vmalloc.c 91.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6
/*
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
C
Christoph Lameter 已提交
7
 *  Numa awareness, Christoph Lameter, SGI, June 2005
8
 *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
L
Linus Torvalds 已提交
9 10
 */

N
Nick Piggin 已提交
11
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
12 13 14
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
15
#include <linux/sched/signal.h>
L
Linus Torvalds 已提交
16 17 18
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
19
#include <linux/proc_fs.h>
20
#include <linux/seq_file.h>
21
#include <linux/set_memory.h>
22
#include <linux/debugobjects.h>
23
#include <linux/kallsyms.h>
N
Nick Piggin 已提交
24
#include <linux/list.h>
25
#include <linux/notifier.h>
N
Nick Piggin 已提交
26
#include <linux/rbtree.h>
27
#include <linux/xarray.h>
N
Nick Piggin 已提交
28
#include <linux/rcupdate.h>
29
#include <linux/pfn.h>
30
#include <linux/kmemleak.h>
A
Arun Sharma 已提交
31
#include <linux/atomic.h>
32
#include <linux/compiler.h>
33
#include <linux/llist.h>
34
#include <linux/bitops.h>
35
#include <linux/rbtree_augmented.h>
36
#include <linux/overflow.h>
37

38
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
39
#include <asm/tlbflush.h>
40
#include <asm/shmparam.h>
L
Linus Torvalds 已提交
41

42
#include "internal.h"
43
#include "pgalloc-track.h"
44

45 46 47 48 49 50 51 52
bool is_vmalloc_addr(const void *x)
{
	unsigned long addr = (unsigned long)x;

	return addr >= VMALLOC_START && addr < VMALLOC_END;
}
EXPORT_SYMBOL(is_vmalloc_addr);

53 54 55 56 57 58 59 60 61 62 63
struct vfree_deferred {
	struct llist_head list;
	struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);

static void __vunmap(const void *, int);

static void free_work(struct work_struct *w)
{
	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
64 65 66 67
	struct llist_node *t, *llnode;

	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
		__vunmap((void *)llnode, 1);
68 69
}

N
Nick Piggin 已提交
70
/*** Page table manipulation functions ***/
A
Adrian Bunk 已提交
71

72 73
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
74 75 76 77 78 79 80 81
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
82
	*mask |= PGTBL_PTE_MODIFIED;
L
Linus Torvalds 已提交
83 84
}

85 86
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
87 88 89
{
	pmd_t *pmd;
	unsigned long next;
90
	int cleared;
L
Linus Torvalds 已提交
91 92 93 94

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
95 96 97 98 99 100

		cleared = pmd_clear_huge(pmd);
		if (cleared || pmd_bad(*pmd))
			*mask |= PGTBL_PMD_MODIFIED;

		if (cleared)
101
			continue;
L
Linus Torvalds 已提交
102 103
		if (pmd_none_or_clear_bad(pmd))
			continue;
104
		vunmap_pte_range(pmd, addr, next, mask);
105 106

		cond_resched();
L
Linus Torvalds 已提交
107 108 109
	} while (pmd++, addr = next, addr != end);
}

110 111
static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
112 113 114
{
	pud_t *pud;
	unsigned long next;
115
	int cleared;
L
Linus Torvalds 已提交
116

117
	pud = pud_offset(p4d, addr);
L
Linus Torvalds 已提交
118 119
	do {
		next = pud_addr_end(addr, end);
120 121 122 123 124 125

		cleared = pud_clear_huge(pud);
		if (cleared || pud_bad(*pud))
			*mask |= PGTBL_PUD_MODIFIED;

		if (cleared)
126
			continue;
L
Linus Torvalds 已提交
127 128
		if (pud_none_or_clear_bad(pud))
			continue;
129
		vunmap_pmd_range(pud, addr, next, mask);
L
Linus Torvalds 已提交
130 131 132
	} while (pud++, addr = next, addr != end);
}

133 134
static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
135 136 137
{
	p4d_t *p4d;
	unsigned long next;
138
	int cleared;
139 140 141 142

	p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
143 144 145 146 147 148

		cleared = p4d_clear_huge(p4d);
		if (cleared || p4d_bad(*p4d))
			*mask |= PGTBL_P4D_MODIFIED;

		if (cleared)
149 150 151
			continue;
		if (p4d_none_or_clear_bad(p4d))
			continue;
152
		vunmap_pud_range(p4d, addr, next, mask);
153 154 155
	} while (p4d++, addr = next, addr != end);
}

156 157
/**
 * unmap_kernel_range_noflush - unmap kernel VM area
158
 * @start: start of the VM area to unmap
159 160 161 162 163 164 165 166 167 168
 * @size: size of the VM area to unmap
 *
 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify
 * should have been allocated using get_vm_area() and its friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is responsible
 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
 * function and flush_tlb_kernel_range() after.
 */
169
void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
L
Linus Torvalds 已提交
170
{
171
	unsigned long end = start + size;
L
Linus Torvalds 已提交
172
	unsigned long next;
173
	pgd_t *pgd;
174 175
	unsigned long addr = start;
	pgtbl_mod_mask mask = 0;
L
Linus Torvalds 已提交
176 177 178 179 180

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
181 182
		if (pgd_bad(*pgd))
			mask |= PGTBL_PGD_MODIFIED;
L
Linus Torvalds 已提交
183 184
		if (pgd_none_or_clear_bad(pgd))
			continue;
185
		vunmap_p4d_range(pgd, addr, next, &mask);
L
Linus Torvalds 已提交
186
	} while (pgd++, addr = next, addr != end);
187 188 189

	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
		arch_sync_kernel_mappings(start, end);
L
Linus Torvalds 已提交
190 191 192
}

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
193 194
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
195 196 197
{
	pte_t *pte;

N
Nick Piggin 已提交
198 199 200 201 202
	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

203
	pte = pte_alloc_kernel_track(pmd, addr, mask);
L
Linus Torvalds 已提交
204 205 206
	if (!pte)
		return -ENOMEM;
	do {
N
Nick Piggin 已提交
207 208 209 210 211
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
L
Linus Torvalds 已提交
212 213
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
N
Nick Piggin 已提交
214
		(*nr)++;
L
Linus Torvalds 已提交
215
	} while (pte++, addr += PAGE_SIZE, addr != end);
216
	*mask |= PGTBL_PTE_MODIFIED;
L
Linus Torvalds 已提交
217 218 219
	return 0;
}

N
Nick Piggin 已提交
220
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
221 222
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
223 224 225 226
{
	pmd_t *pmd;
	unsigned long next;

227
	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
L
Linus Torvalds 已提交
228 229 230 231
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
232
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
L
Linus Torvalds 已提交
233 234 235 236 237
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

238
static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
239 240
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
241 242 243 244
{
	pud_t *pud;
	unsigned long next;

245
	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
L
Linus Torvalds 已提交
246 247 248 249
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
250
		if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
L
Linus Torvalds 已提交
251 252 253 254 255
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

256
static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
257 258
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
259 260 261 262
{
	p4d_t *p4d;
	unsigned long next;

263
	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
264 265 266 267
	if (!p4d)
		return -ENOMEM;
	do {
		next = p4d_addr_end(addr, end);
268
		if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
269 270 271 272 273
			return -ENOMEM;
	} while (p4d++, addr = next, addr != end);
	return 0;
}

274 275 276 277 278 279
/**
 * map_kernel_range_noflush - map kernel VM area with the specified pages
 * @addr: start of the VM area to map
 * @size: size of the VM area to map
 * @prot: page protection flags to use
 * @pages: pages to map
N
Nick Piggin 已提交
280
 *
281 282 283 284 285 286 287 288 289
 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify should
 * have been allocated using get_vm_area() and its friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is responsible for
 * calling flush_cache_vmap() on to-be-mapped areas before calling this
 * function.
 *
 * RETURNS:
290
 * 0 on success, -errno on failure.
N
Nick Piggin 已提交
291
 */
292 293
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
			     pgprot_t prot, struct page **pages)
L
Linus Torvalds 已提交
294
{
295
	unsigned long start = addr;
296
	unsigned long end = addr + size;
L
Linus Torvalds 已提交
297
	unsigned long next;
298
	pgd_t *pgd;
N
Nick Piggin 已提交
299 300
	int err = 0;
	int nr = 0;
301
	pgtbl_mod_mask mask = 0;
L
Linus Torvalds 已提交
302 303 304 305 306

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
307 308 309
		if (pgd_bad(*pgd))
			mask |= PGTBL_PGD_MODIFIED;
		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
L
Linus Torvalds 已提交
310
		if (err)
311
			return err;
L
Linus Torvalds 已提交
312
	} while (pgd++, addr = next, addr != end);
N
Nick Piggin 已提交
313

314 315 316
	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
		arch_sync_kernel_mappings(start, end);

317
	return 0;
L
Linus Torvalds 已提交
318 319
}

C
Christoph Hellwig 已提交
320 321
int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
		struct page **pages)
322 323 324
{
	int ret;

325 326
	ret = map_kernel_range_noflush(start, size, prot, pages);
	flush_cache_vmap(start, start + size);
327 328 329
	return ret;
}

330
int is_vmalloc_or_module_addr(const void *x)
331 332
{
	/*
333
	 * ARM, x86-64 and sparc64 put modules in a special place,
334 335 336 337 338 339 340 341 342 343 344
	 * and fall back on vmalloc() if that fails. Others
	 * just put it in the vmalloc space.
	 */
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
	unsigned long addr = (unsigned long)x;
	if (addr >= MODULES_VADDR && addr < MODULES_END)
		return 1;
#endif
	return is_vmalloc_addr(x);
}

345
/*
346
 * Walk a vmap address to the struct page it maps.
347
 */
348
struct page *vmalloc_to_page(const void *vmalloc_addr)
349 350
{
	unsigned long addr = (unsigned long) vmalloc_addr;
351
	struct page *page = NULL;
352
	pgd_t *pgd = pgd_offset_k(addr);
353 354 355 356
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep, pte;
357

358 359 360 361
	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
362
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
J
Jiri Slaby 已提交
363

364 365 366 367 368 369
	if (pgd_none(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (p4d_none(*p4d))
		return NULL;
	pud = pud_offset(p4d, addr);
370 371 372 373 374 375 376 377 378 379 380

	/*
	 * Don't dereference bad PUD or PMD (below) entries. This will also
	 * identify huge mappings, which we may encounter on architectures
	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
	 * not [unambiguously] associated with a struct page, so there is
	 * no correct value to return for them.
	 */
	WARN_ON_ONCE(pud_bad(*pud));
	if (pud_none(*pud) || pud_bad(*pud))
381 382
		return NULL;
	pmd = pmd_offset(pud, addr);
383 384
	WARN_ON_ONCE(pmd_bad(*pmd));
	if (pmd_none(*pmd) || pmd_bad(*pmd))
385 386 387 388 389 390 391
		return NULL;

	ptep = pte_offset_map(pmd, addr);
	pte = *ptep;
	if (pte_present(pte))
		page = pte_page(pte);
	pte_unmap(ptep);
392
	return page;
393
}
394
EXPORT_SYMBOL(vmalloc_to_page);
395 396

/*
397
 * Map a vmalloc()-space virtual address to the physical page frame number.
398
 */
399
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
400
{
401
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
402
}
403
EXPORT_SYMBOL(vmalloc_to_pfn);
404

N
Nick Piggin 已提交
405 406 407

/*** Global kva allocator ***/

408
#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
409
#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
410

N
Nick Piggin 已提交
411 412

static DEFINE_SPINLOCK(vmap_area_lock);
413
static DEFINE_SPINLOCK(free_vmap_area_lock);
414 415
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
N
Nick Piggin 已提交
416
static struct rb_root vmap_area_root = RB_ROOT;
417
static bool vmap_initialized __read_mostly;
N
Nick Piggin 已提交
418

419 420 421 422
static struct rb_root purge_vmap_area_root = RB_ROOT;
static LIST_HEAD(purge_vmap_area_list);
static DEFINE_SPINLOCK(purge_vmap_area_lock);

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
/*
 * This kmem_cache is used for vmap_area objects. Instead of
 * allocating from slab we reuse an object from this cache to
 * make things faster. Especially in "no edge" splitting of
 * free block.
 */
static struct kmem_cache *vmap_area_cachep;

/*
 * This linked list is used in pair with free_vmap_area_root.
 * It gives O(1) access to prev/next to perform fast coalescing.
 */
static LIST_HEAD(free_vmap_area_list);

/*
 * This augment red-black tree represents the free vmap space.
 * All vmap_area objects in this tree are sorted by va->va_start
 * address. It is used for allocation and merging when a vmap
 * object is released.
 *
 * Each vmap_area node contains a maximum available free block
 * of its sub-tree, right or left. Therefore it is possible to
 * find a lowest match of free area.
 */
static struct rb_root free_vmap_area_root = RB_ROOT;

449 450 451 452 453 454 455
/*
 * Preload a CPU with one object for "no edge" split case. The
 * aim is to get rid of allocations from the atomic context, thus
 * to use more permissive allocation masks.
 */
static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);

456 457 458 459 460 461 462 463 464 465 466 467 468 469
static __always_inline unsigned long
va_size(struct vmap_area *va)
{
	return (va->va_end - va->va_start);
}

static __always_inline unsigned long
get_subtree_max_size(struct rb_node *node)
{
	struct vmap_area *va;

	va = rb_entry_safe(node, struct vmap_area, rb_node);
	return va ? va->subtree_max_size : 0;
}
N
Nick Piggin 已提交
470

471 472 473 474 475 476 477 478 479 480 481
/*
 * Gets called when remove the node and rotate.
 */
static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area *va)
{
	return max3(va_size(va),
		get_subtree_max_size(va->rb_node.rb_left),
		get_subtree_max_size(va->rb_node.rb_right));
}

482 483
RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
484 485 486 487

static void purge_vmap_area_lazy(void);
static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
static unsigned long lazy_max_pages(void);
N
Nick Piggin 已提交
488

489 490 491 492 493 494 495
static atomic_long_t nr_vmalloc_pages;

unsigned long vmalloc_nr_pages(void)
{
	return atomic_long_read(&nr_vmalloc_pages);
}

N
Nick Piggin 已提交
496
static struct vmap_area *__find_vmap_area(unsigned long addr)
L
Linus Torvalds 已提交
497
{
N
Nick Piggin 已提交
498 499 500 501 502 503 504 505
	struct rb_node *n = vmap_area_root.rb_node;

	while (n) {
		struct vmap_area *va;

		va = rb_entry(n, struct vmap_area, rb_node);
		if (addr < va->va_start)
			n = n->rb_left;
506
		else if (addr >= va->va_end)
N
Nick Piggin 已提交
507 508 509 510 511 512 513 514
			n = n->rb_right;
		else
			return va;
	}

	return NULL;
}

515 516 517
/*
 * This function returns back addresses of parent node
 * and its left or right link for further processing.
518 519 520 521
 *
 * Otherwise NULL is returned. In that case all further
 * steps regarding inserting of conflicting overlap range
 * have to be declined and actually considered as a bug.
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
 */
static __always_inline struct rb_node **
find_va_links(struct vmap_area *va,
	struct rb_root *root, struct rb_node *from,
	struct rb_node **parent)
{
	struct vmap_area *tmp_va;
	struct rb_node **link;

	if (root) {
		link = &root->rb_node;
		if (unlikely(!*link)) {
			*parent = NULL;
			return link;
		}
	} else {
		link = &from;
	}
N
Nick Piggin 已提交
540

541 542 543 544 545 546 547
	/*
	 * Go to the bottom of the tree. When we hit the last point
	 * we end up with parent rb_node and correct direction, i name
	 * it link, where the new va->rb_node will be attached to.
	 */
	do {
		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
N
Nick Piggin 已提交
548

549 550 551 552 553 554 555 556 557 558 559
		/*
		 * During the traversal we also do some sanity check.
		 * Trigger the BUG() if there are sides(left/right)
		 * or full overlaps.
		 */
		if (va->va_start < tmp_va->va_end &&
				va->va_end <= tmp_va->va_start)
			link = &(*link)->rb_left;
		else if (va->va_end > tmp_va->va_start &&
				va->va_start >= tmp_va->va_end)
			link = &(*link)->rb_right;
560 561 562 563 564 565
		else {
			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);

			return NULL;
		}
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
	} while (*link);

	*parent = &tmp_va->rb_node;
	return link;
}

static __always_inline struct list_head *
get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
{
	struct list_head *list;

	if (unlikely(!parent))
		/*
		 * The red-black tree where we try to find VA neighbors
		 * before merging or inserting is empty, i.e. it means
		 * there is no free vmap space. Normally it does not
		 * happen but we handle this case anyway.
		 */
		return NULL;

	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
	return (&parent->rb_right == link ? list->next : list);
}

static __always_inline void
link_va(struct vmap_area *va, struct rb_root *root,
	struct rb_node *parent, struct rb_node **link, struct list_head *head)
{
	/*
	 * VA is still not in the list, but we can
	 * identify its future previous list_head node.
	 */
	if (likely(parent)) {
		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
		if (&parent->rb_right != link)
			head = head->prev;
N
Nick Piggin 已提交
602 603
	}

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
	/* Insert to the rb-tree */
	rb_link_node(&va->rb_node, parent, link);
	if (root == &free_vmap_area_root) {
		/*
		 * Some explanation here. Just perform simple insertion
		 * to the tree. We do not set va->subtree_max_size to
		 * its current size before calling rb_insert_augmented().
		 * It is because of we populate the tree from the bottom
		 * to parent levels when the node _is_ in the tree.
		 *
		 * Therefore we set subtree_max_size to zero after insertion,
		 * to let __augment_tree_propagate_from() puts everything to
		 * the correct order later on.
		 */
		rb_insert_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
		va->subtree_max_size = 0;
	} else {
		rb_insert_color(&va->rb_node, root);
	}
N
Nick Piggin 已提交
624

625 626
	/* Address-sort this list */
	list_add(&va->list, head);
N
Nick Piggin 已提交
627 628
}

629 630 631
static __always_inline void
unlink_va(struct vmap_area *va, struct rb_root *root)
{
632 633
	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
		return;
N
Nick Piggin 已提交
634

635 636 637 638 639 640 641 642
	if (root == &free_vmap_area_root)
		rb_erase_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
	else
		rb_erase(&va->rb_node, root);

	list_del(&va->list);
	RB_CLEAR_NODE(&va->rb_node);
643 644
}

645 646
#if DEBUG_AUGMENT_PROPAGATE_CHECK
static void
647
augment_tree_propagate_check(void)
648 649
{
	struct vmap_area *va;
650
	unsigned long computed_size;
651

652 653 654 655 656
	list_for_each_entry(va, &free_vmap_area_list, list) {
		computed_size = compute_subtree_max_size(va);
		if (computed_size != va->subtree_max_size)
			pr_emerg("tree is corrupted: %lu, %lu\n",
				va_size(va), va->subtree_max_size);
657 658 659 660
	}
}
#endif

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
/*
 * This function populates subtree_max_size from bottom to upper
 * levels starting from VA point. The propagation must be done
 * when VA size is modified by changing its va_start/va_end. Or
 * in case of newly inserting of VA to the tree.
 *
 * It means that __augment_tree_propagate_from() must be called:
 * - After VA has been inserted to the tree(free path);
 * - After VA has been shrunk(allocation path);
 * - After VA has been increased(merging path).
 *
 * Please note that, it does not mean that upper parent nodes
 * and their subtree_max_size are recalculated all the time up
 * to the root node.
 *
 *       4--8
 *        /\
 *       /  \
 *      /    \
 *    2--2  8--8
 *
 * For example if we modify the node 4, shrinking it to 2, then
 * no any modification is required. If we shrink the node 2 to 1
 * its subtree_max_size is updated only, and set to 1. If we shrink
 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 * node becomes 4--6.
 */
static __always_inline void
augment_tree_propagate_from(struct vmap_area *va)
{
691 692 693 694 695 696
	/*
	 * Populate the tree from bottom towards the root until
	 * the calculated maximum available size of checked node
	 * is equal to its current one.
	 */
	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
697 698

#if DEBUG_AUGMENT_PROPAGATE_CHECK
699
	augment_tree_propagate_check();
700
#endif
701 702 703 704 705 706 707 708 709 710
}

static void
insert_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	link = find_va_links(va, root, NULL, &parent);
711 712
	if (link)
		link_va(va, root, parent, link, head);
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
}

static void
insert_vmap_area_augment(struct vmap_area *va,
	struct rb_node *from, struct rb_root *root,
	struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	if (from)
		link = find_va_links(va, NULL, from, &parent);
	else
		link = find_va_links(va, root, NULL, &parent);

728 729 730 731
	if (link) {
		link_va(va, root, parent, link, head);
		augment_tree_propagate_from(va);
	}
732 733 734 735 736 737 738
}

/*
 * Merge de-allocated chunk of VA memory with previous
 * and next free blocks. If coalesce is not done a new
 * free area is inserted. If VA has been merged, it is
 * freed.
739 740 741 742 743
 *
 * Please note, it can return NULL in case of overlap
 * ranges, followed by WARN() report. Despite it is a
 * buggy behaviour, a system can be alive and keep
 * ongoing.
744
 */
745
static __always_inline struct vmap_area *
746 747 748 749 750 751 752 753 754 755 756 757 758 759
merge_or_add_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct vmap_area *sibling;
	struct list_head *next;
	struct rb_node **link;
	struct rb_node *parent;
	bool merged = false;

	/*
	 * Find a place in the tree where VA potentially will be
	 * inserted, unless it is merged with its sibling/siblings.
	 */
	link = find_va_links(va, root, NULL, &parent);
760 761
	if (!link)
		return NULL;
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800

	/*
	 * Get next node of VA to check if merging can be done.
	 */
	next = get_va_next_sibling(parent, link);
	if (unlikely(next == NULL))
		goto insert;

	/*
	 * start            end
	 * |                |
	 * |<------VA------>|<-----Next----->|
	 *                  |                |
	 *                  start            end
	 */
	if (next != head) {
		sibling = list_entry(next, struct vmap_area, list);
		if (sibling->va_start == va->va_end) {
			sibling->va_start = va->va_start;

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
		}
	}

	/*
	 * start            end
	 * |                |
	 * |<-----Prev----->|<------VA------>|
	 *                  |                |
	 *                  start            end
	 */
	if (next->prev != head) {
		sibling = list_entry(next->prev, struct vmap_area, list);
		if (sibling->va_end == va->va_start) {
801 802 803 804 805 806 807
			/*
			 * If both neighbors are coalesced, it is important
			 * to unlink the "next" node first, followed by merging
			 * with "previous" one. Otherwise the tree might not be
			 * fully populated if a sibling's augmented value is
			 * "normalized" because of rotation operations.
			 */
808 809
			if (merged)
				unlink_va(va, root);
810

811 812
			sibling->va_end = va->va_end;

813 814
			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);
815 816 817 818

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
819 820 821 822
		}
	}

insert:
823
	if (!merged)
824
		link_va(va, root, parent, link, head);
825

826 827 828 829 830 831 832 833 834 835 836
	return va;
}

static __always_inline struct vmap_area *
merge_or_add_vmap_area_augment(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	va = merge_or_add_vmap_area(va, root, head);
	if (va)
		augment_tree_propagate_from(va);

837
	return va;
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
}

static __always_inline bool
is_within_this_va(struct vmap_area *va, unsigned long size,
	unsigned long align, unsigned long vstart)
{
	unsigned long nva_start_addr;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Can be overflowed due to big size or alignment. */
	if (nva_start_addr + size < nva_start_addr ||
			nva_start_addr < vstart)
		return false;

	return (nva_start_addr + size <= va->va_end);
}

/*
 * Find the first free block(lowest start address) in the tree,
 * that will accomplish the request corresponding to passing
 * parameters.
 */
static __always_inline struct vmap_area *
find_vmap_lowest_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long length;

	/* Start from the root. */
	node = free_vmap_area_root.rb_node;

	/* Adjust the search size for alignment overhead. */
	length = size + align - 1;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) >= length &&
				vstart < va->va_start) {
			node = node->rb_left;
		} else {
			if (is_within_this_va(va, size, align, vstart))
				return va;

			/*
			 * Does not make sense to go deeper towards the right
			 * sub-tree if it does not have a free block that is
			 * equal or bigger to the requested search length.
			 */
			if (get_subtree_max_size(node->rb_right) >= length) {
				node = node->rb_right;
				continue;
			}

			/*
899
			 * OK. We roll back and find the first right sub-tree,
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
			 * that will satisfy the search criteria. It can happen
			 * only once due to "vstart" restriction.
			 */
			while ((node = rb_parent(node))) {
				va = rb_entry(node, struct vmap_area, rb_node);
				if (is_within_this_va(va, size, align, vstart))
					return va;

				if (get_subtree_max_size(node->rb_right) >= length &&
						vstart <= va->va_start) {
					node = node->rb_right;
					break;
				}
			}
		}
	}

	return NULL;
}

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
#include <linux/random.h>

static struct vmap_area *
find_vmap_lowest_linear_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;

	list_for_each_entry(va, &free_vmap_area_list, list) {
		if (!is_within_this_va(va, size, align, vstart))
			continue;

		return va;
	}

	return NULL;
}

static void
find_vmap_lowest_match_check(unsigned long size)
{
	struct vmap_area *va_1, *va_2;
	unsigned long vstart;
	unsigned int rnd;

	get_random_bytes(&rnd, sizeof(rnd));
	vstart = VMALLOC_START + rnd;

	va_1 = find_vmap_lowest_match(size, 1, vstart);
	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);

	if (va_1 != va_2)
		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
			va_1, va_2, vstart);
}
#endif

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
enum fit_type {
	NOTHING_FIT = 0,
	FL_FIT_TYPE = 1,	/* full fit */
	LE_FIT_TYPE = 2,	/* left edge fit */
	RE_FIT_TYPE = 3,	/* right edge fit */
	NE_FIT_TYPE = 4		/* no edge fit */
};

static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size)
{
	enum fit_type type;

	/* Check if it is within VA. */
	if (nva_start_addr < va->va_start ||
			nva_start_addr + size > va->va_end)
		return NOTHING_FIT;

	/* Now classify. */
	if (va->va_start == nva_start_addr) {
		if (va->va_end == nva_start_addr + size)
			type = FL_FIT_TYPE;
		else
			type = LE_FIT_TYPE;
	} else if (va->va_end == nva_start_addr + size) {
		type = RE_FIT_TYPE;
	} else {
		type = NE_FIT_TYPE;
	}

	return type;
}

static __always_inline int
adjust_va_to_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size,
	enum fit_type type)
{
997
	struct vmap_area *lva = NULL;
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034

	if (type == FL_FIT_TYPE) {
		/*
		 * No need to split VA, it fully fits.
		 *
		 * |               |
		 * V      NVA      V
		 * |---------------|
		 */
		unlink_va(va, &free_vmap_area_root);
		kmem_cache_free(vmap_area_cachep, va);
	} else if (type == LE_FIT_TYPE) {
		/*
		 * Split left edge of fit VA.
		 *
		 * |       |
		 * V  NVA  V   R
		 * |-------|-------|
		 */
		va->va_start += size;
	} else if (type == RE_FIT_TYPE) {
		/*
		 * Split right edge of fit VA.
		 *
		 *         |       |
		 *     L   V  NVA  V
		 * |-------|-------|
		 */
		va->va_end = nva_start_addr;
	} else if (type == NE_FIT_TYPE) {
		/*
		 * Split no edge of fit VA.
		 *
		 *     |       |
		 *   L V  NVA  V R
		 * |---|-------|---|
		 */
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
		if (unlikely(!lva)) {
			/*
			 * For percpu allocator we do not do any pre-allocation
			 * and leave it as it is. The reason is it most likely
			 * never ends up with NE_FIT_TYPE splitting. In case of
			 * percpu allocations offsets and sizes are aligned to
			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
			 * are its main fitting cases.
			 *
			 * There are a few exceptions though, as an example it is
			 * a first allocation (early boot up) when we have "one"
			 * big free space that has to be split.
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
			 *
			 * Also we can hit this path in case of regular "vmap"
			 * allocations, if "this" current CPU was not preloaded.
			 * See the comment in alloc_vmap_area() why. If so, then
			 * GFP_NOWAIT is used instead to get an extra object for
			 * split purpose. That is rare and most time does not
			 * occur.
			 *
			 * What happens if an allocation gets failed. Basically,
			 * an "overflow" path is triggered to purge lazily freed
			 * areas to free some memory, then, the "retry" path is
			 * triggered to repeat one more time. See more details
			 * in alloc_vmap_area() function.
1061 1062 1063 1064 1065
			 */
			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
			if (!lva)
				return -1;
		}
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083

		/*
		 * Build the remainder.
		 */
		lva->va_start = va->va_start;
		lva->va_end = nva_start_addr;

		/*
		 * Shrink this VA to remaining size.
		 */
		va->va_start = nva_start_addr + size;
	} else {
		return -1;
	}

	if (type != FL_FIT_TYPE) {
		augment_tree_propagate_from(va);

1084
		if (lva)	/* type == NE_FIT_TYPE */
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
			insert_vmap_area_augment(lva, &va->rb_node,
				&free_vmap_area_root, &free_vmap_area_list);
	}

	return 0;
}

/*
 * Returns a start address of the newly allocated area, if success.
 * Otherwise a vend is returned that indicates failure.
 */
static __always_inline unsigned long
__alloc_vmap_area(unsigned long size, unsigned long align,
1098
	unsigned long vstart, unsigned long vend)
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
{
	unsigned long nva_start_addr;
	struct vmap_area *va;
	enum fit_type type;
	int ret;

	va = find_vmap_lowest_match(size, align, vstart);
	if (unlikely(!va))
		return vend;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Check the "vend" restriction. */
	if (nva_start_addr + size > vend)
		return vend;

	/* Classify what we have found. */
	type = classify_va_fit_type(va, nva_start_addr, size);
	if (WARN_ON_ONCE(type == NOTHING_FIT))
		return vend;

	/* Update the free vmap_area. */
	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
	if (ret)
		return vend;

1128 1129 1130 1131
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
	find_vmap_lowest_match_check(size);
#endif

1132 1133
	return nva_start_addr;
}
1134

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
/*
 * Free a region of KVA allocated by alloc_vmap_area
 */
static void free_vmap_area(struct vmap_area *va)
{
	/*
	 * Remove from the busy tree/list.
	 */
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

	/*
	 * Insert/Merge it back to the free tree/list.
	 */
	spin_lock(&free_vmap_area_lock);
1151
	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1152 1153 1154
	spin_unlock(&free_vmap_area_lock);
}

N
Nick Piggin 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163
/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
				int node, gfp_t gfp_mask)
{
1164
	struct vmap_area *va, *pva;
L
Linus Torvalds 已提交
1165
	unsigned long addr;
N
Nick Piggin 已提交
1166
	int purged = 0;
1167
	int ret;
N
Nick Piggin 已提交
1168

N
Nick Piggin 已提交
1169
	BUG_ON(!size);
1170
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1171
	BUG_ON(!is_power_of_2(align));
N
Nick Piggin 已提交
1172

1173 1174 1175
	if (unlikely(!vmap_initialized))
		return ERR_PTR(-EBUSY);

1176
	might_sleep();
1177
	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1178

1179
	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
N
Nick Piggin 已提交
1180 1181 1182
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

1183 1184 1185 1186
	/*
	 * Only scan the relevant parts containing pointers to other objects
	 * to avoid false negatives.
	 */
1187
	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1188

N
Nick Piggin 已提交
1189
retry:
1190
	/*
1191 1192 1193 1194 1195 1196
	 * Preload this CPU with one extra vmap_area object. It is used
	 * when fit type of free area is NE_FIT_TYPE. Please note, it
	 * does not guarantee that an allocation occurs on a CPU that
	 * is preloaded, instead we minimize the case when it is not.
	 * It can happen because of cpu migration, because there is a
	 * race until the below spinlock is taken.
1197 1198 1199
	 *
	 * The preload is done in non-atomic context, thus it allows us
	 * to use more permissive allocation masks to be more stable under
1200 1201
	 * low memory condition and high memory pressure. In rare case,
	 * if not preloaded, GFP_NOWAIT is used.
1202
	 *
1203
	 * Set "pva" to NULL here, because of "retry" path.
1204
	 */
1205
	pva = NULL;
1206

1207 1208 1209 1210 1211 1212
	if (!this_cpu_read(ne_fit_preload_node))
		/*
		 * Even if it fails we do not really care about that.
		 * Just proceed as it is. If needed "overflow" path
		 * will refill the cache we allocate from.
		 */
1213
		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1214

1215
	spin_lock(&free_vmap_area_lock);
1216 1217 1218

	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
		kmem_cache_free(vmap_area_cachep, pva);
N
Nick Piggin 已提交
1219

1220
	/*
1221 1222
	 * If an allocation fails, the "vend" address is
	 * returned. Therefore trigger the overflow path.
1223
	 */
1224
	addr = __alloc_vmap_area(size, align, vstart, vend);
1225 1226
	spin_unlock(&free_vmap_area_lock);

1227
	if (unlikely(addr == vend))
N
Nick Piggin 已提交
1228
		goto overflow;
N
Nick Piggin 已提交
1229 1230 1231

	va->va_start = addr;
	va->va_end = addr + size;
1232
	va->vm = NULL;
1233

1234

1235 1236
	spin_lock(&vmap_area_lock);
	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
N
Nick Piggin 已提交
1237 1238
	spin_unlock(&vmap_area_lock);

1239
	BUG_ON(!IS_ALIGNED(va->va_start, align));
N
Nick Piggin 已提交
1240 1241 1242
	BUG_ON(va->va_start < vstart);
	BUG_ON(va->va_end > vend);

1243 1244 1245 1246 1247 1248
	ret = kasan_populate_vmalloc(addr, size);
	if (ret) {
		free_vmap_area(va);
		return ERR_PTR(ret);
	}

N
Nick Piggin 已提交
1249
	return va;
N
Nick Piggin 已提交
1250 1251 1252 1253 1254 1255 1256

overflow:
	if (!purged) {
		purge_vmap_area_lazy();
		purged = 1;
		goto retry;
	}
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266

	if (gfpflags_allow_blocking(gfp_mask)) {
		unsigned long freed = 0;
		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
		if (freed > 0) {
			purged = 0;
			goto retry;
		}
	}

1267
	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
J
Joe Perches 已提交
1268 1269
		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
			size);
1270 1271

	kmem_cache_free(vmap_area_cachep, va);
N
Nick Piggin 已提交
1272
	return ERR_PTR(-EBUSY);
N
Nick Piggin 已提交
1273 1274
}

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
int register_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);

int unregister_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);

N
Nick Piggin 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
/*
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 * before attempting to purge with a TLB flush.
 *
 * There is a tradeoff here: a larger number will cover more kernel page tables
 * and take slightly longer to purge, but it will linearly reduce the number of
 * global TLB flushes that must be performed. It would seem natural to scale
 * this number up linearly with the number of CPUs (because vmapping activity
 * could also scale linearly with the number of CPUs), however it is likely
 * that in practice, workloads might be constrained in other ways that mean
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 * conservative and not introduce a big latency on huge systems, so go with
 * a less aggressive log scale. It will still be an improvement over the old
 * code, and it will be simple to change the scale factor if we find that it
 * becomes a problem on bigger systems.
 */
static unsigned long lazy_max_pages(void)
{
	unsigned int log;

	log = fls(num_online_cpus());

	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}

1312
static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
N
Nick Piggin 已提交
1313

1314 1315 1316 1317 1318
/*
 * Serialize vmap purging.  There is no actual criticial section protected
 * by this look, but we want to avoid concurrent calls for performance
 * reasons and to make the pcpu_get_vm_areas more deterministic.
 */
1319
static DEFINE_MUTEX(vmap_purge_lock);
1320

1321 1322 1323
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);

1324 1325 1326 1327 1328 1329
/*
 * called before a call to iounmap() if the caller wants vm_area_struct's
 * immediately freed.
 */
void set_iounmap_nonlazy(void)
{
1330
	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1331 1332
}

N
Nick Piggin 已提交
1333 1334 1335
/*
 * Purges all lazily-freed vmap areas.
 */
1336
static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
N
Nick Piggin 已提交
1337
{
1338
	unsigned long resched_threshold;
1339 1340
	struct list_head local_pure_list;
	struct vmap_area *va, *n_va;
N
Nick Piggin 已提交
1341

1342
	lockdep_assert_held(&vmap_purge_lock);
1343

1344 1345 1346 1347 1348 1349
	spin_lock(&purge_vmap_area_lock);
	purge_vmap_area_root = RB_ROOT;
	list_replace_init(&purge_vmap_area_list, &local_pure_list);
	spin_unlock(&purge_vmap_area_lock);

	if (unlikely(list_empty(&local_pure_list)))
1350 1351
		return false;

1352 1353 1354 1355 1356 1357 1358
	start = min(start,
		list_first_entry(&local_pure_list,
			struct vmap_area, list)->va_start);

	end = max(end,
		list_last_entry(&local_pure_list,
			struct vmap_area, list)->va_end);
N
Nick Piggin 已提交
1359

1360
	flush_tlb_kernel_range(start, end);
1361
	resched_threshold = lazy_max_pages() << 1;
N
Nick Piggin 已提交
1362

1363
	spin_lock(&free_vmap_area_lock);
1364
	list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
1365
		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1366 1367
		unsigned long orig_start = va->va_start;
		unsigned long orig_end = va->va_end;
1368

1369 1370 1371 1372 1373
		/*
		 * Finally insert or merge lazily-freed area. It is
		 * detached and there is no need to "unlink" it from
		 * anything.
		 */
1374 1375
		va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
				&free_vmap_area_list);
1376

1377 1378 1379
		if (!va)
			continue;

1380 1381 1382
		if (is_vmalloc_or_module_addr((void *)orig_start))
			kasan_release_vmalloc(orig_start, orig_end,
					      va->va_start, va->va_end);
1383

1384
		atomic_long_sub(nr, &vmap_lazy_nr);
1385

1386
		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1387
			cond_resched_lock(&free_vmap_area_lock);
1388
	}
1389
	spin_unlock(&free_vmap_area_lock);
1390
	return true;
N
Nick Piggin 已提交
1391 1392
}

N
Nick Piggin 已提交
1393 1394 1395 1396 1397 1398
/*
 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 * is already purging.
 */
static void try_purge_vmap_area_lazy(void)
{
1399
	if (mutex_trylock(&vmap_purge_lock)) {
1400
		__purge_vmap_area_lazy(ULONG_MAX, 0);
1401
		mutex_unlock(&vmap_purge_lock);
1402
	}
N
Nick Piggin 已提交
1403 1404
}

N
Nick Piggin 已提交
1405 1406 1407 1408 1409
/*
 * Kick off a purge of the outstanding lazy areas.
 */
static void purge_vmap_area_lazy(void)
{
1410
	mutex_lock(&vmap_purge_lock);
1411 1412
	purge_fragmented_blocks_allcpus();
	__purge_vmap_area_lazy(ULONG_MAX, 0);
1413
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1414 1415 1416
}

/*
1417 1418 1419
 * Free a vmap area, caller ensuring that the area has been unmapped
 * and flush_cache_vunmap had been called for the correct range
 * previously.
N
Nick Piggin 已提交
1420
 */
1421
static void free_vmap_area_noflush(struct vmap_area *va)
N
Nick Piggin 已提交
1422
{
1423
	unsigned long nr_lazy;
1424

1425 1426 1427 1428
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

1429 1430
	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
				PAGE_SHIFT, &vmap_lazy_nr);
1431

1432 1433 1434 1435 1436 1437 1438
	/*
	 * Merge or place it to the purge tree/list.
	 */
	spin_lock(&purge_vmap_area_lock);
	merge_or_add_vmap_area(va,
		&purge_vmap_area_root, &purge_vmap_area_list);
	spin_unlock(&purge_vmap_area_lock);
1439

1440
	/* After this point, we may free va at any time */
1441
	if (unlikely(nr_lazy > lazy_max_pages()))
N
Nick Piggin 已提交
1442
		try_purge_vmap_area_lazy();
N
Nick Piggin 已提交
1443 1444
}

1445 1446 1447 1448 1449 1450
/*
 * Free and unmap a vmap area
 */
static void free_unmap_vmap_area(struct vmap_area *va)
{
	flush_cache_vunmap(va->va_start, va->va_end);
C
Christoph Hellwig 已提交
1451
	unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
1452
	if (debug_pagealloc_enabled_static())
1453 1454
		flush_tlb_kernel_range(va->va_start, va->va_end);

1455
	free_vmap_area_noflush(va);
1456 1457
}

N
Nick Piggin 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
static struct vmap_area *find_vmap_area(unsigned long addr)
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
	va = __find_vmap_area(addr);
	spin_unlock(&vmap_area_lock);

	return va;
}

/*** Per cpu kva allocator ***/

/*
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 * room for at least 16 percpu vmap blocks per CPU.
 */
/*
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 * instead (we just need a rough idea)
 */
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE		(128UL*1024*1024)
#else
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
#endif

#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1492 1493 1494 1495
#define VMAP_BBMAP_BITS		\
		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
N
Nick Piggin 已提交
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507

#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)

struct vmap_block_queue {
	spinlock_t lock;
	struct list_head free;
};

struct vmap_block {
	spinlock_t lock;
	struct vmap_area *va;
	unsigned long free, dirty;
1508
	unsigned long dirty_min, dirty_max; /*< dirty range */
1509 1510
	struct list_head free_list;
	struct rcu_head rcu_head;
1511
	struct list_head purge;
N
Nick Piggin 已提交
1512 1513 1514 1515 1516 1517
};

/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);

/*
1518
 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
N
Nick Piggin 已提交
1519 1520 1521
 * in the free path. Could get rid of this if we change the API to return a
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 */
1522
static DEFINE_XARRAY(vmap_blocks);
N
Nick Piggin 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537

/*
 * We should probably have a fallback mechanism to allocate virtual memory
 * out of partially filled vmap blocks. However vmap block sizing should be
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 * big problem.
 */

static unsigned long addr_to_vb_idx(unsigned long addr)
{
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
	addr /= VMAP_BLOCK_SIZE;
	return addr;
}

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
{
	unsigned long addr;

	addr = va_start + (pages_off << PAGE_SHIFT);
	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
	return (void *)addr;
}

/**
 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 * @order:    how many 2^order pages should be occupied in newly allocated block
 * @gfp_mask: flags for the page level allocator
 *
1553
 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1554 1555
 */
static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
N
Nick Piggin 已提交
1556 1557 1558 1559 1560 1561
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	struct vmap_area *va;
	unsigned long vb_idx;
	int node, err;
1562
	void *vaddr;
N
Nick Piggin 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573

	node = numa_node_id();

	vb = kmalloc_node(sizeof(struct vmap_block),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!vb))
		return ERR_PTR(-ENOMEM);

	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
					VMALLOC_START, VMALLOC_END,
					node, gfp_mask);
1574
	if (IS_ERR(va)) {
N
Nick Piggin 已提交
1575
		kfree(vb);
J
Julia Lawall 已提交
1576
		return ERR_CAST(va);
N
Nick Piggin 已提交
1577 1578
	}

1579
	vaddr = vmap_block_vaddr(va->va_start, 0);
N
Nick Piggin 已提交
1580 1581
	spin_lock_init(&vb->lock);
	vb->va = va;
1582 1583 1584
	/* At least something should be left free */
	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
	vb->free = VMAP_BBMAP_BITS - (1UL << order);
N
Nick Piggin 已提交
1585
	vb->dirty = 0;
1586 1587
	vb->dirty_min = VMAP_BBMAP_BITS;
	vb->dirty_max = 0;
N
Nick Piggin 已提交
1588 1589 1590
	INIT_LIST_HEAD(&vb->free_list);

	vb_idx = addr_to_vb_idx(va->va_start);
1591 1592 1593 1594 1595 1596
	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
	if (err) {
		kfree(vb);
		free_vmap_area(va);
		return ERR_PTR(err);
	}
N
Nick Piggin 已提交
1597 1598 1599

	vbq = &get_cpu_var(vmap_block_queue);
	spin_lock(&vbq->lock);
1600
	list_add_tail_rcu(&vb->free_list, &vbq->free);
N
Nick Piggin 已提交
1601
	spin_unlock(&vbq->lock);
1602
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1603

1604
	return vaddr;
N
Nick Piggin 已提交
1605 1606 1607 1608 1609 1610
}

static void free_vmap_block(struct vmap_block *vb)
{
	struct vmap_block *tmp;

1611
	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
N
Nick Piggin 已提交
1612 1613
	BUG_ON(tmp != vb);

1614
	free_vmap_area_noflush(vb->va);
1615
	kfree_rcu(vb, rcu_head);
N
Nick Piggin 已提交
1616 1617
}

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
static void purge_fragmented_blocks(int cpu)
{
	LIST_HEAD(purge);
	struct vmap_block *vb;
	struct vmap_block *n_vb;
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);

	rcu_read_lock();
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {

		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
			continue;

		spin_lock(&vb->lock);
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
			vb->free = 0; /* prevent further allocs after releasing lock */
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1635 1636
			vb->dirty_min = 0;
			vb->dirty_max = VMAP_BBMAP_BITS;
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
			spin_unlock(&vb->lock);
			list_add_tail(&vb->purge, &purge);
		} else
			spin_unlock(&vb->lock);
	}
	rcu_read_unlock();

	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
		list_del(&vb->purge);
		free_vmap_block(vb);
	}
}

static void purge_fragmented_blocks_allcpus(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		purge_fragmented_blocks(cpu);
}

N
Nick Piggin 已提交
1661 1662 1663 1664
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
1665
	void *vaddr = NULL;
N
Nick Piggin 已提交
1666 1667
	unsigned int order;

1668
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1669
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
J
Jan Kara 已提交
1670 1671 1672 1673 1674 1675 1676 1677
	if (WARN_ON(size == 0)) {
		/*
		 * Allocating 0 bytes isn't what caller wants since
		 * get_order(0) returns funny result. Just warn and terminate
		 * early.
		 */
		return NULL;
	}
N
Nick Piggin 已提交
1678 1679 1680 1681 1682
	order = get_order(size);

	rcu_read_lock();
	vbq = &get_cpu_var(vmap_block_queue);
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1683
		unsigned long pages_off;
N
Nick Piggin 已提交
1684 1685

		spin_lock(&vb->lock);
1686 1687 1688 1689
		if (vb->free < (1UL << order)) {
			spin_unlock(&vb->lock);
			continue;
		}
1690

1691 1692
		pages_off = VMAP_BBMAP_BITS - vb->free;
		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1693 1694 1695 1696 1697 1698
		vb->free -= 1UL << order;
		if (vb->free == 0) {
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
		}
1699

1700 1701
		spin_unlock(&vb->lock);
		break;
N
Nick Piggin 已提交
1702
	}
1703

1704
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1705 1706
	rcu_read_unlock();

1707 1708 1709
	/* Allocate new block if nothing was found */
	if (!vaddr)
		vaddr = new_vmap_block(order, gfp_mask);
N
Nick Piggin 已提交
1710

1711
	return vaddr;
N
Nick Piggin 已提交
1712 1713
}

1714
static void vb_free(unsigned long addr, unsigned long size)
N
Nick Piggin 已提交
1715 1716 1717 1718 1719
{
	unsigned long offset;
	unsigned int order;
	struct vmap_block *vb;

1720
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1721
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1722

1723
	flush_cache_vunmap(addr, addr + size);
1724

N
Nick Piggin 已提交
1725
	order = get_order(size);
1726
	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
1727
	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
N
Nick Piggin 已提交
1728

1729
	unmap_kernel_range_noflush(addr, size);
1730

1731
	if (debug_pagealloc_enabled_static())
1732
		flush_tlb_kernel_range(addr, addr + size);
1733

N
Nick Piggin 已提交
1734
	spin_lock(&vb->lock);
1735 1736 1737 1738

	/* Expand dirty range */
	vb->dirty_min = min(vb->dirty_min, offset);
	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1739

N
Nick Piggin 已提交
1740 1741
	vb->dirty += 1UL << order;
	if (vb->dirty == VMAP_BBMAP_BITS) {
1742
		BUG_ON(vb->free);
N
Nick Piggin 已提交
1743 1744 1745 1746 1747 1748
		spin_unlock(&vb->lock);
		free_vmap_block(vb);
	} else
		spin_unlock(&vb->lock);
}

1749
static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
N
Nick Piggin 已提交
1750 1751 1752
{
	int cpu;

1753 1754 1755
	if (unlikely(!vmap_initialized))
		return;

1756 1757
	might_sleep();

N
Nick Piggin 已提交
1758 1759 1760 1761 1762 1763 1764
	for_each_possible_cpu(cpu) {
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
		struct vmap_block *vb;

		rcu_read_lock();
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
			spin_lock(&vb->lock);
1765 1766
			if (vb->dirty) {
				unsigned long va_start = vb->va->va_start;
N
Nick Piggin 已提交
1767
				unsigned long s, e;
1768

1769 1770
				s = va_start + (vb->dirty_min << PAGE_SHIFT);
				e = va_start + (vb->dirty_max << PAGE_SHIFT);
N
Nick Piggin 已提交
1771

1772 1773
				start = min(s, start);
				end   = max(e, end);
N
Nick Piggin 已提交
1774

1775
				flush = 1;
N
Nick Piggin 已提交
1776 1777 1778 1779 1780 1781
			}
			spin_unlock(&vb->lock);
		}
		rcu_read_unlock();
	}

1782
	mutex_lock(&vmap_purge_lock);
1783 1784 1785
	purge_fragmented_blocks_allcpus();
	if (!__purge_vmap_area_lazy(start, end) && flush)
		flush_tlb_kernel_range(start, end);
1786
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1787
}
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808

/**
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 *
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 * to amortize TLB flushing overheads. What this means is that any page you
 * have now, may, in a former life, have been mapped into kernel virtual
 * address by the vmap layer and so there might be some CPUs with TLB entries
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 *
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 * be sure that none of the pages we have control over will have any aliases
 * from the vmap layer.
 */
void vm_unmap_aliases(void)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush = 0;

	_vm_unmap_aliases(start, end, flush);
}
N
Nick Piggin 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817
EXPORT_SYMBOL_GPL(vm_unmap_aliases);

/**
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 * @mem: the pointer returned by vm_map_ram
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 */
void vm_unmap_ram(const void *mem, unsigned int count)
{
1818
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1819
	unsigned long addr = (unsigned long)mem;
1820
	struct vmap_area *va;
N
Nick Piggin 已提交
1821

1822
	might_sleep();
N
Nick Piggin 已提交
1823 1824 1825
	BUG_ON(!addr);
	BUG_ON(addr < VMALLOC_START);
	BUG_ON(addr > VMALLOC_END);
1826
	BUG_ON(!PAGE_ALIGNED(addr));
N
Nick Piggin 已提交
1827

1828 1829
	kasan_poison_vmalloc(mem, size);

1830
	if (likely(count <= VMAP_MAX_ALLOC)) {
1831
		debug_check_no_locks_freed(mem, size);
1832
		vb_free(addr, size);
1833 1834 1835 1836 1837
		return;
	}

	va = find_vmap_area(addr);
	BUG_ON(!va);
1838 1839
	debug_check_no_locks_freed((void *)va->va_start,
				    (va->va_end - va->va_start));
1840
	free_unmap_vmap_area(va);
N
Nick Piggin 已提交
1841 1842 1843 1844 1845 1846 1847 1848
}
EXPORT_SYMBOL(vm_unmap_ram);

/**
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 * @pages: an array of pointers to the pages to be mapped
 * @count: number of pages
 * @node: prefer to allocate data structures on this node
1849
 *
1850 1851 1852 1853 1854 1855
 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
 * faster than vmap so it's good.  But if you mix long-life and short-life
 * objects with vm_map_ram(), it could consume lots of address space through
 * fragmentation (especially on a 32bit machine).  You could see failures in
 * the end.  Please use this function for short-lived objects.
 *
1856
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
N
Nick Piggin 已提交
1857
 */
1858
void *vm_map_ram(struct page **pages, unsigned int count, int node)
N
Nick Piggin 已提交
1859
{
1860
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	unsigned long addr;
	void *mem;

	if (likely(count <= VMAP_MAX_ALLOC)) {
		mem = vb_alloc(size, GFP_KERNEL);
		if (IS_ERR(mem))
			return NULL;
		addr = (unsigned long)mem;
	} else {
		struct vmap_area *va;
		va = alloc_vmap_area(size, PAGE_SIZE,
				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
		if (IS_ERR(va))
			return NULL;

		addr = va->va_start;
		mem = (void *)addr;
	}
1879 1880 1881

	kasan_unpoison_vmalloc(mem, size);

1882
	if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
N
Nick Piggin 已提交
1883 1884 1885 1886 1887 1888 1889
		vm_unmap_ram(mem, count);
		return NULL;
	}
	return mem;
}
EXPORT_SYMBOL(vm_map_ram);

1890
static struct vm_struct *vmlist __initdata;
1891

N
Nicolas Pitre 已提交
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
/**
 * vm_area_add_early - add vmap area early during boot
 * @vm: vm_struct to add
 *
 * This function is used to add fixed kernel vm area to vmlist before
 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 * should contain proper values and the other fields should be zero.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
void __init vm_area_add_early(struct vm_struct *vm)
{
	struct vm_struct *tmp, **p;

	BUG_ON(vmap_initialized);
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
		if (tmp->addr >= vm->addr) {
			BUG_ON(tmp->addr < vm->addr + vm->size);
			break;
		} else
			BUG_ON(tmp->addr + tmp->size > vm->addr);
	}
	vm->next = *p;
	*p = vm;
}

1918 1919 1920
/**
 * vm_area_register_early - register vmap area early during boot
 * @vm: vm_struct to register
1921
 * @align: requested alignment
1922 1923 1924 1925 1926 1927 1928 1929
 *
 * This function is used to register kernel vm area before
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 * proper values on entry and other fields should be zero.  On return,
 * vm->addr contains the allocated address.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
1930
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1931 1932
{
	static size_t vm_init_off __initdata;
1933 1934 1935 1936
	unsigned long addr;

	addr = ALIGN(VMALLOC_START + vm_init_off, align);
	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1937

1938
	vm->addr = (void *)addr;
1939

N
Nicolas Pitre 已提交
1940
	vm_area_add_early(vm);
1941 1942
}

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
static void vmap_init_free_space(void)
{
	unsigned long vmap_start = 1;
	const unsigned long vmap_end = ULONG_MAX;
	struct vmap_area *busy, *free;

	/*
	 *     B     F     B     B     B     F
	 * -|-----|.....|-----|-----|-----|.....|-
	 *  |           The KVA space           |
	 *  |<--------------------------------->|
	 */
	list_for_each_entry(busy, &vmap_area_list, list) {
		if (busy->va_start - vmap_start > 0) {
			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
			if (!WARN_ON_ONCE(!free)) {
				free->va_start = vmap_start;
				free->va_end = busy->va_start;

				insert_vmap_area_augment(free, NULL,
					&free_vmap_area_root,
						&free_vmap_area_list);
			}
		}

		vmap_start = busy->va_end;
	}

	if (vmap_end - vmap_start > 0) {
		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (!WARN_ON_ONCE(!free)) {
			free->va_start = vmap_start;
			free->va_end = vmap_end;

			insert_vmap_area_augment(free, NULL,
				&free_vmap_area_root,
					&free_vmap_area_list);
		}
	}
}

N
Nick Piggin 已提交
1984 1985
void __init vmalloc_init(void)
{
I
Ivan Kokshaysky 已提交
1986 1987
	struct vmap_area *va;
	struct vm_struct *tmp;
N
Nick Piggin 已提交
1988 1989
	int i;

1990 1991 1992 1993 1994
	/*
	 * Create the cache for vmap_area objects.
	 */
	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);

N
Nick Piggin 已提交
1995 1996
	for_each_possible_cpu(i) {
		struct vmap_block_queue *vbq;
1997
		struct vfree_deferred *p;
N
Nick Piggin 已提交
1998 1999 2000 2001

		vbq = &per_cpu(vmap_block_queue, i);
		spin_lock_init(&vbq->lock);
		INIT_LIST_HEAD(&vbq->free);
2002 2003 2004
		p = &per_cpu(vfree_deferred, i);
		init_llist_head(&p->list);
		INIT_WORK(&p->wq, free_work);
N
Nick Piggin 已提交
2005
	}
2006

I
Ivan Kokshaysky 已提交
2007 2008
	/* Import existing vmlist entries. */
	for (tmp = vmlist; tmp; tmp = tmp->next) {
2009 2010 2011 2012
		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (WARN_ON_ONCE(!va))
			continue;

I
Ivan Kokshaysky 已提交
2013 2014
		va->va_start = (unsigned long)tmp->addr;
		va->va_end = va->va_start + tmp->size;
2015
		va->vm = tmp;
2016
		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
I
Ivan Kokshaysky 已提交
2017
	}
2018

2019 2020 2021 2022
	/*
	 * Now we can initialize a free vmap space.
	 */
	vmap_init_free_space();
2023
	vmap_initialized = true;
N
Nick Piggin 已提交
2024 2025
}

2026 2027 2028 2029 2030 2031 2032 2033
/**
 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Similar to unmap_kernel_range_noflush() but flushes vcache before
 * the unmapping and tlb after.
 */
N
Nick Piggin 已提交
2034 2035 2036
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
	unsigned long end = addr + size;
2037 2038

	flush_cache_vunmap(addr, end);
2039
	unmap_kernel_range_noflush(addr, size);
N
Nick Piggin 已提交
2040 2041 2042
	flush_tlb_kernel_range(addr, end);
}

2043 2044
static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
	struct vmap_area *va, unsigned long flags, const void *caller)
2045 2046 2047 2048 2049
{
	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
2050
	va->vm = vm;
2051 2052 2053 2054 2055 2056 2057
}

static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
			      unsigned long flags, const void *caller)
{
	spin_lock(&vmap_area_lock);
	setup_vmalloc_vm_locked(vm, va, flags, caller);
2058
	spin_unlock(&vmap_area_lock);
2059
}
2060

2061
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2062
{
2063
	/*
2064
	 * Before removing VM_UNINITIALIZED,
2065 2066 2067 2068
	 * we should make sure that vm has proper values.
	 * Pair with smp_rmb() in show_numa_info().
	 */
	smp_wmb();
2069
	vm->flags &= ~VM_UNINITIALIZED;
2070 2071
}

N
Nick Piggin 已提交
2072
static struct vm_struct *__get_vm_area_node(unsigned long size,
2073
		unsigned long align, unsigned long flags, unsigned long start,
2074
		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
N
Nick Piggin 已提交
2075
{
2076
	struct vmap_area *va;
N
Nick Piggin 已提交
2077
	struct vm_struct *area;
2078
	unsigned long requested_size = size;
L
Linus Torvalds 已提交
2079

2080
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
2081
	size = PAGE_ALIGN(size);
2082 2083
	if (unlikely(!size))
		return NULL;
L
Linus Torvalds 已提交
2084

2085 2086 2087 2088
	if (flags & VM_IOREMAP)
		align = 1ul << clamp_t(int, get_count_order_long(size),
				       PAGE_SHIFT, IOREMAP_MAX_ORDER);

2089
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
L
Linus Torvalds 已提交
2090 2091 2092
	if (unlikely(!area))
		return NULL;

2093 2094
	if (!(flags & VM_NO_GUARD))
		size += PAGE_SIZE;
L
Linus Torvalds 已提交
2095

N
Nick Piggin 已提交
2096 2097 2098 2099
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
L
Linus Torvalds 已提交
2100 2101
	}

2102
	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2103

2104
	setup_vmalloc_vm(area, va, flags, caller);
2105

L
Linus Torvalds 已提交
2106 2107 2108
	return area;
}

2109 2110
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
				       unsigned long start, unsigned long end,
2111
				       const void *caller)
2112
{
D
David Rientjes 已提交
2113 2114
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, caller);
2115 2116
}

L
Linus Torvalds 已提交
2117
/**
2118 2119 2120
 * get_vm_area - reserve a contiguous kernel virtual area
 * @size:	 size of the area
 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
L
Linus Torvalds 已提交
2121
 *
2122 2123 2124
 * Search an area of @size in the kernel virtual mapping area,
 * and reserved it for out purposes.  Returns the area descriptor
 * on success or %NULL on failure.
2125 2126
 *
 * Return: the area descriptor on success or %NULL on failure.
L
Linus Torvalds 已提交
2127 2128 2129
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
2130
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2131 2132
				  NUMA_NO_NODE, GFP_KERNEL,
				  __builtin_return_address(0));
2133 2134 2135
}

struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2136
				const void *caller)
2137
{
2138
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2139
				  NUMA_NO_NODE, GFP_KERNEL, caller);
L
Linus Torvalds 已提交
2140 2141
}

2142
/**
2143 2144
 * find_vm_area - find a continuous kernel virtual area
 * @addr:	  base address
2145
 *
2146 2147 2148
 * Search for the kernel VM area starting at @addr, and return it.
 * It is up to the caller to do all required locking to keep the returned
 * pointer valid.
2149
 *
2150
 * Return: the area descriptor on success or %NULL on failure.
2151 2152
 */
struct vm_struct *find_vm_area(const void *addr)
2153
{
N
Nick Piggin 已提交
2154
	struct vmap_area *va;
2155

N
Nick Piggin 已提交
2156
	va = find_vmap_area((unsigned long)addr);
2157 2158
	if (!va)
		return NULL;
L
Linus Torvalds 已提交
2159

2160
	return va->vm;
L
Linus Torvalds 已提交
2161 2162
}

2163
/**
2164 2165
 * remove_vm_area - find and remove a continuous kernel virtual area
 * @addr:	    base address
2166
 *
2167 2168 2169
 * Search for the kernel VM area starting at @addr, and remove it.
 * This function returns the found VM area, but using it is NOT safe
 * on SMP machines, except for its size or flags.
2170
 *
2171
 * Return: the area descriptor on success or %NULL on failure.
2172
 */
2173
struct vm_struct *remove_vm_area(const void *addr)
2174
{
N
Nick Piggin 已提交
2175 2176
	struct vmap_area *va;

2177 2178
	might_sleep();

2179 2180
	spin_lock(&vmap_area_lock);
	va = __find_vmap_area((unsigned long)addr);
2181
	if (va && va->vm) {
2182
		struct vm_struct *vm = va->vm;
2183

2184 2185 2186
		va->vm = NULL;
		spin_unlock(&vmap_area_lock);

2187
		kasan_free_shadow(vm);
2188 2189
		free_unmap_vmap_area(va);

N
Nick Piggin 已提交
2190 2191
		return vm;
	}
2192 2193

	spin_unlock(&vmap_area_lock);
N
Nick Piggin 已提交
2194
	return NULL;
2195 2196
}

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
static inline void set_area_direct_map(const struct vm_struct *area,
				       int (*set_direct_map)(struct page *page))
{
	int i;

	for (i = 0; i < area->nr_pages; i++)
		if (page_address(area->pages[i]))
			set_direct_map(area->pages[i]);
}

/* Handle removing and resetting vm mappings related to the vm_struct. */
static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2212
	int flush_dmap = 0;
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
	int i;

	remove_vm_area(area->addr);

	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
	if (!flush_reset)
		return;

	/*
	 * If not deallocating pages, just do the flush of the VM area and
	 * return.
	 */
	if (!deallocate_pages) {
		vm_unmap_aliases();
		return;
	}

	/*
	 * If execution gets here, flush the vm mapping and reset the direct
	 * map. Find the start and end range of the direct mappings to make sure
	 * the vm_unmap_aliases() flush includes the direct map.
	 */
	for (i = 0; i < area->nr_pages; i++) {
2236 2237
		unsigned long addr = (unsigned long)page_address(area->pages[i]);
		if (addr) {
2238
			start = min(addr, start);
2239
			end = max(addr + PAGE_SIZE, end);
2240
			flush_dmap = 1;
2241 2242 2243 2244 2245 2246 2247 2248 2249
		}
	}

	/*
	 * Set direct map to something invalid so that it won't be cached if
	 * there are any accesses after the TLB flush, then flush the TLB and
	 * reset the direct map permissions to the default.
	 */
	set_area_direct_map(area, set_direct_map_invalid_noflush);
2250
	_vm_unmap_aliases(start, end, flush_dmap);
2251 2252 2253
	set_area_direct_map(area, set_direct_map_default_noflush);
}

2254
static void __vunmap(const void *addr, int deallocate_pages)
L
Linus Torvalds 已提交
2255 2256 2257 2258 2259 2260
{
	struct vm_struct *area;

	if (!addr)
		return;

2261
	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
D
Dan Carpenter 已提交
2262
			addr))
L
Linus Torvalds 已提交
2263 2264
		return;

2265
	area = find_vm_area(addr);
L
Linus Torvalds 已提交
2266
	if (unlikely(!area)) {
A
Arjan van de Ven 已提交
2267
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
L
Linus Torvalds 已提交
2268 2269 2270 2271
				addr);
		return;
	}

2272 2273
	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2274

2275
	kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2276

2277 2278
	vm_remove_mappings(area, deallocate_pages);

L
Linus Torvalds 已提交
2279 2280 2281 2282
	if (deallocate_pages) {
		int i;

		for (i = 0; i < area->nr_pages; i++) {
2283 2284 2285
			struct page *page = area->pages[i];

			BUG_ON(!page);
2286
			__free_pages(page, 0);
L
Linus Torvalds 已提交
2287
		}
2288
		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2289

D
David Rientjes 已提交
2290
		kvfree(area->pages);
L
Linus Torvalds 已提交
2291 2292 2293 2294
	}

	kfree(area);
}
A
Andrey Ryabinin 已提交
2295 2296 2297 2298 2299 2300 2301

static inline void __vfree_deferred(const void *addr)
{
	/*
	 * Use raw_cpu_ptr() because this can be called from preemptible
	 * context. Preemption is absolutely fine here, because the llist_add()
	 * implementation is lockless, so it works even if we are adding to
2302
	 * another cpu's list. schedule_work() should be fine with this too.
A
Andrey Ryabinin 已提交
2303 2304 2305 2306 2307 2308 2309 2310
	 */
	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);

	if (llist_add((struct llist_node *)addr, &p->list))
		schedule_work(&p->wq);
}

/**
2311 2312
 * vfree_atomic - release memory allocated by vmalloc()
 * @addr:	  memory base address
A
Andrey Ryabinin 已提交
2313
 *
2314 2315
 * This one is just like vfree() but can be called in any atomic context
 * except NMIs.
A
Andrey Ryabinin 已提交
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
 */
void vfree_atomic(const void *addr)
{
	BUG_ON(in_nmi());

	kmemleak_free(addr);

	if (!addr)
		return;
	__vfree_deferred(addr);
}

2328 2329 2330 2331 2332 2333 2334 2335
static void __vfree(const void *addr)
{
	if (unlikely(in_interrupt()))
		__vfree_deferred(addr);
	else
		__vunmap(addr, 1);
}

L
Linus Torvalds 已提交
2336
/**
2337 2338
 * vfree - Release memory allocated by vmalloc()
 * @addr:  Memory base address
L
Linus Torvalds 已提交
2339
 *
2340 2341 2342 2343
 * Free the virtually continuous memory area starting at @addr, as obtained
 * from one of the vmalloc() family of APIs.  This will usually also free the
 * physical memory underlying the virtual allocation, but that memory is
 * reference counted, so it will not be freed until the last user goes away.
L
Linus Torvalds 已提交
2344
 *
2345
 * If @addr is NULL, no operation is performed.
A
Andrew Morton 已提交
2346
 *
2347
 * Context:
2348
 * May sleep if called *not* from interrupt context.
2349 2350 2351
 * Must not be called in NMI context (strictly speaking, it could be
 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
 * conventions for vfree() arch-depenedent would be a really bad idea).
L
Linus Torvalds 已提交
2352
 */
2353
void vfree(const void *addr)
L
Linus Torvalds 已提交
2354
{
2355
	BUG_ON(in_nmi());
2356 2357 2358

	kmemleak_free(addr);

A
Andrey Ryabinin 已提交
2359 2360
	might_sleep_if(!in_interrupt());

2361 2362
	if (!addr)
		return;
2363 2364

	__vfree(addr);
L
Linus Torvalds 已提交
2365 2366 2367 2368
}
EXPORT_SYMBOL(vfree);

/**
2369 2370
 * vunmap - release virtual mapping obtained by vmap()
 * @addr:   memory base address
L
Linus Torvalds 已提交
2371
 *
2372 2373
 * Free the virtually contiguous memory area starting at @addr,
 * which was created from the page array passed to vmap().
L
Linus Torvalds 已提交
2374
 *
2375
 * Must not be called in interrupt context.
L
Linus Torvalds 已提交
2376
 */
2377
void vunmap(const void *addr)
L
Linus Torvalds 已提交
2378 2379
{
	BUG_ON(in_interrupt());
2380
	might_sleep();
2381 2382
	if (addr)
		__vunmap(addr, 0);
L
Linus Torvalds 已提交
2383 2384 2385 2386
}
EXPORT_SYMBOL(vunmap);

/**
2387 2388 2389 2390 2391 2392
 * vmap - map an array of pages into virtually contiguous space
 * @pages: array of page pointers
 * @count: number of pages to map
 * @flags: vm_area->flags
 * @prot: page protection for the mapping
 *
2393 2394 2395 2396 2397
 * Maps @count pages from @pages into contiguous kernel virtual space.
 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
 * are transferred from the caller to vmap(), and will be freed / dropped when
 * vfree() is called on the return value.
2398 2399
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2400 2401
 */
void *vmap(struct page **pages, unsigned int count,
2402
	   unsigned long flags, pgprot_t prot)
L
Linus Torvalds 已提交
2403 2404
{
	struct vm_struct *area;
2405
	unsigned long size;		/* In bytes */
L
Linus Torvalds 已提交
2406

2407 2408
	might_sleep();

2409
	if (count > totalram_pages())
L
Linus Torvalds 已提交
2410 2411
		return NULL;

2412 2413
	size = (unsigned long)count << PAGE_SHIFT;
	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
2414 2415
	if (!area)
		return NULL;
2416

2417
	if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
C
Christoph Hellwig 已提交
2418
			pages) < 0) {
L
Linus Torvalds 已提交
2419 2420 2421 2422
		vunmap(area->addr);
		return NULL;
	}

2423 2424
	if (flags & VM_MAP_PUT_PAGES)
		area->pages = pages;
L
Linus Torvalds 已提交
2425 2426 2427 2428
	return area->addr;
}
EXPORT_SYMBOL(vmap);

C
Christoph Hellwig 已提交
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
#ifdef CONFIG_VMAP_PFN
struct vmap_pfn_data {
	unsigned long	*pfns;
	pgprot_t	prot;
	unsigned int	idx;
};

static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
{
	struct vmap_pfn_data *data = private;

	if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
		return -EINVAL;
	*pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
	return 0;
}

/**
 * vmap_pfn - map an array of PFNs into virtually contiguous space
 * @pfns: array of PFNs
 * @count: number of pages to map
 * @prot: page protection for the mapping
 *
 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
 * the start address of the mapping.
 */
void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
{
	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
	struct vm_struct *area;

	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
			__builtin_return_address(0));
	if (!area)
		return NULL;
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
		free_vm_area(area);
		return NULL;
	}
	return area->addr;
}
EXPORT_SYMBOL_GPL(vmap_pfn);
#endif /* CONFIG_VMAP_PFN */

A
Adrian Bunk 已提交
2474
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2475
				 pgprot_t prot, int node)
L
Linus Torvalds 已提交
2476
{
2477
	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2478
	unsigned int nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2479 2480
	unsigned long array_size;
	unsigned int i;
2481
	struct page **pages;
L
Linus Torvalds 已提交
2482

2483
	array_size = (unsigned long)nr_pages * sizeof(struct page *);
2484 2485 2486
	gfp_mask |= __GFP_NOWARN;
	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
		gfp_mask |= __GFP_HIGHMEM;
L
Linus Torvalds 已提交
2487 2488

	/* Please note that the recursion is strictly bounded. */
2489
	if (array_size > PAGE_SIZE) {
2490 2491
		pages = __vmalloc_node(array_size, 1, nested_gfp, node,
					area->caller);
2492
	} else {
2493
		pages = kmalloc_node(array_size, nested_gfp, node);
2494
	}
2495 2496

	if (!pages) {
2497
		free_vm_area(area);
L
Linus Torvalds 已提交
2498 2499 2500
		return NULL;
	}

2501 2502 2503
	area->pages = pages;
	area->nr_pages = nr_pages;

L
Linus Torvalds 已提交
2504
	for (i = 0; i < area->nr_pages; i++) {
2505 2506
		struct page *page;

J
Jianguo Wu 已提交
2507
		if (node == NUMA_NO_NODE)
2508
			page = alloc_page(gfp_mask);
C
Christoph Lameter 已提交
2509
		else
2510
			page = alloc_pages_node(node, gfp_mask, 0);
2511 2512

		if (unlikely(!page)) {
2513
			/* Successfully allocated i pages, free them in __vfree() */
L
Linus Torvalds 已提交
2514
			area->nr_pages = i;
2515
			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2516 2517
			goto fail;
		}
2518
		area->pages[i] = page;
2519
		if (gfpflags_allow_blocking(gfp_mask))
2520
			cond_resched();
L
Linus Torvalds 已提交
2521
	}
2522
	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2523

C
Christoph Hellwig 已提交
2524 2525
	if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
			prot, pages) < 0)
L
Linus Torvalds 已提交
2526
		goto fail;
C
Christoph Hellwig 已提交
2527

L
Linus Torvalds 已提交
2528 2529 2530
	return area->addr;

fail:
2531
	warn_alloc(gfp_mask, NULL,
2532
			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2533
			  (area->nr_pages*PAGE_SIZE), area->size);
2534
	__vfree(area->addr);
L
Linus Torvalds 已提交
2535 2536 2537 2538
	return NULL;
}

/**
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
 * __vmalloc_node_range - allocate virtually contiguous memory
 * @size:		  allocation size
 * @align:		  desired alignment
 * @start:		  vm area range start
 * @end:		  vm area range end
 * @gfp_mask:		  flags for the page level allocator
 * @prot:		  protection mask for the allocated pages
 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
 * @node:		  node to use for allocation or NUMA_NO_NODE
 * @caller:		  caller's return address
 *
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
2553 2554
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2555
 */
2556 2557
void *__vmalloc_node_range(unsigned long size, unsigned long align,
			unsigned long start, unsigned long end, gfp_t gfp_mask,
2558 2559
			pgprot_t prot, unsigned long vm_flags, int node,
			const void *caller)
L
Linus Torvalds 已提交
2560 2561
{
	struct vm_struct *area;
2562 2563
	void *addr;
	unsigned long real_size = size;
L
Linus Torvalds 已提交
2564 2565

	size = PAGE_ALIGN(size);
2566
	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2567
		goto fail;
L
Linus Torvalds 已提交
2568

2569
	area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2570
				vm_flags, start, end, node, gfp_mask, caller);
L
Linus Torvalds 已提交
2571
	if (!area)
2572
		goto fail;
L
Linus Torvalds 已提交
2573

2574
	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2575
	if (!addr)
2576
		return NULL;
2577

2578
	/*
2579 2580
	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
	 * flag. It means that vm_struct is not fully initialized.
2581
	 * Now, it is fully initialized, so remove this flag here.
2582
	 */
2583
	clear_vm_uninitialized_flag(area);
2584

2585
	kmemleak_vmalloc(area, size, gfp_mask);
2586 2587

	return addr;
2588 2589

fail:
2590
	warn_alloc(gfp_mask, NULL,
2591
			  "vmalloc: allocation failure: %lu bytes", real_size);
2592
	return NULL;
L
Linus Torvalds 已提交
2593 2594
}

2595
/**
2596 2597 2598 2599 2600 2601
 * __vmalloc_node - allocate virtually contiguous memory
 * @size:	    allocation size
 * @align:	    desired alignment
 * @gfp_mask:	    flags for the page level allocator
 * @node:	    node to use for allocation or NUMA_NO_NODE
 * @caller:	    caller's return address
M
Michal Hocko 已提交
2602
 *
2603 2604
 * Allocate enough pages to cover @size from the page level allocator with
 * @gfp_mask flags.  Map them into contiguous kernel virtual space.
M
Michal Hocko 已提交
2605
 *
2606 2607
 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
 * and __GFP_NOFAIL are not supported
M
Michal Hocko 已提交
2608
 *
2609 2610
 * Any use of gfp flags outside of GFP_KERNEL should be consulted
 * with mm people.
2611 2612
 *
 * Return: pointer to the allocated memory or %NULL on error
2613
 */
2614
void *__vmalloc_node(unsigned long size, unsigned long align,
2615
			    gfp_t gfp_mask, int node, const void *caller)
2616 2617
{
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2618
				gfp_mask, PAGE_KERNEL, 0, node, caller);
2619
}
2620 2621 2622 2623 2624 2625 2626 2627
/*
 * This is only for performance analysis of vmalloc and stress purpose.
 * It is required by vmalloc test module, therefore do not use it other
 * than that.
 */
#ifdef CONFIG_TEST_VMALLOC_MODULE
EXPORT_SYMBOL_GPL(__vmalloc_node);
#endif
2628

2629
void *__vmalloc(unsigned long size, gfp_t gfp_mask)
C
Christoph Lameter 已提交
2630
{
2631
	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
2632
				__builtin_return_address(0));
C
Christoph Lameter 已提交
2633
}
L
Linus Torvalds 已提交
2634 2635 2636
EXPORT_SYMBOL(__vmalloc);

/**
2637 2638 2639 2640 2641
 * vmalloc - allocate virtually contiguous memory
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
L
Linus Torvalds 已提交
2642
 *
2643 2644
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2645 2646
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2647 2648 2649
 */
void *vmalloc(unsigned long size)
{
2650 2651
	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
				__builtin_return_address(0));
L
Linus Torvalds 已提交
2652 2653 2654
}
EXPORT_SYMBOL(vmalloc);

2655
/**
2656 2657 2658 2659 2660 2661 2662 2663 2664
 * vzalloc - allocate virtually contiguous memory with zero fill
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2665 2666
 *
 * Return: pointer to the allocated memory or %NULL on error
2667 2668 2669
 */
void *vzalloc(unsigned long size)
{
2670 2671
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
				__builtin_return_address(0));
2672 2673 2674
}
EXPORT_SYMBOL(vzalloc);

2675
/**
2676 2677
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
2678
 *
2679 2680
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
2681 2682
 *
 * Return: pointer to the allocated memory or %NULL on error
2683 2684 2685
 */
void *vmalloc_user(unsigned long size)
{
2686 2687 2688 2689
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2690 2691 2692
}
EXPORT_SYMBOL(vmalloc_user);

C
Christoph Lameter 已提交
2693
/**
2694 2695 2696
 * vmalloc_node - allocate memory on a specific node
 * @size:	  allocation size
 * @node:	  numa node
C
Christoph Lameter 已提交
2697
 *
2698 2699
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
C
Christoph Lameter 已提交
2700
 *
2701 2702
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2703 2704
 *
 * Return: pointer to the allocated memory or %NULL on error
C
Christoph Lameter 已提交
2705 2706 2707
 */
void *vmalloc_node(unsigned long size, int node)
{
2708 2709
	return __vmalloc_node(size, 1, GFP_KERNEL, node,
			__builtin_return_address(0));
C
Christoph Lameter 已提交
2710 2711 2712
}
EXPORT_SYMBOL(vmalloc_node);

2713 2714 2715 2716 2717 2718 2719 2720 2721
/**
 * vzalloc_node - allocate memory on a specific node with zero fill
 * @size:	allocation size
 * @node:	numa node
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
2722
 * Return: pointer to the allocated memory or %NULL on error
2723 2724 2725
 */
void *vzalloc_node(unsigned long size, int node)
{
2726 2727
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
				__builtin_return_address(0));
2728 2729 2730
}
EXPORT_SYMBOL(vzalloc_node);

2731
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2732
#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2733
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2734
#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2735
#else
2736 2737 2738 2739 2740
/*
 * 64b systems should always have either DMA or DMA32 zones. For others
 * GFP_DMA32 should do the right thing and use the normal zone.
 */
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2741 2742
#endif

L
Linus Torvalds 已提交
2743
/**
2744 2745
 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
 * @size:	allocation size
L
Linus Torvalds 已提交
2746
 *
2747 2748
 * Allocate enough 32bit PA addressable pages to cover @size from the
 * page level allocator and map them into contiguous kernel virtual space.
2749 2750
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2751 2752 2753
 */
void *vmalloc_32(unsigned long size)
{
2754 2755
	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
			__builtin_return_address(0));
L
Linus Torvalds 已提交
2756 2757 2758
}
EXPORT_SYMBOL(vmalloc_32);

2759
/**
2760
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2761
 * @size:	     allocation size
2762 2763 2764
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
2765 2766
 *
 * Return: pointer to the allocated memory or %NULL on error
2767 2768 2769
 */
void *vmalloc_32_user(unsigned long size)
{
2770 2771 2772 2773
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2774 2775 2776
}
EXPORT_SYMBOL(vmalloc_32_user);

2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
/*
 * small helper routine , copy contents to buf from addr.
 * If the page is not present, fill zero.
 */

static int aligned_vread(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2790
		offset = offset_in_page(addr);
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2807
			void *map = kmap_atomic(p);
2808
			memcpy(buf, map + offset, length);
2809
			kunmap_atomic(map);
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
		} else
			memset(buf, 0, length);

		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

static int aligned_vwrite(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2829
		offset = offset_in_page(addr);
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2846
			void *map = kmap_atomic(p);
2847
			memcpy(map + offset, buf, length);
2848
			kunmap_atomic(map);
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
		}
		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

/**
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
 * vread() - read vmalloc area in a safe way.
 * @buf:     buffer for reading data
 * @addr:    vm address.
 * @count:   number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from that area to a given buffer. If the given memory range
 * of [addr...addr+count) includes some valid address, data is copied to
 * proper area of @buf. If there are memory holes, they'll be zero-filled.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vread() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2876
 * any information, as /dev/kmem.
2877 2878 2879 2880
 *
 * Return: number of bytes for which addr and buf should be increased
 * (same number as @count) or %0 if [addr...addr+count) doesn't
 * include any intersection with valid vmalloc area
2881
 */
L
Linus Torvalds 已提交
2882 2883
long vread(char *buf, char *addr, unsigned long count)
{
2884 2885
	struct vmap_area *va;
	struct vm_struct *vm;
L
Linus Torvalds 已提交
2886
	char *vaddr, *buf_start = buf;
2887
	unsigned long buflen = count;
L
Linus Torvalds 已提交
2888 2889 2890 2891 2892 2893
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

2894 2895 2896 2897 2898
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2899
		if (!va->vm)
2900 2901 2902 2903
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2904
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2905 2906 2907 2908 2909 2910 2911 2912 2913
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
2914
		n = vaddr + get_vm_area_size(vm) - addr;
2915 2916
		if (n > count)
			n = count;
2917
		if (!(vm->flags & VM_IOREMAP))
2918 2919 2920 2921 2922 2923
			aligned_vread(buf, addr, n);
		else /* IOREMAP area is treated as memory hole */
			memset(buf, 0, n);
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2924 2925
	}
finished:
2926
	spin_unlock(&vmap_area_lock);
2927 2928 2929 2930 2931 2932 2933 2934

	if (buf == buf_start)
		return 0;
	/* zero-fill memory holes */
	if (buf != buf_start + buflen)
		memset(buf, 0, buflen - (buf - buf_start));

	return buflen;
L
Linus Torvalds 已提交
2935 2936
}

2937
/**
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
 * vwrite() - write vmalloc area in a safe way.
 * @buf:      buffer for source data
 * @addr:     vm address.
 * @count:    number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from a buffer to the given addr. If specified range of
 * [addr...addr+count) includes some valid address, data is copied from
 * proper area of @buf. If there are memory holes, no copy to hole.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vwrite() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2955
 * any information, as /dev/kmem.
2956 2957 2958 2959
 *
 * Return: number of bytes for which addr and buf should be
 * increased (same number as @count) or %0 if [addr...addr+count)
 * doesn't include any intersection with valid vmalloc area
2960
 */
L
Linus Torvalds 已提交
2961 2962
long vwrite(char *buf, char *addr, unsigned long count)
{
2963 2964
	struct vmap_area *va;
	struct vm_struct *vm;
2965 2966 2967
	char *vaddr;
	unsigned long n, buflen;
	int copied = 0;
L
Linus Torvalds 已提交
2968 2969 2970 2971

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;
2972
	buflen = count;
L
Linus Torvalds 已提交
2973

2974 2975 2976 2977 2978
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2979
		if (!va->vm)
2980 2981 2982 2983
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2984
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2985 2986 2987 2988 2989 2990 2991 2992
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			buf++;
			addr++;
			count--;
		}
2993
		n = vaddr + get_vm_area_size(vm) - addr;
2994 2995
		if (n > count)
			n = count;
2996
		if (!(vm->flags & VM_IOREMAP)) {
2997 2998 2999 3000 3001 3002
			aligned_vwrite(buf, addr, n);
			copied++;
		}
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
3003 3004
	}
finished:
3005
	spin_unlock(&vmap_area_lock);
3006 3007 3008
	if (!copied)
		return 0;
	return buflen;
L
Linus Torvalds 已提交
3009
}
3010 3011

/**
3012 3013 3014 3015
 * remap_vmalloc_range_partial - map vmalloc pages to userspace
 * @vma:		vma to cover
 * @uaddr:		target user address to start at
 * @kaddr:		virtual address of vmalloc kernel memory
3016
 * @pgoff:		offset from @kaddr to start at
3017
 * @size:		size of map area
3018
 *
3019
 * Returns:	0 for success, -Exxx on failure
3020
 *
3021 3022 3023 3024
 * This function checks that @kaddr is a valid vmalloc'ed area,
 * and that it is big enough to cover the range starting at
 * @uaddr in @vma. Will return failure if that criteria isn't
 * met.
3025
 *
3026
 * Similar to remap_pfn_range() (see mm/memory.c)
3027
 */
3028
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3029 3030
				void *kaddr, unsigned long pgoff,
				unsigned long size)
3031 3032
{
	struct vm_struct *area;
3033 3034 3035 3036 3037
	unsigned long off;
	unsigned long end_index;

	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
		return -EINVAL;
3038

3039 3040 3041
	size = PAGE_ALIGN(size);

	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3042 3043
		return -EINVAL;

3044
	area = find_vm_area(kaddr);
3045
	if (!area)
N
Nick Piggin 已提交
3046
		return -EINVAL;
3047

3048
	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
N
Nick Piggin 已提交
3049
		return -EINVAL;
3050

3051 3052
	if (check_add_overflow(size, off, &end_index) ||
	    end_index > get_vm_area_size(area))
N
Nick Piggin 已提交
3053
		return -EINVAL;
3054
	kaddr += off;
3055 3056

	do {
3057
		struct page *page = vmalloc_to_page(kaddr);
N
Nick Piggin 已提交
3058 3059
		int ret;

3060 3061 3062 3063 3064
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
3065 3066 3067
		kaddr += PAGE_SIZE;
		size -= PAGE_SIZE;
	} while (size > 0);
3068

3069
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3070

N
Nick Piggin 已提交
3071
	return 0;
3072
}
3073 3074 3075
EXPORT_SYMBOL(remap_vmalloc_range_partial);

/**
3076 3077 3078 3079
 * remap_vmalloc_range - map vmalloc pages to userspace
 * @vma:		vma to cover (map full range of vma)
 * @addr:		vmalloc memory
 * @pgoff:		number of pages into addr before first page to map
3080
 *
3081
 * Returns:	0 for success, -Exxx on failure
3082
 *
3083 3084 3085
 * This function checks that addr is a valid vmalloc'ed area, and
 * that it is big enough to cover the vma. Will return failure if
 * that criteria isn't met.
3086
 *
3087
 * Similar to remap_pfn_range() (see mm/memory.c)
3088 3089 3090 3091 3092
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	return remap_vmalloc_range_partial(vma, vma->vm_start,
3093
					   addr, pgoff,
3094 3095
					   vma->vm_end - vma->vm_start);
}
3096 3097
EXPORT_SYMBOL(remap_vmalloc_range);

3098 3099 3100 3101 3102 3103 3104 3105
void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
3106

3107
#ifdef CONFIG_SMP
3108 3109
static struct vmap_area *node_to_va(struct rb_node *n)
{
G
Geliang Tang 已提交
3110
	return rb_entry_safe(n, struct vmap_area, rb_node);
3111 3112 3113
}

/**
3114 3115
 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
 * @addr: target address
3116
 *
3117 3118 3119 3120
 * Returns: vmap_area if it is found. If there is no such area
 *   the first highest(reverse order) vmap_area is returned
 *   i.e. va->va_start < addr && va->va_end < addr or NULL
 *   if there are no any areas before @addr.
3121
 */
3122 3123
static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)
3124
{
3125 3126 3127 3128 3129
	struct vmap_area *va, *tmp;
	struct rb_node *n;

	n = free_vmap_area_root.rb_node;
	va = NULL;
3130 3131

	while (n) {
3132 3133 3134 3135 3136 3137
		tmp = rb_entry(n, struct vmap_area, rb_node);
		if (tmp->va_start <= addr) {
			va = tmp;
			if (tmp->va_end >= addr)
				break;

3138
			n = n->rb_right;
3139 3140 3141
		} else {
			n = n->rb_left;
		}
3142 3143
	}

3144
	return va;
3145 3146 3147
}

/**
3148 3149 3150 3151 3152
 * pvm_determine_end_from_reverse - find the highest aligned address
 * of free block below VMALLOC_END
 * @va:
 *   in - the VA we start the search(reverse order);
 *   out - the VA with the highest aligned end address.
3153
 * @align: alignment for required highest address
3154
 *
3155
 * Returns: determined end address within vmap_area
3156
 */
3157 3158
static unsigned long
pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3159
{
3160
	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3161 3162
	unsigned long addr;

3163 3164 3165 3166 3167 3168 3169
	if (likely(*va)) {
		list_for_each_entry_from_reverse((*va),
				&free_vmap_area_list, list) {
			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
			if ((*va)->va_start < addr)
				return addr;
		}
3170 3171
	}

3172
	return 0;
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
}

/**
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 * @offsets: array containing offset of each area
 * @sizes: array containing size of each area
 * @nr_vms: the number of areas to allocate
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 *
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 *	    vm_structs on success, %NULL on failure
 *
 * Percpu allocator wants to use congruent vm areas so that it can
 * maintain the offsets among percpu areas.  This function allocates
3187 3188 3189 3190
 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 * be scattered pretty far, distance between two areas easily going up
 * to gigabytes.  To avoid interacting with regular vmallocs, these
 * areas are allocated from top.
3191
 *
3192 3193 3194 3195 3196 3197
 * Despite its complicated look, this allocator is rather simple. It
 * does everything top-down and scans free blocks from the end looking
 * for matching base. While scanning, if any of the areas do not fit the
 * base address is pulled down to fit the area. Scanning is repeated till
 * all the areas fit and then all necessary data structures are inserted
 * and the result is returned.
3198 3199 3200
 */
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
				     const size_t *sizes, int nr_vms,
3201
				     size_t align)
3202 3203 3204
{
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3205
	struct vmap_area **vas, *va;
3206 3207
	struct vm_struct **vms;
	int area, area2, last_area, term_area;
3208
	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3209
	bool purged = false;
3210
	enum fit_type type;
3211 3212

	/* verify parameters and allocate data structures */
3213
	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
	for (last_area = 0, area = 0; area < nr_vms; area++) {
		start = offsets[area];
		end = start + sizes[area];

		/* is everything aligned properly? */
		BUG_ON(!IS_ALIGNED(offsets[area], align));
		BUG_ON(!IS_ALIGNED(sizes[area], align));

		/* detect the area with the highest address */
		if (start > offsets[last_area])
			last_area = area;

3226
		for (area2 = area + 1; area2 < nr_vms; area2++) {
3227 3228 3229
			unsigned long start2 = offsets[area2];
			unsigned long end2 = start2 + sizes[area2];

3230
			BUG_ON(start2 < end && start < end2);
3231 3232 3233 3234 3235 3236 3237 3238 3239
		}
	}
	last_end = offsets[last_area] + sizes[last_area];

	if (vmalloc_end - vmalloc_start < last_end) {
		WARN_ON(true);
		return NULL;
	}

3240 3241
	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3242
	if (!vas || !vms)
3243
		goto err_free2;
3244 3245

	for (area = 0; area < nr_vms; area++) {
3246
		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3247
		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3248 3249 3250 3251
		if (!vas[area] || !vms[area])
			goto err_free;
	}
retry:
3252
	spin_lock(&free_vmap_area_lock);
3253 3254 3255 3256 3257 3258

	/* start scanning - we scan from the top, begin with the last area */
	area = term_area = last_area;
	start = offsets[area];
	end = start + sizes[area];

3259 3260
	va = pvm_find_va_enclose_addr(vmalloc_end);
	base = pvm_determine_end_from_reverse(&va, align) - end;
3261 3262 3263 3264 3265 3266

	while (true) {
		/*
		 * base might have underflowed, add last_end before
		 * comparing.
		 */
3267 3268
		if (base + last_end < vmalloc_start + last_end)
			goto overflow;
3269 3270

		/*
3271
		 * Fitting base has not been found.
3272
		 */
3273 3274
		if (va == NULL)
			goto overflow;
3275

3276
		/*
Q
Qiujun Huang 已提交
3277
		 * If required width exceeds current VA block, move
3278 3279 3280 3281 3282 3283 3284 3285
		 * base downwards and then recheck.
		 */
		if (base + end > va->va_end) {
			base = pvm_determine_end_from_reverse(&va, align) - end;
			term_area = area;
			continue;
		}

3286
		/*
3287
		 * If this VA does not fit, move base downwards and recheck.
3288
		 */
3289
		if (base + start < va->va_start) {
3290 3291
			va = node_to_va(rb_prev(&va->rb_node));
			base = pvm_determine_end_from_reverse(&va, align) - end;
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
			term_area = area;
			continue;
		}

		/*
		 * This area fits, move on to the previous one.  If
		 * the previous one is the terminal one, we're done.
		 */
		area = (area + nr_vms - 1) % nr_vms;
		if (area == term_area)
			break;
3303

3304 3305
		start = offsets[area];
		end = start + sizes[area];
3306
		va = pvm_find_va_enclose_addr(base + end);
3307
	}
3308

3309 3310
	/* we've found a fitting base, insert all va's */
	for (area = 0; area < nr_vms; area++) {
3311
		int ret;
3312

3313 3314
		start = base + offsets[area];
		size = sizes[area];
3315

3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
		va = pvm_find_va_enclose_addr(start);
		if (WARN_ON_ONCE(va == NULL))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		type = classify_va_fit_type(va, start, size);
		if (WARN_ON_ONCE(type == NOTHING_FIT))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		ret = adjust_va_to_fit_type(va, start, size, type);
		if (unlikely(ret))
			goto recovery;

		/* Allocated area. */
		va = vas[area];
		va->va_start = start;
		va->va_end = start + size;
	}
3335

3336
	spin_unlock(&free_vmap_area_lock);
3337

3338 3339 3340 3341 3342 3343 3344 3345 3346
	/* populate the kasan shadow space */
	for (area = 0; area < nr_vms; area++) {
		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
			goto err_free_shadow;

		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
				       sizes[area]);
	}

3347
	/* insert all vm's */
3348 3349 3350 3351 3352
	spin_lock(&vmap_area_lock);
	for (area = 0; area < nr_vms; area++) {
		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);

		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3353
				 pcpu_get_vm_areas);
3354 3355
	}
	spin_unlock(&vmap_area_lock);
3356 3357 3358 3359

	kfree(vas);
	return vms;

3360
recovery:
3361 3362 3363 3364 3365 3366
	/*
	 * Remove previously allocated areas. There is no
	 * need in removing these areas from the busy tree,
	 * because they are inserted only on the final step
	 * and when pcpu_get_vm_areas() is success.
	 */
3367
	while (area--) {
3368 3369
		orig_start = vas[area]->va_start;
		orig_end = vas[area]->va_end;
3370 3371
		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
				&free_vmap_area_list);
3372 3373 3374
		if (va)
			kasan_release_vmalloc(orig_start, orig_end,
				va->va_start, va->va_end);
3375 3376 3377 3378
		vas[area] = NULL;
	}

overflow:
3379
	spin_unlock(&free_vmap_area_lock);
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
	if (!purged) {
		purge_vmap_area_lazy();
		purged = true;

		/* Before "retry", check if we recover. */
		for (area = 0; area < nr_vms; area++) {
			if (vas[area])
				continue;

			vas[area] = kmem_cache_zalloc(
				vmap_area_cachep, GFP_KERNEL);
			if (!vas[area])
				goto err_free;
		}

		goto retry;
	}

3398 3399
err_free:
	for (area = 0; area < nr_vms; area++) {
3400 3401 3402
		if (vas[area])
			kmem_cache_free(vmap_area_cachep, vas[area]);

3403
		kfree(vms[area]);
3404
	}
3405
err_free2:
3406 3407 3408
	kfree(vas);
	kfree(vms);
	return NULL;
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419

err_free_shadow:
	spin_lock(&free_vmap_area_lock);
	/*
	 * We release all the vmalloc shadows, even the ones for regions that
	 * hadn't been successfully added. This relies on kasan_release_vmalloc
	 * being able to tolerate this case.
	 */
	for (area = 0; area < nr_vms; area++) {
		orig_start = vas[area]->va_start;
		orig_end = vas[area]->va_end;
3420 3421
		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
				&free_vmap_area_list);
3422 3423 3424
		if (va)
			kasan_release_vmalloc(orig_start, orig_end,
				va->va_start, va->va_end);
3425 3426 3427 3428 3429 3430 3431
		vas[area] = NULL;
		kfree(vms[area]);
	}
	spin_unlock(&free_vmap_area_lock);
	kfree(vas);
	kfree(vms);
	return NULL;
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
}

/**
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 * @nr_vms: the number of allocated areas
 *
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 */
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
	int i;

	for (i = 0; i < nr_vms; i++)
		free_vm_area(vms[i]);
	kfree(vms);
}
3449
#endif	/* CONFIG_SMP */
3450 3451 3452

#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
3453
	__acquires(&vmap_purge_lock)
3454
	__acquires(&vmap_area_lock)
3455
{
3456
	mutex_lock(&vmap_purge_lock);
3457
	spin_lock(&vmap_area_lock);
3458

3459
	return seq_list_start(&vmap_area_list, *pos);
3460 3461 3462 3463
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3464
	return seq_list_next(p, &vmap_area_list, pos);
3465 3466 3467
}

static void s_stop(struct seq_file *m, void *p)
3468
	__releases(&vmap_area_lock)
3469
	__releases(&vmap_purge_lock)
3470
{
3471
	spin_unlock(&vmap_area_lock);
3472
	mutex_unlock(&vmap_purge_lock);
3473 3474
}

E
Eric Dumazet 已提交
3475 3476
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
3477
	if (IS_ENABLED(CONFIG_NUMA)) {
E
Eric Dumazet 已提交
3478 3479 3480 3481 3482
		unsigned int nr, *counters = m->private;

		if (!counters)
			return;

3483 3484
		if (v->flags & VM_UNINITIALIZED)
			return;
3485 3486
		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
		smp_rmb();
3487

E
Eric Dumazet 已提交
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
		memset(counters, 0, nr_node_ids * sizeof(unsigned int));

		for (nr = 0; nr < v->nr_pages; nr++)
			counters[page_to_nid(v->pages[nr])]++;

		for_each_node_state(nr, N_HIGH_MEMORY)
			if (counters[nr])
				seq_printf(m, " N%u=%u", nr, counters[nr]);
	}
}

3499 3500 3501 3502
static void show_purge_info(struct seq_file *m)
{
	struct vmap_area *va;

3503 3504
	spin_lock(&purge_vmap_area_lock);
	list_for_each_entry(va, &purge_vmap_area_list, list) {
3505 3506 3507 3508
		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
			(void *)va->va_start, (void *)va->va_end,
			va->va_end - va->va_start);
	}
3509
	spin_unlock(&purge_vmap_area_lock);
3510 3511
}

3512 3513
static int s_show(struct seq_file *m, void *p)
{
3514
	struct vmap_area *va;
3515 3516
	struct vm_struct *v;

3517 3518
	va = list_entry(p, struct vmap_area, list);

3519
	/*
3520 3521
	 * s_show can encounter race with remove_vm_area, !vm on behalf
	 * of vmap area is being tear down or vm_map_ram allocation.
3522
	 */
3523
	if (!va->vm) {
3524
		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3525
			(void *)va->va_start, (void *)va->va_end,
3526
			va->va_end - va->va_start);
3527

3528
		return 0;
3529
	}
3530 3531

	v = va->vm;
3532

K
Kees Cook 已提交
3533
	seq_printf(m, "0x%pK-0x%pK %7ld",
3534 3535
		v->addr, v->addr + v->size, v->size);

J
Joe Perches 已提交
3536 3537
	if (v->caller)
		seq_printf(m, " %pS", v->caller);
3538

3539 3540 3541 3542
	if (v->nr_pages)
		seq_printf(m, " pages=%d", v->nr_pages);

	if (v->phys_addr)
3543
		seq_printf(m, " phys=%pa", &v->phys_addr);
3544 3545

	if (v->flags & VM_IOREMAP)
3546
		seq_puts(m, " ioremap");
3547 3548

	if (v->flags & VM_ALLOC)
3549
		seq_puts(m, " vmalloc");
3550 3551

	if (v->flags & VM_MAP)
3552
		seq_puts(m, " vmap");
3553 3554

	if (v->flags & VM_USERMAP)
3555
		seq_puts(m, " user");
3556

3557 3558 3559
	if (v->flags & VM_DMA_COHERENT)
		seq_puts(m, " dma-coherent");

D
David Rientjes 已提交
3560
	if (is_vmalloc_addr(v->pages))
3561
		seq_puts(m, " vpages");
3562

E
Eric Dumazet 已提交
3563
	show_numa_info(m, v);
3564
	seq_putc(m, '\n');
3565 3566

	/*
3567
	 * As a final step, dump "unpurged" areas.
3568 3569 3570 3571
	 */
	if (list_is_last(&va->list, &vmap_area_list))
		show_purge_info(m);

3572 3573 3574
	return 0;
}

3575
static const struct seq_operations vmalloc_op = {
3576 3577 3578 3579 3580
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};
3581 3582 3583

static int __init proc_vmalloc_init(void)
{
3584
	if (IS_ENABLED(CONFIG_NUMA))
3585
		proc_create_seq_private("vmallocinfo", 0400, NULL,
3586 3587
				&vmalloc_op,
				nr_node_ids * sizeof(unsigned int), NULL);
3588
	else
3589
		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3590 3591 3592
	return 0;
}
module_init(proc_vmalloc_init);
3593

3594
#endif