smu_v11_0.c 50.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/firmware.h>
24
#include <linux/module.h>
25
#include <linux/pci.h>
26

27 28
#define SMU_11_0_PARTIAL_PPTABLE

29
#include "pp_debug.h"
30 31
#include "amdgpu.h"
#include "amdgpu_smu.h"
32
#include "smu_internal.h"
33
#include "atomfirmware.h"
34
#include "amdgpu_atomfirmware.h"
35
#include "smu_v11_0.h"
36
#include "smu_v11_0_pptable.h"
37
#include "soc15_common.h"
38
#include "atom.h"
39
#include "amd_pcie.h"
40
#include "amdgpu_ras.h"
41 42 43

#include "asic_reg/thm/thm_11_0_2_offset.h"
#include "asic_reg/thm/thm_11_0_2_sh_mask.h"
44 45
#include "asic_reg/mp/mp_11_0_offset.h"
#include "asic_reg/mp/mp_11_0_sh_mask.h"
46
#include "asic_reg/nbio/nbio_7_4_offset.h"
47
#include "asic_reg/nbio/nbio_7_4_sh_mask.h"
48 49
#include "asic_reg/smuio/smuio_11_0_0_offset.h"
#include "asic_reg/smuio/smuio_11_0_0_sh_mask.h"
50

51
MODULE_FIRMWARE("amdgpu/vega20_smc.bin");
52
MODULE_FIRMWARE("amdgpu/arcturus_smc.bin");
53
MODULE_FIRMWARE("amdgpu/navi10_smc.bin");
54
MODULE_FIRMWARE("amdgpu/navi14_smc.bin");
55
MODULE_FIRMWARE("amdgpu/navi12_smc.bin");
56

57
#define SMU11_VOLTAGE_SCALE 4
58

59 60 61 62 63 64 65 66
static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu,
					      uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_66, msg);
	return 0;
}

67
static int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg)
68 69 70 71 72 73 74
{
	struct amdgpu_device *adev = smu->adev;

	*arg = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82);
	return 0;
}

75 76 77
static int smu_v11_0_wait_for_response(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
78
	uint32_t cur_value, i, timeout = adev->usec_timeout * 10;
79

80
	for (i = 0; i < timeout; i++) {
81 82
		cur_value = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90);
		if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0)
83 84
			return cur_value == 0x1 ? 0 : -EIO;

85 86 87 88
		udelay(1);
	}

	/* timeout means wrong logic */
89
	return -ETIME;
90 91
}

92
int
93 94
smu_v11_0_send_msg_with_param(struct smu_context *smu,
			      enum smu_message_type msg,
95 96
			      uint32_t param,
			      uint32_t *read_arg)
97 98
{
	struct amdgpu_device *adev = smu->adev;
99 100 101 102 103
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
104 105

	ret = smu_v11_0_wait_for_response(smu);
106 107 108 109 110
	if (ret) {
		pr_err("Msg issuing pre-check failed and "
		       "SMU may be not in the right state!\n");
		return ret;
	}
111 112 113 114 115

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82, param);

116
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
117 118

	ret = smu_v11_0_wait_for_response(smu);
119
	if (ret) {
120 121
		pr_err("failed send message: %10s (%d) \tparam: 0x%08x response %#x\n",
		       smu_get_message_name(smu, msg), index, param, ret);
122 123 124 125 126 127 128 129 130 131
		return ret;
	}
	if (read_arg) {
		ret = smu_v11_0_read_arg(smu, read_arg);
		if (ret) {
			pr_err("failed to read message arg: %10s (%d) \tparam: 0x%08x response %#x\n",
			       smu_get_message_name(smu, msg), index, param, ret);
			return ret;
		}
	}
132

133
	return 0;
134 135
}

136
int smu_v11_0_init_microcode(struct smu_context *smu)
137 138
{
	struct amdgpu_device *adev = smu->adev;
139 140 141 142 143 144
	const char *chip_name;
	char fw_name[30];
	int err = 0;
	const struct smc_firmware_header_v1_0 *hdr;
	const struct common_firmware_header *header;
	struct amdgpu_firmware_info *ucode = NULL;
145

146 147 148 149
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		chip_name = "vega20";
		break;
150 151 152
	case CHIP_ARCTURUS:
		chip_name = "arcturus";
		break;
153 154 155
	case CHIP_NAVI10:
		chip_name = "navi10";
		break;
156 157 158
	case CHIP_NAVI14:
		chip_name = "navi14";
		break;
159 160 161
	case CHIP_NAVI12:
		chip_name = "navi12";
		break;
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
	default:
		BUG();
	}

	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name);

	err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
	if (err)
		goto out;
	err = amdgpu_ucode_validate(adev->pm.fw);
	if (err)
		goto out;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	amdgpu_ucode_print_smc_hdr(&hdr->header);
	adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
		ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC];
		ucode->ucode_id = AMDGPU_UCODE_ID_SMC;
		ucode->fw = adev->pm.fw;
		header = (const struct common_firmware_header *)ucode->fw->data;
		adev->firmware.fw_size +=
			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
	}

out:
	if (err) {
		DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n",
			  fw_name);
		release_firmware(adev->pm.fw);
		adev->pm.fw = NULL;
	}
	return err;
196 197
}

198
int smu_v11_0_load_microcode(struct smu_context *smu)
199
{
200 201 202 203 204 205 206
	struct amdgpu_device *adev = smu->adev;
	const uint32_t *src;
	const struct smc_firmware_header_v1_0 *hdr;
	uint32_t addr_start = MP1_SRAM;
	uint32_t i;
	uint32_t mp1_fw_flags;

207
	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
	src = (const uint32_t *)(adev->pm.fw->data +
		le32_to_cpu(hdr->header.ucode_array_offset_bytes));

	for (i = 1; i < MP1_SMC_SIZE/4 - 1; i++) {
		WREG32_PCIE(addr_start, src[i]);
		addr_start += 4;
	}

	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & MP1_SMN_PUB_CTRL__RESET_MASK);
	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & ~MP1_SMN_PUB_CTRL__RESET_MASK);

	for (i = 0; i < adev->usec_timeout; i++) {
		mp1_fw_flags = RREG32_PCIE(MP1_Public |
			(smnMP1_FIRMWARE_FLAGS & 0xffffffff));
		if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
			MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
			break;
		udelay(1);
	}

	if (i == adev->usec_timeout)
		return -ETIME;

233 234 235
	return 0;
}

236
int smu_v11_0_check_fw_status(struct smu_context *smu)
237
{
238 239 240
	struct amdgpu_device *adev = smu->adev;
	uint32_t mp1_fw_flags;

241 242
	mp1_fw_flags = RREG32_PCIE(MP1_Public |
				   (smnMP1_FIRMWARE_FLAGS & 0xffffffff));
243 244 245 246

	if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
	    MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
		return 0;
247

248
	return -EIO;
249 250
}

251
int smu_v11_0_check_fw_version(struct smu_context *smu)
252
{
253 254 255
	uint32_t if_version = 0xff, smu_version = 0xff;
	uint16_t smu_major;
	uint8_t smu_minor, smu_debug;
256 257
	int ret = 0;

258
	ret = smu_get_smc_version(smu, &if_version, &smu_version);
259
	if (ret)
260
		return ret;
261

262 263 264 265
	smu_major = (smu_version >> 16) & 0xffff;
	smu_minor = (smu_version >> 8) & 0xff;
	smu_debug = (smu_version >> 0) & 0xff;

266 267 268 269
	switch (smu->adev->asic_type) {
	case CHIP_VEGA20:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_VG20;
		break;
270 271 272
	case CHIP_ARCTURUS:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_ARCT;
		break;
273 274 275 276 277 278 279
	case CHIP_NAVI10:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_NV10;
		break;
	case CHIP_NAVI14:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_NV14;
		break;
	default:
280
		pr_err("smu unsupported asic type:%d.\n", smu->adev->asic_type);
281 282 283 284
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_INV;
		break;
	}

285 286 287 288 289 290 291 292
	/*
	 * 1. if_version mismatch is not critical as our fw is designed
	 * to be backward compatible.
	 * 2. New fw usually brings some optimizations. But that's visible
	 * only on the paired driver.
	 * Considering above, we just leave user a warning message instead
	 * of halt driver loading.
	 */
293
	if (if_version != smu->smc_if_version) {
294 295 296 297
		pr_info("smu driver if version = 0x%08x, smu fw if version = 0x%08x, "
			"smu fw version = 0x%08x (%d.%d.%d)\n",
			smu->smc_if_version, if_version,
			smu_version, smu_major, smu_minor, smu_debug);
298
		pr_warn("SMU driver if version not matched\n");
299 300
	}

301 302 303
	return ret;
}

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
static int smu_v11_0_set_pptable_v2_0(struct smu_context *smu, void **table, uint32_t *size)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t ppt_offset_bytes;
	const struct smc_firmware_header_v2_0 *v2;

	v2 = (const struct smc_firmware_header_v2_0 *) adev->pm.fw->data;

	ppt_offset_bytes = le32_to_cpu(v2->ppt_offset_bytes);
	*size = le32_to_cpu(v2->ppt_size_bytes);
	*table = (uint8_t *)v2 + ppt_offset_bytes;

	return 0;
}

319 320
static int smu_v11_0_set_pptable_v2_1(struct smu_context *smu, void **table,
				      uint32_t *size, uint32_t pptable_id)
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
{
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v2_1 *v2_1;
	struct smc_soft_pptable_entry *entries;
	uint32_t pptable_count = 0;
	int i = 0;

	v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data;
	entries = (struct smc_soft_pptable_entry *)
		((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset));
	pptable_count = le32_to_cpu(v2_1->pptable_count);
	for (i = 0; i < pptable_count; i++) {
		if (le32_to_cpu(entries[i].id) == pptable_id) {
			*table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes));
			*size = le32_to_cpu(entries[i].ppt_size_bytes);
			break;
		}
	}

	if (i == pptable_count)
		return -EINVAL;

	return 0;
}

346
int smu_v11_0_setup_pptable(struct smu_context *smu)
347
{
348 349
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v1_0 *hdr;
350
	int ret, index;
351
	uint32_t size = 0;
352
	uint16_t atom_table_size;
353
	uint8_t frev, crev;
354
	void *table;
355 356 357 358 359 360
	uint16_t version_major, version_minor;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	version_major = le16_to_cpu(hdr->header.header_version_major);
	version_minor = le16_to_cpu(hdr->header.header_version_minor);
	if (version_major == 2 && smu->smu_table.boot_values.pp_table_id > 0) {
361
		pr_info("use driver provided pptable %d\n", smu->smu_table.boot_values.pp_table_id);
362 363 364 365 366 367 368 369 370 371 372 373 374 375
		switch (version_minor) {
		case 0:
			ret = smu_v11_0_set_pptable_v2_0(smu, &table, &size);
			break;
		case 1:
			ret = smu_v11_0_set_pptable_v2_1(smu, &table, &size,
							 smu->smu_table.boot_values.pp_table_id);
			break;
		default:
			ret = -EINVAL;
			break;
		}
		if (ret)
			return ret;
376

377
	} else {
378
		pr_info("use vbios provided pptable\n");
379 380
		index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
						    powerplayinfo);
381

382
		ret = smu_get_atom_data_table(smu, index, &atom_table_size, &frev, &crev,
383 384 385
					      (uint8_t **)&table);
		if (ret)
			return ret;
386
		size = atom_table_size;
387
	}
388

389 390 391 392
	if (!smu->smu_table.power_play_table)
		smu->smu_table.power_play_table = table;
	if (!smu->smu_table.power_play_table_size)
		smu->smu_table.power_play_table_size = size;
393 394 395 396

	return 0;
}

397 398 399 400 401 402 403
static int smu_v11_0_init_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0)
		return -EINVAL;

404
	return smu_alloc_dpm_context(smu);
405 406 407 408 409 410 411 412 413 414
}

static int smu_v11_0_fini_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0)
		return -EINVAL;

	kfree(smu_dpm->dpm_context);
415
	kfree(smu_dpm->golden_dpm_context);
416 417
	kfree(smu_dpm->dpm_current_power_state);
	kfree(smu_dpm->dpm_request_power_state);
418
	smu_dpm->dpm_context = NULL;
419
	smu_dpm->golden_dpm_context = NULL;
420
	smu_dpm->dpm_context_size = 0;
421 422
	smu_dpm->dpm_current_power_state = NULL;
	smu_dpm->dpm_request_power_state = NULL;
423 424 425 426

	return 0;
}

427
int smu_v11_0_init_smc_tables(struct smu_context *smu)
428 429 430
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = NULL;
431
	int ret = 0;
432

433
	if (smu_table->tables)
434 435
		return -EINVAL;

436 437
	tables = kcalloc(SMU_TABLE_COUNT, sizeof(struct smu_table),
			 GFP_KERNEL);
438 439 440 441 442
	if (!tables)
		return -ENOMEM;

	smu_table->tables = tables;

443 444 445
	ret = smu_tables_init(smu, tables);
	if (ret)
		return ret;
446

447 448 449 450
	ret = smu_v11_0_init_dpm_context(smu);
	if (ret)
		return ret;

451 452 453
	return 0;
}

454
int smu_v11_0_fini_smc_tables(struct smu_context *smu)
455 456
{
	struct smu_table_context *smu_table = &smu->smu_table;
457
	int ret = 0;
458

459
	if (!smu_table->tables)
460 461 462
		return -EINVAL;

	kfree(smu_table->tables);
463
	kfree(smu_table->metrics_table);
464
	kfree(smu_table->watermarks_table);
465
	smu_table->tables = NULL;
466
	smu_table->metrics_table = NULL;
467
	smu_table->watermarks_table = NULL;
468
	smu_table->metrics_time = 0;
469

470 471 472
	ret = smu_v11_0_fini_dpm_context(smu);
	if (ret)
		return ret;
473 474
	return 0;
}
475

476
int smu_v11_0_init_power(struct smu_context *smu)
477 478 479
{
	struct smu_power_context *smu_power = &smu->smu_power;

480 481
	if (!smu->pm_enabled)
		return 0;
482 483 484 485 486 487 488 489 490 491 492 493
	if (smu_power->power_context || smu_power->power_context_size != 0)
		return -EINVAL;

	smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
					   GFP_KERNEL);
	if (!smu_power->power_context)
		return -ENOMEM;
	smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context);

	return 0;
}

494
int smu_v11_0_fini_power(struct smu_context *smu)
495 496 497
{
	struct smu_power_context *smu_power = &smu->smu_power;

498 499
	if (!smu->pm_enabled)
		return 0;
500 501 502 503 504 505 506 507 508 509
	if (!smu_power->power_context || smu_power->power_context_size == 0)
		return -EINVAL;

	kfree(smu_power->power_context);
	smu_power->power_context = NULL;
	smu_power->power_context_size = 0;

	return 0;
}

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu)
{
	int ret, index;
	uint16_t size;
	uint8_t frev, crev;
	struct atom_common_table_header *header;
	struct atom_firmware_info_v3_3 *v_3_3;
	struct atom_firmware_info_v3_1 *v_3_1;

	index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
					    firmwareinfo);

	ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev,
				      (uint8_t **)&header);
	if (ret)
		return ret;

	if (header->format_revision != 3) {
		pr_err("unknown atom_firmware_info version! for smu11\n");
		return -EINVAL;
	}

	switch (header->content_revision) {
	case 0:
	case 1:
	case 2:
		v_3_1 = (struct atom_firmware_info_v3_1 *)header;
		smu->smu_table.boot_values.revision = v_3_1->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = 0;
		break;
	case 3:
	default:
		v_3_3 = (struct atom_firmware_info_v3_3 *)header;
		smu->smu_table.boot_values.revision = v_3_3->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id;
	}

565 566 567
	smu->smu_table.boot_values.format_revision = header->format_revision;
	smu->smu_table.boot_values.content_revision = header->content_revision;

568 569 570
	return 0;
}

571
int smu_v11_0_get_clk_info_from_vbios(struct smu_context *smu)
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
{
	int ret, index;
	struct amdgpu_device *adev = smu->adev;
	struct atom_get_smu_clock_info_parameters_v3_1 input = {0};
	struct atom_get_smu_clock_info_output_parameters_v3_1 *output;

	input.clk_id = SMU11_SYSPLL0_SOCCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.socclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCEFCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dcefclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_ECLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.eclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_VCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.vclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
	if ((smu->smu_table.boot_values.format_revision == 3) &&
	    (smu->smu_table.boot_values.content_revision >= 2)) {
		memset(&input, 0, sizeof(input));
		input.clk_id = SMU11_SYSPLL1_0_FCLK_ID;
		input.syspll_id = SMU11_SYSPLL1_2_ID;
		input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
		index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
						    getsmuclockinfo);

		ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
						(uint32_t *)&input);
		if (ret)
			return -EINVAL;

		output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
		smu->smu_table.boot_values.fclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;
	}

665 666 667
	return 0;
}

668
int smu_v11_0_notify_memory_pool_location(struct smu_context *smu)
669 670 671 672 673 674 675 676 677 678
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	int ret = 0;
	uint64_t address;
	uint32_t address_low, address_high;

	if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL)
		return ret;

679
	address = (uintptr_t)memory_pool->cpu_addr;
680 681 682 683
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

	ret = smu_send_smc_msg_with_param(smu,
684
					  SMU_MSG_SetSystemVirtualDramAddrHigh,
685 686
					  address_high,
					  NULL);
687 688 689
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu,
690
					  SMU_MSG_SetSystemVirtualDramAddrLow,
691 692
					  address_low,
					  NULL);
693 694 695 696 697 698 699
	if (ret)
		return ret;

	address = memory_pool->mc_address;
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

700
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh,
701
					  address_high, NULL);
702 703
	if (ret)
		return ret;
704
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow,
705
					  address_low, NULL);
706 707
	if (ret)
		return ret;
708
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize,
709
					  (uint32_t)memory_pool->size, NULL);
710 711 712 713 714 715
	if (ret)
		return ret;

	return ret;
}

716
int smu_v11_0_check_pptable(struct smu_context *smu)
717 718 719 720 721 722 723
{
	int ret;

	ret = smu_check_powerplay_table(smu);
	return ret;
}

724
int smu_v11_0_parse_pptable(struct smu_context *smu)
725 726 727 728
{
	int ret;

	struct smu_table_context *table_context = &smu->smu_table;
729
	struct smu_table *table = &table_context->tables[SMU_TABLE_PPTABLE];
730 731 732 733

	if (table_context->driver_pptable)
		return -EINVAL;

734
	table_context->driver_pptable = kzalloc(table->size, GFP_KERNEL);
735 736 737 738 739

	if (!table_context->driver_pptable)
		return -ENOMEM;

	ret = smu_store_powerplay_table(smu);
740 741 742 743
	if (ret)
		return -EINVAL;

	ret = smu_append_powerplay_table(smu);
744 745 746 747

	return ret;
}

748
int smu_v11_0_populate_smc_pptable(struct smu_context *smu)
749
{
750
	int ret;
751

752
	ret = smu_set_default_dpm_table(smu);
753

754
	return ret;
755 756
}

757
int smu_v11_0_write_pptable(struct smu_context *smu)
758
{
759
	struct smu_table_context *table_context = &smu->smu_table;
760 761
	int ret = 0;

762
	ret = smu_update_table(smu, SMU_TABLE_PPTABLE, 0,
763
			       table_context->driver_pptable, true);
764 765 766 767

	return ret;
}

768
int smu_v11_0_set_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk)
769 770 771 772
{
	int ret;

	ret = smu_send_smc_msg_with_param(smu,
773
					  SMU_MSG_SetMinDeepSleepDcefclk, clk, NULL);
774 775 776 777 778 779
	if (ret)
		pr_err("SMU11 attempt to set divider for DCEFCLK Failed!");

	return ret;
}

780
int smu_v11_0_set_min_dcef_deep_sleep(struct smu_context *smu)
781 782 783
{
	struct smu_table_context *table_context = &smu->smu_table;

784 785
	if (!smu->pm_enabled)
		return 0;
786 787 788
	if (!table_context)
		return -EINVAL;

789
	return smu_v11_0_set_deep_sleep_dcefclk(smu, table_context->boot_values.dcefclk / 100);
790 791
}

792 793 794 795 796 797 798 799
int smu_v11_0_set_driver_table_location(struct smu_context *smu)
{
	struct smu_table *driver_table = &smu->smu_table.driver_table;
	int ret = 0;

	if (driver_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
				SMU_MSG_SetDriverDramAddrHigh,
800 801
				upper_32_bits(driver_table->mc_address),
				NULL);
802 803 804
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
				SMU_MSG_SetDriverDramAddrLow,
805 806
				lower_32_bits(driver_table->mc_address),
				NULL);
807 808 809 810 811
	}

	return ret;
}

812
int smu_v11_0_set_tool_table_location(struct smu_context *smu)
813 814
{
	int ret = 0;
815
	struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG];
816 817 818

	if (tool_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
819
				SMU_MSG_SetToolsDramAddrHigh,
820 821
				upper_32_bits(tool_table->mc_address),
				NULL);
822 823
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
824
				SMU_MSG_SetToolsDramAddrLow,
825 826
				lower_32_bits(tool_table->mc_address),
				NULL);
827 828 829 830 831
	}

	return ret;
}

832
int smu_v11_0_init_display_count(struct smu_context *smu, uint32_t count)
833 834
{
	int ret = 0;
835 836 837

	if (!smu->pm_enabled)
		return ret;
838

839
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, count, NULL);
840 841 842
	return ret;
}

843

844
int smu_v11_0_set_allowed_mask(struct smu_context *smu)
845 846 847 848 849
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
	uint32_t feature_mask[2];

850
	mutex_lock(&feature->mutex);
851
	if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64)
852
		goto failed;
853 854 855 856

	bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64);

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh,
857
					  feature_mask[1], NULL);
858
	if (ret)
859
		goto failed;
860 861

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow,
862
					  feature_mask[0], NULL);
863
	if (ret)
864
		goto failed;
865

866 867
failed:
	mutex_unlock(&feature->mutex);
868 869 870
	return ret;
}

871
int smu_v11_0_get_enabled_mask(struct smu_context *smu,
872 873 874
				      uint32_t *feature_mask, uint32_t num)
{
	uint32_t feature_mask_high = 0, feature_mask_low = 0;
875
	struct smu_feature *feature = &smu->smu_feature;
876 877 878 879 880
	int ret = 0;

	if (!feature_mask || num < 2)
		return -EINVAL;

881
	if (bitmap_empty(feature->enabled, feature->feature_num)) {
882
		ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh, &feature_mask_high);
883 884
		if (ret)
			return ret;
885

886
		ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow, &feature_mask_low);
887 888
		if (ret)
			return ret;
889

890 891 892 893 894 895
		feature_mask[0] = feature_mask_low;
		feature_mask[1] = feature_mask_high;
	} else {
		bitmap_copy((unsigned long *)feature_mask, feature->enabled,
			     feature->feature_num);
	}
896 897 898 899

	return ret;
}

900
int smu_v11_0_system_features_control(struct smu_context *smu,
901
					     bool en)
902 903 904 905 906
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_mask[2];
	int ret = 0;

907
	ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures :
908
				     SMU_MSG_DisableAllSmuFeatures), NULL);
909 910 911
	if (ret)
		return ret;

912 913 914
	bitmap_zero(feature->enabled, feature->feature_num);
	bitmap_zero(feature->supported, feature->feature_num);

915 916 917 918 919 920 921 922 923 924
	if (en) {
		ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
		if (ret)
			return ret;

		bitmap_copy(feature->enabled, (unsigned long *)&feature_mask,
			    feature->feature_num);
		bitmap_copy(feature->supported, (unsigned long *)&feature_mask,
			    feature->feature_num);
	}
925 926 927 928

	return ret;
}

929
int smu_v11_0_notify_display_change(struct smu_context *smu)
930 931 932
{
	int ret = 0;

933 934
	if (!smu->pm_enabled)
		return ret;
935 936
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
	    smu->adev->gmc.vram_type == AMDGPU_VRAM_TYPE_HBM)
937
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1, NULL);
938 939 940 941

	return ret;
}

942 943
static int
smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock,
944
				    enum smu_clk_type clock_select)
945 946
{
	int ret = 0;
947
	int clk_id;
948

949 950
	if (!smu->pm_enabled)
		return ret;
951

952 953 954 955
	if ((smu_msg_get_index(smu, SMU_MSG_GetDcModeMaxDpmFreq) < 0) ||
	    (smu_msg_get_index(smu, SMU_MSG_GetMaxDpmFreq) < 0))
		return 0;

956 957 958 959
	clk_id = smu_clk_get_index(smu, clock_select);
	if (clk_id < 0)
		return -EINVAL;

960
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq,
961
					  clk_id << 16, clock);
962 963 964 965 966 967 968 969 970 971
	if (ret) {
		pr_err("[GetMaxSustainableClock] Failed to get max DC clock from SMC!");
		return ret;
	}

	if (*clock != 0)
		return 0;

	/* if DC limit is zero, return AC limit */
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
972
					  clk_id << 16, clock);
973 974 975 976 977
	if (ret) {
		pr_err("[GetMaxSustainableClock] failed to get max AC clock from SMC!");
		return ret;
	}

978
	return 0;
979 980
}

981
int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu)
982 983 984 985
{
	struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks;
	int ret = 0;

986 987
	if (!smu->smu_table.max_sustainable_clocks)
		max_sustainable_clocks = kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks),
988
					 GFP_KERNEL);
989 990 991
	else
		max_sustainable_clocks = smu->smu_table.max_sustainable_clocks;

992 993 994 995 996 997 998 999 1000
	smu->smu_table.max_sustainable_clocks = (void *)max_sustainable_clocks;

	max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100;
	max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100;
	max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100;
	max_sustainable_clocks->display_clock = 0xFFFFFFFF;
	max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
	max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;

1001
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1002 1003
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->uclock),
1004
							  SMU_UCLK);
1005 1006 1007 1008 1009 1010 1011
		if (ret) {
			pr_err("[%s] failed to get max UCLK from SMC!",
			       __func__);
			return ret;
		}
	}

1012
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
1013 1014
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->soc_clock),
1015
							  SMU_SOCCLK);
1016 1017 1018 1019 1020 1021 1022
		if (ret) {
			pr_err("[%s] failed to get max SOCCLK from SMC!",
			       __func__);
			return ret;
		}
	}

1023
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
1024 1025
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->dcef_clock),
1026
							  SMU_DCEFCLK);
1027 1028 1029 1030 1031 1032 1033 1034
		if (ret) {
			pr_err("[%s] failed to get max DCEFCLK from SMC!",
			       __func__);
			return ret;
		}

		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->display_clock),
1035
							  SMU_DISPCLK);
1036 1037 1038 1039 1040 1041 1042
		if (ret) {
			pr_err("[%s] failed to get max DISPCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->phy_clock),
1043
							  SMU_PHYCLK);
1044 1045 1046 1047 1048 1049 1050
		if (ret) {
			pr_err("[%s] failed to get max PHYCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->pixel_clock),
1051
							  SMU_PIXCLK);
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
		if (ret) {
			pr_err("[%s] failed to get max PIXCLK from SMC!",
			       __func__);
			return ret;
		}
	}

	if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
		max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;

	return 0;
}

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
uint32_t smu_v11_0_get_max_power_limit(struct smu_context *smu) {
	uint32_t od_limit, max_power_limit;
	struct smu_11_0_powerplay_table *powerplay_table = NULL;
	struct smu_table_context *table_context = &smu->smu_table;
	powerplay_table = table_context->power_play_table;

	max_power_limit = smu_get_pptable_power_limit(smu);

	if (!max_power_limit) {
		// If we couldn't get the table limit, fall back on first-read value
		if (!smu->default_power_limit)
			smu->default_power_limit = smu->power_limit;
		max_power_limit = smu->default_power_limit;
	}

	if (smu->od_enabled) {
		od_limit = le32_to_cpu(powerplay_table->overdrive_table.max[SMU_11_0_ODSETTING_POWERPERCENTAGE]);

		pr_debug("ODSETTING_POWERPERCENTAGE: %d (default: %d)\n", od_limit, smu->default_power_limit);

		max_power_limit *= (100 + od_limit);
		max_power_limit /= 100;
	}

	return max_power_limit;
}

1092
int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n)
1093
{
1094
	int ret = 0;
1095 1096 1097
	uint32_t max_power_limit;

	max_power_limit = smu_v11_0_get_max_power_limit(smu);
1098

1099 1100 1101 1102
	if (n > max_power_limit) {
		pr_err("New power limit (%d) is over the max allowed %d\n",
				n,
				max_power_limit);
1103
		return -EINVAL;
1104 1105
	}

1106 1107 1108
	if (n == 0)
		n = smu->default_power_limit;

1109 1110 1111
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) {
		pr_err("Setting new power limit is not supported!\n");
		return -EOPNOTSUPP;
1112 1113
	}

1114
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n, NULL);
1115
	if (ret) {
1116
		pr_err("[%s] Set power limit Failed!\n", __func__);
1117 1118
		return ret;
	}
1119
	smu->power_limit = n;
1120

1121
	return 0;
1122 1123
}

1124
int smu_v11_0_get_current_clk_freq(struct smu_context *smu,
1125 1126
					  enum smu_clk_type clk_id,
					  uint32_t *value)
1127 1128
{
	int ret = 0;
1129
	uint32_t freq = 0;
1130
	int asic_clk_id;
1131

1132
	if (clk_id >= SMU_CLK_COUNT || !value)
1133 1134
		return -EINVAL;

1135 1136 1137 1138
	asic_clk_id = smu_clk_get_index(smu, clk_id);
	if (asic_clk_id < 0)
		return -EINVAL;

1139
	/* if don't has GetDpmClockFreq Message, try get current clock by SmuMetrics_t */
1140
	if (smu_msg_get_index(smu, SMU_MSG_GetDpmClockFreq) < 0)
1141 1142 1143
		ret =  smu_get_current_clk_freq_by_table(smu, clk_id, &freq);
	else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmClockFreq,
1144
						  (asic_clk_id << 16), &freq);
1145 1146 1147
		if (ret)
			return ret;
	}
1148 1149 1150 1151 1152 1153 1154

	freq *= 100;
	*value = freq;

	return ret;
}

1155
static int smu_v11_0_set_thermal_range(struct smu_context *smu,
1156
				       struct smu_temperature_range range)
1157 1158
{
	struct amdgpu_device *adev = smu->adev;
1159 1160
	int low = SMU_THERMAL_MINIMUM_ALERT_TEMP;
	int high = SMU_THERMAL_MAXIMUM_ALERT_TEMP;
1161
	uint32_t val;
1162 1163
	struct smu_table_context *table_context = &smu->smu_table;
	struct smu_11_0_powerplay_table *powerplay_table = table_context->power_play_table;
1164

1165 1166
	low = max(SMU_THERMAL_MINIMUM_ALERT_TEMP,
			range.min / SMU_TEMPERATURE_UNITS_PER_CENTIGRADES);
1167
	high = min((uint16_t)SMU_THERMAL_MAXIMUM_ALERT_TEMP, powerplay_table->software_shutdown_temp);
1168

1169 1170 1171 1172 1173 1174
	if (low > high)
		return -EINVAL;

	val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1);
1175 1176
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 0);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 0);
1177 1178
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high & 0xff));
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low & 0xff));
1179 1180 1181 1182 1183 1184 1185
	val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);

	return 0;
}

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
static int smu_v11_0_enable_thermal_alert(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t val = 0;

	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val);

	return 0;
}

1200
int smu_v11_0_start_thermal_control(struct smu_context *smu)
1201 1202
{
	int ret = 0;
1203
	struct smu_temperature_range range;
1204 1205
	struct amdgpu_device *adev = smu->adev;

1206 1207
	if (!smu->pm_enabled)
		return ret;
1208

1209 1210
	memcpy(&range, &smu11_thermal_policy[0], sizeof(struct smu_temperature_range));

1211
	ret = smu_get_thermal_temperature_range(smu, &range);
1212 1213
	if (ret)
		return ret;
1214 1215

	if (smu->smu_table.thermal_controller_type) {
1216
		ret = smu_v11_0_set_thermal_range(smu, range);
1217 1218 1219 1220 1221 1222
		if (ret)
			return ret;

		ret = smu_v11_0_enable_thermal_alert(smu);
		if (ret)
			return ret;
1223

1224
		ret = smu_set_thermal_fan_table(smu);
1225 1226 1227 1228
		if (ret)
			return ret;
	}

1229 1230 1231 1232 1233 1234 1235 1236 1237
	adev->pm.dpm.thermal.min_temp = range.min;
	adev->pm.dpm.thermal.max_temp = range.max;
	adev->pm.dpm.thermal.max_edge_emergency_temp = range.edge_emergency_max;
	adev->pm.dpm.thermal.min_hotspot_temp = range.hotspot_min;
	adev->pm.dpm.thermal.max_hotspot_crit_temp = range.hotspot_crit_max;
	adev->pm.dpm.thermal.max_hotspot_emergency_temp = range.hotspot_emergency_max;
	adev->pm.dpm.thermal.min_mem_temp = range.mem_min;
	adev->pm.dpm.thermal.max_mem_crit_temp = range.mem_crit_max;
	adev->pm.dpm.thermal.max_mem_emergency_temp = range.mem_emergency_max;
1238 1239 1240 1241

	return ret;
}

1242
int smu_v11_0_stop_thermal_control(struct smu_context *smu)
1243 1244 1245 1246 1247 1248 1249 1250
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, 0);

	return 0;
}

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
static uint16_t convert_to_vddc(uint8_t vid)
{
	return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE);
}

static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t vdd = 0, val_vid = 0;

	if (!value)
		return -EINVAL;
	val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) &
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >>
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT;

	vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid);

	*value = vdd;

	return 0;

}

1275
int smu_v11_0_read_sensor(struct smu_context *smu,
1276 1277 1278 1279
				 enum amd_pp_sensors sensor,
				 void *data, uint32_t *size)
{
	int ret = 0;
1280 1281 1282 1283

	if(!data || !size)
		return -EINVAL;

1284
	switch (sensor) {
1285
	case AMDGPU_PP_SENSOR_GFX_MCLK:
1286
		ret = smu_get_current_clk_freq(smu, SMU_UCLK, (uint32_t *)data);
1287 1288 1289
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_SCLK:
1290
		ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, (uint32_t *)data);
1291
		*size = 4;
1292
		break;
1293 1294 1295
	case AMDGPU_PP_SENSOR_VDDGFX:
		ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
		*size = 4;
1296
		break;
1297 1298 1299 1300
	case AMDGPU_PP_SENSOR_MIN_FAN_RPM:
		*(uint32_t *)data = 0;
		*size = 4;
		break;
1301
	default:
1302
		ret = smu_common_read_sensor(smu, sensor, data, size);
1303 1304 1305 1306 1307 1308 1309 1310 1311
		break;
	}

	if (ret)
		*size = 0;

	return ret;
}

1312
int
1313 1314 1315 1316 1317 1318
smu_v11_0_display_clock_voltage_request(struct smu_context *smu,
					struct pp_display_clock_request
					*clock_req)
{
	enum amd_pp_clock_type clk_type = clock_req->clock_type;
	int ret = 0;
1319
	enum smu_clk_type clk_select = 0;
1320 1321
	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;

1322 1323
	if (!smu->pm_enabled)
		return -EINVAL;
1324

1325
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) ||
1326
		smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1327 1328
		switch (clk_type) {
		case amd_pp_dcef_clock:
1329
			clk_select = SMU_DCEFCLK;
1330 1331
			break;
		case amd_pp_disp_clock:
1332
			clk_select = SMU_DISPCLK;
1333 1334
			break;
		case amd_pp_pixel_clock:
1335
			clk_select = SMU_PIXCLK;
1336 1337
			break;
		case amd_pp_phy_clock:
1338
			clk_select = SMU_PHYCLK;
1339
			break;
1340 1341 1342
		case amd_pp_mem_clock:
			clk_select = SMU_UCLK;
			break;
1343 1344 1345 1346 1347 1348 1349 1350 1351
		default:
			pr_info("[%s] Invalid Clock Type!", __func__);
			ret = -EINVAL;
			break;
		}

		if (ret)
			goto failed;

1352 1353 1354
		if (clk_select == SMU_UCLK && smu->disable_uclk_switch)
			return 0;

1355
		ret = smu_set_hard_freq_range(smu, clk_select, clk_freq, 0);
1356 1357 1358

		if(clk_select == SMU_UCLK)
			smu->hard_min_uclk_req_from_dal = clk_freq;
1359 1360 1361 1362 1363 1364
	}

failed:
	return ret;
}

1365
int smu_v11_0_gfx_off_control(struct smu_context *smu, bool enable)
1366 1367
{
	int ret = 0;
1368
	struct amdgpu_device *adev = smu->adev;
1369

1370 1371 1372 1373
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		break;
	case CHIP_NAVI10:
1374
	case CHIP_NAVI14:
1375
	case CHIP_NAVI12:
1376 1377 1378
		if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
			return 0;
		if (enable)
1379
			ret = smu_send_smc_msg(smu, SMU_MSG_AllowGfxOff, NULL);
1380
		else
1381
			ret = smu_send_smc_msg(smu, SMU_MSG_DisallowGfxOff, NULL);
1382 1383 1384 1385
		break;
	default:
		break;
	}
1386 1387 1388 1389

	return ret;
}

1390
uint32_t
1391 1392
smu_v11_0_get_fan_control_mode(struct smu_context *smu)
{
1393
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1394 1395 1396 1397 1398 1399
		return AMD_FAN_CTRL_MANUAL;
	else
		return AMD_FAN_CTRL_AUTO;
}

static int
1400
smu_v11_0_auto_fan_control(struct smu_context *smu, bool auto_fan_control)
1401 1402 1403
{
	int ret = 0;

1404
	if (!smu_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1405 1406
		return 0;

1407
	ret = smu_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, auto_fan_control);
1408 1409
	if (ret)
		pr_err("[%s]%s smc FAN CONTROL feature failed!",
1410
		       __func__, (auto_fan_control ? "Start" : "Stop"));
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429

	return ret;
}

static int
smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode)
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, TMIN, 0));
	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, FDO_PWM_MODE, mode));

	return 0;
}

1430
int
1431 1432 1433
smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
1434
	uint32_t duty100, duty;
1435 1436 1437 1438 1439
	uint64_t tmp64;

	if (speed > 100)
		speed = 100;

1440
	if (smu_v11_0_auto_fan_control(smu, 0))
1441
		return -EINVAL;
1442

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
	duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1),
				CG_FDO_CTRL1, FMAX_DUTY100);
	if (!duty100)
		return -EINVAL;

	tmp64 = (uint64_t)speed * duty100;
	do_div(tmp64, 100);
	duty = (uint32_t)tmp64;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0),
				   CG_FDO_CTRL0, FDO_STATIC_DUTY, duty));

	return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC);
}

1459
int
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
smu_v11_0_set_fan_control_mode(struct smu_context *smu,
			       uint32_t mode)
{
	int ret = 0;

	switch (mode) {
	case AMD_FAN_CTRL_NONE:
		ret = smu_v11_0_set_fan_speed_percent(smu, 100);
		break;
	case AMD_FAN_CTRL_MANUAL:
1470
		ret = smu_v11_0_auto_fan_control(smu, 0);
1471 1472
		break;
	case AMD_FAN_CTRL_AUTO:
1473
		ret = smu_v11_0_auto_fan_control(smu, 1);
1474 1475 1476 1477 1478 1479
		break;
	default:
		break;
	}

	if (ret) {
1480
		pr_err("[%s]Set fan control mode failed!", __func__);
1481 1482 1483 1484 1485 1486
		return -EINVAL;
	}

	return ret;
}

1487
int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu,
1488 1489 1490 1491 1492 1493 1494 1495 1496
				       uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	int ret;
	uint32_t tach_period, crystal_clock_freq;

	if (!speed)
		return -EINVAL;

1497
	ret = smu_v11_0_auto_fan_control(smu, 0);
1498
	if (ret)
1499
		return ret;
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512

	crystal_clock_freq = amdgpu_asic_get_xclk(adev);
	tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed);
	WREG32_SOC15(THM, 0, mmCG_TACH_CTRL,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL),
				   CG_TACH_CTRL, TARGET_PERIOD,
				   tach_period));

	ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM);

	return ret;
}

1513
int smu_v11_0_set_xgmi_pstate(struct smu_context *smu,
1514 1515
				     uint32_t pstate)
{
1516 1517 1518
	int ret = 0;
	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetXgmiMode,
1519 1520
					  pstate ? XGMI_MODE_PSTATE_D0 : XGMI_MODE_PSTATE_D3,
					  NULL);
1521
	return ret;
1522 1523
}

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
#define THM_11_0__SRCID__THM_DIG_THERM_L2H		0		/* ASIC_TEMP > CG_THERMAL_INT.DIG_THERM_INTH  */
#define THM_11_0__SRCID__THM_DIG_THERM_H2L		1		/* ASIC_TEMP < CG_THERMAL_INT.DIG_THERM_INTL  */

static int smu_v11_0_irq_process(struct amdgpu_device *adev,
				 struct amdgpu_irq_src *source,
				 struct amdgpu_iv_entry *entry)
{
	uint32_t client_id = entry->client_id;
	uint32_t src_id = entry->src_id;

	if (client_id == SOC15_IH_CLIENTID_THM) {
		switch (src_id) {
		case THM_11_0__SRCID__THM_DIG_THERM_L2H:
			pr_warn("GPU over temperature range detected on PCIe %d:%d.%d!\n",
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;
		case THM_11_0__SRCID__THM_DIG_THERM_H2L:
			pr_warn("GPU under temperature range detected on PCIe %d:%d.%d!\n",
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;
		default:
			pr_warn("GPU under temperature range unknown src id (%d), detected on PCIe %d:%d.%d!\n",
				src_id,
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;

		}
	}

	return 0;
}

static const struct amdgpu_irq_src_funcs smu_v11_0_irq_funcs =
{
	.process = smu_v11_0_irq_process,
};

1567
int smu_v11_0_register_irq_handler(struct smu_context *smu)
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
{
	struct amdgpu_device *adev = smu->adev;
	struct amdgpu_irq_src *irq_src = smu->irq_source;
	int ret = 0;

	/* already register */
	if (irq_src)
		return 0;

	irq_src = kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
	if (!irq_src)
		return -ENOMEM;
	smu->irq_source = irq_src;

	irq_src->funcs = &smu_v11_0_irq_funcs;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_L2H,
				irq_src);
	if (ret)
		return ret;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_H2L,
				irq_src);
	if (ret)
		return ret;

	return ret;
}

1599
int smu_v11_0_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
		struct pp_smu_nv_clock_table *max_clocks)
{
	struct smu_table_context *table_context = &smu->smu_table;
	struct smu_11_0_max_sustainable_clocks *sustainable_clocks = NULL;

	if (!max_clocks || !table_context->max_sustainable_clocks)
		return -EINVAL;

	sustainable_clocks = table_context->max_sustainable_clocks;

	max_clocks->dcfClockInKhz =
			(unsigned int) sustainable_clocks->dcef_clock * 1000;
	max_clocks->displayClockInKhz =
			(unsigned int) sustainable_clocks->display_clock * 1000;
	max_clocks->phyClockInKhz =
			(unsigned int) sustainable_clocks->phy_clock * 1000;
	max_clocks->pixelClockInKhz =
			(unsigned int) sustainable_clocks->pixel_clock * 1000;
	max_clocks->uClockInKhz =
			(unsigned int) sustainable_clocks->uclock * 1000;
	max_clocks->socClockInKhz =
			(unsigned int) sustainable_clocks->soc_clock * 1000;
	max_clocks->dscClockInKhz = 0;
	max_clocks->dppClockInKhz = 0;
	max_clocks->fabricClockInKhz = 0;

	return 0;
}

1629
int smu_v11_0_set_azalia_d3_pme(struct smu_context *smu)
1630 1631 1632
{
	int ret = 0;

1633
	ret = smu_send_smc_msg(smu, SMU_MSG_BacoAudioD3PME, NULL);
1634 1635 1636 1637

	return ret;
}

1638 1639
static int smu_v11_0_baco_set_armd3_sequence(struct smu_context *smu, enum smu_v11_0_baco_seq baco_seq)
{
1640
	return smu_send_smc_msg_with_param(smu, SMU_MSG_ArmD3, baco_seq, NULL);
1641 1642
}

1643
bool smu_v11_0_baco_is_support(struct smu_context *smu)
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
{
	struct amdgpu_device *adev = smu->adev;
	struct smu_baco_context *smu_baco = &smu->smu_baco;
	uint32_t val;
	bool baco_support;

	mutex_lock(&smu_baco->mutex);
	baco_support = smu_baco->platform_support;
	mutex_unlock(&smu_baco->mutex);

	if (!baco_support)
		return false;

1657 1658 1659
	/* Arcturus does not support this bit mask */
	if (smu_feature_is_supported(smu, SMU_FEATURE_BACO_BIT) &&
	   !smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT))
1660 1661 1662 1663 1664 1665 1666 1667 1668
		return false;

	val = RREG32_SOC15(NBIO, 0, mmRCC_BIF_STRAP0);
	if (val & RCC_BIF_STRAP0__STRAP_PX_CAPABLE_MASK)
		return true;

	return false;
}

1669
enum smu_baco_state smu_v11_0_baco_get_state(struct smu_context *smu)
1670 1671
{
	struct smu_baco_context *smu_baco = &smu->smu_baco;
1672
	enum smu_baco_state baco_state;
1673 1674 1675 1676 1677 1678 1679 1680

	mutex_lock(&smu_baco->mutex);
	baco_state = smu_baco->state;
	mutex_unlock(&smu_baco->mutex);

	return baco_state;
}

1681
int smu_v11_0_baco_set_state(struct smu_context *smu, enum smu_baco_state state)
1682 1683 1684
{

	struct smu_baco_context *smu_baco = &smu->smu_baco;
1685 1686 1687 1688
	struct amdgpu_device *adev = smu->adev;
	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
	uint32_t bif_doorbell_intr_cntl;
	uint32_t data;
1689 1690 1691 1692 1693 1694 1695
	int ret = 0;

	if (smu_v11_0_baco_get_state(smu) == state)
		return 0;

	mutex_lock(&smu_baco->mutex);

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	bif_doorbell_intr_cntl = RREG32_SOC15(NBIO, 0, mmBIF_DOORBELL_INT_CNTL);

	if (state == SMU_BACO_STATE_ENTER) {
		bif_doorbell_intr_cntl = REG_SET_FIELD(bif_doorbell_intr_cntl,
						BIF_DOORBELL_INT_CNTL,
						DOORBELL_INTERRUPT_DISABLE, 1);
		WREG32_SOC15(NBIO, 0, mmBIF_DOORBELL_INT_CNTL, bif_doorbell_intr_cntl);

		if (!ras || !ras->supported) {
			data = RREG32_SOC15(THM, 0, mmTHM_BACO_CNTL);
			data |= 0x80000000;
			WREG32_SOC15(THM, 0, mmTHM_BACO_CNTL, data);

1709
			ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, 0, NULL);
1710
		} else {
1711
			ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, 1, NULL);
1712 1713
		}
	} else {
1714
		ret = smu_send_smc_msg(smu, SMU_MSG_ExitBaco, NULL);
1715 1716 1717
		if (ret)
			goto out;

1718 1719 1720 1721
		bif_doorbell_intr_cntl = REG_SET_FIELD(bif_doorbell_intr_cntl,
						BIF_DOORBELL_INT_CNTL,
						DOORBELL_INTERRUPT_DISABLE, 0);
		WREG32_SOC15(NBIO, 0, mmBIF_DOORBELL_INT_CNTL, bif_doorbell_intr_cntl);
1722 1723 1724 1725

		/* clear vbios scratch 6 and 7 for coming asic reinit */
		WREG32(adev->bios_scratch_reg_offset + 6, 0);
		WREG32(adev->bios_scratch_reg_offset + 7, 0);
1726
	}
1727 1728 1729 1730 1731 1732 1733 1734 1735
	if (ret)
		goto out;

	smu_baco->state = state;
out:
	mutex_unlock(&smu_baco->mutex);
	return ret;
}

1736
int smu_v11_0_baco_enter(struct smu_context *smu)
1737
{
1738
	struct amdgpu_device *adev = smu->adev;
1739 1740
	int ret = 0;

1741 1742 1743 1744 1745 1746
	/* Arcturus does not need this audio workaround */
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_v11_0_baco_set_armd3_sequence(smu, BACO_SEQ_BACO);
		if (ret)
			return ret;
	}
1747 1748 1749 1750 1751 1752 1753

	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_ENTER);
	if (ret)
		return ret;

	msleep(10);

1754 1755 1756 1757 1758 1759 1760
	return ret;
}

int smu_v11_0_baco_exit(struct smu_context *smu)
{
	int ret = 0;

1761 1762 1763 1764 1765 1766 1767
	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_EXIT);
	if (ret)
		return ret;

	return ret;
}

1768
int smu_v11_0_get_dpm_ultimate_freq(struct smu_context *smu, enum smu_clk_type clk_type,
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
						 uint32_t *min, uint32_t *max)
{
	int ret = 0, clk_id = 0;
	uint32_t param = 0;

	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0) {
		ret = -EINVAL;
		goto failed;
	}
	param = (clk_id & 0xffff) << 16;

	if (max) {
1782
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq, param, max);
1783 1784 1785 1786 1787
		if (ret)
			goto failed;
	}

	if (min) {
1788
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMinDpmFreq, param, min);
1789 1790 1791 1792 1793 1794 1795 1796
		if (ret)
			goto failed;
	}

failed:
	return ret;
}

1797
int smu_v11_0_set_soft_freq_limited_range(struct smu_context *smu, enum smu_clk_type clk_type,
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
			    uint32_t min, uint32_t max)
{
	int ret = 0, clk_id = 0;
	uint32_t param;

	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	if (max > 0) {
		param = (uint32_t)((clk_id << 16) | (max & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxByFreq,
1810
						  param, NULL);
1811 1812 1813 1814 1815 1816 1817
		if (ret)
			return ret;
	}

	if (min > 0) {
		param = (uint32_t)((clk_id << 16) | (min & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMinByFreq,
1818
						  param, NULL);
1819 1820 1821 1822 1823 1824 1825
		if (ret)
			return ret;
	}

	return ret;
}

1826
int smu_v11_0_override_pcie_parameters(struct smu_context *smu)
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t pcie_gen = 0, pcie_width = 0;
	int ret;

	if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4)
		pcie_gen = 3;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
		pcie_gen = 2;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2)
		pcie_gen = 1;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1)
		pcie_gen = 0;

	/* Bit 31:16: LCLK DPM level. 0 is DPM0, and 1 is DPM1
	 * Bit 15:8:  PCIE GEN, 0 to 3 corresponds to GEN1 to GEN4
	 * Bit 7:0:   PCIE lane width, 1 to 7 corresponds is x1 to x32
	 */
	if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
		pcie_width = 6;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
		pcie_width = 5;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
		pcie_width = 4;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
		pcie_width = 3;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
		pcie_width = 2;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
		pcie_width = 1;

	ret = smu_update_pcie_parameters(smu, pcie_gen, pcie_width);

	if (ret)
		pr_err("[%s] Attempt to override pcie params failed!\n", __func__);

	return ret;

}
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884

int smu_v11_0_set_default_od_settings(struct smu_context *smu, bool initialize, size_t overdrive_table_size)
{
	struct smu_table_context *table_context = &smu->smu_table;
	int ret = 0;

	if (initialize) {
		if (table_context->overdrive_table) {
			return -EINVAL;
		}
		table_context->overdrive_table = kzalloc(overdrive_table_size, GFP_KERNEL);
		if (!table_context->overdrive_table) {
			return -ENOMEM;
		}
		ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, false);
		if (ret) {
			pr_err("Failed to export overdrive table!\n");
			return ret;
		}
1885 1886 1887 1888 1889 1890
		if (!table_context->boot_overdrive_table) {
			table_context->boot_overdrive_table = kmemdup(table_context->overdrive_table, overdrive_table_size, GFP_KERNEL);
			if (!table_context->boot_overdrive_table) {
				return -ENOMEM;
			}
		}
1891 1892 1893 1894 1895 1896 1897 1898
	}
	ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, true);
	if (ret) {
		pr_err("Failed to import overdrive table!\n");
		return ret;
	}
	return ret;
}
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937

int smu_v11_0_set_performance_level(struct smu_context *smu,
				    enum amd_dpm_forced_level level)
{
	int ret = 0;
	uint32_t sclk_mask, mclk_mask, soc_mask;

	switch (level) {
	case AMD_DPM_FORCED_LEVEL_HIGH:
		ret = smu_force_dpm_limit_value(smu, true);
		break;
	case AMD_DPM_FORCED_LEVEL_LOW:
		ret = smu_force_dpm_limit_value(smu, false);
		break;
	case AMD_DPM_FORCED_LEVEL_AUTO:
	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
		ret = smu_unforce_dpm_levels(smu);
		break;
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
		ret = smu_get_profiling_clk_mask(smu, level,
						 &sclk_mask,
						 &mclk_mask,
						 &soc_mask);
		if (ret)
			return ret;
		smu_force_clk_levels(smu, SMU_SCLK, 1 << sclk_mask, false);
		smu_force_clk_levels(smu, SMU_MCLK, 1 << mclk_mask, false);
		smu_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask, false);
		break;
	case AMD_DPM_FORCED_LEVEL_MANUAL:
	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
	default:
		break;
	}
	return ret;
}