intel_pstate.c 75.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * intel_pstate.c: Native P state management for Intel processors
4 5 6 7 8
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 */

J
Joe Perches 已提交
9 10
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

11 12 13 14 15 16 17
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
18
#include <linux/sched/cpufreq.h>
19 20 21 22 23 24
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
25
#include <linux/acpi.h>
26
#include <linux/vmalloc.h>
27
#include <linux/pm_qos.h>
28 29 30 31 32
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
33
#include <asm/cpufeature.h>
34
#include <asm/intel-family.h>
35

36
#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
37

38
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
39
#define INTEL_CPUFREQ_TRANSITION_DELAY_HWP	5000
40
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
41

42 43
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
44
#include <acpi/cppc_acpi.h>
45 46
#endif

47
#define FRAC_BITS 8
48 49
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
50

51 52
#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))

53 54
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 56
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57

58 59 60 61 62
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

63
static inline int32_t div_fp(s64 x, s64 y)
64
{
65
	return div64_s64((int64_t)x << FRAC_BITS, y);
66 67
}

68 69 70 71 72 73 74 75 76 77 78
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

79 80 81 82 83
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

84 85 86 87 88 89 90 91 92 93
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

94 95 96 97 98
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

99 100
/**
 * struct sample -	Store performance sample
101
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
102 103
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
104
 *			P state. This can be different than core_avg_perf
105 106 107 108 109 110 111 112 113 114 115 116
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
117
struct sample {
118
	int32_t core_avg_perf;
119
	int32_t busy_scaled;
120 121
	u64 aperf;
	u64 mperf;
122
	u64 tsc;
123
	u64 time;
124 125
};

126 127 128 129 130 131 132 133 134 135 136
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
137 138
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
139 140 141
 *
 * Stores the per cpu model P state limits and current P state.
 */
142 143 144 145
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
146
	int	max_pstate_physical;
147
	int	scaling;
148
	int	turbo_pstate;
149 150
	unsigned int max_freq;
	unsigned int turbo_freq;
151 152
};

153 154 155 156 157 158 159 160 161 162 163 164 165
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
166
struct vid_data {
167 168 169
	int min;
	int max;
	int turbo;
170 171 172
	int32_t ratio;
};

173 174 175
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
176
 * @turbo_disabled:	Whether or not turbo P-states are available at all,
177 178 179
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
180
 * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
181 182 183 184 185 186 187 188
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
189
	bool turbo_disabled_mf;
190 191
	int max_perf_pct;
	int min_perf_pct;
192 193
};

194 195 196
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
197
 * @policy:		CPUFreq policy value
198
 * @update_util:	CPUFreq utility callback information
199
 * @update_util_set:	CPUFreq utility callback is set
200 201
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
202 203 204
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @last_sample_time:	Last Sample time
205
 * @aperf_mperf_shift:	APERF vs MPERF counting frequency difference
206 207 208 209 210 211
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
212 213
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
214 215
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
216 217 218
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
219
 * @epp_policy:		Last saved policy used to set EPP/EPB
220 221 222 223
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
224
 * @epp_cached		Cached HWP energy-performance preference value
225 226
 * @hwp_req_cached:	Cached value of the last HWP Request MSR
 * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
227 228
 * @last_io_update:	Last time when IO wake flag was set
 * @sched_flags:	Store scheduler flags for possible cross CPU update
229
 * @hwp_boost_min:	Last HWP boosted min performance
230 231 232
 *
 * This structure stores per CPU instance data for all CPUs.
 */
233 234 235
struct cpudata {
	int cpu;

236
	unsigned int policy;
237
	struct update_util_data update_util;
238
	bool   update_util_set;
239 240

	struct pstate_data pstate;
241
	struct vid_data vid;
242

243
	u64	last_update;
244
	u64	last_sample_time;
245
	u64	aperf_mperf_shift;
246 247
	u64	prev_aperf;
	u64	prev_mperf;
248
	u64	prev_tsc;
249
	u64	prev_cummulative_iowait;
250
	struct sample sample;
251 252
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
253 254 255 256
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
257
	unsigned int iowait_boost;
258
	s16 epp_powersave;
259
	s16 epp_policy;
260 261
	s16 epp_default;
	s16 epp_saved;
262
	s16 epp_cached;
263 264
	u64 hwp_req_cached;
	u64 hwp_cap_cached;
265 266
	u64 last_io_update;
	unsigned int sched_flags;
267
	u32 hwp_boost_min;
268 269 270
};

static struct cpudata **all_cpu_data;
271 272 273 274 275 276 277 278

/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
279
 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
280 281 282 283 284 285
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
286 287
struct pstate_funcs {
	int (*get_max)(void);
288
	int (*get_max_physical)(void);
289 290
	int (*get_min)(void);
	int (*get_turbo)(void);
291
	int (*get_scaling)(void);
292
	int (*get_aperf_mperf_shift)(void);
293
	u64 (*get_val)(struct cpudata*, int pstate);
294
	void (*get_vid)(struct cpudata *);
295 296
};

297
static struct pstate_funcs pstate_funcs __read_mostly;
298

299
static int hwp_active __read_mostly;
300
static int hwp_mode_bdw __read_mostly;
301
static bool per_cpu_limits __read_mostly;
302
static bool hwp_boost __read_mostly;
303

304
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
305

306 307 308
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
309

310
static struct global_params global;
311

312
static DEFINE_MUTEX(intel_pstate_driver_lock);
313 314
static DEFINE_MUTEX(intel_pstate_limits_lock);

315
#ifdef CONFIG_ACPI
316

317
static bool intel_pstate_acpi_pm_profile_server(void)
318 319 320 321 322
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

323 324 325 326 327 328 329 330
	return false;
}

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (intel_pstate_acpi_pm_profile_server())
		return true;

331 332 333
	return acpi_ppc;
}

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
379 380 381 382 383 384 385 386 387 388

static int intel_pstate_get_cppc_guranteed(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return ret;

389 390 391 392
	if (cppc_perf.guaranteed_perf)
		return cppc_perf.guaranteed_perf;

	return cppc_perf.nominal_perf;
393 394
}

395
#else /* CONFIG_ACPI_CPPC_LIB */
396 397 398
static void intel_pstate_set_itmt_prio(int cpu)
{
}
399
#endif /* CONFIG_ACPI_CPPC_LIB */
400

401 402 403 404 405 406
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

407 408
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
409
		return;
410
	}
411

412
	if (!intel_pstate_get_ppc_enable_status())
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
455
	 * correct max turbo frequency based on the turbo state.
456 457
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
458
	if (!global.turbo_disabled)
459 460 461
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
462
	pr_debug("_PPC limits will be enforced\n");
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
481
#else /* CONFIG_ACPI */
482
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
483 484 485
{
}

486
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
487 488
{
}
489 490 491 492 493

static inline bool intel_pstate_acpi_pm_profile_server(void)
{
	return false;
}
494 495 496 497 498 499 500 501
#endif /* CONFIG_ACPI */

#ifndef CONFIG_ACPI_CPPC_LIB
static int intel_pstate_get_cppc_guranteed(int cpu)
{
	return -ENOTSUPP;
}
#endif /* CONFIG_ACPI_CPPC_LIB */
502

503 504 505 506 507 508 509
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
510
	global.turbo_disabled =
511 512 513 514
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

515 516 517
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
518
	int turbo_pstate = cpu->pstate.turbo_pstate;
519

520
	return turbo_pstate ?
521
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
522 523
}

524 525 526 527 528
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

529
	if (!boot_cpu_has(X86_FEATURE_EPB))
530 531 532 533 534 535 536 537 538 539 540 541 542
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

543
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
544 545 546 547 548 549 550 551 552 553
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
554
		epp = (hwp_req_data >> 24) & 0xff;
555
	} else {
556 557
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
558
	}
559 560 561 562

	return epp;
}

563
static int intel_pstate_set_epb(int cpu, s16 pref)
564 565
{
	u64 epb;
566
	int ret;
567

568
	if (!boot_cpu_has(X86_FEATURE_EPB))
569
		return -ENXIO;
570

571 572 573
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
574 575 576

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
577 578

	return 0;
579 580
}

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
600 601 602 603 604 605
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
606

607
static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
608 609 610 611
{
	s16 epp;
	int index = -EINVAL;

612
	*raw_epp = 0;
613 614 615 616
	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

617
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
618 619
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
620
		if (epp == HWP_EPP_BALANCE_PERFORMANCE)
621
			return 2;
622
		if (epp == HWP_EPP_BALANCE_POWERSAVE)
623
			return 3;
624
		if (epp == HWP_EPP_POWERSAVE)
625
			return 4;
626 627
		*raw_epp = epp;
		return 0;
628
	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
{
	/*
	 * Use the cached HWP Request MSR value, because in the active mode the
	 * register itself may be updated by intel_pstate_hwp_boost_up() or
	 * intel_pstate_hwp_boost_down() at any time.
	 */
	u64 value = READ_ONCE(cpu->hwp_req_cached);

	value &= ~GENMASK_ULL(31, 24);
	value |= (u64)epp << 24;
	/*
	 * The only other updater of hwp_req_cached in the active mode,
	 * intel_pstate_hwp_set(), is called under the same lock as this
	 * function, so it cannot run in parallel with the update below.
	 */
	WRITE_ONCE(cpu->hwp_req_cached, value);
	return wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
}

665
static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
666 667
					      int pref_index, bool use_raw,
					      u32 raw_epp)
668 669 670 671 672 673 674
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

675
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
676 677 678
		if (use_raw)
			epp = raw_epp;
		else if (epp == -EINVAL)
679
			epp = epp_values[pref_index - 1];
680

681
		ret = intel_pstate_set_epp(cpu_data, epp);
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

707 708
static struct cpufreq_driver intel_pstate;

709 710 711
static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
712
	struct cpudata *cpu = all_cpu_data[policy->cpu];
713
	char str_preference[21];
714
	bool raw = false;
715
	ssize_t ret;
716
	u32 epp = 0;
717 718 719 720 721

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

722
	ret = match_string(energy_perf_strings, -1, str_preference);
723 724 725 726 727 728 729 730
	if (ret < 0) {
		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
			return ret;

		ret = kstrtouint(buf, 10, &epp);
		if (ret)
			return ret;

731 732 733
		if (epp > 255)
			return -EINVAL;

734 735 736
		raw = true;
	}

737 738 739 740 741 742 743 744
	/*
	 * This function runs with the policy R/W semaphore held, which
	 * guarantees that the driver pointer will not change while it is
	 * running.
	 */
	if (!intel_pstate_driver)
		return -EAGAIN;

745 746
	mutex_lock(&intel_pstate_limits_lock);

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
	if (intel_pstate_driver == &intel_pstate) {
		ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
	} else {
		/*
		 * In the passive mode the governor needs to be stopped on the
		 * target CPU before the EPP update and restarted after it,
		 * which is super-heavy-weight, so make sure it is worth doing
		 * upfront.
		 */
		if (!raw)
			epp = ret ? epp_values[ret - 1] : cpu->epp_default;

		if (cpu->epp_cached != epp) {
			int err;

			cpufreq_stop_governor(policy);
			ret = intel_pstate_set_epp(cpu, epp);
			err = cpufreq_start_governor(policy);
			if (!ret) {
				cpu->epp_cached = epp;
				ret = err;
			}
		}
	}
771 772

	mutex_unlock(&intel_pstate_limits_lock);
773

774
	return ret ?: count;
775 776 777 778 779 780
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
781
	int preference, raw_epp;
782

783
	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
784 785 786
	if (preference < 0)
		return preference;

787 788 789 790
	if (raw_epp)
		return  sprintf(buf, "%d\n", raw_epp);
	else
		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
791 792 793 794
}

cpufreq_freq_attr_rw(energy_performance_preference);

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu;
	u64 cap;
	int ratio;

	ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
	if (ratio <= 0) {
		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
		ratio = HWP_GUARANTEED_PERF(cap);
	}

	cpu = all_cpu_data[policy->cpu];

	return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
}

cpufreq_freq_attr_ro(base_frequency);

814 815 816
static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
817
	&base_frequency,
818 819 820
	NULL,
};

821 822
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
823
{
824
	u64 cap;
825

826
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
827
	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
828
	if (global.no_turbo)
829
		*current_max = HWP_GUARANTEED_PERF(cap);
830
	else
831 832 833 834 835 836 837 838 839 840 841 842 843 844
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
845

846 847
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
848

849
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
850

851 852
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
853

854 855
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
856

857 858
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
859

860
	cpu_data->epp_policy = cpu_data->policy;
861

862 863 864 865 866
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
867

868 869 870 871 872 873
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
874

875 876 877 878 879
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
880

881 882 883 884 885 886 887 888 889 890
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
891

892 893
		epp = cpu_data->epp_powersave;
	}
894
update_epp:
895
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
896 897 898 899
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
900
	}
901
skip_epp:
902
	WRITE_ONCE(cpu_data->hwp_req_cached, value);
903
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
904
}
D
Dirk Brandewie 已提交
905

906 907 908 909 910 911 912 913 914 915 916 917 918
static void intel_pstate_hwp_force_min_perf(int cpu)
{
	u64 value;
	int min_perf;

	value = all_cpu_data[cpu]->hwp_req_cached;
	value &= ~GENMASK_ULL(31, 0);
	min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);

	/* Set hwp_max = hwp_min */
	value |= HWP_MAX_PERF(min_perf);
	value |= HWP_MIN_PERF(min_perf);

919
	/* Set EPP to min */
920
	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
921 922 923 924 925
		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);

	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
}

926 927 928 929 930 931 932 933 934 935 936 937
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
#define POWER_CTL_EE_ENABLE	1
#define POWER_CTL_EE_DISABLE	2

static int power_ctl_ee_state;

static void set_power_ctl_ee_state(bool input)
{
	u64 power_ctl;

	mutex_lock(&intel_pstate_driver_lock);
	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
	if (input) {
		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
	} else {
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
	}
	wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
	mutex_unlock(&intel_pstate_driver_lock);
}

960 961
static void intel_pstate_hwp_enable(struct cpudata *cpudata);

962 963
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
964 965 966 967 968 969 970

	/* Only restore if the system default is changed */
	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
		set_power_ctl_ee_state(true);
	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
		set_power_ctl_ee_state(false);

971 972 973
	if (!hwp_active)
		return 0;

974 975
	mutex_lock(&intel_pstate_limits_lock);

976 977 978
	if (policy->cpu == 0)
		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);

979
	all_cpu_data[policy->cpu]->epp_policy = 0;
980
	intel_pstate_hwp_set(policy->cpu);
981 982 983

	mutex_unlock(&intel_pstate_limits_lock);

984
	return 0;
985 986
}

987
static void intel_pstate_update_policies(void)
988
{
989 990 991 992
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
993 994
}

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
static void intel_pstate_update_max_freq(unsigned int cpu)
{
	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
	struct cpudata *cpudata;

	if (!policy)
		return;

	cpudata = all_cpu_data[cpu];
	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;

1007
	refresh_frequency_limits(policy);
1008 1009 1010 1011

	cpufreq_cpu_release(policy);
}

1012 1013 1014 1015 1016 1017 1018 1019 1020
static void intel_pstate_update_limits(unsigned int cpu)
{
	mutex_lock(&intel_pstate_driver_lock);

	update_turbo_state();
	/*
	 * If turbo has been turned on or off globally, policy limits for
	 * all CPUs need to be updated to reflect that.
	 */
1021 1022
	if (global.turbo_disabled_mf != global.turbo_disabled) {
		global.turbo_disabled_mf = global.turbo_disabled;
1023
		arch_set_max_freq_ratio(global.turbo_disabled);
1024 1025
		for_each_possible_cpu(cpu)
			intel_pstate_update_max_freq(cpu);
1026 1027 1028 1029 1030 1031 1032
	} else {
		cpufreq_update_policy(cpu);
	}

	mutex_unlock(&intel_pstate_driver_lock);
}

1033 1034 1035
/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
1036
	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
1037
	{								\
1038
		return sprintf(buf, "%u\n", global.object);		\
1039 1040
	}

1041 1042 1043 1044
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
1045
			   struct kobj_attribute *attr, char *buf)
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

1056
static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

1069
static ssize_t show_turbo_pct(struct kobject *kobj,
1070
				struct kobj_attribute *attr, char *buf)
1071 1072 1073 1074 1075
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1076 1077
	mutex_lock(&intel_pstate_driver_lock);

1078
	if (!intel_pstate_driver) {
1079 1080 1081 1082
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1083 1084 1085 1086
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1087
	turbo_fp = div_fp(no_turbo, total);
1088
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1089 1090 1091

	mutex_unlock(&intel_pstate_driver_lock);

1092 1093 1094
	return sprintf(buf, "%u\n", turbo_pct);
}

1095
static ssize_t show_num_pstates(struct kobject *kobj,
1096
				struct kobj_attribute *attr, char *buf)
1097 1098 1099 1100
{
	struct cpudata *cpu;
	int total;

1101 1102
	mutex_lock(&intel_pstate_driver_lock);

1103
	if (!intel_pstate_driver) {
1104 1105 1106 1107
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1108 1109
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1110 1111 1112

	mutex_unlock(&intel_pstate_driver_lock);

1113 1114 1115
	return sprintf(buf, "%u\n", total);
}

1116
static ssize_t show_no_turbo(struct kobject *kobj,
1117
			     struct kobj_attribute *attr, char *buf)
1118 1119 1120
{
	ssize_t ret;

1121 1122
	mutex_lock(&intel_pstate_driver_lock);

1123
	if (!intel_pstate_driver) {
1124 1125 1126 1127
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1128
	update_turbo_state();
1129 1130
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1131
	else
1132
		ret = sprintf(buf, "%u\n", global.no_turbo);
1133

1134 1135
	mutex_unlock(&intel_pstate_driver_lock);

1136 1137 1138
	return ret;
}

1139
static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1140
			      const char *buf, size_t count)
1141 1142 1143
{
	unsigned int input;
	int ret;
1144

1145 1146 1147
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1148

1149 1150
	mutex_lock(&intel_pstate_driver_lock);

1151
	if (!intel_pstate_driver) {
1152 1153 1154 1155
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1156 1157
	mutex_lock(&intel_pstate_limits_lock);

1158
	update_turbo_state();
1159
	if (global.turbo_disabled) {
1160
		pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1161
		mutex_unlock(&intel_pstate_limits_lock);
1162
		mutex_unlock(&intel_pstate_driver_lock);
1163
		return -EPERM;
1164
	}
D
Dirk Brandewie 已提交
1165

1166
	global.no_turbo = clamp_t(int, input, 0, 1);
1167

1168 1169 1170 1171 1172 1173 1174 1175 1176
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1177 1178
	mutex_unlock(&intel_pstate_limits_lock);

1179 1180
	intel_pstate_update_policies();

1181 1182
	mutex_unlock(&intel_pstate_driver_lock);

1183 1184 1185
	return count;
}

1186
static void update_qos_request(enum freq_qos_req_type type)
1187 1188
{
	int max_state, turbo_max, freq, i, perf_pct;
1189
	struct freq_qos_request *req;
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	struct cpufreq_policy *policy;

	for_each_possible_cpu(i) {
		struct cpudata *cpu = all_cpu_data[i];

		policy = cpufreq_cpu_get(i);
		if (!policy)
			continue;

		req = policy->driver_data;
		cpufreq_cpu_put(policy);

		if (!req)
			continue;

		if (hwp_active)
			intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
		else
			turbo_max = cpu->pstate.turbo_pstate;

1210
		if (type == FREQ_QOS_MIN) {
1211 1212 1213 1214 1215 1216 1217 1218 1219
			perf_pct = global.min_perf_pct;
		} else {
			req++;
			perf_pct = global.max_perf_pct;
		}

		freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
		freq *= cpu->pstate.scaling;

1220
		if (freq_qos_update_request(req, freq) < 0)
1221 1222 1223 1224
			pr_warn("Failed to update freq constraint: CPU%d\n", i);
	}
}

1225
static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1226
				  const char *buf, size_t count)
1227 1228 1229
{
	unsigned int input;
	int ret;
1230

1231 1232 1233 1234
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1235 1236
	mutex_lock(&intel_pstate_driver_lock);

1237
	if (!intel_pstate_driver) {
1238 1239 1240 1241
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1242 1243
	mutex_lock(&intel_pstate_limits_lock);

1244
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1245

1246 1247
	mutex_unlock(&intel_pstate_limits_lock);

1248 1249 1250
	if (intel_pstate_driver == &intel_pstate)
		intel_pstate_update_policies();
	else
1251
		update_qos_request(FREQ_QOS_MAX);
1252

1253 1254
	mutex_unlock(&intel_pstate_driver_lock);

1255 1256 1257
	return count;
}

1258
static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1259
				  const char *buf, size_t count)
1260 1261 1262
{
	unsigned int input;
	int ret;
1263

1264 1265 1266
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1267

1268 1269
	mutex_lock(&intel_pstate_driver_lock);

1270
	if (!intel_pstate_driver) {
1271 1272 1273 1274
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1275 1276
	mutex_lock(&intel_pstate_limits_lock);

1277 1278
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1279

1280 1281
	mutex_unlock(&intel_pstate_limits_lock);

1282 1283 1284
	if (intel_pstate_driver == &intel_pstate)
		intel_pstate_update_policies();
	else
1285
		update_qos_request(FREQ_QOS_MIN);
1286

1287 1288
	mutex_unlock(&intel_pstate_driver_lock);

1289 1290 1291
	return count;
}

1292
static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1293
				struct kobj_attribute *attr, char *buf)
1294 1295 1296 1297
{
	return sprintf(buf, "%u\n", hwp_boost);
}

1298 1299
static ssize_t store_hwp_dynamic_boost(struct kobject *a,
				       struct kobj_attribute *b,
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
				       const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = kstrtouint(buf, 10, &input);
	if (ret)
		return ret;

	mutex_lock(&intel_pstate_driver_lock);
	hwp_boost = !!input;
	intel_pstate_update_policies();
	mutex_unlock(&intel_pstate_driver_lock);

	return count;
}

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
				      char *buf)
{
	u64 power_ctl;
	int enable;

	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
	return sprintf(buf, "%d\n", !enable);
}

static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
				       const char *buf, size_t count)
{
	bool input;
	int ret;

	ret = kstrtobool(buf, &input);
	if (ret)
		return ret;

	set_power_ctl_ee_state(input);

	return count;
}

1343 1344 1345
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1346
define_one_global_rw(status);
1347 1348 1349
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1350
define_one_global_ro(turbo_pct);
1351
define_one_global_ro(num_pstates);
1352
define_one_global_rw(hwp_dynamic_boost);
1353
define_one_global_rw(energy_efficiency);
1354 1355

static struct attribute *intel_pstate_attributes[] = {
1356
	&status.attr,
1357
	&no_turbo.attr,
1358
	&turbo_pct.attr,
1359
	&num_pstates.attr,
1360 1361 1362
	NULL
};

1363
static const struct attribute_group intel_pstate_attr_group = {
1364 1365 1366
	.attrs = intel_pstate_attributes,
};

1367 1368
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];

1369 1370
static struct kobject *intel_pstate_kobject;

1371
static void __init intel_pstate_sysfs_expose_params(void)
1372 1373 1374 1375 1376
{
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1377 1378 1379
	if (WARN_ON(!intel_pstate_kobject))
		return;

1380
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1397 1398 1399 1400
	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
		WARN_ON(rc);
	}
1401
}
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421

static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
{
	int rc;

	if (!hwp_active)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
	WARN_ON_ONCE(rc);
}

static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
{
	if (!hwp_active)
		return;

	sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
}

1422
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1423

1424
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1425
{
1426
	/* First disable HWP notification interrupt as we don't process them */
1427
	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1428
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1429

1430
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1431
	cpudata->epp_policy = 0;
1432 1433
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1434 1435
}

1436
static int atom_get_min_pstate(void)
1437 1438
{
	u64 value;
1439

1440
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1441
	return (value >> 8) & 0x7F;
1442 1443
}

1444
static int atom_get_max_pstate(void)
1445 1446
{
	u64 value;
1447

1448
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1449
	return (value >> 16) & 0x7F;
1450
}
1451

1452
static int atom_get_turbo_pstate(void)
1453 1454
{
	u64 value;
1455

1456
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1457
	return value & 0x7F;
1458 1459
}

1460
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1461 1462 1463 1464 1465
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1466
	val = (u64)pstate << 8;
1467
	if (global.no_turbo && !global.turbo_disabled)
1468 1469 1470 1471 1472 1473 1474
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1475
	vid = ceiling_fp(vid_fp);
1476

1477 1478 1479
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1480
	return val | vid;
1481 1482
}

1483
static int silvermont_get_scaling(void)
1484 1485 1486
{
	u64 value;
	int i;
1487 1488 1489
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1490 1491

	rdmsrl(MSR_FSB_FREQ, value);
1492 1493
	i = value & 0x7;
	WARN_ON(i > 4);
1494

1495 1496
	return silvermont_freq_table[i];
}
1497

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1512 1513
}

1514
static void atom_get_vid(struct cpudata *cpudata)
1515 1516 1517
{
	u64 value;

1518
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1519 1520
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1521 1522 1523 1524
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1525

1526
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1527
	cpudata->vid.turbo = value & 0x7f;
1528 1529
}

1530
static int core_get_min_pstate(void)
1531 1532
{
	u64 value;
1533

1534
	rdmsrl(MSR_PLATFORM_INFO, value);
1535 1536 1537
	return (value >> 40) & 0xFF;
}

1538
static int core_get_max_pstate_physical(void)
1539 1540
{
	u64 value;
1541

1542
	rdmsrl(MSR_PLATFORM_INFO, value);
1543 1544 1545
	return (value >> 8) & 0xFF;
}

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1579
static int core_get_max_pstate(void)
1580
{
1581 1582 1583
	u64 tar;
	u64 plat_info;
	int max_pstate;
1584
	int tdp_ratio;
1585 1586 1587 1588 1589
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1590 1591 1592 1593 1594 1595 1596 1597 1598
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1599 1600
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1601 1602
		int tar_levels;

1603
		/* Do some sanity checking for safety */
1604 1605 1606 1607
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1608 1609
		}
	}
1610

1611
	return max_pstate;
1612 1613
}

1614
static int core_get_turbo_pstate(void)
1615 1616 1617
{
	u64 value;
	int nont, ret;
1618

1619
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1620
	nont = core_get_max_pstate();
1621
	ret = (value) & 255;
1622 1623 1624 1625 1626
	if (ret <= nont)
		ret = nont;
	return ret;
}

1627 1628 1629 1630 1631
static inline int core_get_scaling(void)
{
	return 100000;
}

1632
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1633 1634 1635
{
	u64 val;

1636
	val = (u64)pstate << 8;
1637
	if (global.no_turbo && !global.turbo_disabled)
1638 1639
		val |= (u64)1 << 32;

1640
	return val;
1641 1642
}

1643 1644 1645 1646 1647
static int knl_get_aperf_mperf_shift(void)
{
	return 10;
}

1648 1649 1650 1651 1652
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1653
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1654 1655 1656 1657 1658 1659 1660
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1661
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1662
{
1663 1664
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1665 1666 1667 1668 1669 1670 1671
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1672 1673
}

1674 1675 1676 1677 1678 1679 1680
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1681
	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1682 1683

	update_turbo_state();
1684
	intel_pstate_set_pstate(cpu, pstate);
1685 1686
}

1687 1688
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1689 1690
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1691
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1692
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1693
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1694
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1695 1696 1697 1698 1699 1700

	if (hwp_active && !hwp_mode_bdw) {
		unsigned int phy_max, current_max;

		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1701
		cpu->pstate.turbo_pstate = phy_max;
1702 1703 1704
	} else {
		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
	}
1705

1706 1707 1708
	if (pstate_funcs.get_aperf_mperf_shift)
		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();

1709 1710
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1711 1712

	intel_pstate_set_min_pstate(cpu);
1713 1714
}

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
/*
 * Long hold time will keep high perf limits for long time,
 * which negatively impacts perf/watt for some workloads,
 * like specpower. 3ms is based on experiements on some
 * workoads.
 */
static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;

static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
{
	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
	u32 max_limit = (hwp_req & 0xff00) >> 8;
	u32 min_limit = (hwp_req & 0xff);
	u32 boost_level1;

	/*
	 * Cases to consider (User changes via sysfs or boot time):
	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
	 *	No boost, return.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
	 *     Should result in one level boost only for P0.
	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
	 *     Should result in two level boost:
	 *         (min + p1)/2 and P1.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
	 *     Should result in three level boost:
	 *        (min + p1)/2, P1 and P0.
	 */

	/* If max and min are equal or already at max, nothing to boost */
	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
		return;

	if (!cpu->hwp_boost_min)
		cpu->hwp_boost_min = min_limit;

	/* level at half way mark between min and guranteed */
	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;

	if (cpu->hwp_boost_min < boost_level1)
		cpu->hwp_boost_min = boost_level1;
	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = max_limit;
	else
		return;

	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
	wrmsrl(MSR_HWP_REQUEST, hwp_req);
	cpu->last_update = cpu->sample.time;
}

static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
{
	if (cpu->hwp_boost_min) {
		bool expired;

		/* Check if we are idle for hold time to boost down */
		expired = time_after64(cpu->sample.time, cpu->last_update +
				       hwp_boost_hold_time_ns);
		if (expired) {
			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
			cpu->hwp_boost_min = 0;
		}
	}
	cpu->last_update = cpu->sample.time;
}

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
						      u64 time)
{
	cpu->sample.time = time;

	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
		bool do_io = false;

		cpu->sched_flags = 0;
		/*
		 * Set iowait_boost flag and update time. Since IO WAIT flag
		 * is set all the time, we can't just conclude that there is
		 * some IO bound activity is scheduled on this CPU with just
		 * one occurrence. If we receive at least two in two
		 * consecutive ticks, then we treat as boost candidate.
		 */
		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
			do_io = true;

		cpu->last_io_update = time;

		if (do_io)
			intel_pstate_hwp_boost_up(cpu);

	} else {
		intel_pstate_hwp_boost_down(cpu);
	}
}

1814 1815 1816
static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
						u64 time, unsigned int flags)
{
1817 1818 1819 1820 1821 1822
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);

	cpu->sched_flags |= flags;

	if (smp_processor_id() == cpu->cpu)
		intel_pstate_update_util_hwp_local(cpu, time);
1823 1824
}

1825
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1826
{
1827
	struct sample *sample = &cpu->sample;
1828

1829
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1830 1831
}

1832
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1833 1834
{
	u64 aperf, mperf;
1835
	unsigned long flags;
1836
	u64 tsc;
1837

1838
	local_irq_save(flags);
1839 1840
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1841
	tsc = rdtsc();
1842
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1843
		local_irq_restore(flags);
1844
		return false;
1845
	}
1846
	local_irq_restore(flags);
1847

1848
	cpu->last_sample_time = cpu->sample.time;
1849
	cpu->sample.time = time;
1850 1851
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1852
	cpu->sample.tsc =  tsc;
1853 1854
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1855
	cpu->sample.tsc -= cpu->prev_tsc;
1856

1857 1858
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1859
	cpu->prev_tsc = tsc;
1860 1861 1862 1863 1864 1865 1866
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1867 1868 1869 1870 1871
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1872 1873
}

1874 1875
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1876
	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1877 1878
}

1879 1880
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1881 1882
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1883 1884
}

1885
static inline int32_t get_target_pstate(struct cpudata *cpu)
1886 1887
{
	struct sample *sample = &cpu->sample;
1888
	int32_t busy_frac;
1889
	int target, avg_pstate;
1890

1891 1892
	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
			   sample->tsc);
1893

1894 1895
	if (busy_frac < cpu->iowait_boost)
		busy_frac = cpu->iowait_boost;
1896

1897
	sample->busy_scaled = busy_frac * 100;
1898

1899
	target = global.no_turbo || global.turbo_disabled ?
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1918 1919
}

1920
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1921
{
1922 1923
	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1924

1925
	return clamp_t(int, pstate, min_pstate, max_pstate);
1926 1927 1928 1929
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1930 1931 1932
	if (pstate == cpu->pstate.current_pstate)
		return;

1933
	cpu->pstate.current_pstate = pstate;
1934 1935 1936
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1937
static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1938
{
1939
	int from = cpu->pstate.current_pstate;
1940
	struct sample *sample;
1941
	int target_pstate;
1942

1943 1944
	update_turbo_state();

1945
	target_pstate = get_target_pstate(cpu);
1946 1947
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1948
	intel_pstate_update_pstate(cpu, target_pstate);
1949 1950

	sample = &cpu->sample;
1951
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1952
		fp_toint(sample->busy_scaled),
1953 1954 1955 1956 1957
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1958 1959
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1960 1961
}

1962
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1963
				     unsigned int flags)
1964
{
1965
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1966 1967
	u64 delta_ns;

1968 1969 1970 1971
	/* Don't allow remote callbacks */
	if (smp_processor_id() != cpu->cpu)
		return;

1972
	delta_ns = time - cpu->last_update;
1973
	if (flags & SCHED_CPUFREQ_IOWAIT) {
1974 1975 1976
		/* Start over if the CPU may have been idle. */
		if (delta_ns > TICK_NSEC) {
			cpu->iowait_boost = ONE_EIGHTH_FP;
1977
		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1978 1979 1980 1981 1982 1983
			cpu->iowait_boost <<= 1;
			if (cpu->iowait_boost > int_tofp(1))
				cpu->iowait_boost = int_tofp(1);
		} else {
			cpu->iowait_boost = ONE_EIGHTH_FP;
		}
1984 1985 1986 1987
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1988 1989
		else
			cpu->iowait_boost >>= 1;
1990
	}
1991
	cpu->last_update = time;
1992
	delta_ns = time - cpu->sample.time;
1993
	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1994
		return;
1995

1996 1997
	if (intel_pstate_sample(cpu, time))
		intel_pstate_adjust_pstate(cpu);
1998
}
1999

2000 2001 2002 2003 2004 2005 2006
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
2007 2008
};

2009 2010 2011 2012 2013 2014 2015 2016
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
2017 2018
};

2019 2020 2021 2022 2023 2024 2025 2026
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
2027 2028
};

2029 2030 2031 2032 2033
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
2034
	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2035 2036
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
2037 2038
};

2039 2040 2041
#define X86_MATCH(model, policy)					 \
	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
					   X86_FEATURE_APERFMPERF, &policy)
2042 2043

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	X86_MATCH(SANDYBRIDGE,		core_funcs),
	X86_MATCH(SANDYBRIDGE_X,	core_funcs),
	X86_MATCH(ATOM_SILVERMONT,	silvermont_funcs),
	X86_MATCH(IVYBRIDGE,		core_funcs),
	X86_MATCH(HASWELL,		core_funcs),
	X86_MATCH(BROADWELL,		core_funcs),
	X86_MATCH(IVYBRIDGE_X,		core_funcs),
	X86_MATCH(HASWELL_X,		core_funcs),
	X86_MATCH(HASWELL_L,		core_funcs),
	X86_MATCH(HASWELL_G,		core_funcs),
	X86_MATCH(BROADWELL_G,		core_funcs),
	X86_MATCH(ATOM_AIRMONT,		airmont_funcs),
	X86_MATCH(SKYLAKE_L,		core_funcs),
	X86_MATCH(BROADWELL_X,		core_funcs),
	X86_MATCH(SKYLAKE,		core_funcs),
	X86_MATCH(BROADWELL_D,		core_funcs),
	X86_MATCH(XEON_PHI_KNL,		knl_funcs),
	X86_MATCH(XEON_PHI_KNM,		knl_funcs),
	X86_MATCH(ATOM_GOLDMONT,	core_funcs),
	X86_MATCH(ATOM_GOLDMONT_PLUS,	core_funcs),
	X86_MATCH(SKYLAKE_X,		core_funcs),
2065 2066 2067 2068
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

2069
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2070 2071 2072
	X86_MATCH(BROADWELL_D,		core_funcs),
	X86_MATCH(BROADWELL_X,		core_funcs),
	X86_MATCH(SKYLAKE_X,		core_funcs),
D
Dirk Brandewie 已提交
2073 2074 2075
	{}
};

2076
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2077
	X86_MATCH(KABYLAKE,		core_funcs),
2078 2079 2080
	{}
};

2081
static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2082 2083
	X86_MATCH(SKYLAKE_X,		core_funcs),
	X86_MATCH(SKYLAKE,		core_funcs),
2084 2085 2086
	{}
};

2087 2088 2089 2090
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

2091 2092 2093
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
2094
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2095 2096 2097 2098 2099
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

2100 2101 2102
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
2103
	}
2104 2105 2106 2107

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
2108

2109
	if (hwp_active) {
2110 2111
		const struct x86_cpu_id *id;

2112
		intel_pstate_hwp_enable(cpu);
2113 2114

		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2115
		if (id && intel_pstate_acpi_pm_profile_server())
2116
			hwp_boost = true;
2117
	}
2118

2119
	intel_pstate_get_cpu_pstates(cpu);
2120

J
Joe Perches 已提交
2121
	pr_debug("controlling: cpu %d\n", cpunum);
2122 2123 2124 2125

	return 0;
}

2126
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2127
{
2128 2129
	struct cpudata *cpu = all_cpu_data[cpu_num];

2130
	if (hwp_active && !hwp_boost)
2131 2132
		return;

2133 2134 2135
	if (cpu->update_util_set)
		return;

2136 2137
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
2138
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2139 2140 2141
				     (hwp_active ?
				      intel_pstate_update_util_hwp :
				      intel_pstate_update_util));
2142
	cpu->update_util_set = true;
2143 2144 2145 2146
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
2147 2148 2149 2150 2151
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

2152
	cpufreq_remove_update_util_hook(cpu);
2153
	cpu_data->update_util_set = false;
2154
	synchronize_rcu();
2155 2156
}

2157 2158 2159 2160 2161 2162
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

2163 2164 2165
static void intel_pstate_update_perf_limits(struct cpudata *cpu,
					    unsigned int policy_min,
					    unsigned int policy_max)
2166
{
2167
	int max_freq = intel_pstate_get_max_freq(cpu);
2168
	int32_t max_policy_perf, min_policy_perf;
2169
	int max_state, turbo_max;
2170

2171 2172 2173 2174 2175 2176 2177 2178
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
2179 2180
		max_state = global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2181 2182 2183
		turbo_max = cpu->pstate.turbo_pstate;
	}

2184 2185
	max_policy_perf = max_state * policy_max / max_freq;
	if (policy_max == policy_min) {
2186
		min_policy_perf = max_policy_perf;
2187
	} else {
2188
		min_policy_perf = max_state * policy_min / max_freq;
2189 2190
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
2191
	}
2192

2193
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2194
		 cpu->cpu, max_state, min_policy_perf, max_policy_perf);
2195

2196
	/* Normalize user input to [min_perf, max_perf] */
2197
	if (per_cpu_limits) {
2198 2199
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
2200 2201 2202 2203
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
2204 2205
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2206
		global_min = clamp_t(int32_t, global_min, 0, global_max);
2207

2208
		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2209
			 global_min, global_max);
2210

2211 2212 2213 2214
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2215

2216 2217 2218
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
2219

2220
	}
2221
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2222 2223
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
2224 2225
}

2226 2227
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2228 2229
	struct cpudata *cpu;

2230 2231 2232
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2233 2234 2235
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2236
	cpu = all_cpu_data[policy->cpu];
2237 2238
	cpu->policy = policy->policy;

2239 2240
	mutex_lock(&intel_pstate_limits_lock);

2241
	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2242

2243
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2244 2245 2246 2247 2248 2249
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
2250 2251
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
2252 2253
	}

2254 2255 2256 2257 2258 2259 2260 2261
	if (hwp_active) {
		/*
		 * When hwp_boost was active before and dynamically it
		 * was turned off, in that case we need to clear the
		 * update util hook.
		 */
		if (!hwp_boost)
			intel_pstate_clear_update_util_hook(policy->cpu);
2262
		intel_pstate_hwp_set(policy->cpu);
2263
	}
D
Dirk Brandewie 已提交
2264

2265 2266
	mutex_unlock(&intel_pstate_limits_lock);

2267 2268 2269
	return 0;
}

2270 2271
static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
					   struct cpufreq_policy_data *policy)
2272
{
2273 2274
	if (!hwp_active &&
	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2275 2276 2277 2278 2279 2280 2281
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2282 2283
static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
					   struct cpufreq_policy_data *policy)
2284
{
2285
	update_turbo_state();
2286 2287
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2288

2289
	intel_pstate_adjust_policy_max(cpu, policy);
2290 2291 2292 2293 2294
}

static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
{
	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2295

2296 2297 2298
	return 0;
}

2299 2300
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
2301 2302 2303 2304
	if (hwp_active)
		intel_pstate_hwp_force_min_perf(policy->cpu);
	else
		intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2305 2306
}

2307
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2308
{
2309
	pr_debug("CPU %d exiting\n", policy->cpu);
2310

2311
	intel_pstate_clear_update_util_hook(policy->cpu);
2312
	if (hwp_active)
2313
		intel_pstate_hwp_save_state(policy);
2314 2315

	intel_cpufreq_stop_cpu(policy);
2316
}
2317

2318 2319 2320
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2321

2322
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2323

2324
	return 0;
2325 2326
}

2327
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2328 2329
{
	struct cpudata *cpu;
2330
	int rc;
2331 2332 2333 2334 2335 2336 2337

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2338 2339
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
2340

2341 2342
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2343 2344

	/* cpuinfo and default policy values */
2345
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2346
	update_turbo_state();
2347
	global.turbo_disabled_mf = global.turbo_disabled;
2348
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2349 2350 2351
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2352 2353 2354 2355 2356 2357 2358 2359 2360
	if (hwp_active) {
		unsigned int max_freq;

		max_freq = global.turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
		if (max_freq < policy->cpuinfo.max_freq)
			policy->cpuinfo.max_freq = max_freq;
	}

2361
	intel_pstate_init_acpi_perf_limits(policy);
2362

2363 2364
	policy->fast_switch_possible = true;

2365 2366 2367
	return 0;
}

2368
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2369
{
2370 2371 2372 2373 2374
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

2375 2376 2377 2378 2379
	/*
	 * Set the policy to powersave to provide a valid fallback value in case
	 * the default cpufreq governor is neither powersave nor performance.
	 */
	policy->policy = CPUFREQ_POLICY_POWERSAVE;
2380 2381 2382 2383

	return 0;
}

2384
static struct cpufreq_driver intel_pstate = {
2385 2386 2387
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2388
	.suspend	= intel_pstate_hwp_save_state,
2389
	.resume		= intel_pstate_resume,
2390
	.init		= intel_pstate_cpu_init,
2391
	.exit		= intel_pstate_cpu_exit,
2392
	.stop_cpu	= intel_pstate_stop_cpu,
2393
	.update_limits	= intel_pstate_update_limits,
2394 2395 2396
	.name		= "intel_pstate",
};

2397
static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2398 2399 2400
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

2401
	intel_pstate_verify_cpu_policy(cpu, policy);
2402
	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2403

2404 2405 2406
	return 0;
}

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
/* Use of trace in passive mode:
 *
 * In passive mode the trace core_busy field (also known as the
 * performance field, and lablelled as such on the graphs; also known as
 * core_avg_perf) is not needed and so is re-assigned to indicate if the
 * driver call was via the normal or fast switch path. Various graphs
 * output from the intel_pstate_tracer.py utility that include core_busy
 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
 * so we use 10 to indicate the the normal path through the driver, and
 * 90 to indicate the fast switch path through the driver.
 * The scaled_busy field is not used, and is set to 0.
 */

#define	INTEL_PSTATE_TRACE_TARGET 10
#define	INTEL_PSTATE_TRACE_FAST_SWITCH 90

static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
{
	struct sample *sample;

	if (!trace_pstate_sample_enabled())
		return;

	if (!intel_pstate_sample(cpu, ktime_get()))
		return;

	sample = &cpu->sample;
	trace_pstate_sample(trace_type,
		0,
		old_pstate,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
}

2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
static void intel_cpufreq_adjust_hwp(struct cpudata *cpu, u32 target_pstate,
				     bool fast_switch)
{
	u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;

	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(target_pstate);

	/*
	 * The entire MSR needs to be updated in order to update the HWP min
	 * field in it, so opportunistically update the max too if needed.
	 */
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(cpu->max_perf_ratio);

	if (value == prev)
		return;

	WRITE_ONCE(cpu->hwp_req_cached, value);
	if (fast_switch)
		wrmsrl(MSR_HWP_REQUEST, value);
	else
		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
}

static void intel_cpufreq_adjust_perf_ctl(struct cpudata *cpu,
					  u32 target_pstate, bool fast_switch)
{
	if (fast_switch)
		wrmsrl(MSR_IA32_PERF_CTL,
		       pstate_funcs.get_val(cpu, target_pstate));
	else
		wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
}

static int intel_cpufreq_update_pstate(struct cpudata *cpu, int target_pstate,
				       bool fast_switch)
{
	int old_pstate = cpu->pstate.current_pstate;

	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != old_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		if (hwp_active)
			intel_cpufreq_adjust_hwp(cpu, target_pstate,
						 fast_switch);
		else
			intel_cpufreq_adjust_perf_ctl(cpu, target_pstate,
						      fast_switch);
	}

	intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
			    INTEL_PSTATE_TRACE_TARGET, old_pstate);

	return target_pstate;
}

2503 2504 2505 2506 2507 2508
static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
2509
	int target_pstate;
2510

2511 2512
	update_turbo_state();

2513
	freqs.old = policy->cur;
2514
	freqs.new = target_freq;
2515 2516

	cpufreq_freq_transition_begin(policy, &freqs);
2517

2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
2529 2530 2531

	target_pstate = intel_cpufreq_update_pstate(cpu, target_pstate, false);

2532
	freqs.new = target_pstate * cpu->pstate.scaling;
2533

2534 2535 2536 2537 2538 2539 2540 2541 2542
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
2543
	int target_pstate;
2544

2545 2546
	update_turbo_state();

2547
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2548 2549 2550

	target_pstate = intel_cpufreq_update_pstate(cpu, target_pstate, true);

2551
	return target_pstate * cpu->pstate.scaling;
2552 2553 2554 2555
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
2556
	int max_state, turbo_max, min_freq, max_freq, ret;
2557
	struct freq_qos_request *req;
2558 2559 2560 2561 2562 2563
	struct cpudata *cpu;
	struct device *dev;

	dev = get_cpu_device(policy->cpu);
	if (!dev)
		return -ENODEV;
2564

2565
	ret = __intel_pstate_cpu_init(policy);
2566 2567 2568 2569 2570 2571 2572
	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

2573 2574 2575 2576 2577 2578 2579 2580
	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
	if (!req) {
		ret = -ENOMEM;
		goto pstate_exit;
	}

	cpu = all_cpu_data[policy->cpu];

2581 2582 2583
	if (hwp_active) {
		u64 value;

2584
		intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
2585 2586 2587 2588 2589
		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
		rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
		WRITE_ONCE(cpu->hwp_req_cached, value);
		cpu->epp_cached = (value & GENMASK_ULL(31, 24)) >> 24;
	} else {
2590
		turbo_max = cpu->pstate.turbo_pstate;
2591 2592
		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
	}
2593 2594 2595 2596 2597 2598

	min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
	min_freq *= cpu->pstate.scaling;
	max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
	max_freq *= cpu->pstate.scaling;

2599 2600
	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
				   min_freq);
2601 2602 2603 2604 2605
	if (ret < 0) {
		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
		goto free_req;
	}

2606 2607
	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
				   max_freq);
2608 2609 2610 2611 2612 2613 2614
	if (ret < 0) {
		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
		goto remove_min_req;
	}

	policy->driver_data = req;

2615
	return 0;
2616 2617

remove_min_req:
2618
	freq_qos_remove_request(req);
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
free_req:
	kfree(req);
pstate_exit:
	intel_pstate_exit_perf_limits(policy);

	return ret;
}

static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
{
2629
	struct freq_qos_request *req;
2630 2631 2632

	req = policy->driver_data;

2633 2634
	freq_qos_remove_request(req + 1);
	freq_qos_remove_request(req);
2635 2636 2637
	kfree(req);

	return intel_pstate_cpu_exit(policy);
2638 2639 2640 2641 2642 2643 2644 2645
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
2646
	.exit		= intel_cpufreq_cpu_exit,
2647
	.stop_cpu	= intel_cpufreq_stop_cpu,
2648
	.update_limits	= intel_pstate_update_limits,
2649 2650 2651
	.name		= "intel_cpufreq",
};

2652
static struct cpufreq_driver *default_driver;
2653

2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2669 2670 2671 2672

	if (intel_pstate_driver == &intel_pstate)
		intel_pstate_sysfs_hide_hwp_dynamic_boost();

2673
	intel_pstate_driver = NULL;
2674 2675
}

2676
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2677 2678 2679
{
	int ret;

2680 2681 2682
	if (driver == &intel_pstate)
		intel_pstate_sysfs_expose_hwp_dynamic_boost();

2683 2684
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2685

2686
	intel_pstate_driver = driver;
2687 2688 2689 2690 2691 2692
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2693 2694
	global.min_perf_pct = min_perf_pct_min();

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2708
	if (!intel_pstate_driver)
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

2719 2720 2721 2722 2723 2724 2725 2726 2727
	if (size == 3 && !strncmp(buf, "off", size)) {
		if (!intel_pstate_driver)
			return -EINVAL;

		if (hwp_active)
			return -EBUSY;

		return intel_pstate_unregister_driver();
	}
2728 2729

	if (size == 6 && !strncmp(buf, "active", size)) {
2730
		if (intel_pstate_driver) {
2731 2732 2733 2734 2735 2736 2737 2738
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2739
		return intel_pstate_register_driver(&intel_pstate);
2740 2741 2742
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2743
		if (intel_pstate_driver) {
2744
			if (intel_pstate_driver == &intel_cpufreq)
2745 2746 2747 2748 2749 2750 2751
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2752
		return intel_pstate_register_driver(&intel_cpufreq);
2753 2754 2755 2756 2757
	}

	return -EINVAL;
}

2758 2759 2760
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2761
static unsigned int force_load __initdata;
2762

2763
static int __init intel_pstate_msrs_not_valid(void)
2764
{
2765
	if (!pstate_funcs.get_max() ||
2766 2767
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2768 2769 2770 2771
		return -ENODEV;

	return 0;
}
2772

2773
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2774 2775
{
	pstate_funcs.get_max   = funcs->get_max;
2776
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2777 2778
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2779
	pstate_funcs.get_scaling = funcs->get_scaling;
2780
	pstate_funcs.get_val   = funcs->get_val;
2781
	pstate_funcs.get_vid   = funcs->get_vid;
2782
	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2783 2784
}

2785
#ifdef CONFIG_ACPI
2786

2787
static bool __init intel_pstate_no_acpi_pss(void)
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

2813
	pr_debug("ACPI _PSS not found\n");
2814 2815 2816
	return true;
}

2817 2818 2819 2820 2821 2822 2823
static bool __init intel_pstate_no_acpi_pcch(void)
{
	acpi_status status;
	acpi_handle handle;

	status = acpi_get_handle(NULL, "\\_SB", &handle);
	if (ACPI_FAILURE(status))
2824 2825 2826 2827
		goto not_found;

	if (acpi_has_method(handle, "PCCH"))
		return false;
2828

2829 2830 2831
not_found:
	pr_debug("ACPI PCCH not found\n");
	return true;
2832 2833
}

2834
static bool __init intel_pstate_has_acpi_ppc(void)
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
2846
	pr_debug("ACPI _PPC not found\n");
2847 2848 2849 2850 2851 2852 2853 2854
	return false;
}

enum {
	PSS,
	PPC,
};

2855
/* Hardware vendor-specific info that has its own power management modes */
2856
static struct acpi_platform_list plat_info[] __initdata = {
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2872
	{ } /* End */
2873 2874
};

2875 2876
#define BITMASK_OOB	(BIT(8) | BIT(18))

2877
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2878
{
D
Dirk Brandewie 已提交
2879 2880
	const struct x86_cpu_id *id;
	u64 misc_pwr;
2881
	int idx;
D
Dirk Brandewie 已提交
2882 2883 2884 2885

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2886 2887 2888
		if (misc_pwr & BITMASK_OOB) {
			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
D
Dirk Brandewie 已提交
2889
			return true;
2890
		}
D
Dirk Brandewie 已提交
2891
	}
2892

2893 2894
	idx = acpi_match_platform_list(plat_info);
	if (idx < 0)
2895 2896
		return false;

2897 2898
	switch (plat_info[idx].data) {
	case PSS:
2899 2900 2901 2902
		if (!intel_pstate_no_acpi_pss())
			return false;

		return intel_pstate_no_acpi_pcch();
2903 2904
	case PPC:
		return intel_pstate_has_acpi_ppc() && !force_load;
2905 2906 2907 2908
	}

	return false;
}
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2919 2920
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2921
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2922
static inline void intel_pstate_request_control_from_smm(void) {}
2923 2924
#endif /* CONFIG_ACPI */

2925 2926
#define INTEL_PSTATE_HWP_BROADWELL	0x01

2927 2928
#define X86_MATCH_HWP(model, hwp_mode)					\
	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2929
					   X86_FEATURE_HWP, hwp_mode)
2930

2931
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2932 2933 2934
	X86_MATCH_HWP(BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
	X86_MATCH_HWP(BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
	X86_MATCH_HWP(ANY,		0),
2935 2936 2937
	{}
};

2938 2939
static int __init intel_pstate_init(void)
{
2940
	const struct x86_cpu_id *id;
2941
	int rc;
2942

2943 2944 2945
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return -ENODEV;

2946 2947 2948
	if (no_load)
		return -ENODEV;

2949 2950
	id = x86_match_cpu(hwp_support_ids);
	if (id) {
2951
		copy_cpu_funcs(&core_funcs);
2952 2953 2954 2955 2956 2957
		/*
		 * Avoid enabling HWP for processors without EPP support,
		 * because that means incomplete HWP implementation which is a
		 * corner case and supporting it is generally problematic.
		 */
		if (!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) {
2958
			hwp_active++;
2959
			hwp_mode_bdw = id->driver_data;
2960
			intel_pstate.attr = hwp_cpufreq_attrs;
2961 2962 2963 2964
			intel_cpufreq.attr = hwp_cpufreq_attrs;
			if (!default_driver)
				default_driver = &intel_pstate;

2965 2966 2967 2968
			goto hwp_cpu_matched;
		}
	} else {
		id = x86_match_cpu(intel_pstate_cpu_ids);
2969
		if (!id) {
2970
			pr_info("CPU model not supported\n");
2971
			return -ENODEV;
2972
		}
2973

2974
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2975
	}
2976

2977 2978
	if (intel_pstate_msrs_not_valid()) {
		pr_info("Invalid MSRs\n");
2979
		return -ENODEV;
2980
	}
2981
	/* Without HWP start in the passive mode. */
2982 2983
	if (!default_driver)
		default_driver = &intel_cpufreq;
2984

2985 2986 2987 2988 2989
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
2990 2991
	if (intel_pstate_platform_pwr_mgmt_exists()) {
		pr_info("P-states controlled by the platform\n");
2992
		return -ENODEV;
2993
	}
2994

2995 2996 2997
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2998
	pr_info("Intel P-state driver initializing\n");
2999

3000
	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3001 3002 3003
	if (!all_cpu_data)
		return -ENOMEM;

3004 3005
	intel_pstate_request_control_from_smm();

3006
	intel_pstate_sysfs_expose_params();
3007

3008
	mutex_lock(&intel_pstate_driver_lock);
3009
	rc = intel_pstate_register_driver(default_driver);
3010
	mutex_unlock(&intel_pstate_driver_lock);
3011 3012
	if (rc)
		return rc;
3013

3014 3015 3016 3017 3018 3019 3020 3021 3022
	if (hwp_active) {
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id) {
			set_power_ctl_ee_state(false);
			pr_info("Disabling energy efficiency optimization\n");
		}

J
Joe Perches 已提交
3023
		pr_info("HWP enabled\n");
3024
	}
3025

3026
	return 0;
3027 3028 3029
}
device_initcall(intel_pstate_init);

3030 3031 3032 3033 3034
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

3035
	if (!strcmp(str, "disable"))
3036
		no_load = 1;
3037
	else if (!strcmp(str, "active"))
3038
		default_driver = &intel_pstate;
3039
	else if (!strcmp(str, "passive"))
3040
		default_driver = &intel_cpufreq;
3041

3042
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
3043
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
3044
		no_hwp = 1;
3045
	}
3046 3047
	if (!strcmp(str, "force"))
		force_load = 1;
3048 3049
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
3050 3051
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
3052 3053 3054 3055 3056 3057

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

3058 3059 3060 3061
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

3062 3063 3064
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");