smu_v11_0.c 49.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/firmware.h>
24
#include <linux/module.h>
25
#include <linux/pci.h>
26
#include <linux/reboot.h>
27

28 29
#define SMU_11_0_PARTIAL_PPTABLE

30 31
#include "amdgpu.h"
#include "amdgpu_smu.h"
32
#include "smu_internal.h"
33
#include "atomfirmware.h"
34
#include "amdgpu_atomfirmware.h"
35
#include "smu_v11_0.h"
36
#include "soc15_common.h"
37
#include "atom.h"
38
#include "amd_pcie.h"
39
#include "amdgpu_ras.h"
40 41 42

#include "asic_reg/thm/thm_11_0_2_offset.h"
#include "asic_reg/thm/thm_11_0_2_sh_mask.h"
43 44 45 46
#include "asic_reg/mp/mp_11_0_offset.h"
#include "asic_reg/mp/mp_11_0_sh_mask.h"
#include "asic_reg/smuio/smuio_11_0_0_offset.h"
#include "asic_reg/smuio/smuio_11_0_0_sh_mask.h"
47

48 49 50 51 52 53 54 55 56 57
/*
 * DO NOT use these for err/warn/info/debug messages.
 * Use dev_err, dev_warn, dev_info and dev_dbg instead.
 * They are more MGPU friendly.
 */
#undef pr_err
#undef pr_warn
#undef pr_info
#undef pr_debug

58
MODULE_FIRMWARE("amdgpu/arcturus_smc.bin");
59
MODULE_FIRMWARE("amdgpu/navi10_smc.bin");
60
MODULE_FIRMWARE("amdgpu/navi14_smc.bin");
61
MODULE_FIRMWARE("amdgpu/navi12_smc.bin");
62
MODULE_FIRMWARE("amdgpu/sienna_cichlid_smc.bin");
63

64
#define SMU11_VOLTAGE_SCALE 4
65

66 67 68 69
static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu,
					      uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
70
	WREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_66, msg);
71 72 73
	return 0;
}

74
static int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg)
75 76 77
{
	struct amdgpu_device *adev = smu->adev;

78
	*arg = RREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_82);
79 80 81
	return 0;
}

82 83 84
static int smu_v11_0_wait_for_response(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
85
	uint32_t cur_value, i, timeout = adev->usec_timeout * 10;
86

87
	for (i = 0; i < timeout; i++) {
88
		cur_value = RREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_90);
89
		if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0)
90 91
			return cur_value == 0x1 ? 0 : -EIO;

92 93 94 95
		udelay(1);
	}

	/* timeout means wrong logic */
96 97 98 99
	if (i == timeout)
		return -ETIME;

	return RREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_90) == 0x1 ? 0 : -EIO;
100 101
}

102
int
103 104
smu_v11_0_send_msg_with_param(struct smu_context *smu,
			      enum smu_message_type msg,
105 106
			      uint32_t param,
			      uint32_t *read_arg)
107 108
{
	struct amdgpu_device *adev = smu->adev;
109 110 111 112
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
113
		return index == -EACCES ? 0 : index;
114

115
	mutex_lock(&smu->message_lock);
116
	ret = smu_v11_0_wait_for_response(smu);
117
	if (ret) {
118
		dev_err(adev->dev, "Msg issuing pre-check failed and "
119
		       "SMU may be not in the right state!\n");
120
		goto out;
121
	}
122

123
	WREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);
124

125
	WREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_82, param);
126

127
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
128 129

	ret = smu_v11_0_wait_for_response(smu);
130
	if (ret) {
131
		dev_err(adev->dev, "failed send message: %10s (%d) \tparam: 0x%08x response %#x\n",
132
		       smu_get_message_name(smu, msg), index, param, ret);
133
		goto out;
134
	}
135

136 137 138
	if (read_arg) {
		ret = smu_v11_0_read_arg(smu, read_arg);
		if (ret) {
139
			dev_err(adev->dev, "failed to read message arg: %10s (%d) \tparam: 0x%08x response %#x\n",
140
			       smu_get_message_name(smu, msg), index, param, ret);
141
			goto out;
142 143
		}
	}
144 145 146
out:
	mutex_unlock(&smu->message_lock);
	return ret;
147 148
}

149
int smu_v11_0_init_microcode(struct smu_context *smu)
150 151
{
	struct amdgpu_device *adev = smu->adev;
152 153 154 155 156 157
	const char *chip_name;
	char fw_name[30];
	int err = 0;
	const struct smc_firmware_header_v1_0 *hdr;
	const struct common_firmware_header *header;
	struct amdgpu_firmware_info *ucode = NULL;
158

159
	switch (adev->asic_type) {
160 161 162
	case CHIP_ARCTURUS:
		chip_name = "arcturus";
		break;
163 164 165
	case CHIP_NAVI10:
		chip_name = "navi10";
		break;
166 167 168
	case CHIP_NAVI14:
		chip_name = "navi14";
		break;
169 170 171
	case CHIP_NAVI12:
		chip_name = "navi12";
		break;
172 173 174
	case CHIP_SIENNA_CICHLID:
		chip_name = "sienna_cichlid";
		break;
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
	default:
		BUG();
	}

	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name);

	err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
	if (err)
		goto out;
	err = amdgpu_ucode_validate(adev->pm.fw);
	if (err)
		goto out;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	amdgpu_ucode_print_smc_hdr(&hdr->header);
	adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
		ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC];
		ucode->ucode_id = AMDGPU_UCODE_ID_SMC;
		ucode->fw = adev->pm.fw;
		header = (const struct common_firmware_header *)ucode->fw->data;
		adev->firmware.fw_size +=
			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
	}

out:
	if (err) {
		DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n",
			  fw_name);
		release_firmware(adev->pm.fw);
		adev->pm.fw = NULL;
	}
	return err;
209 210
}

211 212 213 214 215 216 217 218 219
void smu_v11_0_fini_microcode(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;

	release_firmware(adev->pm.fw);
	adev->pm.fw = NULL;
	adev->pm.fw_version = 0;
}

220
int smu_v11_0_load_microcode(struct smu_context *smu)
221
{
222 223 224 225 226
	struct amdgpu_device *adev = smu->adev;
	const uint32_t *src;
	const struct smc_firmware_header_v1_0 *hdr;
	uint32_t addr_start = MP1_SRAM;
	uint32_t i;
227
	uint32_t smc_fw_size;
228 229
	uint32_t mp1_fw_flags;

230
	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
231 232
	src = (const uint32_t *)(adev->pm.fw->data +
		le32_to_cpu(hdr->header.ucode_array_offset_bytes));
233
	smc_fw_size = hdr->header.ucode_size_bytes;
234

235
	for (i = 1; i < smc_fw_size/4 - 1; i++) {
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
		WREG32_PCIE(addr_start, src[i]);
		addr_start += 4;
	}

	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & MP1_SMN_PUB_CTRL__RESET_MASK);
	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & ~MP1_SMN_PUB_CTRL__RESET_MASK);

	for (i = 0; i < adev->usec_timeout; i++) {
		mp1_fw_flags = RREG32_PCIE(MP1_Public |
			(smnMP1_FIRMWARE_FLAGS & 0xffffffff));
		if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
			MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
			break;
		udelay(1);
	}

	if (i == adev->usec_timeout)
		return -ETIME;

257 258 259
	return 0;
}

260
int smu_v11_0_check_fw_status(struct smu_context *smu)
261
{
262 263 264
	struct amdgpu_device *adev = smu->adev;
	uint32_t mp1_fw_flags;

265 266
	mp1_fw_flags = RREG32_PCIE(MP1_Public |
				   (smnMP1_FIRMWARE_FLAGS & 0xffffffff));
267 268 269 270

	if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
	    MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
		return 0;
271

272
	return -EIO;
273 274
}

275
int smu_v11_0_check_fw_version(struct smu_context *smu)
276
{
277 278 279
	uint32_t if_version = 0xff, smu_version = 0xff;
	uint16_t smu_major;
	uint8_t smu_minor, smu_debug;
280 281
	int ret = 0;

282
	ret = smu_get_smc_version(smu, &if_version, &smu_version);
283
	if (ret)
284
		return ret;
285

286 287 288 289
	smu_major = (smu_version >> 16) & 0xffff;
	smu_minor = (smu_version >> 8) & 0xff;
	smu_debug = (smu_version >> 0) & 0xff;

290
	switch (smu->adev->asic_type) {
291
	case CHIP_ARCTURUS:
292
		smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_ARCT;
293
		break;
294
	case CHIP_NAVI10:
295
		smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_NV10;
296
		break;
297
	case CHIP_NAVI12:
298
		smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_NV12;
299
		break;
300
	case CHIP_NAVI14:
301
		smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_NV14;
302
		break;
303 304 305
	case CHIP_SIENNA_CICHLID:
		smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_Sienna_Cichlid;
		break;
306
	default:
307
		dev_err(smu->adev->dev, "smu unsupported asic type:%d.\n", smu->adev->asic_type);
308
		smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_INV;
309 310 311
		break;
	}

312 313 314 315 316 317 318 319
	/*
	 * 1. if_version mismatch is not critical as our fw is designed
	 * to be backward compatible.
	 * 2. New fw usually brings some optimizations. But that's visible
	 * only on the paired driver.
	 * Considering above, we just leave user a warning message instead
	 * of halt driver loading.
	 */
320
	if (if_version != smu->smc_driver_if_version) {
321
		dev_info(smu->adev->dev, "smu driver if version = 0x%08x, smu fw if version = 0x%08x, "
322
			"smu fw version = 0x%08x (%d.%d.%d)\n",
323
			smu->smc_driver_if_version, if_version,
324
			smu_version, smu_major, smu_minor, smu_debug);
325
		dev_warn(smu->adev->dev, "SMU driver if version not matched\n");
326 327
	}

328 329 330
	return ret;
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
static int smu_v11_0_set_pptable_v2_0(struct smu_context *smu, void **table, uint32_t *size)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t ppt_offset_bytes;
	const struct smc_firmware_header_v2_0 *v2;

	v2 = (const struct smc_firmware_header_v2_0 *) adev->pm.fw->data;

	ppt_offset_bytes = le32_to_cpu(v2->ppt_offset_bytes);
	*size = le32_to_cpu(v2->ppt_size_bytes);
	*table = (uint8_t *)v2 + ppt_offset_bytes;

	return 0;
}

346 347
static int smu_v11_0_set_pptable_v2_1(struct smu_context *smu, void **table,
				      uint32_t *size, uint32_t pptable_id)
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
{
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v2_1 *v2_1;
	struct smc_soft_pptable_entry *entries;
	uint32_t pptable_count = 0;
	int i = 0;

	v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data;
	entries = (struct smc_soft_pptable_entry *)
		((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset));
	pptable_count = le32_to_cpu(v2_1->pptable_count);
	for (i = 0; i < pptable_count; i++) {
		if (le32_to_cpu(entries[i].id) == pptable_id) {
			*table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes));
			*size = le32_to_cpu(entries[i].ppt_size_bytes);
			break;
		}
	}

	if (i == pptable_count)
		return -EINVAL;

	return 0;
}

373
int smu_v11_0_setup_pptable(struct smu_context *smu)
374
{
375 376
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v1_0 *hdr;
377
	int ret, index;
378
	uint32_t size = 0;
379
	uint16_t atom_table_size;
380
	uint8_t frev, crev;
381
	void *table;
382 383 384 385 386
	uint16_t version_major, version_minor;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	version_major = le16_to_cpu(hdr->header.header_version_major);
	version_minor = le16_to_cpu(hdr->header.header_version_minor);
387
	if (version_major == 2 && smu->smu_table.boot_values.pp_table_id > 0) {
388
		dev_info(adev->dev, "use driver provided pptable %d\n", smu->smu_table.boot_values.pp_table_id);
389 390 391 392 393 394 395 396 397 398 399 400 401 402
		switch (version_minor) {
		case 0:
			ret = smu_v11_0_set_pptable_v2_0(smu, &table, &size);
			break;
		case 1:
			ret = smu_v11_0_set_pptable_v2_1(smu, &table, &size,
							 smu->smu_table.boot_values.pp_table_id);
			break;
		default:
			ret = -EINVAL;
			break;
		}
		if (ret)
			return ret;
403

404
	} else {
405
		dev_info(adev->dev, "use vbios provided pptable\n");
406 407
		index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
						    powerplayinfo);
408

409
		ret = smu_get_atom_data_table(smu, index, &atom_table_size, &frev, &crev,
410 411 412
					      (uint8_t **)&table);
		if (ret)
			return ret;
413
		size = atom_table_size;
414
	}
415

416 417 418 419
	if (!smu->smu_table.power_play_table)
		smu->smu_table.power_play_table = table;
	if (!smu->smu_table.power_play_table_size)
		smu->smu_table.power_play_table_size = size;
420 421 422 423

	return 0;
}

424 425 426 427 428 429 430
static int smu_v11_0_init_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0)
		return -EINVAL;

431
	return smu_alloc_dpm_context(smu);
432 433 434 435 436 437 438 439 440 441
}

static int smu_v11_0_fini_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0)
		return -EINVAL;

	kfree(smu_dpm->dpm_context);
442
	kfree(smu_dpm->golden_dpm_context);
443 444
	kfree(smu_dpm->dpm_current_power_state);
	kfree(smu_dpm->dpm_request_power_state);
445
	smu_dpm->dpm_context = NULL;
446
	smu_dpm->golden_dpm_context = NULL;
447
	smu_dpm->dpm_context_size = 0;
448 449
	smu_dpm->dpm_current_power_state = NULL;
	smu_dpm->dpm_request_power_state = NULL;
450 451 452 453

	return 0;
}

454
int smu_v11_0_init_smc_tables(struct smu_context *smu)
455 456 457
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = NULL;
458
	int ret = 0;
459

460 461
	tables = kcalloc(SMU_TABLE_COUNT, sizeof(struct smu_table),
			 GFP_KERNEL);
462 463 464 465
	if (!tables) {
		ret = -ENOMEM;
		goto err0_out;
	}
466 467
	smu_table->tables = tables;

468 469
	ret = smu_tables_init(smu, tables);
	if (ret)
470
		goto err1_out;
471

472 473
	ret = smu_v11_0_init_dpm_context(smu);
	if (ret)
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
		goto err1_out;

	smu_table->driver_pptable =
		kzalloc(tables[SMU_TABLE_PPTABLE].size, GFP_KERNEL);
	if (!smu_table->driver_pptable) {
		ret = -ENOMEM;
		goto err2_out;
	}

	smu_table->max_sustainable_clocks =
		kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks), GFP_KERNEL);
	if (!smu_table->max_sustainable_clocks) {
		ret = -ENOMEM;
		goto err3_out;
	}

	/* Arcturus does not support OVERDRIVE */
	if (tables[SMU_TABLE_OVERDRIVE].size) {
		smu_table->overdrive_table =
			kzalloc(tables[SMU_TABLE_OVERDRIVE].size, GFP_KERNEL);
		if (!smu_table->overdrive_table) {
			ret = -ENOMEM;
			goto err4_out;
		}

		smu_table->boot_overdrive_table =
			kzalloc(tables[SMU_TABLE_OVERDRIVE].size, GFP_KERNEL);
		if (!smu_table->boot_overdrive_table) {
			ret = -ENOMEM;
			goto err5_out;
		}
	}
506

507
	return 0;
508 509 510 511 512 513 514 515 516 517 518 519 520

err5_out:
	kfree(smu_table->overdrive_table);
err4_out:
	kfree(smu_table->max_sustainable_clocks);
err3_out:
	kfree(smu_table->driver_pptable);
err2_out:
	smu_v11_0_fini_dpm_context(smu);
err1_out:
	kfree(tables);
err0_out:
	return ret;
521 522
}

523
int smu_v11_0_fini_smc_tables(struct smu_context *smu)
524 525
{
	struct smu_table_context *smu_table = &smu->smu_table;
526
	int ret = 0;
527

528
	if (!smu_table->tables)
529 530
		return -EINVAL;

531 532 533 534 535 536 537 538 539 540 541
	kfree(smu_table->boot_overdrive_table);
	kfree(smu_table->overdrive_table);
	kfree(smu_table->max_sustainable_clocks);
	kfree(smu_table->driver_pptable);
	smu_table->boot_overdrive_table = NULL;
	smu_table->overdrive_table = NULL;
	smu_table->max_sustainable_clocks = NULL;
	smu_table->driver_pptable = NULL;
	kfree(smu_table->hardcode_pptable);
	smu_table->hardcode_pptable = NULL;

542
	kfree(smu_table->tables);
543
	kfree(smu_table->metrics_table);
544
	kfree(smu_table->watermarks_table);
545
	smu_table->tables = NULL;
546
	smu_table->metrics_table = NULL;
547
	smu_table->watermarks_table = NULL;
548
	smu_table->metrics_time = 0;
549

550 551 552
	ret = smu_v11_0_fini_dpm_context(smu);
	if (ret)
		return ret;
553 554
	return 0;
}
555

556
int smu_v11_0_init_power(struct smu_context *smu)
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
{
	struct smu_power_context *smu_power = &smu->smu_power;

	if (smu_power->power_context || smu_power->power_context_size != 0)
		return -EINVAL;

	smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
					   GFP_KERNEL);
	if (!smu_power->power_context)
		return -ENOMEM;
	smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context);

	return 0;
}

572
int smu_v11_0_fini_power(struct smu_context *smu)
573 574 575 576 577 578 579 580 581 582 583 584 585
{
	struct smu_power_context *smu_power = &smu->smu_power;

	if (!smu_power->power_context || smu_power->power_context_size == 0)
		return -EINVAL;

	kfree(smu_power->power_context);
	smu_power->power_context = NULL;
	smu_power->power_context_size = 0;

	return 0;
}

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
static int smu_v11_0_atom_get_smu_clockinfo(struct amdgpu_device *adev,
					    uint8_t clk_id,
					    uint8_t syspll_id,
					    uint32_t *clk_freq)
{
	struct atom_get_smu_clock_info_parameters_v3_1 input = {0};
	struct atom_get_smu_clock_info_output_parameters_v3_1 *output;
	int ret, index;

	input.clk_id = clk_id;
	input.syspll_id = syspll_id;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	*clk_freq = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	return 0;
}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu)
{
	int ret, index;
	uint16_t size;
	uint8_t frev, crev;
	struct atom_common_table_header *header;
	struct atom_firmware_info_v3_3 *v_3_3;
	struct atom_firmware_info_v3_1 *v_3_1;

	index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
					    firmwareinfo);

	ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev,
				      (uint8_t **)&header);
	if (ret)
		return ret;

	if (header->format_revision != 3) {
630
		dev_err(smu->adev->dev, "unknown atom_firmware_info version! for smu11\n");
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
		return -EINVAL;
	}

	switch (header->content_revision) {
	case 0:
	case 1:
	case 2:
		v_3_1 = (struct atom_firmware_info_v3_1 *)header;
		smu->smu_table.boot_values.revision = v_3_1->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = 0;
		break;
	case 3:
	default:
		v_3_3 = (struct atom_firmware_info_v3_3 *)header;
		smu->smu_table.boot_values.revision = v_3_3->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id;
	}

667 668 669
	smu->smu_table.boot_values.format_revision = header->format_revision;
	smu->smu_table.boot_values.content_revision = header->content_revision;

670 671 672 673
	smu_v11_0_atom_get_smu_clockinfo(smu->adev,
					 (uint8_t)SMU11_SYSPLL0_SOCCLK_ID,
					 (uint8_t)0,
					 &smu->smu_table.boot_values.socclk);
674

675 676 677 678
	smu_v11_0_atom_get_smu_clockinfo(smu->adev,
					 (uint8_t)SMU11_SYSPLL0_DCEFCLK_ID,
					 (uint8_t)0,
					 &smu->smu_table.boot_values.dcefclk);
679

680 681 682 683
	smu_v11_0_atom_get_smu_clockinfo(smu->adev,
					 (uint8_t)SMU11_SYSPLL0_ECLK_ID,
					 (uint8_t)0,
					 &smu->smu_table.boot_values.eclk);
684

685 686 687 688
	smu_v11_0_atom_get_smu_clockinfo(smu->adev,
					 (uint8_t)SMU11_SYSPLL0_VCLK_ID,
					 (uint8_t)0,
					 &smu->smu_table.boot_values.vclk);
689

690 691 692 693
	smu_v11_0_atom_get_smu_clockinfo(smu->adev,
					 (uint8_t)SMU11_SYSPLL0_DCLK_ID,
					 (uint8_t)0,
					 &smu->smu_table.boot_values.dclk);
694

695
	if ((smu->smu_table.boot_values.format_revision == 3) &&
696 697 698 699 700
	    (smu->smu_table.boot_values.content_revision >= 2))
		smu_v11_0_atom_get_smu_clockinfo(smu->adev,
						 (uint8_t)SMU11_SYSPLL1_0_FCLK_ID,
						 (uint8_t)SMU11_SYSPLL1_2_ID,
						 &smu->smu_table.boot_values.fclk);
701

702 703 704
	return 0;
}

705
int smu_v11_0_notify_memory_pool_location(struct smu_context *smu)
706 707 708 709 710 711 712 713 714 715
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	int ret = 0;
	uint64_t address;
	uint32_t address_low, address_high;

	if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL)
		return ret;

716
	address = (uintptr_t)memory_pool->cpu_addr;
717 718 719 720
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

	ret = smu_send_smc_msg_with_param(smu,
721
					  SMU_MSG_SetSystemVirtualDramAddrHigh,
722 723
					  address_high,
					  NULL);
724 725 726
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu,
727
					  SMU_MSG_SetSystemVirtualDramAddrLow,
728 729
					  address_low,
					  NULL);
730 731 732 733 734 735 736
	if (ret)
		return ret;

	address = memory_pool->mc_address;
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

737
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh,
738
					  address_high, NULL);
739 740
	if (ret)
		return ret;
741
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow,
742
					  address_low, NULL);
743 744
	if (ret)
		return ret;
745
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize,
746
					  (uint32_t)memory_pool->size, NULL);
747 748 749 750 751 752
	if (ret)
		return ret;

	return ret;
}

753
int smu_v11_0_write_pptable(struct smu_context *smu)
754
{
755
	struct smu_table_context *table_context = &smu->smu_table;
756 757
	int ret = 0;

758
	ret = smu_update_table(smu, SMU_TABLE_PPTABLE, 0,
759
			       table_context->driver_pptable, true);
760 761 762 763

	return ret;
}

764
int smu_v11_0_set_min_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk)
765 766 767 768
{
	int ret;

	ret = smu_send_smc_msg_with_param(smu,
769
					  SMU_MSG_SetMinDeepSleepDcefclk, clk, NULL);
770
	if (ret)
771
		dev_err(smu->adev->dev, "SMU11 attempt to set divider for DCEFCLK Failed!");
772 773 774 775

	return ret;
}

776 777 778 779 780 781 782 783
int smu_v11_0_set_driver_table_location(struct smu_context *smu)
{
	struct smu_table *driver_table = &smu->smu_table.driver_table;
	int ret = 0;

	if (driver_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
				SMU_MSG_SetDriverDramAddrHigh,
784 785
				upper_32_bits(driver_table->mc_address),
				NULL);
786 787 788
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
				SMU_MSG_SetDriverDramAddrLow,
789 790
				lower_32_bits(driver_table->mc_address),
				NULL);
791 792 793 794 795
	}

	return ret;
}

796
int smu_v11_0_set_tool_table_location(struct smu_context *smu)
797 798
{
	int ret = 0;
799
	struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG];
800 801 802

	if (tool_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
803
				SMU_MSG_SetToolsDramAddrHigh,
804 805
				upper_32_bits(tool_table->mc_address),
				NULL);
806 807
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
808
				SMU_MSG_SetToolsDramAddrLow,
809 810
				lower_32_bits(tool_table->mc_address),
				NULL);
811 812 813 814 815
	}

	return ret;
}

816
int smu_v11_0_init_display_count(struct smu_context *smu, uint32_t count)
817 818
{
	int ret = 0;
819

820 821 822
	if (!smu->pm_enabled)
		return ret;

823
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, count, NULL);
824 825 826
	return ret;
}

827

828
int smu_v11_0_set_allowed_mask(struct smu_context *smu)
829 830 831 832 833
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
	uint32_t feature_mask[2];

834
	mutex_lock(&feature->mutex);
835
	if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64)
836
		goto failed;
837 838 839 840

	bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64);

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh,
841
					  feature_mask[1], NULL);
842
	if (ret)
843
		goto failed;
844 845

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow,
846
					  feature_mask[0], NULL);
847
	if (ret)
848
		goto failed;
849

850 851
failed:
	mutex_unlock(&feature->mutex);
852 853 854
	return ret;
}

855
int smu_v11_0_get_enabled_mask(struct smu_context *smu,
856 857 858
				      uint32_t *feature_mask, uint32_t num)
{
	uint32_t feature_mask_high = 0, feature_mask_low = 0;
859
	struct smu_feature *feature = &smu->smu_feature;
860 861 862 863 864
	int ret = 0;

	if (!feature_mask || num < 2)
		return -EINVAL;

865
	if (bitmap_empty(feature->enabled, feature->feature_num)) {
866
		ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh, &feature_mask_high);
867 868
		if (ret)
			return ret;
869

870
		ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow, &feature_mask_low);
871 872
		if (ret)
			return ret;
873

874 875 876 877 878 879
		feature_mask[0] = feature_mask_low;
		feature_mask[1] = feature_mask_high;
	} else {
		bitmap_copy((unsigned long *)feature_mask, feature->enabled,
			     feature->feature_num);
	}
880 881 882 883

	return ret;
}

884
int smu_v11_0_system_features_control(struct smu_context *smu,
885
					     bool en)
886 887 888 889 890
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_mask[2];
	int ret = 0;

891
	ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures :
892
				     SMU_MSG_DisableAllSmuFeatures), NULL);
893 894 895
	if (ret)
		return ret;

896 897 898
	bitmap_zero(feature->enabled, feature->feature_num);
	bitmap_zero(feature->supported, feature->feature_num);

899 900 901 902 903 904 905 906 907 908
	if (en) {
		ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
		if (ret)
			return ret;

		bitmap_copy(feature->enabled, (unsigned long *)&feature_mask,
			    feature->feature_num);
		bitmap_copy(feature->supported, (unsigned long *)&feature_mask,
			    feature->feature_num);
	}
909 910 911 912

	return ret;
}

913
int smu_v11_0_notify_display_change(struct smu_context *smu)
914 915 916
{
	int ret = 0;

917 918 919
	if (!smu->pm_enabled)
		return ret;

920 921
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
	    smu->adev->gmc.vram_type == AMDGPU_VRAM_TYPE_HBM)
922
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1, NULL);
923 924 925 926

	return ret;
}

927 928
static int
smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock,
929
				    enum smu_clk_type clock_select)
930 931
{
	int ret = 0;
932
	int clk_id;
933

934 935 936 937
	if ((smu_msg_get_index(smu, SMU_MSG_GetDcModeMaxDpmFreq) < 0) ||
	    (smu_msg_get_index(smu, SMU_MSG_GetMaxDpmFreq) < 0))
		return 0;

938 939 940 941
	clk_id = smu_clk_get_index(smu, clock_select);
	if (clk_id < 0)
		return -EINVAL;

942
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq,
943
					  clk_id << 16, clock);
944
	if (ret) {
945
		dev_err(smu->adev->dev, "[GetMaxSustainableClock] Failed to get max DC clock from SMC!");
946 947 948 949 950 951 952 953
		return ret;
	}

	if (*clock != 0)
		return 0;

	/* if DC limit is zero, return AC limit */
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
954
					  clk_id << 16, clock);
955
	if (ret) {
956
		dev_err(smu->adev->dev, "[GetMaxSustainableClock] failed to get max AC clock from SMC!");
957 958 959
		return ret;
	}

960
	return 0;
961 962
}

963
int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu)
964
{
965 966
	struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks =
			smu->smu_table.max_sustainable_clocks;
967 968 969 970 971 972 973 974 975
	int ret = 0;

	max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100;
	max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100;
	max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100;
	max_sustainable_clocks->display_clock = 0xFFFFFFFF;
	max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
	max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;

976
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
977 978
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->uclock),
979
							  SMU_UCLK);
980
		if (ret) {
981
			dev_err(smu->adev->dev, "[%s] failed to get max UCLK from SMC!",
982 983 984 985 986
			       __func__);
			return ret;
		}
	}

987
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
988 989
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->soc_clock),
990
							  SMU_SOCCLK);
991
		if (ret) {
992
			dev_err(smu->adev->dev, "[%s] failed to get max SOCCLK from SMC!",
993 994 995 996 997
			       __func__);
			return ret;
		}
	}

998
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
999 1000
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->dcef_clock),
1001
							  SMU_DCEFCLK);
1002
		if (ret) {
1003
			dev_err(smu->adev->dev, "[%s] failed to get max DCEFCLK from SMC!",
1004 1005 1006 1007 1008 1009
			       __func__);
			return ret;
		}

		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->display_clock),
1010
							  SMU_DISPCLK);
1011
		if (ret) {
1012
			dev_err(smu->adev->dev, "[%s] failed to get max DISPCLK from SMC!",
1013 1014 1015 1016 1017
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->phy_clock),
1018
							  SMU_PHYCLK);
1019
		if (ret) {
1020
			dev_err(smu->adev->dev, "[%s] failed to get max PHYCLK from SMC!",
1021 1022 1023 1024 1025
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->pixel_clock),
1026
							  SMU_PIXCLK);
1027
		if (ret) {
1028
			dev_err(smu->adev->dev, "[%s] failed to get max PIXCLK from SMC!",
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
			       __func__);
			return ret;
		}
	}

	if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
		max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;

	return 0;
}

1040 1041 1042 1043 1044 1045 1046 1047 1048
int smu_v11_0_get_current_power_limit(struct smu_context *smu,
				      uint32_t *power_limit)
{
	int power_src;
	int ret = 0;

	if (!smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT))
		return -EINVAL;

1049 1050 1051 1052
	power_src = smu_power_get_index(smu,
					smu->adev->pm.ac_power ?
					SMU_POWER_SOURCE_AC :
					SMU_POWER_SOURCE_DC);
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	if (power_src < 0)
		return -EINVAL;

	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_GetPptLimit,
					  power_src << 16,
					  power_limit);
	if (ret)
		dev_err(smu->adev->dev, "[%s] get PPT limit failed!", __func__);

	return ret;
}

1066
int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n)
1067
{
1068
	int ret = 0;
1069

1070
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) {
1071
		dev_err(smu->adev->dev, "Setting new power limit is not supported!\n");
1072
		return -EOPNOTSUPP;
1073 1074
	}

1075
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n, NULL);
1076
	if (ret) {
1077
		dev_err(smu->adev->dev, "[%s] Set power limit Failed!\n", __func__);
1078 1079
		return ret;
	}
1080 1081

	smu->current_power_limit = n;
1082

1083
	return 0;
1084 1085
}

1086
int smu_v11_0_get_current_clk_freq(struct smu_context *smu,
1087 1088
					  enum smu_clk_type clk_id,
					  uint32_t *value)
1089 1090
{
	int ret = 0;
1091
	uint32_t freq = 0;
1092
	int asic_clk_id;
1093

1094
	if (clk_id >= SMU_CLK_COUNT || !value)
1095 1096
		return -EINVAL;

1097 1098 1099 1100
	asic_clk_id = smu_clk_get_index(smu, clk_id);
	if (asic_clk_id < 0)
		return -EINVAL;

1101
	/* if don't has GetDpmClockFreq Message, try get current clock by SmuMetrics_t */
1102
	if (smu_msg_get_index(smu, SMU_MSG_GetDpmClockFreq) < 0)
1103 1104 1105
		ret =  smu_get_current_clk_freq_by_table(smu, clk_id, &freq);
	else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmClockFreq,
1106
						  (asic_clk_id << 16), &freq);
1107 1108 1109
		if (ret)
			return ret;
	}
1110 1111 1112 1113 1114 1115 1116

	freq *= 100;
	*value = freq;

	return ret;
}

1117
int smu_v11_0_enable_thermal_alert(struct smu_context *smu)
1118 1119
{
	int ret = 0;
1120
	struct smu_temperature_range range;
1121 1122
	struct amdgpu_device *adev = smu->adev;

1123 1124
	memcpy(&range, &smu11_thermal_policy[0], sizeof(struct smu_temperature_range));

1125
	ret = smu_get_thermal_temperature_range(smu, &range);
1126 1127
	if (ret)
		return ret;
1128 1129

	if (smu->smu_table.thermal_controller_type) {
1130
		ret = smu_set_thermal_range(smu, range);
1131 1132 1133
		if (ret)
			return ret;

1134
		ret = amdgpu_irq_get(adev, &smu->irq_source, 0);
1135 1136
		if (ret)
			return ret;
1137

1138
		ret = smu_set_thermal_fan_table(smu);
1139 1140 1141 1142
		if (ret)
			return ret;
	}

1143 1144 1145 1146 1147 1148 1149 1150 1151
	adev->pm.dpm.thermal.min_temp = range.min;
	adev->pm.dpm.thermal.max_temp = range.max;
	adev->pm.dpm.thermal.max_edge_emergency_temp = range.edge_emergency_max;
	adev->pm.dpm.thermal.min_hotspot_temp = range.hotspot_min;
	adev->pm.dpm.thermal.max_hotspot_crit_temp = range.hotspot_crit_max;
	adev->pm.dpm.thermal.max_hotspot_emergency_temp = range.hotspot_emergency_max;
	adev->pm.dpm.thermal.min_mem_temp = range.mem_min;
	adev->pm.dpm.thermal.max_mem_crit_temp = range.mem_crit_max;
	adev->pm.dpm.thermal.max_mem_emergency_temp = range.mem_emergency_max;
1152 1153 1154 1155

	return ret;
}

1156
int smu_v11_0_disable_thermal_alert(struct smu_context *smu)
1157
{
1158
	return amdgpu_irq_put(smu->adev, &smu->irq_source, 0);
1159 1160
}

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
static uint16_t convert_to_vddc(uint8_t vid)
{
	return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE);
}

static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t vdd = 0, val_vid = 0;

	if (!value)
		return -EINVAL;
	val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) &
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >>
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT;

	vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid);

	*value = vdd;

	return 0;

}

1185
int smu_v11_0_read_sensor(struct smu_context *smu,
1186 1187 1188 1189
				 enum amd_pp_sensors sensor,
				 void *data, uint32_t *size)
{
	int ret = 0;
1190 1191 1192 1193

	if(!data || !size)
		return -EINVAL;

1194
	switch (sensor) {
1195
	case AMDGPU_PP_SENSOR_GFX_MCLK:
1196
		ret = smu_get_current_clk_freq(smu, SMU_UCLK, (uint32_t *)data);
1197 1198 1199
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_SCLK:
1200
		ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, (uint32_t *)data);
1201
		*size = 4;
1202
		break;
1203 1204 1205
	case AMDGPU_PP_SENSOR_VDDGFX:
		ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
		*size = 4;
1206
		break;
1207 1208 1209 1210
	case AMDGPU_PP_SENSOR_MIN_FAN_RPM:
		*(uint32_t *)data = 0;
		*size = 4;
		break;
1211
	default:
1212
		ret = smu_common_read_sensor(smu, sensor, data, size);
1213 1214 1215 1216 1217 1218 1219 1220 1221
		break;
	}

	if (ret)
		*size = 0;

	return ret;
}

1222
int
1223 1224 1225 1226 1227 1228
smu_v11_0_display_clock_voltage_request(struct smu_context *smu,
					struct pp_display_clock_request
					*clock_req)
{
	enum amd_pp_clock_type clk_type = clock_req->clock_type;
	int ret = 0;
1229
	enum smu_clk_type clk_select = 0;
1230 1231
	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;

1232
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) ||
1233
		smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1234 1235
		switch (clk_type) {
		case amd_pp_dcef_clock:
1236
			clk_select = SMU_DCEFCLK;
1237 1238
			break;
		case amd_pp_disp_clock:
1239
			clk_select = SMU_DISPCLK;
1240 1241
			break;
		case amd_pp_pixel_clock:
1242
			clk_select = SMU_PIXCLK;
1243 1244
			break;
		case amd_pp_phy_clock:
1245
			clk_select = SMU_PHYCLK;
1246
			break;
1247 1248 1249
		case amd_pp_mem_clock:
			clk_select = SMU_UCLK;
			break;
1250
		default:
1251
			dev_info(smu->adev->dev, "[%s] Invalid Clock Type!", __func__);
1252 1253 1254 1255 1256 1257 1258
			ret = -EINVAL;
			break;
		}

		if (ret)
			goto failed;

1259 1260 1261
		if (clk_select == SMU_UCLK && smu->disable_uclk_switch)
			return 0;

1262
		ret = smu_set_hard_freq_range(smu, clk_select, clk_freq, 0);
1263 1264 1265

		if(clk_select == SMU_UCLK)
			smu->hard_min_uclk_req_from_dal = clk_freq;
1266 1267 1268 1269 1270 1271
	}

failed:
	return ret;
}

1272
int smu_v11_0_gfx_off_control(struct smu_context *smu, bool enable)
1273 1274
{
	int ret = 0;
1275
	struct amdgpu_device *adev = smu->adev;
1276

1277 1278
	switch (adev->asic_type) {
	case CHIP_NAVI10:
1279
	case CHIP_NAVI14:
1280
	case CHIP_NAVI12:
1281
	case CHIP_SIENNA_CICHLID:
1282 1283 1284
		if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
			return 0;
		if (enable)
1285
			ret = smu_send_smc_msg(smu, SMU_MSG_AllowGfxOff, NULL);
1286
		else
1287
			ret = smu_send_smc_msg(smu, SMU_MSG_DisallowGfxOff, NULL);
1288 1289 1290 1291
		break;
	default:
		break;
	}
1292 1293 1294 1295

	return ret;
}

1296
uint32_t
1297 1298
smu_v11_0_get_fan_control_mode(struct smu_context *smu)
{
1299
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1300 1301 1302 1303 1304 1305
		return AMD_FAN_CTRL_MANUAL;
	else
		return AMD_FAN_CTRL_AUTO;
}

static int
1306
smu_v11_0_auto_fan_control(struct smu_context *smu, bool auto_fan_control)
1307 1308 1309
{
	int ret = 0;

1310
	if (!smu_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1311 1312
		return 0;

1313
	ret = smu_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, auto_fan_control);
1314
	if (ret)
1315
		dev_err(smu->adev->dev, "[%s]%s smc FAN CONTROL feature failed!",
1316
		       __func__, (auto_fan_control ? "Start" : "Stop"));
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335

	return ret;
}

static int
smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode)
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, TMIN, 0));
	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, FDO_PWM_MODE, mode));

	return 0;
}

1336
int
1337 1338 1339
smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
1340
	uint32_t duty100, duty;
1341 1342 1343 1344 1345
	uint64_t tmp64;

	if (speed > 100)
		speed = 100;

1346
	if (smu_v11_0_auto_fan_control(smu, 0))
1347
		return -EINVAL;
1348

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1),
				CG_FDO_CTRL1, FMAX_DUTY100);
	if (!duty100)
		return -EINVAL;

	tmp64 = (uint64_t)speed * duty100;
	do_div(tmp64, 100);
	duty = (uint32_t)tmp64;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0),
				   CG_FDO_CTRL0, FDO_STATIC_DUTY, duty));

	return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC);
}

1365
int
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
smu_v11_0_set_fan_control_mode(struct smu_context *smu,
			       uint32_t mode)
{
	int ret = 0;

	switch (mode) {
	case AMD_FAN_CTRL_NONE:
		ret = smu_v11_0_set_fan_speed_percent(smu, 100);
		break;
	case AMD_FAN_CTRL_MANUAL:
1376
		ret = smu_v11_0_auto_fan_control(smu, 0);
1377 1378
		break;
	case AMD_FAN_CTRL_AUTO:
1379
		ret = smu_v11_0_auto_fan_control(smu, 1);
1380 1381 1382 1383 1384 1385
		break;
	default:
		break;
	}

	if (ret) {
1386
		dev_err(smu->adev->dev, "[%s]Set fan control mode failed!", __func__);
1387 1388 1389 1390 1391 1392
		return -EINVAL;
	}

	return ret;
}

1393
int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu,
1394 1395 1396 1397 1398 1399 1400 1401 1402
				       uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	int ret;
	uint32_t tach_period, crystal_clock_freq;

	if (!speed)
		return -EINVAL;

1403
	ret = smu_v11_0_auto_fan_control(smu, 0);
1404
	if (ret)
1405
		return ret;
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418

	crystal_clock_freq = amdgpu_asic_get_xclk(adev);
	tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed);
	WREG32_SOC15(THM, 0, mmCG_TACH_CTRL,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL),
				   CG_TACH_CTRL, TARGET_PERIOD,
				   tach_period));

	ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM);

	return ret;
}

1419
int smu_v11_0_set_xgmi_pstate(struct smu_context *smu,
1420 1421
				     uint32_t pstate)
{
1422 1423 1424
	int ret = 0;
	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetXgmiMode,
1425 1426
					  pstate ? XGMI_MODE_PSTATE_D0 : XGMI_MODE_PSTATE_D3,
					  NULL);
1427
	return ret;
1428 1429
}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
static int smu_v11_0_set_irq_state(struct amdgpu_device *adev,
				   struct amdgpu_irq_src *source,
				   unsigned tyep,
				   enum amdgpu_interrupt_state state)
{
	uint32_t val = 0;

	switch (state) {
	case AMDGPU_IRQ_STATE_DISABLE:
		/* For THM irqs */
		val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
		val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 1);
		val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 1);
		WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);

		WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, 0);

		/* For MP1 SW irqs */
		val = RREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT_CTRL);
		val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT_CTRL, INT_MASK, 1);
		WREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT_CTRL, val);

		break;
	case AMDGPU_IRQ_STATE_ENABLE:
		/* For THM irqs */
		val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
		val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 0);
		val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 0);
		WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);

		val = (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT);
		val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT);
		val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT);
		WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val);

		/* For MP1 SW irqs */
		val = RREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT);
		val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT, ID, 0xFE);
		val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT, VALID, 0);
		WREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT, val);

		val = RREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT_CTRL);
		val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT_CTRL, INT_MASK, 0);
		WREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT_CTRL, val);

		break;
	default:
		break;
	}

	return 0;
}

1483 1484 1485 1486 1487 1488 1489
static int smu_v11_0_ack_ac_dc_interrupt(struct smu_context *smu)
{
	return smu_send_smc_msg(smu,
				SMU_MSG_ReenableAcDcInterrupt,
				NULL);
}

1490 1491 1492
#define THM_11_0__SRCID__THM_DIG_THERM_L2H		0		/* ASIC_TEMP > CG_THERMAL_INT.DIG_THERM_INTH  */
#define THM_11_0__SRCID__THM_DIG_THERM_H2L		1		/* ASIC_TEMP < CG_THERMAL_INT.DIG_THERM_INTL  */

1493 1494
#define SMUIO_11_0__SRCID__SMUIO_GPIO19			83

1495 1496 1497 1498
static int smu_v11_0_irq_process(struct amdgpu_device *adev,
				 struct amdgpu_irq_src *source,
				 struct amdgpu_iv_entry *entry)
{
1499
	struct smu_context *smu = &adev->smu;
1500 1501
	uint32_t client_id = entry->client_id;
	uint32_t src_id = entry->src_id;
1502 1503 1504 1505 1506
	/*
	 * ctxid is used to distinguish different
	 * events for SMCToHost interrupt.
	 */
	uint32_t ctxid = entry->src_data[0];
1507
	uint32_t data;
1508 1509 1510 1511

	if (client_id == SOC15_IH_CLIENTID_THM) {
		switch (src_id) {
		case THM_11_0__SRCID__THM_DIG_THERM_L2H:
1512
			dev_emerg(adev->dev, "ERROR: GPU over temperature range(SW CTF) detected!\n");
1513 1514 1515 1516
			/*
			 * SW CTF just occurred.
			 * Try to do a graceful shutdown to prevent further damage.
			 */
1517
			dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU SW CTF!\n");
1518
			orderly_poweroff(true);
1519 1520
		break;
		case THM_11_0__SRCID__THM_DIG_THERM_H2L:
1521
			dev_emerg(adev->dev, "ERROR: GPU under temperature range detected\n");
1522 1523
		break;
		default:
1524 1525
			dev_emerg(adev->dev, "ERROR: GPU under temperature range unknown src id (%d)\n",
				src_id);
1526 1527
		break;
		}
1528
	} else if (client_id == SOC15_IH_CLIENTID_ROM_SMUIO) {
1529
		dev_emerg(adev->dev, "ERROR: GPU HW Critical Temperature Fault(aka CTF) detected!\n");
1530 1531 1532
		/*
		 * HW CTF just occurred. Shutdown to prevent further damage.
		 */
1533
		dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU HW CTF!\n");
1534
		orderly_poweroff(true);
1535
	} else if (client_id == SOC15_IH_CLIENTID_MP1) {
1536
		if (src_id == 0xfe) {
1537 1538 1539 1540 1541
			/* ACK SMUToHost interrupt */
			data = RREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT_CTRL);
			data = REG_SET_FIELD(data, MP1_SMN_IH_SW_INT_CTRL, INT_ACK, 1);
			WREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT_CTRL, data);

1542 1543 1544 1545 1546 1547 1548 1549 1550
			switch (ctxid) {
			case 0x3:
				dev_dbg(adev->dev, "Switched to AC mode!\n");
				smu_v11_0_ack_ac_dc_interrupt(&adev->smu);
				break;
			case 0x4:
				dev_dbg(adev->dev, "Switched to DC mode!\n");
				smu_v11_0_ack_ac_dc_interrupt(&adev->smu);
				break;
1551
			case 0x7:
1552 1553 1554 1555
				if (!atomic_read(&adev->throttling_logging_enabled))
					return 0;

				if (__ratelimit(&adev->throttling_logging_rs))
1556
					schedule_work(&smu->throttling_logging_work);
1557 1558

				break;
1559 1560
			}
		}
1561 1562 1563 1564 1565 1566 1567
	}

	return 0;
}

static const struct amdgpu_irq_src_funcs smu_v11_0_irq_funcs =
{
1568
	.set = smu_v11_0_set_irq_state,
1569 1570 1571
	.process = smu_v11_0_irq_process,
};

1572
int smu_v11_0_register_irq_handler(struct smu_context *smu)
1573 1574
{
	struct amdgpu_device *adev = smu->adev;
1575
	struct amdgpu_irq_src *irq_src = &smu->irq_source;
1576 1577
	int ret = 0;

1578
	irq_src->num_types = 1;
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	irq_src->funcs = &smu_v11_0_irq_funcs;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_L2H,
				irq_src);
	if (ret)
		return ret;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_H2L,
				irq_src);
	if (ret)
		return ret;

1593 1594 1595 1596 1597 1598 1599
	/* Register CTF(GPIO_19) interrupt */
	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_ROM_SMUIO,
				SMUIO_11_0__SRCID__SMUIO_GPIO19,
				irq_src);
	if (ret)
		return ret;

1600 1601 1602 1603 1604 1605
	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_MP1,
				0xfe,
				irq_src);
	if (ret)
		return ret;

1606 1607 1608
	return ret;
}

1609
int smu_v11_0_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
		struct pp_smu_nv_clock_table *max_clocks)
{
	struct smu_table_context *table_context = &smu->smu_table;
	struct smu_11_0_max_sustainable_clocks *sustainable_clocks = NULL;

	if (!max_clocks || !table_context->max_sustainable_clocks)
		return -EINVAL;

	sustainable_clocks = table_context->max_sustainable_clocks;

	max_clocks->dcfClockInKhz =
			(unsigned int) sustainable_clocks->dcef_clock * 1000;
	max_clocks->displayClockInKhz =
			(unsigned int) sustainable_clocks->display_clock * 1000;
	max_clocks->phyClockInKhz =
			(unsigned int) sustainable_clocks->phy_clock * 1000;
	max_clocks->pixelClockInKhz =
			(unsigned int) sustainable_clocks->pixel_clock * 1000;
	max_clocks->uClockInKhz =
			(unsigned int) sustainable_clocks->uclock * 1000;
	max_clocks->socClockInKhz =
			(unsigned int) sustainable_clocks->soc_clock * 1000;
	max_clocks->dscClockInKhz = 0;
	max_clocks->dppClockInKhz = 0;
	max_clocks->fabricClockInKhz = 0;

	return 0;
}

1639
int smu_v11_0_set_azalia_d3_pme(struct smu_context *smu)
1640 1641 1642
{
	int ret = 0;

1643
	ret = smu_send_smc_msg(smu, SMU_MSG_BacoAudioD3PME, NULL);
1644 1645 1646 1647

	return ret;
}

1648 1649
static int smu_v11_0_baco_set_armd3_sequence(struct smu_context *smu, enum smu_v11_0_baco_seq baco_seq)
{
1650
	return smu_send_smc_msg_with_param(smu, SMU_MSG_ArmD3, baco_seq, NULL);
1651 1652
}

1653
bool smu_v11_0_baco_is_support(struct smu_context *smu)
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
{
	struct smu_baco_context *smu_baco = &smu->smu_baco;
	bool baco_support;

	mutex_lock(&smu_baco->mutex);
	baco_support = smu_baco->platform_support;
	mutex_unlock(&smu_baco->mutex);

	if (!baco_support)
		return false;

1665 1666 1667
	/* Arcturus does not support this bit mask */
	if (smu_feature_is_supported(smu, SMU_FEATURE_BACO_BIT) &&
	   !smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT))
1668 1669
		return false;

1670
	return true;
1671 1672
}

1673
enum smu_baco_state smu_v11_0_baco_get_state(struct smu_context *smu)
1674 1675
{
	struct smu_baco_context *smu_baco = &smu->smu_baco;
1676
	enum smu_baco_state baco_state;
1677 1678 1679 1680 1681 1682 1683 1684

	mutex_lock(&smu_baco->mutex);
	baco_state = smu_baco->state;
	mutex_unlock(&smu_baco->mutex);

	return baco_state;
}

1685
int smu_v11_0_baco_set_state(struct smu_context *smu, enum smu_baco_state state)
1686 1687
{
	struct smu_baco_context *smu_baco = &smu->smu_baco;
1688 1689 1690
	struct amdgpu_device *adev = smu->adev;
	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
	uint32_t data;
1691 1692 1693 1694 1695 1696 1697
	int ret = 0;

	if (smu_v11_0_baco_get_state(smu) == state)
		return 0;

	mutex_lock(&smu_baco->mutex);

1698 1699 1700 1701 1702 1703
	if (state == SMU_BACO_STATE_ENTER) {
		if (!ras || !ras->supported) {
			data = RREG32_SOC15(THM, 0, mmTHM_BACO_CNTL);
			data |= 0x80000000;
			WREG32_SOC15(THM, 0, mmTHM_BACO_CNTL, data);

1704
			ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, 0, NULL);
1705
		} else {
1706
			ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, 1, NULL);
1707 1708
		}
	} else {
1709
		ret = smu_send_smc_msg(smu, SMU_MSG_ExitBaco, NULL);
1710 1711 1712
		if (ret)
			goto out;

1713 1714 1715 1716 1717 1718
		if (ras && ras->supported) {
			ret = smu_send_smc_msg(smu, SMU_MSG_PrepareMp1ForUnload, NULL);
			if (ret)
				goto out;
		}

1719 1720 1721
		/* clear vbios scratch 6 and 7 for coming asic reinit */
		WREG32(adev->bios_scratch_reg_offset + 6, 0);
		WREG32(adev->bios_scratch_reg_offset + 7, 0);
1722
	}
1723 1724 1725 1726 1727 1728 1729 1730 1731
	if (ret)
		goto out;

	smu_baco->state = state;
out:
	mutex_unlock(&smu_baco->mutex);
	return ret;
}

1732
int smu_v11_0_baco_enter(struct smu_context *smu)
1733
{
1734
	struct amdgpu_device *adev = smu->adev;
1735 1736
	int ret = 0;

1737 1738 1739 1740 1741 1742
	/* Arcturus does not need this audio workaround */
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_v11_0_baco_set_armd3_sequence(smu, BACO_SEQ_BACO);
		if (ret)
			return ret;
	}
1743 1744 1745 1746 1747 1748 1749

	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_ENTER);
	if (ret)
		return ret;

	msleep(10);

1750 1751 1752 1753 1754 1755 1756
	return ret;
}

int smu_v11_0_baco_exit(struct smu_context *smu)
{
	int ret = 0;

1757 1758 1759 1760 1761 1762 1763
	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_EXIT);
	if (ret)
		return ret;

	return ret;
}

1764
int smu_v11_0_get_dpm_ultimate_freq(struct smu_context *smu, enum smu_clk_type clk_type,
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
						 uint32_t *min, uint32_t *max)
{
	int ret = 0, clk_id = 0;
	uint32_t param = 0;

	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0) {
		ret = -EINVAL;
		goto failed;
	}
	param = (clk_id & 0xffff) << 16;

	if (max) {
1778
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq, param, max);
1779 1780 1781 1782 1783
		if (ret)
			goto failed;
	}

	if (min) {
1784
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMinDpmFreq, param, min);
1785 1786 1787 1788 1789 1790 1791 1792
		if (ret)
			goto failed;
	}

failed:
	return ret;
}

1793
int smu_v11_0_set_soft_freq_limited_range(struct smu_context *smu, enum smu_clk_type clk_type,
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
			    uint32_t min, uint32_t max)
{
	int ret = 0, clk_id = 0;
	uint32_t param;

	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	if (max > 0) {
		param = (uint32_t)((clk_id << 16) | (max & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxByFreq,
1806
						  param, NULL);
1807 1808 1809 1810 1811 1812 1813
		if (ret)
			return ret;
	}

	if (min > 0) {
		param = (uint32_t)((clk_id << 16) | (min & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMinByFreq,
1814
						  param, NULL);
1815 1816 1817 1818 1819 1820 1821
		if (ret)
			return ret;
	}

	return ret;
}

1822
int smu_v11_0_override_pcie_parameters(struct smu_context *smu)
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t pcie_gen = 0, pcie_width = 0;
	int ret;

	if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4)
		pcie_gen = 3;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
		pcie_gen = 2;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2)
		pcie_gen = 1;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1)
		pcie_gen = 0;

	/* Bit 31:16: LCLK DPM level. 0 is DPM0, and 1 is DPM1
	 * Bit 15:8:  PCIE GEN, 0 to 3 corresponds to GEN1 to GEN4
	 * Bit 7:0:   PCIE lane width, 1 to 7 corresponds is x1 to x32
	 */
	if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
		pcie_width = 6;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
		pcie_width = 5;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
		pcie_width = 4;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
		pcie_width = 3;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
		pcie_width = 2;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
		pcie_width = 1;

	ret = smu_update_pcie_parameters(smu, pcie_gen, pcie_width);

	if (ret)
1857
		dev_err(adev->dev, "[%s] Attempt to override pcie params failed!\n", __func__);
1858 1859 1860 1861

	return ret;

}
1862

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
int smu_v11_0_set_performance_level(struct smu_context *smu,
				    enum amd_dpm_forced_level level)
{
	int ret = 0;
	uint32_t sclk_mask, mclk_mask, soc_mask;

	switch (level) {
	case AMD_DPM_FORCED_LEVEL_HIGH:
		ret = smu_force_dpm_limit_value(smu, true);
		break;
	case AMD_DPM_FORCED_LEVEL_LOW:
		ret = smu_force_dpm_limit_value(smu, false);
		break;
	case AMD_DPM_FORCED_LEVEL_AUTO:
	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
		ret = smu_unforce_dpm_levels(smu);
		break;
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
		ret = smu_get_profiling_clk_mask(smu, level,
						 &sclk_mask,
						 &mclk_mask,
						 &soc_mask);
		if (ret)
			return ret;
		smu_force_clk_levels(smu, SMU_SCLK, 1 << sclk_mask, false);
		smu_force_clk_levels(smu, SMU_MCLK, 1 << mclk_mask, false);
		smu_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask, false);
		break;
	case AMD_DPM_FORCED_LEVEL_MANUAL:
	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
	default:
		break;
	}
	return ret;
}

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
int smu_v11_0_set_power_source(struct smu_context *smu,
			       enum smu_power_src_type power_src)
{
	int pwr_source;

	pwr_source = smu_power_get_index(smu, (uint32_t)power_src);
	if (pwr_source < 0)
		return -EINVAL;

	return smu_send_smc_msg_with_param(smu,
					SMU_MSG_NotifyPowerSource,
					pwr_source,
					NULL);
}