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2097

2098
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2099
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2100 2101
		return -EINVAL;

2102 2103
	intel_pstate_adjust_policy_max(policy, cpu);

2104 2105 2106
	return 0;
}

2107 2108 2109 2110 2111
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2112
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2113
{
2114
	pr_debug("CPU %d exiting\n", policy->cpu);
2115

2116
	intel_pstate_clear_update_util_hook(policy->cpu);
2117 2118 2119
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2120 2121
		intel_cpufreq_stop_cpu(policy);
}
2122

2123 2124 2125
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2126

2127
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2128

2129
	return 0;
2130 2131
}

2132
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2133 2134
{
	struct cpudata *cpu;
2135
	int rc;
2136 2137 2138 2139 2140 2141 2142

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2143 2144
	cpu->max_perf = int_ext_tofp(1);
	cpu->min_perf = 0;
2145

2146 2147
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2148 2149

	/* cpuinfo and default policy values */
2150
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2151
	update_turbo_state();
2152
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2153 2154 2155
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2156
	intel_pstate_init_acpi_perf_limits(policy);
2157 2158
	cpumask_set_cpu(policy->cpu, policy->cpus);

2159 2160
	policy->fast_switch_possible = true;

2161 2162 2163
	return 0;
}

2164
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2165
{
2166 2167 2168 2169 2170 2171
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2172
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2173 2174 2175
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2176 2177 2178 2179

	return 0;
}

2180
static struct cpufreq_driver intel_pstate = {
2181 2182 2183
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2184
	.suspend	= intel_pstate_hwp_save_state,
2185
	.resume		= intel_pstate_resume,
2186 2187
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
2188
	.exit		= intel_pstate_cpu_exit,
2189
	.stop_cpu	= intel_pstate_stop_cpu,
2190 2191 2192
	.name		= "intel_pstate",
};

2193 2194 2195 2196 2197
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2198 2199
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2200

2201
	intel_pstate_adjust_policy_max(policy, cpu);
2202

2203 2204
	intel_pstate_update_perf_limits(policy, cpu);

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
	return 0;
}

static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
	int target_pstate;

2216 2217
	update_turbo_state();

2218
	freqs.old = policy->cur;
2219
	freqs.new = target_freq;
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2239
	freqs.new = target_pstate * cpu->pstate.scaling;
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	int target_pstate;

2251 2252
	update_turbo_state();

2253
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2254
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2255
	intel_pstate_update_pstate(cpu, target_pstate);
2256
	return target_pstate * cpu->pstate.scaling;
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

2284
static struct cpufreq_driver *default_driver = &intel_pstate;
2285

2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2301
	intel_pstate_driver = NULL;
2302 2303
}

2304
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2305 2306 2307
{
	int ret;

2308 2309
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2310

2311
	intel_pstate_driver = driver;
2312 2313 2314 2315 2316 2317
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2318 2319
	global.min_perf_pct = min_perf_pct_min();

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
		intel_pstate_debug_expose_params();

	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
		intel_pstate_debug_hide_params();

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2344
	if (!intel_pstate_driver)
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2356
		return intel_pstate_driver ?
2357 2358 2359
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2360
		if (intel_pstate_driver) {
2361 2362 2363 2364 2365 2366 2367 2368
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2369
		return intel_pstate_register_driver(&intel_pstate);
2370 2371 2372
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2373
		if (intel_pstate_driver) {
2374
			if (intel_pstate_driver == &intel_cpufreq)
2375 2376 2377 2378 2379 2380 2381
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2382
		return intel_pstate_register_driver(&intel_cpufreq);
2383 2384 2385 2386 2387
	}

	return -EINVAL;
}

2388 2389 2390
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2391
static unsigned int force_load __initdata;
2392

2393
static int __init intel_pstate_msrs_not_valid(void)
2394
{
2395
	if (!pstate_funcs.get_max() ||
2396 2397
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2398 2399 2400 2401
		return -ENODEV;

	return 0;
}
2402

2403 2404 2405
#ifdef CONFIG_ACPI
static void intel_pstate_use_acpi_profile(void)
{
2406 2407 2408 2409 2410 2411
	switch (acpi_gbl_FADT.preferred_profile) {
	case PM_MOBILE:
	case PM_TABLET:
	case PM_APPLIANCE_PC:
	case PM_DESKTOP:
	case PM_WORKSTATION:
2412 2413
		pstate_funcs.get_target_pstate =
				get_target_pstate_use_cpu_load;
2414
	}
2415 2416 2417 2418 2419 2420 2421
}
#else
static void intel_pstate_use_acpi_profile(void)
{
}
#endif

2422
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2423 2424
{
	pstate_funcs.get_max   = funcs->get_max;
2425
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2426 2427
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2428
	pstate_funcs.get_scaling = funcs->get_scaling;
2429
	pstate_funcs.get_val   = funcs->get_val;
2430
	pstate_funcs.get_vid   = funcs->get_vid;
2431 2432
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

2433
	intel_pstate_use_acpi_profile();
2434 2435 2436

	if (pstate_funcs.get_target_pstate == get_target_pstate_use_performance)
		update_util_cb = intel_pstate_update_util_pid;
2437 2438
}

2439
#ifdef CONFIG_ACPI
2440

2441
static bool __init intel_pstate_no_acpi_pss(void)
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2470
static bool __init intel_pstate_has_acpi_ppc(void)
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2490 2491 2492 2493
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2494
	int  oem_pwr_table;
2495 2496 2497
};

/* Hardware vendor-specific info that has its own power management modes */
2498
static struct hw_vendor_info vendor_info[] __initdata = {
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
2510 2511 2512 2513
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
2514 2515 2516
	{0, "", ""},
};

2517
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2518 2519 2520
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
2521 2522 2523 2524 2525 2526 2527 2528 2529
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2530

2531 2532
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2533 2534 2535
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
2536
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2537 2538 2539 2540 2541 2542
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
2543 2544
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
2545
			}
2546 2547 2548 2549
	}

	return false;
}
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2560 2561
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2562
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2563
static inline void intel_pstate_request_control_from_smm(void) {}
2564 2565
#endif /* CONFIG_ACPI */

2566 2567 2568 2569 2570
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2571 2572
static int __init intel_pstate_init(void)
{
2573
	int rc;
2574

2575 2576 2577
	if (no_load)
		return -ENODEV;

2578
	if (x86_match_cpu(hwp_support_ids)) {
2579
		copy_cpu_funcs(&core_params.funcs);
2580
		if (no_hwp) {
2581
			update_util_cb = intel_pstate_update_util;
2582 2583 2584
		} else {
			hwp_active++;
			intel_pstate.attr = hwp_cpufreq_attrs;
2585
			update_util_cb = intel_pstate_update_util_hwp;
2586 2587 2588 2589 2590
			goto hwp_cpu_matched;
		}
	} else {
		const struct x86_cpu_id *id;
		struct cpu_defaults *cpu_def;
2591

2592 2593 2594
		id = x86_match_cpu(intel_pstate_cpu_ids);
		if (!id)
			return -ENODEV;
2595

2596 2597 2598
		cpu_def = (struct cpu_defaults *)id->driver_data;
		copy_cpu_funcs(&cpu_def->funcs);
	}
2599

2600 2601 2602
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2603 2604 2605 2606 2607 2608 2609 2610
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2611 2612 2613
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2614
	pr_info("Intel P-state driver initializing\n");
2615

2616
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2617 2618 2619
	if (!all_cpu_data)
		return -ENOMEM;

2620 2621
	intel_pstate_request_control_from_smm();

2622
	intel_pstate_sysfs_expose_params();
2623

2624
	mutex_lock(&intel_pstate_driver_lock);
2625
	rc = intel_pstate_register_driver(default_driver);
2626
	mutex_unlock(&intel_pstate_driver_lock);
2627 2628
	if (rc)
		return rc;
2629

2630
	if (hwp_active)
J
Joe Perches 已提交
2631
		pr_info("HWP enabled\n");
2632

2633
	return 0;
2634 2635 2636
}
device_initcall(intel_pstate_init);

2637 2638 2639 2640 2641
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2642
	if (!strcmp(str, "disable")) {
2643
		no_load = 1;
2644 2645
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2646
		default_driver = &intel_cpufreq;
2647 2648
		no_hwp = 1;
	}
2649
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2650
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2651
		no_hwp = 1;
2652
	}
2653 2654
	if (!strcmp(str, "force"))
		force_load = 1;
2655 2656
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2657 2658
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2659 2660 2661 2662 2663 2664

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2665 2666 2667 2668
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2669 2670 2671
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");