smu_v11_0.c 53.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/firmware.h>
24
#include <linux/module.h>
25
#include <linux/pci.h>
26
#include <linux/reboot.h>
27

28 29
#define SMU_11_0_PARTIAL_PPTABLE

30 31
#include "amdgpu.h"
#include "amdgpu_smu.h"
32
#include "smu_internal.h"
33
#include "atomfirmware.h"
34
#include "amdgpu_atomfirmware.h"
35
#include "smu_v11_0.h"
36
#include "smu_v11_0_pptable.h"
37
#include "soc15_common.h"
38
#include "atom.h"
39
#include "amd_pcie.h"
40
#include "amdgpu_ras.h"
41 42 43

#include "asic_reg/thm/thm_11_0_2_offset.h"
#include "asic_reg/thm/thm_11_0_2_sh_mask.h"
44 45 46 47
#include "asic_reg/mp/mp_11_0_offset.h"
#include "asic_reg/mp/mp_11_0_sh_mask.h"
#include "asic_reg/smuio/smuio_11_0_0_offset.h"
#include "asic_reg/smuio/smuio_11_0_0_sh_mask.h"
48

49
MODULE_FIRMWARE("amdgpu/arcturus_smc.bin");
50
MODULE_FIRMWARE("amdgpu/navi10_smc.bin");
51
MODULE_FIRMWARE("amdgpu/navi14_smc.bin");
52
MODULE_FIRMWARE("amdgpu/navi12_smc.bin");
53
MODULE_FIRMWARE("amdgpu/sienna_cichlid_smc.bin");
54

55
#define SMU11_VOLTAGE_SCALE 4
56

57 58 59 60
static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu,
					      uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
61
	WREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_66, msg);
62 63 64
	return 0;
}

65
static int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg)
66 67 68
{
	struct amdgpu_device *adev = smu->adev;

69
	*arg = RREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_82);
70 71 72
	return 0;
}

73 74 75
static int smu_v11_0_wait_for_response(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
76
	uint32_t cur_value, i, timeout = adev->usec_timeout * 10;
77

78
	for (i = 0; i < timeout; i++) {
79
		cur_value = RREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_90);
80
		if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0)
81 82
			return cur_value == 0x1 ? 0 : -EIO;

83 84 85 86
		udelay(1);
	}

	/* timeout means wrong logic */
87 88 89 90
	if (i == timeout)
		return -ETIME;

	return RREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_90) == 0x1 ? 0 : -EIO;
91 92
}

93
int
94 95
smu_v11_0_send_msg_with_param(struct smu_context *smu,
			      enum smu_message_type msg,
96 97
			      uint32_t param,
			      uint32_t *read_arg)
98 99
{
	struct amdgpu_device *adev = smu->adev;
100 101 102 103
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
104
		return index == -EACCES ? 0 : index;
105

106
	mutex_lock(&smu->message_lock);
107
	ret = smu_v11_0_wait_for_response(smu);
108 109 110
	if (ret) {
		pr_err("Msg issuing pre-check failed and "
		       "SMU may be not in the right state!\n");
111
		goto out;
112
	}
113

114
	WREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);
115

116
	WREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_82, param);
117

118
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
119 120

	ret = smu_v11_0_wait_for_response(smu);
121
	if (ret) {
122 123
		pr_err("failed send message: %10s (%d) \tparam: 0x%08x response %#x\n",
		       smu_get_message_name(smu, msg), index, param, ret);
124
		goto out;
125
	}
126

127 128 129 130 131
	if (read_arg) {
		ret = smu_v11_0_read_arg(smu, read_arg);
		if (ret) {
			pr_err("failed to read message arg: %10s (%d) \tparam: 0x%08x response %#x\n",
			       smu_get_message_name(smu, msg), index, param, ret);
132
			goto out;
133 134
		}
	}
135 136 137
out:
	mutex_unlock(&smu->message_lock);
	return ret;
138 139
}

140
int smu_v11_0_init_microcode(struct smu_context *smu)
141 142
{
	struct amdgpu_device *adev = smu->adev;
143 144 145 146 147 148
	const char *chip_name;
	char fw_name[30];
	int err = 0;
	const struct smc_firmware_header_v1_0 *hdr;
	const struct common_firmware_header *header;
	struct amdgpu_firmware_info *ucode = NULL;
149

150
	switch (adev->asic_type) {
151 152 153
	case CHIP_ARCTURUS:
		chip_name = "arcturus";
		break;
154 155 156
	case CHIP_NAVI10:
		chip_name = "navi10";
		break;
157 158 159
	case CHIP_NAVI14:
		chip_name = "navi14";
		break;
160 161 162
	case CHIP_NAVI12:
		chip_name = "navi12";
		break;
163 164 165
	case CHIP_SIENNA_CICHLID:
		chip_name = "sienna_cichlid";
		break;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
	default:
		BUG();
	}

	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name);

	err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
	if (err)
		goto out;
	err = amdgpu_ucode_validate(adev->pm.fw);
	if (err)
		goto out;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	amdgpu_ucode_print_smc_hdr(&hdr->header);
	adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
		ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC];
		ucode->ucode_id = AMDGPU_UCODE_ID_SMC;
		ucode->fw = adev->pm.fw;
		header = (const struct common_firmware_header *)ucode->fw->data;
		adev->firmware.fw_size +=
			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
	}

out:
	if (err) {
		DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n",
			  fw_name);
		release_firmware(adev->pm.fw);
		adev->pm.fw = NULL;
	}
	return err;
200 201
}

202
int smu_v11_0_load_microcode(struct smu_context *smu)
203
{
204 205 206 207 208
	struct amdgpu_device *adev = smu->adev;
	const uint32_t *src;
	const struct smc_firmware_header_v1_0 *hdr;
	uint32_t addr_start = MP1_SRAM;
	uint32_t i;
209
	uint32_t smc_fw_size;
210 211
	uint32_t mp1_fw_flags;

212
	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
213 214
	src = (const uint32_t *)(adev->pm.fw->data +
		le32_to_cpu(hdr->header.ucode_array_offset_bytes));
215
	smc_fw_size = hdr->header.ucode_size_bytes;
216

217
	for (i = 1; i < smc_fw_size/4 - 1; i++) {
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
		WREG32_PCIE(addr_start, src[i]);
		addr_start += 4;
	}

	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & MP1_SMN_PUB_CTRL__RESET_MASK);
	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & ~MP1_SMN_PUB_CTRL__RESET_MASK);

	for (i = 0; i < adev->usec_timeout; i++) {
		mp1_fw_flags = RREG32_PCIE(MP1_Public |
			(smnMP1_FIRMWARE_FLAGS & 0xffffffff));
		if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
			MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
			break;
		udelay(1);
	}

	if (i == adev->usec_timeout)
		return -ETIME;

239 240 241
	return 0;
}

242
int smu_v11_0_check_fw_status(struct smu_context *smu)
243
{
244 245 246
	struct amdgpu_device *adev = smu->adev;
	uint32_t mp1_fw_flags;

247 248
	mp1_fw_flags = RREG32_PCIE(MP1_Public |
				   (smnMP1_FIRMWARE_FLAGS & 0xffffffff));
249 250 251 252

	if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
	    MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
		return 0;
253

254
	return -EIO;
255 256
}

257
int smu_v11_0_check_fw_version(struct smu_context *smu)
258
{
259 260 261
	uint32_t if_version = 0xff, smu_version = 0xff;
	uint16_t smu_major;
	uint8_t smu_minor, smu_debug;
262 263
	int ret = 0;

264
	ret = smu_get_smc_version(smu, &if_version, &smu_version);
265
	if (ret)
266
		return ret;
267

268 269 270 271
	smu_major = (smu_version >> 16) & 0xffff;
	smu_minor = (smu_version >> 8) & 0xff;
	smu_debug = (smu_version >> 0) & 0xff;

272
	switch (smu->adev->asic_type) {
273
	case CHIP_ARCTURUS:
274
		smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_ARCT;
275
		break;
276
	case CHIP_NAVI10:
277
		smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_NV10;
278
		break;
279
	case CHIP_NAVI12:
280
		smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_NV12;
281
		break;
282
	case CHIP_NAVI14:
283
		smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_NV14;
284
		break;
285 286 287
	case CHIP_SIENNA_CICHLID:
		smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_Sienna_Cichlid;
		break;
288
	default:
289
		pr_err("smu unsupported asic type:%d.\n", smu->adev->asic_type);
290
		smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_INV;
291 292 293
		break;
	}

294 295 296 297 298 299 300 301
	/*
	 * 1. if_version mismatch is not critical as our fw is designed
	 * to be backward compatible.
	 * 2. New fw usually brings some optimizations. But that's visible
	 * only on the paired driver.
	 * Considering above, we just leave user a warning message instead
	 * of halt driver loading.
	 */
302
	if (if_version != smu->smc_driver_if_version) {
303 304
		pr_info("smu driver if version = 0x%08x, smu fw if version = 0x%08x, "
			"smu fw version = 0x%08x (%d.%d.%d)\n",
305
			smu->smc_driver_if_version, if_version,
306
			smu_version, smu_major, smu_minor, smu_debug);
307
		pr_warn("SMU driver if version not matched\n");
308 309
	}

310 311 312
	return ret;
}

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
static int smu_v11_0_set_pptable_v2_0(struct smu_context *smu, void **table, uint32_t *size)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t ppt_offset_bytes;
	const struct smc_firmware_header_v2_0 *v2;

	v2 = (const struct smc_firmware_header_v2_0 *) adev->pm.fw->data;

	ppt_offset_bytes = le32_to_cpu(v2->ppt_offset_bytes);
	*size = le32_to_cpu(v2->ppt_size_bytes);
	*table = (uint8_t *)v2 + ppt_offset_bytes;

	return 0;
}

328 329
static int smu_v11_0_set_pptable_v2_1(struct smu_context *smu, void **table,
				      uint32_t *size, uint32_t pptable_id)
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
{
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v2_1 *v2_1;
	struct smc_soft_pptable_entry *entries;
	uint32_t pptable_count = 0;
	int i = 0;

	v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data;
	entries = (struct smc_soft_pptable_entry *)
		((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset));
	pptable_count = le32_to_cpu(v2_1->pptable_count);
	for (i = 0; i < pptable_count; i++) {
		if (le32_to_cpu(entries[i].id) == pptable_id) {
			*table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes));
			*size = le32_to_cpu(entries[i].ppt_size_bytes);
			break;
		}
	}

	if (i == pptable_count)
		return -EINVAL;

	return 0;
}

355
int smu_v11_0_setup_pptable(struct smu_context *smu)
356
{
357 358
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v1_0 *hdr;
359
	int ret, index;
360
	uint32_t size = 0;
361
	uint16_t atom_table_size;
362
	uint8_t frev, crev;
363
	void *table;
364 365 366 367 368
	uint16_t version_major, version_minor;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	version_major = le16_to_cpu(hdr->header.header_version_major);
	version_minor = le16_to_cpu(hdr->header.header_version_minor);
369 370
	if ((version_major == 2 && smu->smu_table.boot_values.pp_table_id > 0) ||
	    adev->asic_type == CHIP_SIENNA_CICHLID) {
371
		pr_info("use driver provided pptable %d\n", smu->smu_table.boot_values.pp_table_id);
372 373 374 375 376 377 378 379 380 381 382 383 384 385
		switch (version_minor) {
		case 0:
			ret = smu_v11_0_set_pptable_v2_0(smu, &table, &size);
			break;
		case 1:
			ret = smu_v11_0_set_pptable_v2_1(smu, &table, &size,
							 smu->smu_table.boot_values.pp_table_id);
			break;
		default:
			ret = -EINVAL;
			break;
		}
		if (ret)
			return ret;
386

387
	} else {
388
		pr_info("use vbios provided pptable\n");
389 390
		index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
						    powerplayinfo);
391

392
		ret = smu_get_atom_data_table(smu, index, &atom_table_size, &frev, &crev,
393 394 395
					      (uint8_t **)&table);
		if (ret)
			return ret;
396
		size = atom_table_size;
397
	}
398

399 400 401 402
	if (!smu->smu_table.power_play_table)
		smu->smu_table.power_play_table = table;
	if (!smu->smu_table.power_play_table_size)
		smu->smu_table.power_play_table_size = size;
403 404 405 406

	return 0;
}

407 408 409 410 411 412 413
static int smu_v11_0_init_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0)
		return -EINVAL;

414
	return smu_alloc_dpm_context(smu);
415 416 417 418 419 420 421 422 423 424
}

static int smu_v11_0_fini_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0)
		return -EINVAL;

	kfree(smu_dpm->dpm_context);
425
	kfree(smu_dpm->golden_dpm_context);
426 427
	kfree(smu_dpm->dpm_current_power_state);
	kfree(smu_dpm->dpm_request_power_state);
428
	smu_dpm->dpm_context = NULL;
429
	smu_dpm->golden_dpm_context = NULL;
430
	smu_dpm->dpm_context_size = 0;
431 432
	smu_dpm->dpm_current_power_state = NULL;
	smu_dpm->dpm_request_power_state = NULL;
433 434 435 436

	return 0;
}

437
int smu_v11_0_init_smc_tables(struct smu_context *smu)
438 439 440
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = NULL;
441
	int ret = 0;
442

443
	if (smu_table->tables)
444 445
		return -EINVAL;

446 447
	tables = kcalloc(SMU_TABLE_COUNT, sizeof(struct smu_table),
			 GFP_KERNEL);
448 449 450 451 452
	if (!tables)
		return -ENOMEM;

	smu_table->tables = tables;

453 454 455
	ret = smu_tables_init(smu, tables);
	if (ret)
		return ret;
456

457 458 459 460
	ret = smu_v11_0_init_dpm_context(smu);
	if (ret)
		return ret;

461 462 463
	return 0;
}

464
int smu_v11_0_fini_smc_tables(struct smu_context *smu)
465 466
{
	struct smu_table_context *smu_table = &smu->smu_table;
467
	int ret = 0;
468

469
	if (!smu_table->tables)
470 471 472
		return -EINVAL;

	kfree(smu_table->tables);
473
	kfree(smu_table->metrics_table);
474
	kfree(smu_table->watermarks_table);
475
	smu_table->tables = NULL;
476
	smu_table->metrics_table = NULL;
477
	smu_table->watermarks_table = NULL;
478
	smu_table->metrics_time = 0;
479

480 481 482
	ret = smu_v11_0_fini_dpm_context(smu);
	if (ret)
		return ret;
483 484
	return 0;
}
485

486
int smu_v11_0_init_power(struct smu_context *smu)
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
{
	struct smu_power_context *smu_power = &smu->smu_power;

	if (smu_power->power_context || smu_power->power_context_size != 0)
		return -EINVAL;

	smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
					   GFP_KERNEL);
	if (!smu_power->power_context)
		return -ENOMEM;
	smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context);

	return 0;
}

502
int smu_v11_0_fini_power(struct smu_context *smu)
503 504 505 506 507 508 509 510 511 512 513 514 515
{
	struct smu_power_context *smu_power = &smu->smu_power;

	if (!smu_power->power_context || smu_power->power_context_size == 0)
		return -EINVAL;

	kfree(smu_power->power_context);
	smu_power->power_context = NULL;
	smu_power->power_context_size = 0;

	return 0;
}

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu)
{
	int ret, index;
	uint16_t size;
	uint8_t frev, crev;
	struct atom_common_table_header *header;
	struct atom_firmware_info_v3_3 *v_3_3;
	struct atom_firmware_info_v3_1 *v_3_1;

	index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
					    firmwareinfo);

	ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev,
				      (uint8_t **)&header);
	if (ret)
		return ret;

	if (header->format_revision != 3) {
		pr_err("unknown atom_firmware_info version! for smu11\n");
		return -EINVAL;
	}

	switch (header->content_revision) {
	case 0:
	case 1:
	case 2:
		v_3_1 = (struct atom_firmware_info_v3_1 *)header;
		smu->smu_table.boot_values.revision = v_3_1->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = 0;
		break;
	case 3:
	default:
		v_3_3 = (struct atom_firmware_info_v3_3 *)header;
		smu->smu_table.boot_values.revision = v_3_3->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id;
	}

571 572 573
	smu->smu_table.boot_values.format_revision = header->format_revision;
	smu->smu_table.boot_values.content_revision = header->content_revision;

574 575 576
	return 0;
}

577
int smu_v11_0_get_clk_info_from_vbios(struct smu_context *smu)
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
{
	int ret, index;
	struct amdgpu_device *adev = smu->adev;
	struct atom_get_smu_clock_info_parameters_v3_1 input = {0};
	struct atom_get_smu_clock_info_output_parameters_v3_1 *output;

	input.clk_id = SMU11_SYSPLL0_SOCCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.socclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCEFCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dcefclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_ECLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.eclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_VCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.vclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
	if ((smu->smu_table.boot_values.format_revision == 3) &&
	    (smu->smu_table.boot_values.content_revision >= 2)) {
		memset(&input, 0, sizeof(input));
		input.clk_id = SMU11_SYSPLL1_0_FCLK_ID;
		input.syspll_id = SMU11_SYSPLL1_2_ID;
		input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
		index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
						    getsmuclockinfo);

		ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
						(uint32_t *)&input);
		if (ret)
			return -EINVAL;

		output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
		smu->smu_table.boot_values.fclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;
	}

671 672 673
	return 0;
}

674
int smu_v11_0_notify_memory_pool_location(struct smu_context *smu)
675 676 677 678 679 680 681 682 683 684
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	int ret = 0;
	uint64_t address;
	uint32_t address_low, address_high;

	if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL)
		return ret;

685
	address = (uintptr_t)memory_pool->cpu_addr;
686 687 688 689
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

	ret = smu_send_smc_msg_with_param(smu,
690
					  SMU_MSG_SetSystemVirtualDramAddrHigh,
691 692
					  address_high,
					  NULL);
693 694 695
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu,
696
					  SMU_MSG_SetSystemVirtualDramAddrLow,
697 698
					  address_low,
					  NULL);
699 700 701 702 703 704 705
	if (ret)
		return ret;

	address = memory_pool->mc_address;
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

706
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh,
707
					  address_high, NULL);
708 709
	if (ret)
		return ret;
710
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow,
711
					  address_low, NULL);
712 713
	if (ret)
		return ret;
714
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize,
715
					  (uint32_t)memory_pool->size, NULL);
716 717 718 719 720 721
	if (ret)
		return ret;

	return ret;
}

722
int smu_v11_0_check_pptable(struct smu_context *smu)
723 724 725 726 727 728 729
{
	int ret;

	ret = smu_check_powerplay_table(smu);
	return ret;
}

730
int smu_v11_0_parse_pptable(struct smu_context *smu)
731 732 733 734
{
	int ret;

	struct smu_table_context *table_context = &smu->smu_table;
735
	struct smu_table *table = &table_context->tables[SMU_TABLE_PPTABLE];
736

737
	/* during TDR we need to free and alloc the pptable */
738
	if (table_context->driver_pptable)
739
		kfree(table_context->driver_pptable);
740

741
	table_context->driver_pptable = kzalloc(table->size, GFP_KERNEL);
742 743 744 745 746

	if (!table_context->driver_pptable)
		return -ENOMEM;

	ret = smu_store_powerplay_table(smu);
747 748 749 750
	if (ret)
		return -EINVAL;

	ret = smu_append_powerplay_table(smu);
751 752 753 754

	return ret;
}

755
int smu_v11_0_populate_smc_pptable(struct smu_context *smu)
756
{
757
	int ret;
758

759
	ret = smu_set_default_dpm_table(smu);
760

761
	return ret;
762 763
}

764
int smu_v11_0_write_pptable(struct smu_context *smu)
765
{
766
	struct smu_table_context *table_context = &smu->smu_table;
767 768
	int ret = 0;

769
	ret = smu_update_table(smu, SMU_TABLE_PPTABLE, 0,
770
			       table_context->driver_pptable, true);
771 772 773 774

	return ret;
}

775
int smu_v11_0_set_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk)
776 777 778 779
{
	int ret;

	ret = smu_send_smc_msg_with_param(smu,
780
					  SMU_MSG_SetMinDeepSleepDcefclk, clk, NULL);
781 782 783 784 785 786
	if (ret)
		pr_err("SMU11 attempt to set divider for DCEFCLK Failed!");

	return ret;
}

787
int smu_v11_0_set_min_dcef_deep_sleep(struct smu_context *smu)
788 789 790 791 792 793
{
	struct smu_table_context *table_context = &smu->smu_table;

	if (!table_context)
		return -EINVAL;

794
	return smu_v11_0_set_deep_sleep_dcefclk(smu, table_context->boot_values.dcefclk / 100);
795 796
}

797 798 799 800 801 802 803 804
int smu_v11_0_set_driver_table_location(struct smu_context *smu)
{
	struct smu_table *driver_table = &smu->smu_table.driver_table;
	int ret = 0;

	if (driver_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
				SMU_MSG_SetDriverDramAddrHigh,
805 806
				upper_32_bits(driver_table->mc_address),
				NULL);
807 808 809
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
				SMU_MSG_SetDriverDramAddrLow,
810 811
				lower_32_bits(driver_table->mc_address),
				NULL);
812 813 814 815 816
	}

	return ret;
}

817
int smu_v11_0_set_tool_table_location(struct smu_context *smu)
818 819
{
	int ret = 0;
820
	struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG];
821 822 823

	if (tool_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
824
				SMU_MSG_SetToolsDramAddrHigh,
825 826
				upper_32_bits(tool_table->mc_address),
				NULL);
827 828
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
829
				SMU_MSG_SetToolsDramAddrLow,
830 831
				lower_32_bits(tool_table->mc_address),
				NULL);
832 833 834 835 836
	}

	return ret;
}

837
int smu_v11_0_init_display_count(struct smu_context *smu, uint32_t count)
838 839
{
	int ret = 0;
840 841 842 843 844
	struct amdgpu_device *adev = smu->adev;

	/* Sienna_Cichlid do not support to change display num currently */
	if (adev->asic_type == CHIP_SIENNA_CICHLID)
		return 0;
845

846 847 848
	if (!smu->pm_enabled)
		return ret;

849
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, count, NULL);
850 851 852
	return ret;
}

853

854
int smu_v11_0_set_allowed_mask(struct smu_context *smu)
855 856 857 858 859
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
	uint32_t feature_mask[2];

860
	mutex_lock(&feature->mutex);
861
	if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64)
862
		goto failed;
863 864 865 866

	bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64);

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh,
867
					  feature_mask[1], NULL);
868
	if (ret)
869
		goto failed;
870 871

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow,
872
					  feature_mask[0], NULL);
873
	if (ret)
874
		goto failed;
875

876 877
failed:
	mutex_unlock(&feature->mutex);
878 879 880
	return ret;
}

881
int smu_v11_0_get_enabled_mask(struct smu_context *smu,
882 883 884
				      uint32_t *feature_mask, uint32_t num)
{
	uint32_t feature_mask_high = 0, feature_mask_low = 0;
885
	struct smu_feature *feature = &smu->smu_feature;
886 887 888 889 890
	int ret = 0;

	if (!feature_mask || num < 2)
		return -EINVAL;

891
	if (bitmap_empty(feature->enabled, feature->feature_num)) {
892
		ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh, &feature_mask_high);
893 894
		if (ret)
			return ret;
895

896
		ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow, &feature_mask_low);
897 898
		if (ret)
			return ret;
899

900 901 902 903 904 905
		feature_mask[0] = feature_mask_low;
		feature_mask[1] = feature_mask_high;
	} else {
		bitmap_copy((unsigned long *)feature_mask, feature->enabled,
			     feature->feature_num);
	}
906 907 908 909

	return ret;
}

910
int smu_v11_0_system_features_control(struct smu_context *smu,
911
					     bool en)
912 913 914 915 916
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_mask[2];
	int ret = 0;

917
	ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures :
918
				     SMU_MSG_DisableAllSmuFeatures), NULL);
919 920 921
	if (ret)
		return ret;

922 923 924
	bitmap_zero(feature->enabled, feature->feature_num);
	bitmap_zero(feature->supported, feature->feature_num);

925 926 927 928 929 930 931 932 933 934
	if (en) {
		ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
		if (ret)
			return ret;

		bitmap_copy(feature->enabled, (unsigned long *)&feature_mask,
			    feature->feature_num);
		bitmap_copy(feature->supported, (unsigned long *)&feature_mask,
			    feature->feature_num);
	}
935 936 937 938

	return ret;
}

939
int smu_v11_0_notify_display_change(struct smu_context *smu)
940 941 942
{
	int ret = 0;

943 944 945
	if (!smu->pm_enabled)
		return ret;

946 947
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
	    smu->adev->gmc.vram_type == AMDGPU_VRAM_TYPE_HBM)
948
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1, NULL);
949 950 951 952

	return ret;
}

953 954
static int
smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock,
955
				    enum smu_clk_type clock_select)
956 957
{
	int ret = 0;
958
	int clk_id;
959

960 961 962 963
	if ((smu_msg_get_index(smu, SMU_MSG_GetDcModeMaxDpmFreq) < 0) ||
	    (smu_msg_get_index(smu, SMU_MSG_GetMaxDpmFreq) < 0))
		return 0;

964 965 966 967
	clk_id = smu_clk_get_index(smu, clock_select);
	if (clk_id < 0)
		return -EINVAL;

968
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq,
969
					  clk_id << 16, clock);
970 971 972 973 974 975 976 977 978 979
	if (ret) {
		pr_err("[GetMaxSustainableClock] Failed to get max DC clock from SMC!");
		return ret;
	}

	if (*clock != 0)
		return 0;

	/* if DC limit is zero, return AC limit */
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
980
					  clk_id << 16, clock);
981 982 983 984 985
	if (ret) {
		pr_err("[GetMaxSustainableClock] failed to get max AC clock from SMC!");
		return ret;
	}

986
	return 0;
987 988
}

989
int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu)
990 991 992 993
{
	struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks;
	int ret = 0;

994 995
	if (!smu->smu_table.max_sustainable_clocks)
		max_sustainable_clocks = kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks),
996
					 GFP_KERNEL);
997 998 999
	else
		max_sustainable_clocks = smu->smu_table.max_sustainable_clocks;

1000 1001 1002 1003 1004 1005 1006 1007 1008
	smu->smu_table.max_sustainable_clocks = (void *)max_sustainable_clocks;

	max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100;
	max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100;
	max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100;
	max_sustainable_clocks->display_clock = 0xFFFFFFFF;
	max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
	max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;

1009
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1010 1011
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->uclock),
1012
							  SMU_UCLK);
1013 1014 1015 1016 1017 1018 1019
		if (ret) {
			pr_err("[%s] failed to get max UCLK from SMC!",
			       __func__);
			return ret;
		}
	}

1020
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
1021 1022
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->soc_clock),
1023
							  SMU_SOCCLK);
1024 1025 1026 1027 1028 1029 1030
		if (ret) {
			pr_err("[%s] failed to get max SOCCLK from SMC!",
			       __func__);
			return ret;
		}
	}

1031
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
1032 1033
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->dcef_clock),
1034
							  SMU_DCEFCLK);
1035 1036 1037 1038 1039 1040 1041 1042
		if (ret) {
			pr_err("[%s] failed to get max DCEFCLK from SMC!",
			       __func__);
			return ret;
		}

		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->display_clock),
1043
							  SMU_DISPCLK);
1044 1045 1046 1047 1048 1049 1050
		if (ret) {
			pr_err("[%s] failed to get max DISPCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->phy_clock),
1051
							  SMU_PHYCLK);
1052 1053 1054 1055 1056 1057 1058
		if (ret) {
			pr_err("[%s] failed to get max PHYCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->pixel_clock),
1059
							  SMU_PIXCLK);
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
		if (ret) {
			pr_err("[%s] failed to get max PIXCLK from SMC!",
			       __func__);
			return ret;
		}
	}

	if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
		max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;

	return 0;
}

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
uint32_t smu_v11_0_get_max_power_limit(struct smu_context *smu) {
	uint32_t od_limit, max_power_limit;
	struct smu_11_0_powerplay_table *powerplay_table = NULL;
	struct smu_table_context *table_context = &smu->smu_table;
	powerplay_table = table_context->power_play_table;

	max_power_limit = smu_get_pptable_power_limit(smu);

	if (!max_power_limit) {
		// If we couldn't get the table limit, fall back on first-read value
		if (!smu->default_power_limit)
			smu->default_power_limit = smu->power_limit;
		max_power_limit = smu->default_power_limit;
	}

	if (smu->od_enabled) {
		od_limit = le32_to_cpu(powerplay_table->overdrive_table.max[SMU_11_0_ODSETTING_POWERPERCENTAGE]);

		pr_debug("ODSETTING_POWERPERCENTAGE: %d (default: %d)\n", od_limit, smu->default_power_limit);

		max_power_limit *= (100 + od_limit);
		max_power_limit /= 100;
	}

	return max_power_limit;
}

1100
int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n)
1101
{
1102
	int ret = 0;
1103 1104 1105
	uint32_t max_power_limit;

	max_power_limit = smu_v11_0_get_max_power_limit(smu);
1106

1107 1108 1109 1110
	if (n > max_power_limit) {
		pr_err("New power limit (%d) is over the max allowed %d\n",
				n,
				max_power_limit);
1111
		return -EINVAL;
1112 1113
	}

1114 1115 1116
	if (n == 0)
		n = smu->default_power_limit;

1117 1118 1119
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) {
		pr_err("Setting new power limit is not supported!\n");
		return -EOPNOTSUPP;
1120 1121
	}

1122
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n, NULL);
1123
	if (ret) {
1124
		pr_err("[%s] Set power limit Failed!\n", __func__);
1125 1126
		return ret;
	}
1127
	smu->power_limit = n;
1128

1129
	return 0;
1130 1131
}

1132
int smu_v11_0_get_current_clk_freq(struct smu_context *smu,
1133 1134
					  enum smu_clk_type clk_id,
					  uint32_t *value)
1135 1136
{
	int ret = 0;
1137
	uint32_t freq = 0;
1138
	int asic_clk_id;
1139

1140
	if (clk_id >= SMU_CLK_COUNT || !value)
1141 1142
		return -EINVAL;

1143 1144 1145 1146
	asic_clk_id = smu_clk_get_index(smu, clk_id);
	if (asic_clk_id < 0)
		return -EINVAL;

1147
	/* if don't has GetDpmClockFreq Message, try get current clock by SmuMetrics_t */
1148
	if (smu_msg_get_index(smu, SMU_MSG_GetDpmClockFreq) < 0)
1149 1150 1151
		ret =  smu_get_current_clk_freq_by_table(smu, clk_id, &freq);
	else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmClockFreq,
1152
						  (asic_clk_id << 16), &freq);
1153 1154 1155
		if (ret)
			return ret;
	}
1156 1157 1158 1159 1160 1161 1162

	freq *= 100;
	*value = freq;

	return ret;
}

1163
static int smu_v11_0_set_thermal_range(struct smu_context *smu,
1164
				       struct smu_temperature_range range)
1165 1166
{
	struct amdgpu_device *adev = smu->adev;
1167 1168
	int low = SMU_THERMAL_MINIMUM_ALERT_TEMP;
	int high = SMU_THERMAL_MAXIMUM_ALERT_TEMP;
1169
	uint32_t val;
1170 1171
	struct smu_table_context *table_context = &smu->smu_table;
	struct smu_11_0_powerplay_table *powerplay_table = table_context->power_play_table;
1172

1173 1174
	low = max(SMU_THERMAL_MINIMUM_ALERT_TEMP,
			range.min / SMU_TEMPERATURE_UNITS_PER_CENTIGRADES);
1175
	high = min((uint16_t)SMU_THERMAL_MAXIMUM_ALERT_TEMP, powerplay_table->software_shutdown_temp);
1176

1177 1178 1179 1180 1181 1182
	if (low > high)
		return -EINVAL;

	val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1);
1183 1184
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high & 0xff));
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low & 0xff));
1185 1186 1187 1188 1189 1190 1191
	val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);

	return 0;
}

1192
int smu_v11_0_enable_thermal_alert(struct smu_context *smu)
1193 1194
{
	int ret = 0;
1195
	struct smu_temperature_range range;
1196 1197
	struct amdgpu_device *adev = smu->adev;

1198 1199
	memcpy(&range, &smu11_thermal_policy[0], sizeof(struct smu_temperature_range));

1200
	ret = smu_get_thermal_temperature_range(smu, &range);
1201 1202
	if (ret)
		return ret;
1203 1204

	if (smu->smu_table.thermal_controller_type) {
1205
		ret = smu_v11_0_set_thermal_range(smu, range);
1206 1207 1208
		if (ret)
			return ret;

1209
		ret = amdgpu_irq_get(adev, smu->irq_source, 0);
1210 1211
		if (ret)
			return ret;
1212

1213
		ret = smu_set_thermal_fan_table(smu);
1214 1215 1216 1217
		if (ret)
			return ret;
	}

1218 1219 1220 1221 1222 1223 1224 1225 1226
	adev->pm.dpm.thermal.min_temp = range.min;
	adev->pm.dpm.thermal.max_temp = range.max;
	adev->pm.dpm.thermal.max_edge_emergency_temp = range.edge_emergency_max;
	adev->pm.dpm.thermal.min_hotspot_temp = range.hotspot_min;
	adev->pm.dpm.thermal.max_hotspot_crit_temp = range.hotspot_crit_max;
	adev->pm.dpm.thermal.max_hotspot_emergency_temp = range.hotspot_emergency_max;
	adev->pm.dpm.thermal.min_mem_temp = range.mem_min;
	adev->pm.dpm.thermal.max_mem_crit_temp = range.mem_crit_max;
	adev->pm.dpm.thermal.max_mem_emergency_temp = range.mem_emergency_max;
1227 1228 1229 1230

	return ret;
}

1231
int smu_v11_0_disable_thermal_alert(struct smu_context *smu)
1232
{
1233
	return amdgpu_irq_put(smu->adev, smu->irq_source, 0);
1234 1235
}

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
static uint16_t convert_to_vddc(uint8_t vid)
{
	return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE);
}

static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t vdd = 0, val_vid = 0;

	if (!value)
		return -EINVAL;
	val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) &
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >>
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT;

	vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid);

	*value = vdd;

	return 0;

}

1260
int smu_v11_0_read_sensor(struct smu_context *smu,
1261 1262 1263 1264
				 enum amd_pp_sensors sensor,
				 void *data, uint32_t *size)
{
	int ret = 0;
1265 1266 1267 1268

	if(!data || !size)
		return -EINVAL;

1269
	switch (sensor) {
1270
	case AMDGPU_PP_SENSOR_GFX_MCLK:
1271
		ret = smu_get_current_clk_freq(smu, SMU_UCLK, (uint32_t *)data);
1272 1273 1274
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_SCLK:
1275
		ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, (uint32_t *)data);
1276
		*size = 4;
1277
		break;
1278 1279 1280
	case AMDGPU_PP_SENSOR_VDDGFX:
		ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
		*size = 4;
1281
		break;
1282 1283 1284 1285
	case AMDGPU_PP_SENSOR_MIN_FAN_RPM:
		*(uint32_t *)data = 0;
		*size = 4;
		break;
1286
	default:
1287
		ret = smu_common_read_sensor(smu, sensor, data, size);
1288 1289 1290 1291 1292 1293 1294 1295 1296
		break;
	}

	if (ret)
		*size = 0;

	return ret;
}

1297
int
1298 1299 1300 1301 1302 1303
smu_v11_0_display_clock_voltage_request(struct smu_context *smu,
					struct pp_display_clock_request
					*clock_req)
{
	enum amd_pp_clock_type clk_type = clock_req->clock_type;
	int ret = 0;
1304
	enum smu_clk_type clk_select = 0;
1305 1306
	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;

1307
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) ||
1308
		smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1309 1310
		switch (clk_type) {
		case amd_pp_dcef_clock:
1311
			clk_select = SMU_DCEFCLK;
1312 1313
			break;
		case amd_pp_disp_clock:
1314
			clk_select = SMU_DISPCLK;
1315 1316
			break;
		case amd_pp_pixel_clock:
1317
			clk_select = SMU_PIXCLK;
1318 1319
			break;
		case amd_pp_phy_clock:
1320
			clk_select = SMU_PHYCLK;
1321
			break;
1322 1323 1324
		case amd_pp_mem_clock:
			clk_select = SMU_UCLK;
			break;
1325 1326 1327 1328 1329 1330 1331 1332 1333
		default:
			pr_info("[%s] Invalid Clock Type!", __func__);
			ret = -EINVAL;
			break;
		}

		if (ret)
			goto failed;

1334 1335 1336
		if (clk_select == SMU_UCLK && smu->disable_uclk_switch)
			return 0;

1337
		ret = smu_set_hard_freq_range(smu, clk_select, clk_freq, 0);
1338 1339 1340

		if(clk_select == SMU_UCLK)
			smu->hard_min_uclk_req_from_dal = clk_freq;
1341 1342 1343 1344 1345 1346
	}

failed:
	return ret;
}

1347
int smu_v11_0_gfx_off_control(struct smu_context *smu, bool enable)
1348 1349
{
	int ret = 0;
1350
	struct amdgpu_device *adev = smu->adev;
1351

1352 1353
	switch (adev->asic_type) {
	case CHIP_NAVI10:
1354
	case CHIP_NAVI14:
1355
	case CHIP_NAVI12:
1356 1357 1358
		if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
			return 0;
		if (enable)
1359
			ret = smu_send_smc_msg(smu, SMU_MSG_AllowGfxOff, NULL);
1360
		else
1361
			ret = smu_send_smc_msg(smu, SMU_MSG_DisallowGfxOff, NULL);
1362 1363 1364 1365
		break;
	default:
		break;
	}
1366 1367 1368 1369

	return ret;
}

1370
uint32_t
1371 1372
smu_v11_0_get_fan_control_mode(struct smu_context *smu)
{
1373
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1374 1375 1376 1377 1378 1379
		return AMD_FAN_CTRL_MANUAL;
	else
		return AMD_FAN_CTRL_AUTO;
}

static int
1380
smu_v11_0_auto_fan_control(struct smu_context *smu, bool auto_fan_control)
1381 1382 1383
{
	int ret = 0;

1384
	if (!smu_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1385 1386
		return 0;

1387
	ret = smu_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, auto_fan_control);
1388 1389
	if (ret)
		pr_err("[%s]%s smc FAN CONTROL feature failed!",
1390
		       __func__, (auto_fan_control ? "Start" : "Stop"));
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409

	return ret;
}

static int
smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode)
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, TMIN, 0));
	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, FDO_PWM_MODE, mode));

	return 0;
}

1410
int
1411 1412 1413
smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
1414
	uint32_t duty100, duty;
1415 1416 1417 1418 1419
	uint64_t tmp64;

	if (speed > 100)
		speed = 100;

1420
	if (smu_v11_0_auto_fan_control(smu, 0))
1421
		return -EINVAL;
1422

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1),
				CG_FDO_CTRL1, FMAX_DUTY100);
	if (!duty100)
		return -EINVAL;

	tmp64 = (uint64_t)speed * duty100;
	do_div(tmp64, 100);
	duty = (uint32_t)tmp64;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0),
				   CG_FDO_CTRL0, FDO_STATIC_DUTY, duty));

	return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC);
}

1439
int
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
smu_v11_0_set_fan_control_mode(struct smu_context *smu,
			       uint32_t mode)
{
	int ret = 0;

	switch (mode) {
	case AMD_FAN_CTRL_NONE:
		ret = smu_v11_0_set_fan_speed_percent(smu, 100);
		break;
	case AMD_FAN_CTRL_MANUAL:
1450
		ret = smu_v11_0_auto_fan_control(smu, 0);
1451 1452
		break;
	case AMD_FAN_CTRL_AUTO:
1453
		ret = smu_v11_0_auto_fan_control(smu, 1);
1454 1455 1456 1457 1458 1459
		break;
	default:
		break;
	}

	if (ret) {
1460
		pr_err("[%s]Set fan control mode failed!", __func__);
1461 1462 1463 1464 1465 1466
		return -EINVAL;
	}

	return ret;
}

1467
int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu,
1468 1469 1470 1471 1472 1473 1474 1475 1476
				       uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	int ret;
	uint32_t tach_period, crystal_clock_freq;

	if (!speed)
		return -EINVAL;

1477
	ret = smu_v11_0_auto_fan_control(smu, 0);
1478
	if (ret)
1479
		return ret;
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492

	crystal_clock_freq = amdgpu_asic_get_xclk(adev);
	tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed);
	WREG32_SOC15(THM, 0, mmCG_TACH_CTRL,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL),
				   CG_TACH_CTRL, TARGET_PERIOD,
				   tach_period));

	ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM);

	return ret;
}

1493
int smu_v11_0_set_xgmi_pstate(struct smu_context *smu,
1494 1495
				     uint32_t pstate)
{
1496 1497 1498
	int ret = 0;
	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetXgmiMode,
1499 1500
					  pstate ? XGMI_MODE_PSTATE_D0 : XGMI_MODE_PSTATE_D3,
					  NULL);
1501
	return ret;
1502 1503
}

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
static int smu_v11_0_set_irq_state(struct amdgpu_device *adev,
				   struct amdgpu_irq_src *source,
				   unsigned tyep,
				   enum amdgpu_interrupt_state state)
{
	uint32_t val = 0;

	switch (state) {
	case AMDGPU_IRQ_STATE_DISABLE:
		/* For THM irqs */
		val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
		val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 1);
		val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 1);
		WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);

		WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, 0);

		/* For MP1 SW irqs */
		val = RREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT_CTRL);
		val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT_CTRL, INT_MASK, 1);
		WREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT_CTRL, val);

		break;
	case AMDGPU_IRQ_STATE_ENABLE:
		/* For THM irqs */
		val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
		val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 0);
		val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 0);
		WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);

		val = (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT);
		val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT);
		val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT);
		WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val);

		/* For MP1 SW irqs */
		val = RREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT);
		val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT, ID, 0xFE);
		val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT, VALID, 0);
		WREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT, val);

		val = RREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT_CTRL);
		val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT_CTRL, INT_MASK, 0);
		WREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT_CTRL, val);

		break;
	default:
		break;
	}

	return 0;
}

1557 1558 1559 1560 1561 1562 1563
static int smu_v11_0_ack_ac_dc_interrupt(struct smu_context *smu)
{
	return smu_send_smc_msg(smu,
				SMU_MSG_ReenableAcDcInterrupt,
				NULL);
}

1564 1565 1566
#define THM_11_0__SRCID__THM_DIG_THERM_L2H		0		/* ASIC_TEMP > CG_THERMAL_INT.DIG_THERM_INTH  */
#define THM_11_0__SRCID__THM_DIG_THERM_H2L		1		/* ASIC_TEMP < CG_THERMAL_INT.DIG_THERM_INTL  */

1567 1568
#define SMUIO_11_0__SRCID__SMUIO_GPIO19			83

1569 1570 1571 1572
static int smu_v11_0_irq_process(struct amdgpu_device *adev,
				 struct amdgpu_irq_src *source,
				 struct amdgpu_iv_entry *entry)
{
1573
	struct smu_context *smu = &adev->smu;
1574 1575
	uint32_t client_id = entry->client_id;
	uint32_t src_id = entry->src_id;
1576 1577 1578 1579 1580
	/*
	 * ctxid is used to distinguish different
	 * events for SMCToHost interrupt.
	 */
	uint32_t ctxid = entry->src_data[0];
1581
	uint32_t data;
1582 1583 1584 1585

	if (client_id == SOC15_IH_CLIENTID_THM) {
		switch (src_id) {
		case THM_11_0__SRCID__THM_DIG_THERM_L2H:
1586
			dev_emerg(adev->dev, "ERROR: GPU over temperature range(SW CTF) detected!\n");
1587 1588 1589 1590
			/*
			 * SW CTF just occurred.
			 * Try to do a graceful shutdown to prevent further damage.
			 */
1591
			dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU SW CTF!\n");
1592
			orderly_poweroff(true);
1593 1594
		break;
		case THM_11_0__SRCID__THM_DIG_THERM_H2L:
1595
			dev_emerg(adev->dev, "ERROR: GPU under temperature range detected\n");
1596 1597
		break;
		default:
1598 1599
			dev_emerg(adev->dev, "ERROR: GPU under temperature range unknown src id (%d)\n",
				src_id);
1600 1601
		break;
		}
1602
	} else if (client_id == SOC15_IH_CLIENTID_ROM_SMUIO) {
1603
		dev_emerg(adev->dev, "ERROR: GPU HW Critical Temperature Fault(aka CTF) detected!\n");
1604 1605 1606
		/*
		 * HW CTF just occurred. Shutdown to prevent further damage.
		 */
1607
		dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU HW CTF!\n");
1608
		orderly_poweroff(true);
1609
	} else if (client_id == SOC15_IH_CLIENTID_MP1) {
1610
		if (src_id == 0xfe) {
1611 1612 1613 1614 1615
			/* ACK SMUToHost interrupt */
			data = RREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT_CTRL);
			data = REG_SET_FIELD(data, MP1_SMN_IH_SW_INT_CTRL, INT_ACK, 1);
			WREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT_CTRL, data);

1616 1617 1618 1619 1620 1621 1622 1623 1624
			switch (ctxid) {
			case 0x3:
				dev_dbg(adev->dev, "Switched to AC mode!\n");
				smu_v11_0_ack_ac_dc_interrupt(&adev->smu);
				break;
			case 0x4:
				dev_dbg(adev->dev, "Switched to DC mode!\n");
				smu_v11_0_ack_ac_dc_interrupt(&adev->smu);
				break;
1625
			case 0x7:
1626 1627 1628 1629
				if (!atomic_read(&adev->throttling_logging_enabled))
					return 0;

				if (__ratelimit(&adev->throttling_logging_rs))
1630 1631 1632
					smu_log_thermal_throttling(smu);

				break;
1633 1634
			}
		}
1635 1636 1637 1638 1639 1640 1641
	}

	return 0;
}

static const struct amdgpu_irq_src_funcs smu_v11_0_irq_funcs =
{
1642
	.set = smu_v11_0_set_irq_state,
1643 1644 1645
	.process = smu_v11_0_irq_process,
};

1646
int smu_v11_0_register_irq_handler(struct smu_context *smu)
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
{
	struct amdgpu_device *adev = smu->adev;
	struct amdgpu_irq_src *irq_src = smu->irq_source;
	int ret = 0;

	/* already register */
	if (irq_src)
		return 0;

	irq_src = kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
	if (!irq_src)
		return -ENOMEM;
	smu->irq_source = irq_src;

1661
	irq_src->num_types = 1;
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	irq_src->funcs = &smu_v11_0_irq_funcs;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_L2H,
				irq_src);
	if (ret)
		return ret;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_H2L,
				irq_src);
	if (ret)
		return ret;

1676 1677 1678 1679 1680 1681 1682
	/* Register CTF(GPIO_19) interrupt */
	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_ROM_SMUIO,
				SMUIO_11_0__SRCID__SMUIO_GPIO19,
				irq_src);
	if (ret)
		return ret;

1683 1684 1685 1686 1687 1688
	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_MP1,
				0xfe,
				irq_src);
	if (ret)
		return ret;

1689 1690 1691
	return ret;
}

1692
int smu_v11_0_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
		struct pp_smu_nv_clock_table *max_clocks)
{
	struct smu_table_context *table_context = &smu->smu_table;
	struct smu_11_0_max_sustainable_clocks *sustainable_clocks = NULL;

	if (!max_clocks || !table_context->max_sustainable_clocks)
		return -EINVAL;

	sustainable_clocks = table_context->max_sustainable_clocks;

	max_clocks->dcfClockInKhz =
			(unsigned int) sustainable_clocks->dcef_clock * 1000;
	max_clocks->displayClockInKhz =
			(unsigned int) sustainable_clocks->display_clock * 1000;
	max_clocks->phyClockInKhz =
			(unsigned int) sustainable_clocks->phy_clock * 1000;
	max_clocks->pixelClockInKhz =
			(unsigned int) sustainable_clocks->pixel_clock * 1000;
	max_clocks->uClockInKhz =
			(unsigned int) sustainable_clocks->uclock * 1000;
	max_clocks->socClockInKhz =
			(unsigned int) sustainable_clocks->soc_clock * 1000;
	max_clocks->dscClockInKhz = 0;
	max_clocks->dppClockInKhz = 0;
	max_clocks->fabricClockInKhz = 0;

	return 0;
}

1722
int smu_v11_0_set_azalia_d3_pme(struct smu_context *smu)
1723 1724 1725
{
	int ret = 0;

1726
	ret = smu_send_smc_msg(smu, SMU_MSG_BacoAudioD3PME, NULL);
1727 1728 1729 1730

	return ret;
}

1731 1732
static int smu_v11_0_baco_set_armd3_sequence(struct smu_context *smu, enum smu_v11_0_baco_seq baco_seq)
{
1733
	return smu_send_smc_msg_with_param(smu, SMU_MSG_ArmD3, baco_seq, NULL);
1734 1735
}

1736
bool smu_v11_0_baco_is_support(struct smu_context *smu)
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
{
	struct smu_baco_context *smu_baco = &smu->smu_baco;
	bool baco_support;

	mutex_lock(&smu_baco->mutex);
	baco_support = smu_baco->platform_support;
	mutex_unlock(&smu_baco->mutex);

	if (!baco_support)
		return false;

1748 1749 1750
	/* Arcturus does not support this bit mask */
	if (smu_feature_is_supported(smu, SMU_FEATURE_BACO_BIT) &&
	   !smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT))
1751 1752
		return false;

1753
	return true;
1754 1755
}

1756
enum smu_baco_state smu_v11_0_baco_get_state(struct smu_context *smu)
1757 1758
{
	struct smu_baco_context *smu_baco = &smu->smu_baco;
1759
	enum smu_baco_state baco_state;
1760 1761 1762 1763 1764 1765 1766 1767

	mutex_lock(&smu_baco->mutex);
	baco_state = smu_baco->state;
	mutex_unlock(&smu_baco->mutex);

	return baco_state;
}

1768
int smu_v11_0_baco_set_state(struct smu_context *smu, enum smu_baco_state state)
1769 1770
{
	struct smu_baco_context *smu_baco = &smu->smu_baco;
1771 1772 1773
	struct amdgpu_device *adev = smu->adev;
	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
	uint32_t data;
1774 1775 1776 1777 1778 1779 1780
	int ret = 0;

	if (smu_v11_0_baco_get_state(smu) == state)
		return 0;

	mutex_lock(&smu_baco->mutex);

1781 1782 1783 1784 1785 1786
	if (state == SMU_BACO_STATE_ENTER) {
		if (!ras || !ras->supported) {
			data = RREG32_SOC15(THM, 0, mmTHM_BACO_CNTL);
			data |= 0x80000000;
			WREG32_SOC15(THM, 0, mmTHM_BACO_CNTL, data);

1787
			ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, 0, NULL);
1788
		} else {
1789
			ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, 1, NULL);
1790 1791
		}
	} else {
1792
		ret = smu_send_smc_msg(smu, SMU_MSG_ExitBaco, NULL);
1793 1794 1795
		if (ret)
			goto out;

1796 1797 1798 1799 1800 1801
		if (ras && ras->supported) {
			ret = smu_send_smc_msg(smu, SMU_MSG_PrepareMp1ForUnload, NULL);
			if (ret)
				goto out;
		}

1802 1803 1804
		/* clear vbios scratch 6 and 7 for coming asic reinit */
		WREG32(adev->bios_scratch_reg_offset + 6, 0);
		WREG32(adev->bios_scratch_reg_offset + 7, 0);
1805
	}
1806 1807 1808 1809 1810 1811 1812 1813 1814
	if (ret)
		goto out;

	smu_baco->state = state;
out:
	mutex_unlock(&smu_baco->mutex);
	return ret;
}

1815
int smu_v11_0_baco_enter(struct smu_context *smu)
1816
{
1817
	struct amdgpu_device *adev = smu->adev;
1818 1819
	int ret = 0;

1820 1821 1822 1823 1824 1825
	/* Arcturus does not need this audio workaround */
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_v11_0_baco_set_armd3_sequence(smu, BACO_SEQ_BACO);
		if (ret)
			return ret;
	}
1826 1827 1828 1829 1830 1831 1832

	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_ENTER);
	if (ret)
		return ret;

	msleep(10);

1833 1834 1835 1836 1837 1838 1839
	return ret;
}

int smu_v11_0_baco_exit(struct smu_context *smu)
{
	int ret = 0;

1840 1841 1842 1843 1844 1845 1846
	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_EXIT);
	if (ret)
		return ret;

	return ret;
}

1847
int smu_v11_0_get_dpm_ultimate_freq(struct smu_context *smu, enum smu_clk_type clk_type,
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
						 uint32_t *min, uint32_t *max)
{
	int ret = 0, clk_id = 0;
	uint32_t param = 0;

	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0) {
		ret = -EINVAL;
		goto failed;
	}
	param = (clk_id & 0xffff) << 16;

	if (max) {
1861
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq, param, max);
1862 1863 1864 1865 1866
		if (ret)
			goto failed;
	}

	if (min) {
1867
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMinDpmFreq, param, min);
1868 1869 1870 1871 1872 1873 1874 1875
		if (ret)
			goto failed;
	}

failed:
	return ret;
}

1876
int smu_v11_0_set_soft_freq_limited_range(struct smu_context *smu, enum smu_clk_type clk_type,
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
			    uint32_t min, uint32_t max)
{
	int ret = 0, clk_id = 0;
	uint32_t param;

	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	if (max > 0) {
		param = (uint32_t)((clk_id << 16) | (max & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxByFreq,
1889
						  param, NULL);
1890 1891 1892 1893 1894 1895 1896
		if (ret)
			return ret;
	}

	if (min > 0) {
		param = (uint32_t)((clk_id << 16) | (min & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMinByFreq,
1897
						  param, NULL);
1898 1899 1900 1901 1902 1903 1904
		if (ret)
			return ret;
	}

	return ret;
}

1905
int smu_v11_0_override_pcie_parameters(struct smu_context *smu)
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t pcie_gen = 0, pcie_width = 0;
	int ret;

	if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4)
		pcie_gen = 3;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
		pcie_gen = 2;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2)
		pcie_gen = 1;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1)
		pcie_gen = 0;

	/* Bit 31:16: LCLK DPM level. 0 is DPM0, and 1 is DPM1
	 * Bit 15:8:  PCIE GEN, 0 to 3 corresponds to GEN1 to GEN4
	 * Bit 7:0:   PCIE lane width, 1 to 7 corresponds is x1 to x32
	 */
	if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
		pcie_width = 6;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
		pcie_width = 5;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
		pcie_width = 4;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
		pcie_width = 3;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
		pcie_width = 2;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
		pcie_width = 1;

	ret = smu_update_pcie_parameters(smu, pcie_gen, pcie_width);

	if (ret)
		pr_err("[%s] Attempt to override pcie params failed!\n", __func__);

	return ret;

}
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963

int smu_v11_0_set_default_od_settings(struct smu_context *smu, bool initialize, size_t overdrive_table_size)
{
	struct smu_table_context *table_context = &smu->smu_table;
	int ret = 0;

	if (initialize) {
		if (table_context->overdrive_table) {
			return -EINVAL;
		}
		table_context->overdrive_table = kzalloc(overdrive_table_size, GFP_KERNEL);
		if (!table_context->overdrive_table) {
			return -ENOMEM;
		}
		ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, false);
		if (ret) {
			pr_err("Failed to export overdrive table!\n");
			return ret;
		}
1964 1965 1966 1967 1968 1969
		if (!table_context->boot_overdrive_table) {
			table_context->boot_overdrive_table = kmemdup(table_context->overdrive_table, overdrive_table_size, GFP_KERNEL);
			if (!table_context->boot_overdrive_table) {
				return -ENOMEM;
			}
		}
1970 1971 1972 1973 1974 1975 1976 1977
	}
	ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, true);
	if (ret) {
		pr_err("Failed to import overdrive table!\n");
		return ret;
	}
	return ret;
}
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

int smu_v11_0_set_performance_level(struct smu_context *smu,
				    enum amd_dpm_forced_level level)
{
	int ret = 0;
	uint32_t sclk_mask, mclk_mask, soc_mask;

	switch (level) {
	case AMD_DPM_FORCED_LEVEL_HIGH:
		ret = smu_force_dpm_limit_value(smu, true);
		break;
	case AMD_DPM_FORCED_LEVEL_LOW:
		ret = smu_force_dpm_limit_value(smu, false);
		break;
	case AMD_DPM_FORCED_LEVEL_AUTO:
	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
		ret = smu_unforce_dpm_levels(smu);
		break;
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
		ret = smu_get_profiling_clk_mask(smu, level,
						 &sclk_mask,
						 &mclk_mask,
						 &soc_mask);
		if (ret)
			return ret;
		smu_force_clk_levels(smu, SMU_SCLK, 1 << sclk_mask, false);
		smu_force_clk_levels(smu, SMU_MCLK, 1 << mclk_mask, false);
		smu_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask, false);
		break;
	case AMD_DPM_FORCED_LEVEL_MANUAL:
	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
	default:
		break;
	}
	return ret;
}

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
int smu_v11_0_set_power_source(struct smu_context *smu,
			       enum smu_power_src_type power_src)
{
	int pwr_source;

	pwr_source = smu_power_get_index(smu, (uint32_t)power_src);
	if (pwr_source < 0)
		return -EINVAL;

	return smu_send_smc_msg_with_param(smu,
					SMU_MSG_NotifyPowerSource,
					pwr_source,
					NULL);
}