smu_v11_0.c 46.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/firmware.h>
24
#include <linux/module.h>
25
#include <linux/pci.h>
26 27

#include "pp_debug.h"
28 29
#include "amdgpu.h"
#include "amdgpu_smu.h"
30
#include "atomfirmware.h"
31
#include "amdgpu_atomfirmware.h"
32
#include "smu_v11_0.h"
33
#include "soc15_common.h"
34
#include "atom.h"
35
#include "vega20_ppt.h"
36
#include "arcturus_ppt.h"
37
#include "navi10_ppt.h"
38 39 40

#include "asic_reg/thm/thm_11_0_2_offset.h"
#include "asic_reg/thm/thm_11_0_2_sh_mask.h"
41 42
#include "asic_reg/mp/mp_11_0_offset.h"
#include "asic_reg/mp/mp_11_0_sh_mask.h"
43
#include "asic_reg/nbio/nbio_7_4_offset.h"
44
#include "asic_reg/nbio/nbio_7_4_sh_mask.h"
45 46
#include "asic_reg/smuio/smuio_11_0_0_offset.h"
#include "asic_reg/smuio/smuio_11_0_0_sh_mask.h"
47

48
MODULE_FIRMWARE("amdgpu/vega20_smc.bin");
49
MODULE_FIRMWARE("amdgpu/arcturus_smc.bin");
50
MODULE_FIRMWARE("amdgpu/navi10_smc.bin");
51
MODULE_FIRMWARE("amdgpu/navi14_smc.bin");
52
MODULE_FIRMWARE("amdgpu/navi12_smc.bin");
53

54
#define SMU11_VOLTAGE_SCALE 4
55

56 57 58 59 60 61 62 63
static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu,
					      uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_66, msg);
	return 0;
}

64 65 66 67 68 69 70 71
static int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg)
{
	struct amdgpu_device *adev = smu->adev;

	*arg = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82);
	return 0;
}

72 73 74
static int smu_v11_0_wait_for_response(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
75
	uint32_t cur_value, i, timeout = adev->usec_timeout * 10;
76

77
	for (i = 0; i < timeout; i++) {
78 79 80 81 82 83 84
		cur_value = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90);
		if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0)
			break;
		udelay(1);
	}

	/* timeout means wrong logic */
85
	if (i == timeout)
86 87
		return -ETIME;

88
	return RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90) == 0x1 ? 0 : -EIO;
89 90 91 92 93
}

static int smu_v11_0_send_msg(struct smu_context *smu, uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
94 95 96 97 98
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
99 100 101 102 103

	smu_v11_0_wait_for_response(smu);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

104
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
105 106 107 108

	ret = smu_v11_0_wait_for_response(smu);

	if (ret)
109 110
		pr_err("failed send message: %10s (%d) response %#x\n",
		       smu_get_message_name(smu, msg), index, ret);
111 112 113 114 115 116 117 118 119 120 121

	return ret;

}

static int
smu_v11_0_send_msg_with_param(struct smu_context *smu, uint16_t msg,
			      uint32_t param)
{

	struct amdgpu_device *adev = smu->adev;
122 123 124 125 126
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
127 128 129

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
130 131
		pr_err("failed send message: %10s (%d) \tparam: 0x%08x response %#x\n",
		       smu_get_message_name(smu, msg), index, param, ret);
132 133 134 135 136

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82, param);

137
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
138 139 140

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
141 142
		pr_err("failed send message: %10s (%d) \tparam: 0x%08x response %#x\n",
		       smu_get_message_name(smu, msg), index, param, ret);
143 144 145 146

	return ret;
}

147 148 149
static int smu_v11_0_init_microcode(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
150 151 152 153 154 155
	const char *chip_name;
	char fw_name[30];
	int err = 0;
	const struct smc_firmware_header_v1_0 *hdr;
	const struct common_firmware_header *header;
	struct amdgpu_firmware_info *ucode = NULL;
156

157 158 159 160
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		chip_name = "vega20";
		break;
161 162 163
	case CHIP_ARCTURUS:
		chip_name = "arcturus";
		break;
164 165 166
	case CHIP_NAVI10:
		chip_name = "navi10";
		break;
167 168 169
	case CHIP_NAVI14:
		chip_name = "navi14";
		break;
170 171 172
	case CHIP_NAVI12:
		chip_name = "navi12";
		break;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
	default:
		BUG();
	}

	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name);

	err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
	if (err)
		goto out;
	err = amdgpu_ucode_validate(adev->pm.fw);
	if (err)
		goto out;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	amdgpu_ucode_print_smc_hdr(&hdr->header);
	adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
		ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC];
		ucode->ucode_id = AMDGPU_UCODE_ID_SMC;
		ucode->fw = adev->pm.fw;
		header = (const struct common_firmware_header *)ucode->fw->data;
		adev->firmware.fw_size +=
			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
	}

out:
	if (err) {
		DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n",
			  fw_name);
		release_firmware(adev->pm.fw);
		adev->pm.fw = NULL;
	}
	return err;
207 208
}

209 210
static int smu_v11_0_load_microcode(struct smu_context *smu)
{
211 212 213 214 215 216 217
	struct amdgpu_device *adev = smu->adev;
	const uint32_t *src;
	const struct smc_firmware_header_v1_0 *hdr;
	uint32_t addr_start = MP1_SRAM;
	uint32_t i;
	uint32_t mp1_fw_flags;

218
	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
	src = (const uint32_t *)(adev->pm.fw->data +
		le32_to_cpu(hdr->header.ucode_array_offset_bytes));

	for (i = 1; i < MP1_SMC_SIZE/4 - 1; i++) {
		WREG32_PCIE(addr_start, src[i]);
		addr_start += 4;
	}

	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & MP1_SMN_PUB_CTRL__RESET_MASK);
	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & ~MP1_SMN_PUB_CTRL__RESET_MASK);

	for (i = 0; i < adev->usec_timeout; i++) {
		mp1_fw_flags = RREG32_PCIE(MP1_Public |
			(smnMP1_FIRMWARE_FLAGS & 0xffffffff));
		if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
			MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
			break;
		udelay(1);
	}

	if (i == adev->usec_timeout)
		return -ETIME;

244 245 246
	return 0;
}

247 248
static int smu_v11_0_check_fw_status(struct smu_context *smu)
{
249 250 251
	struct amdgpu_device *adev = smu->adev;
	uint32_t mp1_fw_flags;

252 253
	mp1_fw_flags = RREG32_PCIE(MP1_Public |
				   (smnMP1_FIRMWARE_FLAGS & 0xffffffff));
254 255 256 257

	if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
	    MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
		return 0;
258

259
	return -EIO;
260 261
}

262 263
static int smu_v11_0_check_fw_version(struct smu_context *smu)
{
264 265 266
	uint32_t if_version = 0xff, smu_version = 0xff;
	uint16_t smu_major;
	uint8_t smu_minor, smu_debug;
267 268
	int ret = 0;

269
	ret = smu_get_smc_version(smu, &if_version, &smu_version);
270
	if (ret)
271
		return ret;
272

273 274 275 276
	smu_major = (smu_version >> 16) & 0xffff;
	smu_minor = (smu_version >> 8) & 0xff;
	smu_debug = (smu_version >> 0) & 0xff;

277 278 279 280 281 282 283 284
	/*
	 * 1. if_version mismatch is not critical as our fw is designed
	 * to be backward compatible.
	 * 2. New fw usually brings some optimizations. But that's visible
	 * only on the paired driver.
	 * Considering above, we just leave user a warning message instead
	 * of halt driver loading.
	 */
285
	if (if_version != smu->smc_if_version) {
286 287 288 289
		pr_info("smu driver if version = 0x%08x, smu fw if version = 0x%08x, "
			"smu fw version = 0x%08x (%d.%d.%d)\n",
			smu->smc_if_version, if_version,
			smu_version, smu_major, smu_minor, smu_debug);
290
		pr_warn("SMU driver if version not matched\n");
291 292
	}

293 294 295
	return ret;
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
static int smu_v11_0_set_pptable_v2_0(struct smu_context *smu, void **table, uint32_t *size)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t ppt_offset_bytes;
	const struct smc_firmware_header_v2_0 *v2;

	v2 = (const struct smc_firmware_header_v2_0 *) adev->pm.fw->data;

	ppt_offset_bytes = le32_to_cpu(v2->ppt_offset_bytes);
	*size = le32_to_cpu(v2->ppt_size_bytes);
	*table = (uint8_t *)v2 + ppt_offset_bytes;

	return 0;
}

311 312
static int smu_v11_0_set_pptable_v2_1(struct smu_context *smu, void **table,
				      uint32_t *size, uint32_t pptable_id)
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
{
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v2_1 *v2_1;
	struct smc_soft_pptable_entry *entries;
	uint32_t pptable_count = 0;
	int i = 0;

	v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data;
	entries = (struct smc_soft_pptable_entry *)
		((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset));
	pptable_count = le32_to_cpu(v2_1->pptable_count);
	for (i = 0; i < pptable_count; i++) {
		if (le32_to_cpu(entries[i].id) == pptable_id) {
			*table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes));
			*size = le32_to_cpu(entries[i].ppt_size_bytes);
			break;
		}
	}

	if (i == pptable_count)
		return -EINVAL;

	return 0;
}

static int smu_v11_0_setup_pptable(struct smu_context *smu)
339
{
340 341
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v1_0 *hdr;
342
	int ret, index;
343
	uint32_t size;
344
	uint8_t frev, crev;
345
	void *table;
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
	uint16_t version_major, version_minor;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	version_major = le16_to_cpu(hdr->header.header_version_major);
	version_minor = le16_to_cpu(hdr->header.header_version_minor);
	if (version_major == 2 && smu->smu_table.boot_values.pp_table_id > 0) {
		switch (version_minor) {
		case 0:
			ret = smu_v11_0_set_pptable_v2_0(smu, &table, &size);
			break;
		case 1:
			ret = smu_v11_0_set_pptable_v2_1(smu, &table, &size,
							 smu->smu_table.boot_values.pp_table_id);
			break;
		default:
			ret = -EINVAL;
			break;
		}
		if (ret)
			return ret;
366

367 368 369
	} else {
		index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
						    powerplayinfo);
370

371
		ret = smu_get_atom_data_table(smu, index, (uint16_t *)&size, &frev, &crev,
372 373 374 375
					      (uint8_t **)&table);
		if (ret)
			return ret;
	}
376

377 378 379 380
	if (!smu->smu_table.power_play_table)
		smu->smu_table.power_play_table = table;
	if (!smu->smu_table.power_play_table_size)
		smu->smu_table.power_play_table_size = size;
381 382 383 384

	return 0;
}

385 386 387 388 389 390 391
static int smu_v11_0_init_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0)
		return -EINVAL;

392
	return smu_alloc_dpm_context(smu);
393 394 395 396 397 398 399 400 401 402
}

static int smu_v11_0_fini_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0)
		return -EINVAL;

	kfree(smu_dpm->dpm_context);
403
	kfree(smu_dpm->golden_dpm_context);
404 405
	kfree(smu_dpm->dpm_current_power_state);
	kfree(smu_dpm->dpm_request_power_state);
406
	smu_dpm->dpm_context = NULL;
407
	smu_dpm->golden_dpm_context = NULL;
408
	smu_dpm->dpm_context_size = 0;
409 410
	smu_dpm->dpm_current_power_state = NULL;
	smu_dpm->dpm_request_power_state = NULL;
411 412 413 414

	return 0;
}

415 416 417 418
static int smu_v11_0_init_smc_tables(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = NULL;
419
	int ret = 0;
420

421
	if (smu_table->tables || smu_table->table_count == 0)
422 423
		return -EINVAL;

424 425
	tables = kcalloc(SMU_TABLE_COUNT, sizeof(struct smu_table),
			 GFP_KERNEL);
426 427 428 429 430
	if (!tables)
		return -ENOMEM;

	smu_table->tables = tables;

431 432 433
	ret = smu_tables_init(smu, tables);
	if (ret)
		return ret;
434

435 436 437 438
	ret = smu_v11_0_init_dpm_context(smu);
	if (ret)
		return ret;

439 440 441 442 443 444
	return 0;
}

static int smu_v11_0_fini_smc_tables(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
445
	int ret = 0;
446 447 448 449 450

	if (!smu_table->tables || smu_table->table_count == 0)
		return -EINVAL;

	kfree(smu_table->tables);
451
	kfree(smu_table->metrics_table);
452 453
	smu_table->tables = NULL;
	smu_table->table_count = 0;
454 455
	smu_table->metrics_table = NULL;
	smu_table->metrics_time = 0;
456

457 458 459
	ret = smu_v11_0_fini_dpm_context(smu);
	if (ret)
		return ret;
460 461
	return 0;
}
462 463 464 465 466

static int smu_v11_0_init_power(struct smu_context *smu)
{
	struct smu_power_context *smu_power = &smu->smu_power;

467 468
	if (!smu->pm_enabled)
		return 0;
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	if (smu_power->power_context || smu_power->power_context_size != 0)
		return -EINVAL;

	smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
					   GFP_KERNEL);
	if (!smu_power->power_context)
		return -ENOMEM;
	smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context);

	return 0;
}

static int smu_v11_0_fini_power(struct smu_context *smu)
{
	struct smu_power_context *smu_power = &smu->smu_power;

485 486
	if (!smu->pm_enabled)
		return 0;
487 488 489 490 491 492 493 494 495 496
	if (!smu_power->power_context || smu_power->power_context_size == 0)
		return -EINVAL;

	kfree(smu_power->power_context);
	smu_power->power_context = NULL;
	smu_power->power_context_size = 0;

	return 0;
}

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu)
{
	int ret, index;
	uint16_t size;
	uint8_t frev, crev;
	struct atom_common_table_header *header;
	struct atom_firmware_info_v3_3 *v_3_3;
	struct atom_firmware_info_v3_1 *v_3_1;

	index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
					    firmwareinfo);

	ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev,
				      (uint8_t **)&header);
	if (ret)
		return ret;

	if (header->format_revision != 3) {
		pr_err("unknown atom_firmware_info version! for smu11\n");
		return -EINVAL;
	}

	switch (header->content_revision) {
	case 0:
	case 1:
	case 2:
		v_3_1 = (struct atom_firmware_info_v3_1 *)header;
		smu->smu_table.boot_values.revision = v_3_1->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = 0;
		break;
	case 3:
	default:
		v_3_3 = (struct atom_firmware_info_v3_3 *)header;
		smu->smu_table.boot_values.revision = v_3_3->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id;
	}

	return 0;
}

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
static int smu_v11_0_get_clk_info_from_vbios(struct smu_context *smu)
{
	int ret, index;
	struct amdgpu_device *adev = smu->adev;
	struct atom_get_smu_clock_info_parameters_v3_1 input = {0};
	struct atom_get_smu_clock_info_output_parameters_v3_1 *output;

	input.clk_id = SMU11_SYSPLL0_SOCCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.socclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCEFCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dcefclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_ECLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.eclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_VCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.vclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

631 632 633
	return 0;
}

634 635 636 637 638 639 640 641 642 643 644
static int smu_v11_0_notify_memory_pool_location(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	int ret = 0;
	uint64_t address;
	uint32_t address_low, address_high;

	if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL)
		return ret;

645
	address = (uintptr_t)memory_pool->cpu_addr;
646 647 648 649
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

	ret = smu_send_smc_msg_with_param(smu,
650
					  SMU_MSG_SetSystemVirtualDramAddrHigh,
651 652 653 654
					  address_high);
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu,
655
					  SMU_MSG_SetSystemVirtualDramAddrLow,
656 657 658 659 660 661 662 663
					  address_low);
	if (ret)
		return ret;

	address = memory_pool->mc_address;
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

664
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh,
665 666 667
					  address_high);
	if (ret)
		return ret;
668
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow,
669 670 671
					  address_low);
	if (ret)
		return ret;
672
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize,
673 674 675 676 677 678 679
					  (uint32_t)memory_pool->size);
	if (ret)
		return ret;

	return ret;
}

680 681 682 683 684 685 686 687
static int smu_v11_0_check_pptable(struct smu_context *smu)
{
	int ret;

	ret = smu_check_powerplay_table(smu);
	return ret;
}

688 689 690 691 692
static int smu_v11_0_parse_pptable(struct smu_context *smu)
{
	int ret;

	struct smu_table_context *table_context = &smu->smu_table;
693
	struct smu_table *table = &table_context->tables[SMU_TABLE_PPTABLE];
694 695 696 697

	if (table_context->driver_pptable)
		return -EINVAL;

698
	table_context->driver_pptable = kzalloc(table->size, GFP_KERNEL);
699 700 701 702 703

	if (!table_context->driver_pptable)
		return -ENOMEM;

	ret = smu_store_powerplay_table(smu);
704 705 706 707
	if (ret)
		return -EINVAL;

	ret = smu_append_powerplay_table(smu);
708 709 710 711

	return ret;
}

712 713
static int smu_v11_0_populate_smc_pptable(struct smu_context *smu)
{
714
	int ret;
715

716
	ret = smu_set_default_dpm_table(smu);
717

718
	return ret;
719 720
}

721 722
static int smu_v11_0_write_pptable(struct smu_context *smu)
{
723
	struct smu_table_context *table_context = &smu->smu_table;
724 725
	int ret = 0;

726
	ret = smu_update_table(smu, SMU_TABLE_PPTABLE, 0,
727
			       table_context->driver_pptable, true);
728 729 730 731

	return ret;
}

732 733
static int smu_v11_0_write_watermarks_table(struct smu_context *smu)
{
734 735 736 737 738 739 740 741 742 743 744
	int ret = 0;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *table = NULL;

	table = &smu_table->tables[SMU_TABLE_WATERMARKS];
	if (!table)
		return -EINVAL;

	if (!table->cpu_addr)
		return -EINVAL;

745
	ret = smu_update_table(smu, SMU_TABLE_WATERMARKS, 0, table->cpu_addr,
746
				true);
747 748

	return ret;
749 750
}

751 752 753 754 755 756 757 758 759 760 761 762
static int smu_v11_0_set_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk)
{
	int ret;

	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetMinDeepSleepDcefclk, clk);
	if (ret)
		pr_err("SMU11 attempt to set divider for DCEFCLK Failed!");

	return ret;
}

763 764 765 766
static int smu_v11_0_set_min_dcef_deep_sleep(struct smu_context *smu)
{
	struct smu_table_context *table_context = &smu->smu_table;

767 768
	if (!smu->pm_enabled)
		return 0;
769 770 771
	if (!table_context)
		return -EINVAL;

772
	return smu_set_deep_sleep_dcefclk(smu,
773 774 775
					  table_context->boot_values.dcefclk / 100);
}

776 777 778
static int smu_v11_0_set_tool_table_location(struct smu_context *smu)
{
	int ret = 0;
779
	struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG];
780 781 782

	if (tool_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
783
				SMU_MSG_SetToolsDramAddrHigh,
784 785 786
				upper_32_bits(tool_table->mc_address));
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
787
				SMU_MSG_SetToolsDramAddrLow,
788 789 790 791 792 793
				lower_32_bits(tool_table->mc_address));
	}

	return ret;
}

794
static int smu_v11_0_init_display_count(struct smu_context *smu, uint32_t count)
795 796
{
	int ret = 0;
797 798 799

	if (!smu->pm_enabled)
		return ret;
800

801
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, count);
802 803 804
	return ret;
}

805

806 807 808 809 810 811
static int smu_v11_0_set_allowed_mask(struct smu_context *smu)
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
	uint32_t feature_mask[2];

812
	mutex_lock(&feature->mutex);
813
	if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64)
814
		goto failed;
815 816 817 818 819 820

	bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64);

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh,
					  feature_mask[1]);
	if (ret)
821
		goto failed;
822 823 824 825

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow,
					  feature_mask[0]);
	if (ret)
826
		goto failed;
827

828 829
failed:
	mutex_unlock(&feature->mutex);
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
	return ret;
}

static int smu_v11_0_get_enabled_mask(struct smu_context *smu,
				      uint32_t *feature_mask, uint32_t num)
{
	uint32_t feature_mask_high = 0, feature_mask_low = 0;
	int ret = 0;

	if (!feature_mask || num < 2)
		return -EINVAL;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_high);
	if (ret)
		return ret;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_low);
	if (ret)
		return ret;

	feature_mask[0] = feature_mask_low;
	feature_mask[1] = feature_mask_high;

	return ret;
}

862 863
static int smu_v11_0_system_features_control(struct smu_context *smu,
					     bool en)
864 865 866 867 868
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_mask[2];
	int ret = 0;

869 870 871 872 873 874 875
	if (smu->pm_enabled) {
		ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures :
					     SMU_MSG_DisableAllSmuFeatures));
		if (ret)
			return ret;
	}

876 877 878 879 880 881 882 883 884 885 886 887
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
		return ret;

	bitmap_copy(feature->enabled, (unsigned long *)&feature_mask,
		    feature->feature_num);
	bitmap_copy(feature->supported, (unsigned long *)&feature_mask,
		    feature->feature_num);

	return ret;
}

888 889 890 891
static int smu_v11_0_notify_display_change(struct smu_context *smu)
{
	int ret = 0;

892 893
	if (!smu->pm_enabled)
		return ret;
894 895 896
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
	    smu->adev->gmc.vram_type == AMDGPU_VRAM_TYPE_HBM)
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1);
897 898 899 900

	return ret;
}

901 902
static int
smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock,
903
				    enum smu_clk_type clock_select)
904 905
{
	int ret = 0;
906
	int clk_id;
907

908 909
	if (!smu->pm_enabled)
		return ret;
910 911 912 913 914

	clk_id = smu_clk_get_index(smu, clock_select);
	if (clk_id < 0)
		return -EINVAL;

915
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq,
916
					  clk_id << 16);
917 918 919 920 921 922 923 924 925 926 927 928 929 930
	if (ret) {
		pr_err("[GetMaxSustainableClock] Failed to get max DC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);
	if (ret)
		return ret;

	if (*clock != 0)
		return 0;

	/* if DC limit is zero, return AC limit */
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
931
					  clk_id << 16);
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
	if (ret) {
		pr_err("[GetMaxSustainableClock] failed to get max AC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);

	return ret;
}

static int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu)
{
	struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks;
	int ret = 0;

	max_sustainable_clocks = kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks),
					 GFP_KERNEL);
	smu->smu_table.max_sustainable_clocks = (void *)max_sustainable_clocks;

	max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100;
	max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100;
	max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100;
	max_sustainable_clocks->display_clock = 0xFFFFFFFF;
	max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
	max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;

958
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
959 960
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->uclock),
961
							  SMU_UCLK);
962 963 964 965 966 967 968
		if (ret) {
			pr_err("[%s] failed to get max UCLK from SMC!",
			       __func__);
			return ret;
		}
	}

969
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
970 971
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->soc_clock),
972
							  SMU_SOCCLK);
973 974 975 976 977 978 979
		if (ret) {
			pr_err("[%s] failed to get max SOCCLK from SMC!",
			       __func__);
			return ret;
		}
	}

980
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
981 982
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->dcef_clock),
983
							  SMU_DCEFCLK);
984 985 986 987 988 989 990 991
		if (ret) {
			pr_err("[%s] failed to get max DCEFCLK from SMC!",
			       __func__);
			return ret;
		}

		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->display_clock),
992
							  SMU_DISPCLK);
993 994 995 996 997 998 999
		if (ret) {
			pr_err("[%s] failed to get max DISPCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->phy_clock),
1000
							  SMU_PHYCLK);
1001 1002 1003 1004 1005 1006 1007
		if (ret) {
			pr_err("[%s] failed to get max PHYCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->pixel_clock),
1008
							  SMU_PIXCLK);
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
		if (ret) {
			pr_err("[%s] failed to get max PIXCLK from SMC!",
			       __func__);
			return ret;
		}
	}

	if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
		max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;

	return 0;
}

1022
static int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n)
1023
{
1024
	int ret = 0;
1025

1026 1027 1028
	if (n > smu->default_power_limit) {
		pr_err("New power limit is over the max allowed %d\n",
				smu->default_power_limit);
1029
		return -EINVAL;
1030 1031
	}

1032 1033 1034
	if (n == 0)
		n = smu->default_power_limit;

1035 1036 1037
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) {
		pr_err("Setting new power limit is not supported!\n");
		return -EOPNOTSUPP;
1038 1039
	}

1040
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n);
1041
	if (ret) {
1042
		pr_err("[%s] Set power limit Failed!\n", __func__);
1043 1044
		return ret;
	}
1045
	smu->power_limit = n;
1046

1047
	return 0;
1048 1049
}

1050 1051 1052
static int smu_v11_0_get_current_clk_freq(struct smu_context *smu,
					  enum smu_clk_type clk_id,
					  uint32_t *value)
1053 1054
{
	int ret = 0;
1055
	uint32_t freq = 0;
1056
	int asic_clk_id;
1057

1058
	if (clk_id >= SMU_CLK_COUNT || !value)
1059 1060
		return -EINVAL;

1061 1062 1063 1064
	asic_clk_id = smu_clk_get_index(smu, clk_id);
	if (asic_clk_id < 0)
		return -EINVAL;

1065
	/* if don't has GetDpmClockFreq Message, try get current clock by SmuMetrics_t */
1066
	if (smu_msg_get_index(smu, SMU_MSG_GetDpmClockFreq) < 0)
1067 1068 1069
		ret =  smu_get_current_clk_freq_by_table(smu, clk_id, &freq);
	else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmClockFreq,
1070
						  (asic_clk_id << 16));
1071 1072
		if (ret)
			return ret;
1073

1074 1075 1076 1077
		ret = smu_read_smc_arg(smu, &freq);
		if (ret)
			return ret;
	}
1078 1079 1080 1081 1082 1083 1084

	freq *= 100;
	*value = freq;

	return ret;
}

1085
static int smu_v11_0_set_thermal_range(struct smu_context *smu,
1086
				       struct smu_temperature_range *range)
1087 1088
{
	struct amdgpu_device *adev = smu->adev;
1089 1090
	int low = SMU_THERMAL_MINIMUM_ALERT_TEMP;
	int high = SMU_THERMAL_MAXIMUM_ALERT_TEMP;
1091 1092
	uint32_t val;

1093 1094 1095
	if (!range)
		return -EINVAL;

1096 1097 1098 1099 1100
	if (low < range->min)
		low = range->min;
	if (high > range->max)
		high = range->max;

1101 1102 1103
	low = max(SMU_THERMAL_MINIMUM_ALERT_TEMP, range->min);
	high = min(SMU_THERMAL_MAXIMUM_ALERT_TEMP, range->max);

1104 1105 1106 1107 1108 1109
	if (low > high)
		return -EINVAL;

	val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1);
1110 1111
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 0);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 0);
1112 1113
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high & 0xff));
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low & 0xff));
1114 1115 1116 1117 1118 1119 1120
	val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);

	return 0;
}

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
static int smu_v11_0_enable_thermal_alert(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t val = 0;

	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val);

	return 0;
}

1135 1136 1137
static int smu_v11_0_start_thermal_control(struct smu_context *smu)
{
	int ret = 0;
1138
	struct smu_temperature_range range = {
1139 1140 1141 1142 1143 1144 1145 1146 1147
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX};
1148 1149
	struct amdgpu_device *adev = smu->adev;

1150 1151
	if (!smu->pm_enabled)
		return ret;
1152

1153
	ret = smu_get_thermal_temperature_range(smu, &range);
1154 1155
	if (ret)
		return ret;
1156 1157 1158 1159 1160 1161 1162 1163 1164

	if (smu->smu_table.thermal_controller_type) {
		ret = smu_v11_0_set_thermal_range(smu, &range);
		if (ret)
			return ret;

		ret = smu_v11_0_enable_thermal_alert(smu);
		if (ret)
			return ret;
1165

1166
		ret = smu_set_thermal_fan_table(smu);
1167 1168 1169 1170
		if (ret)
			return ret;
	}

1171 1172 1173 1174 1175 1176 1177 1178 1179
	adev->pm.dpm.thermal.min_temp = range.min * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_temp = range.max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_edge_emergency_temp = range.edge_emergency_max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.min_hotspot_temp = range.hotspot_min * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_hotspot_crit_temp = range.hotspot_crit_max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_hotspot_emergency_temp = range.hotspot_emergency_max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.min_mem_temp = range.mem_min * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_mem_crit_temp = range.mem_crit_max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_mem_emergency_temp = range.mem_emergency_max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
1180 1181
	adev->pm.dpm.thermal.min_temp = range.min * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_temp = range.max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
1182 1183 1184 1185

	return ret;
}

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
static uint16_t convert_to_vddc(uint8_t vid)
{
	return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE);
}

static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t vdd = 0, val_vid = 0;

	if (!value)
		return -EINVAL;
	val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) &
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >>
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT;

	vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid);

	*value = vdd;

	return 0;

}

1210 1211 1212 1213 1214 1215
static int smu_v11_0_read_sensor(struct smu_context *smu,
				 enum amd_pp_sensors sensor,
				 void *data, uint32_t *size)
{
	int ret = 0;
	switch (sensor) {
1216
	case AMDGPU_PP_SENSOR_GFX_MCLK:
1217
		ret = smu_get_current_clk_freq(smu, SMU_UCLK, (uint32_t *)data);
1218 1219 1220
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_SCLK:
1221
		ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, (uint32_t *)data);
1222
		*size = 4;
1223
		break;
1224 1225 1226
	case AMDGPU_PP_SENSOR_VDDGFX:
		ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
		*size = 4;
1227
		break;
1228 1229 1230 1231
	case AMDGPU_PP_SENSOR_MIN_FAN_RPM:
		*(uint32_t *)data = 0;
		*size = 4;
		break;
1232
	default:
1233
		ret = smu_common_read_sensor(smu, sensor, data, size);
1234 1235 1236
		break;
	}

1237 1238 1239 1240
	/* try get sensor data by asic */
	if (ret)
		ret = smu_asic_read_sensor(smu, sensor, data, size);

1241 1242 1243 1244 1245 1246
	if (ret)
		*size = 0;

	return ret;
}

1247 1248 1249 1250 1251 1252 1253
static int
smu_v11_0_display_clock_voltage_request(struct smu_context *smu,
					struct pp_display_clock_request
					*clock_req)
{
	enum amd_pp_clock_type clk_type = clock_req->clock_type;
	int ret = 0;
1254
	enum smu_clk_type clk_select = 0;
1255
	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
1256
	int clk_id;
1257

1258 1259
	if (!smu->pm_enabled)
		return -EINVAL;
1260

1261
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) ||
1262
		smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1263 1264
		switch (clk_type) {
		case amd_pp_dcef_clock:
1265
			clk_select = SMU_DCEFCLK;
1266 1267
			break;
		case amd_pp_disp_clock:
1268
			clk_select = SMU_DISPCLK;
1269 1270
			break;
		case amd_pp_pixel_clock:
1271
			clk_select = SMU_PIXCLK;
1272 1273
			break;
		case amd_pp_phy_clock:
1274
			clk_select = SMU_PHYCLK;
1275
			break;
1276 1277 1278
		case amd_pp_mem_clock:
			clk_select = SMU_UCLK;
			break;
1279 1280 1281 1282 1283 1284 1285 1286 1287
		default:
			pr_info("[%s] Invalid Clock Type!", __func__);
			ret = -EINVAL;
			break;
		}

		if (ret)
			goto failed;

1288 1289 1290
		if (clk_select == SMU_UCLK && smu->disable_uclk_switch)
			return 0;

1291 1292 1293 1294 1295 1296
		clk_id = smu_clk_get_index(smu, clk_select);
		if (clk_id < 0) {
			ret = -EINVAL;
			goto failed;
		}

1297

1298
		mutex_lock(&smu->mutex);
1299
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq,
1300
			(clk_id << 16) | clk_freq);
1301
		mutex_unlock(&smu->mutex);
1302 1303 1304

		if(clk_select == SMU_UCLK)
			smu->hard_min_uclk_req_from_dal = clk_freq;
1305 1306 1307 1308 1309 1310
	}

failed:
	return ret;
}

1311 1312 1313 1314 1315 1316
static int
smu_v11_0_set_watermarks_for_clock_ranges(struct smu_context *smu, struct
					  dm_pp_wm_sets_with_clock_ranges_soc15
					  *clock_ranges)
{
	int ret = 0;
1317
	struct smu_table *watermarks = &smu->smu_table.tables[SMU_TABLE_WATERMARKS];
1318
	void *table = watermarks->cpu_addr;
1319 1320

	if (!smu->disable_watermark &&
1321 1322
	    smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
	    smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
1323
		smu_set_watermarks_table(smu, table, clock_ranges);
1324 1325 1326 1327 1328 1329 1330
		smu->watermarks_bitmap |= WATERMARKS_EXIST;
		smu->watermarks_bitmap &= ~WATERMARKS_LOADED;
	}

	return ret;
}

1331 1332 1333
static int smu_v11_0_gfx_off_control(struct smu_context *smu, bool enable)
{
	int ret = 0;
1334
	struct amdgpu_device *adev = smu->adev;
1335

1336 1337 1338 1339
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		break;
	case CHIP_NAVI10:
1340
	case CHIP_NAVI14:
1341
	case CHIP_NAVI12:
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
		if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
			return 0;
		mutex_lock(&smu->mutex);
		if (enable)
			ret = smu_send_smc_msg(smu, SMU_MSG_AllowGfxOff);
		else
			ret = smu_send_smc_msg(smu, SMU_MSG_DisallowGfxOff);
		mutex_unlock(&smu->mutex);
		break;
	default:
		break;
	}
1354 1355 1356 1357

	return ret;
}

1358 1359 1360
static uint32_t
smu_v11_0_get_fan_control_mode(struct smu_context *smu)
{
1361
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1362 1363 1364 1365 1366 1367
		return AMD_FAN_CTRL_MANUAL;
	else
		return AMD_FAN_CTRL_AUTO;
}

static int
1368
smu_v11_0_auto_fan_control(struct smu_context *smu, bool auto_fan_control)
1369 1370 1371
{
	int ret = 0;

1372
	if (!smu_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1373 1374
		return 0;

1375
	ret = smu_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, auto_fan_control);
1376 1377
	if (ret)
		pr_err("[%s]%s smc FAN CONTROL feature failed!",
1378
		       __func__, (auto_fan_control ? "Start" : "Stop"));
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401

	return ret;
}

static int
smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode)
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, TMIN, 0));
	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, FDO_PWM_MODE, mode));

	return 0;
}

static int
smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
1402
	uint32_t duty100, duty;
1403 1404 1405 1406 1407
	uint64_t tmp64;

	if (speed > 100)
		speed = 100;

1408
	if (smu_v11_0_auto_fan_control(smu, 0))
1409
		return -EINVAL;
1410

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
	duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1),
				CG_FDO_CTRL1, FMAX_DUTY100);
	if (!duty100)
		return -EINVAL;

	tmp64 = (uint64_t)speed * duty100;
	do_div(tmp64, 100);
	duty = (uint32_t)tmp64;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0),
				   CG_FDO_CTRL0, FDO_STATIC_DUTY, duty));

	return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC);
}

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
static int
smu_v11_0_set_fan_control_mode(struct smu_context *smu,
			       uint32_t mode)
{
	int ret = 0;

	switch (mode) {
	case AMD_FAN_CTRL_NONE:
		ret = smu_v11_0_set_fan_speed_percent(smu, 100);
		break;
	case AMD_FAN_CTRL_MANUAL:
1438
		ret = smu_v11_0_auto_fan_control(smu, 0);
1439 1440
		break;
	case AMD_FAN_CTRL_AUTO:
1441
		ret = smu_v11_0_auto_fan_control(smu, 1);
1442 1443 1444 1445 1446 1447
		break;
	default:
		break;
	}

	if (ret) {
1448
		pr_err("[%s]Set fan control mode failed!", __func__);
1449 1450 1451 1452 1453 1454
		return -EINVAL;
	}

	return ret;
}

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
static int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu,
				       uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	int ret;
	uint32_t tach_period, crystal_clock_freq;

	if (!speed)
		return -EINVAL;

	mutex_lock(&(smu->mutex));
1466
	ret = smu_v11_0_auto_fan_control(smu, 0);
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	if (ret)
		goto set_fan_speed_rpm_failed;

	crystal_clock_freq = amdgpu_asic_get_xclk(adev);
	tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed);
	WREG32_SOC15(THM, 0, mmCG_TACH_CTRL,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL),
				   CG_TACH_CTRL, TARGET_PERIOD,
				   tach_period));

	ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM);

set_fan_speed_rpm_failed:
	mutex_unlock(&(smu->mutex));
	return ret;
}

1484 1485 1486
#define XGMI_STATE_D0 1
#define XGMI_STATE_D3 0

1487 1488 1489
static int smu_v11_0_set_xgmi_pstate(struct smu_context *smu,
				     uint32_t pstate)
{
1490 1491 1492 1493 1494 1495 1496
	int ret = 0;
	mutex_lock(&(smu->mutex));
	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetXgmiMode,
					  pstate ? XGMI_STATE_D0 : XGMI_STATE_D3);
	mutex_unlock(&(smu->mutex));
	return ret;
1497 1498
}

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
#define THM_11_0__SRCID__THM_DIG_THERM_L2H		0		/* ASIC_TEMP > CG_THERMAL_INT.DIG_THERM_INTH  */
#define THM_11_0__SRCID__THM_DIG_THERM_H2L		1		/* ASIC_TEMP < CG_THERMAL_INT.DIG_THERM_INTL  */

static int smu_v11_0_irq_process(struct amdgpu_device *adev,
				 struct amdgpu_irq_src *source,
				 struct amdgpu_iv_entry *entry)
{
	uint32_t client_id = entry->client_id;
	uint32_t src_id = entry->src_id;

	if (client_id == SOC15_IH_CLIENTID_THM) {
		switch (src_id) {
		case THM_11_0__SRCID__THM_DIG_THERM_L2H:
			pr_warn("GPU over temperature range detected on PCIe %d:%d.%d!\n",
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;
		case THM_11_0__SRCID__THM_DIG_THERM_H2L:
			pr_warn("GPU under temperature range detected on PCIe %d:%d.%d!\n",
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;
		default:
			pr_warn("GPU under temperature range unknown src id (%d), detected on PCIe %d:%d.%d!\n",
				src_id,
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;

		}
	}

	return 0;
}

static const struct amdgpu_irq_src_funcs smu_v11_0_irq_funcs =
{
	.process = smu_v11_0_irq_process,
};

static int smu_v11_0_register_irq_handler(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	struct amdgpu_irq_src *irq_src = smu->irq_source;
	int ret = 0;

	/* already register */
	if (irq_src)
		return 0;

	irq_src = kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
	if (!irq_src)
		return -ENOMEM;
	smu->irq_source = irq_src;

	irq_src->funcs = &smu_v11_0_irq_funcs;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_L2H,
				irq_src);
	if (ret)
		return ret;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_H2L,
				irq_src);
	if (ret)
		return ret;

	return ret;
}

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
static int smu_v11_0_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
		struct pp_smu_nv_clock_table *max_clocks)
{
	struct smu_table_context *table_context = &smu->smu_table;
	struct smu_11_0_max_sustainable_clocks *sustainable_clocks = NULL;

	if (!max_clocks || !table_context->max_sustainable_clocks)
		return -EINVAL;

	sustainable_clocks = table_context->max_sustainable_clocks;

	max_clocks->dcfClockInKhz =
			(unsigned int) sustainable_clocks->dcef_clock * 1000;
	max_clocks->displayClockInKhz =
			(unsigned int) sustainable_clocks->display_clock * 1000;
	max_clocks->phyClockInKhz =
			(unsigned int) sustainable_clocks->phy_clock * 1000;
	max_clocks->pixelClockInKhz =
			(unsigned int) sustainable_clocks->pixel_clock * 1000;
	max_clocks->uClockInKhz =
			(unsigned int) sustainable_clocks->uclock * 1000;
	max_clocks->socClockInKhz =
			(unsigned int) sustainable_clocks->soc_clock * 1000;
	max_clocks->dscClockInKhz = 0;
	max_clocks->dppClockInKhz = 0;
	max_clocks->fabricClockInKhz = 0;

	return 0;
}

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
static int smu_v11_0_set_azalia_d3_pme(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);
	ret = smu_send_smc_msg(smu, SMU_MSG_BacoAudioD3PME);
	mutex_unlock(&smu->mutex);

	return ret;
}

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
static int smu_v11_0_baco_set_armd3_sequence(struct smu_context *smu, enum smu_v11_0_baco_seq baco_seq)
{
	return smu_send_smc_msg_with_param(smu, SMU_MSG_ArmD3, baco_seq);
}

static bool smu_v11_0_baco_is_support(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	struct smu_baco_context *smu_baco = &smu->smu_baco;
	uint32_t val;
	bool baco_support;

	mutex_lock(&smu_baco->mutex);
	baco_support = smu_baco->platform_support;
	mutex_unlock(&smu_baco->mutex);

	if (!baco_support)
		return false;

	if (!smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT))
		return false;

	val = RREG32_SOC15(NBIO, 0, mmRCC_BIF_STRAP0);
	if (val & RCC_BIF_STRAP0__STRAP_PX_CAPABLE_MASK)
		return true;

	return false;
}

static enum smu_baco_state smu_v11_0_baco_get_state(struct smu_context *smu)
{
	struct smu_baco_context *smu_baco = &smu->smu_baco;
	enum smu_baco_state baco_state = SMU_BACO_STATE_EXIT;

	mutex_lock(&smu_baco->mutex);
	baco_state = smu_baco->state;
	mutex_unlock(&smu_baco->mutex);

	return baco_state;
}

static int smu_v11_0_baco_set_state(struct smu_context *smu, enum smu_baco_state state)
{

	struct smu_baco_context *smu_baco = &smu->smu_baco;
	int ret = 0;

	if (smu_v11_0_baco_get_state(smu) == state)
		return 0;

	mutex_lock(&smu_baco->mutex);

	if (state == SMU_BACO_STATE_ENTER)
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, BACO_SEQ_BACO);
	else
		ret = smu_send_smc_msg(smu, SMU_MSG_ExitBaco);
	if (ret)
		goto out;

	smu_baco->state = state;
out:
	mutex_unlock(&smu_baco->mutex);
	return ret;
}

static int smu_v11_0_baco_reset(struct smu_context *smu)
{
	int ret = 0;

	ret = smu_v11_0_baco_set_armd3_sequence(smu, BACO_SEQ_BACO);
	if (ret)
		return ret;

	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_ENTER);
	if (ret)
		return ret;

	msleep(10);

	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_EXIT);
	if (ret)
		return ret;

	return ret;
}

1701 1702
static const struct smu_funcs smu_v11_0_funcs = {
	.init_microcode = smu_v11_0_init_microcode,
1703
	.load_microcode = smu_v11_0_load_microcode,
1704
	.check_fw_status = smu_v11_0_check_fw_status,
1705
	.check_fw_version = smu_v11_0_check_fw_version,
1706 1707
	.send_smc_msg = smu_v11_0_send_msg,
	.send_smc_msg_with_param = smu_v11_0_send_msg_with_param,
1708
	.read_smc_arg = smu_v11_0_read_arg,
1709
	.setup_pptable = smu_v11_0_setup_pptable,
1710 1711
	.init_smc_tables = smu_v11_0_init_smc_tables,
	.fini_smc_tables = smu_v11_0_fini_smc_tables,
1712 1713
	.init_power = smu_v11_0_init_power,
	.fini_power = smu_v11_0_fini_power,
1714
	.get_vbios_bootup_values = smu_v11_0_get_vbios_bootup_values,
1715
	.get_clk_info_from_vbios = smu_v11_0_get_clk_info_from_vbios,
1716
	.notify_memory_pool_location = smu_v11_0_notify_memory_pool_location,
1717
	.check_pptable = smu_v11_0_check_pptable,
1718
	.parse_pptable = smu_v11_0_parse_pptable,
1719
	.populate_smc_pptable = smu_v11_0_populate_smc_pptable,
1720
	.write_pptable = smu_v11_0_write_pptable,
1721
	.write_watermarks_table = smu_v11_0_write_watermarks_table,
1722
	.set_min_dcef_deep_sleep = smu_v11_0_set_min_dcef_deep_sleep,
1723
	.set_tool_table_location = smu_v11_0_set_tool_table_location,
1724
	.init_display_count = smu_v11_0_init_display_count,
1725 1726
	.set_allowed_mask = smu_v11_0_set_allowed_mask,
	.get_enabled_mask = smu_v11_0_get_enabled_mask,
1727
	.system_features_control = smu_v11_0_system_features_control,
1728
	.notify_display_change = smu_v11_0_notify_display_change,
1729
	.set_power_limit = smu_v11_0_set_power_limit,
1730
	.get_current_clk_freq = smu_v11_0_get_current_clk_freq,
1731
	.init_max_sustainable_clocks = smu_v11_0_init_max_sustainable_clocks,
1732
	.start_thermal_control = smu_v11_0_start_thermal_control,
1733
	.read_sensor = smu_v11_0_read_sensor,
1734
	.set_deep_sleep_dcefclk = smu_v11_0_set_deep_sleep_dcefclk,
1735
	.display_clock_voltage_request = smu_v11_0_display_clock_voltage_request,
1736
	.set_watermarks_for_clock_ranges = smu_v11_0_set_watermarks_for_clock_ranges,
1737
	.get_fan_control_mode = smu_v11_0_get_fan_control_mode,
1738
	.set_fan_control_mode = smu_v11_0_set_fan_control_mode,
1739
	.set_fan_speed_percent = smu_v11_0_set_fan_speed_percent,
1740
	.set_fan_speed_rpm = smu_v11_0_set_fan_speed_rpm,
1741
	.set_xgmi_pstate = smu_v11_0_set_xgmi_pstate,
1742
	.gfx_off_control = smu_v11_0_gfx_off_control,
1743
	.register_irq_handler = smu_v11_0_register_irq_handler,
1744
	.set_azalia_d3_pme = smu_v11_0_set_azalia_d3_pme,
1745
	.get_max_sustainable_clocks_by_dc = smu_v11_0_get_max_sustainable_clocks_by_dc,
1746 1747 1748 1749
	.baco_is_support = smu_v11_0_baco_is_support,
	.baco_get_state = smu_v11_0_baco_get_state,
	.baco_set_state = smu_v11_0_baco_set_state,
	.baco_reset = smu_v11_0_baco_reset,
1750 1751 1752 1753
};

void smu_v11_0_set_smu_funcs(struct smu_context *smu)
{
1754 1755
	struct amdgpu_device *adev = smu->adev;

1756
	smu->funcs = &smu_v11_0_funcs;
1757 1758 1759 1760
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		vega20_set_ppt_funcs(smu);
		break;
1761 1762 1763
	case CHIP_ARCTURUS:
		arcturus_set_ppt_funcs(smu);
		break;
1764
	case CHIP_NAVI10:
1765
	case CHIP_NAVI14:
1766
	case CHIP_NAVI12:
1767 1768
		navi10_set_ppt_funcs(smu);
		break;
1769
	default:
1770
		pr_warn("Unknown asic for smu11\n");
1771
	}
1772
}