smu_v11_0.c 47.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/firmware.h>
24
#include <linux/module.h>
25
#include <linux/pci.h>
26 27

#include "pp_debug.h"
28 29
#include "amdgpu.h"
#include "amdgpu_smu.h"
30
#include "atomfirmware.h"
31
#include "amdgpu_atomfirmware.h"
32
#include "smu_v11_0.h"
33
#include "soc15_common.h"
34
#include "atom.h"
35
#include "vega20_ppt.h"
36
#include "arcturus_ppt.h"
37
#include "navi10_ppt.h"
38 39 40

#include "asic_reg/thm/thm_11_0_2_offset.h"
#include "asic_reg/thm/thm_11_0_2_sh_mask.h"
41 42
#include "asic_reg/mp/mp_11_0_offset.h"
#include "asic_reg/mp/mp_11_0_sh_mask.h"
43
#include "asic_reg/nbio/nbio_7_4_offset.h"
44
#include "asic_reg/nbio/nbio_7_4_sh_mask.h"
45 46
#include "asic_reg/smuio/smuio_11_0_0_offset.h"
#include "asic_reg/smuio/smuio_11_0_0_sh_mask.h"
47

48
MODULE_FIRMWARE("amdgpu/vega20_smc.bin");
49
MODULE_FIRMWARE("amdgpu/arcturus_smc.bin");
50
MODULE_FIRMWARE("amdgpu/navi10_smc.bin");
51
MODULE_FIRMWARE("amdgpu/navi14_smc.bin");
52
MODULE_FIRMWARE("amdgpu/navi12_smc.bin");
53

54
#define SMU11_VOLTAGE_SCALE 4
55

56 57 58 59 60 61 62 63
static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu,
					      uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_66, msg);
	return 0;
}

64 65 66 67 68 69 70 71
static int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg)
{
	struct amdgpu_device *adev = smu->adev;

	*arg = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82);
	return 0;
}

72 73 74
static int smu_v11_0_wait_for_response(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
75
	uint32_t cur_value, i, timeout = adev->usec_timeout * 10;
76

77
	for (i = 0; i < timeout; i++) {
78 79 80 81 82 83 84
		cur_value = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90);
		if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0)
			break;
		udelay(1);
	}

	/* timeout means wrong logic */
85
	if (i == timeout)
86 87
		return -ETIME;

88
	return RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90) == 0x1 ? 0 : -EIO;
89 90 91 92 93
}

static int smu_v11_0_send_msg(struct smu_context *smu, uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
94 95 96 97 98
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
99 100 101 102 103

	smu_v11_0_wait_for_response(smu);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

104
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
105 106 107 108

	ret = smu_v11_0_wait_for_response(smu);

	if (ret)
109 110
		pr_err("failed send message: %10s (%d) response %#x\n",
		       smu_get_message_name(smu, msg), index, ret);
111 112 113 114 115 116 117 118 119 120 121

	return ret;

}

static int
smu_v11_0_send_msg_with_param(struct smu_context *smu, uint16_t msg,
			      uint32_t param)
{

	struct amdgpu_device *adev = smu->adev;
122 123 124 125 126
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
127 128 129

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
130 131
		pr_err("failed send message: %10s (%d) \tparam: 0x%08x response %#x\n",
		       smu_get_message_name(smu, msg), index, param, ret);
132 133 134 135 136

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82, param);

137
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
138 139 140

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
141 142
		pr_err("failed send message: %10s (%d) \tparam: 0x%08x response %#x\n",
		       smu_get_message_name(smu, msg), index, param, ret);
143 144 145 146

	return ret;
}

147 148 149
static int smu_v11_0_init_microcode(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
150 151 152 153 154 155
	const char *chip_name;
	char fw_name[30];
	int err = 0;
	const struct smc_firmware_header_v1_0 *hdr;
	const struct common_firmware_header *header;
	struct amdgpu_firmware_info *ucode = NULL;
156

157 158 159 160
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		chip_name = "vega20";
		break;
161 162 163
	case CHIP_ARCTURUS:
		chip_name = "arcturus";
		break;
164 165 166
	case CHIP_NAVI10:
		chip_name = "navi10";
		break;
167 168 169
	case CHIP_NAVI14:
		chip_name = "navi14";
		break;
170 171 172
	case CHIP_NAVI12:
		chip_name = "navi12";
		break;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
	default:
		BUG();
	}

	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name);

	err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
	if (err)
		goto out;
	err = amdgpu_ucode_validate(adev->pm.fw);
	if (err)
		goto out;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	amdgpu_ucode_print_smc_hdr(&hdr->header);
	adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
		ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC];
		ucode->ucode_id = AMDGPU_UCODE_ID_SMC;
		ucode->fw = adev->pm.fw;
		header = (const struct common_firmware_header *)ucode->fw->data;
		adev->firmware.fw_size +=
			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
	}

out:
	if (err) {
		DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n",
			  fw_name);
		release_firmware(adev->pm.fw);
		adev->pm.fw = NULL;
	}
	return err;
207 208
}

209 210
static int smu_v11_0_load_microcode(struct smu_context *smu)
{
211 212 213 214 215 216 217
	struct amdgpu_device *adev = smu->adev;
	const uint32_t *src;
	const struct smc_firmware_header_v1_0 *hdr;
	uint32_t addr_start = MP1_SRAM;
	uint32_t i;
	uint32_t mp1_fw_flags;

218
	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
	src = (const uint32_t *)(adev->pm.fw->data +
		le32_to_cpu(hdr->header.ucode_array_offset_bytes));

	for (i = 1; i < MP1_SMC_SIZE/4 - 1; i++) {
		WREG32_PCIE(addr_start, src[i]);
		addr_start += 4;
	}

	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & MP1_SMN_PUB_CTRL__RESET_MASK);
	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & ~MP1_SMN_PUB_CTRL__RESET_MASK);

	for (i = 0; i < adev->usec_timeout; i++) {
		mp1_fw_flags = RREG32_PCIE(MP1_Public |
			(smnMP1_FIRMWARE_FLAGS & 0xffffffff));
		if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
			MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
			break;
		udelay(1);
	}

	if (i == adev->usec_timeout)
		return -ETIME;

244 245 246
	return 0;
}

247 248
static int smu_v11_0_check_fw_status(struct smu_context *smu)
{
249 250 251
	struct amdgpu_device *adev = smu->adev;
	uint32_t mp1_fw_flags;

252 253
	mp1_fw_flags = RREG32_PCIE(MP1_Public |
				   (smnMP1_FIRMWARE_FLAGS & 0xffffffff));
254 255 256 257

	if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
	    MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
		return 0;
258

259
	return -EIO;
260 261
}

262 263
static int smu_v11_0_check_fw_version(struct smu_context *smu)
{
264 265 266
	uint32_t if_version = 0xff, smu_version = 0xff;
	uint16_t smu_major;
	uint8_t smu_minor, smu_debug;
267 268
	int ret = 0;

269
	ret = smu_get_smc_version(smu, &if_version, &smu_version);
270
	if (ret)
271
		return ret;
272

273 274 275 276
	smu_major = (smu_version >> 16) & 0xffff;
	smu_minor = (smu_version >> 8) & 0xff;
	smu_debug = (smu_version >> 0) & 0xff;

277 278 279 280
	switch (smu->adev->asic_type) {
	case CHIP_VEGA20:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_VG20;
		break;
281 282 283
	case CHIP_ARCTURUS:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_ARCT;
		break;
284 285 286 287 288 289 290 291 292 293 294 295
	case CHIP_NAVI10:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_NV10;
		break;
	case CHIP_NAVI14:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_NV14;
		break;
	default:
		pr_err("smu unsuported asic type:%d.\n",smu->adev->asic_type);
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_INV;
		break;
	}

296 297 298 299 300 301 302 303
	/*
	 * 1. if_version mismatch is not critical as our fw is designed
	 * to be backward compatible.
	 * 2. New fw usually brings some optimizations. But that's visible
	 * only on the paired driver.
	 * Considering above, we just leave user a warning message instead
	 * of halt driver loading.
	 */
304
	if (if_version != smu->smc_if_version) {
305 306 307 308
		pr_info("smu driver if version = 0x%08x, smu fw if version = 0x%08x, "
			"smu fw version = 0x%08x (%d.%d.%d)\n",
			smu->smc_if_version, if_version,
			smu_version, smu_major, smu_minor, smu_debug);
309
		pr_warn("SMU driver if version not matched\n");
310 311
	}

312 313 314
	return ret;
}

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
static int smu_v11_0_set_pptable_v2_0(struct smu_context *smu, void **table, uint32_t *size)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t ppt_offset_bytes;
	const struct smc_firmware_header_v2_0 *v2;

	v2 = (const struct smc_firmware_header_v2_0 *) adev->pm.fw->data;

	ppt_offset_bytes = le32_to_cpu(v2->ppt_offset_bytes);
	*size = le32_to_cpu(v2->ppt_size_bytes);
	*table = (uint8_t *)v2 + ppt_offset_bytes;

	return 0;
}

330 331
static int smu_v11_0_set_pptable_v2_1(struct smu_context *smu, void **table,
				      uint32_t *size, uint32_t pptable_id)
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
{
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v2_1 *v2_1;
	struct smc_soft_pptable_entry *entries;
	uint32_t pptable_count = 0;
	int i = 0;

	v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data;
	entries = (struct smc_soft_pptable_entry *)
		((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset));
	pptable_count = le32_to_cpu(v2_1->pptable_count);
	for (i = 0; i < pptable_count; i++) {
		if (le32_to_cpu(entries[i].id) == pptable_id) {
			*table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes));
			*size = le32_to_cpu(entries[i].ppt_size_bytes);
			break;
		}
	}

	if (i == pptable_count)
		return -EINVAL;

	return 0;
}

static int smu_v11_0_setup_pptable(struct smu_context *smu)
358
{
359 360
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v1_0 *hdr;
361
	int ret, index;
362
	uint32_t size;
363
	uint8_t frev, crev;
364
	void *table;
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
	uint16_t version_major, version_minor;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	version_major = le16_to_cpu(hdr->header.header_version_major);
	version_minor = le16_to_cpu(hdr->header.header_version_minor);
	if (version_major == 2 && smu->smu_table.boot_values.pp_table_id > 0) {
		switch (version_minor) {
		case 0:
			ret = smu_v11_0_set_pptable_v2_0(smu, &table, &size);
			break;
		case 1:
			ret = smu_v11_0_set_pptable_v2_1(smu, &table, &size,
							 smu->smu_table.boot_values.pp_table_id);
			break;
		default:
			ret = -EINVAL;
			break;
		}
		if (ret)
			return ret;
385

386 387 388
	} else {
		index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
						    powerplayinfo);
389

390
		ret = smu_get_atom_data_table(smu, index, (uint16_t *)&size, &frev, &crev,
391 392 393 394
					      (uint8_t **)&table);
		if (ret)
			return ret;
	}
395

396 397 398 399
	if (!smu->smu_table.power_play_table)
		smu->smu_table.power_play_table = table;
	if (!smu->smu_table.power_play_table_size)
		smu->smu_table.power_play_table_size = size;
400 401 402 403

	return 0;
}

404 405 406 407 408 409 410
static int smu_v11_0_init_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0)
		return -EINVAL;

411
	return smu_alloc_dpm_context(smu);
412 413 414 415 416 417 418 419 420 421
}

static int smu_v11_0_fini_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0)
		return -EINVAL;

	kfree(smu_dpm->dpm_context);
422
	kfree(smu_dpm->golden_dpm_context);
423 424
	kfree(smu_dpm->dpm_current_power_state);
	kfree(smu_dpm->dpm_request_power_state);
425
	smu_dpm->dpm_context = NULL;
426
	smu_dpm->golden_dpm_context = NULL;
427
	smu_dpm->dpm_context_size = 0;
428 429
	smu_dpm->dpm_current_power_state = NULL;
	smu_dpm->dpm_request_power_state = NULL;
430 431 432 433

	return 0;
}

434 435 436 437
static int smu_v11_0_init_smc_tables(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = NULL;
438
	int ret = 0;
439

440
	if (smu_table->tables || smu_table->table_count == 0)
441 442
		return -EINVAL;

443 444
	tables = kcalloc(SMU_TABLE_COUNT, sizeof(struct smu_table),
			 GFP_KERNEL);
445 446 447 448 449
	if (!tables)
		return -ENOMEM;

	smu_table->tables = tables;

450 451 452
	ret = smu_tables_init(smu, tables);
	if (ret)
		return ret;
453

454 455 456 457
	ret = smu_v11_0_init_dpm_context(smu);
	if (ret)
		return ret;

458 459 460 461 462 463
	return 0;
}

static int smu_v11_0_fini_smc_tables(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
464
	int ret = 0;
465 466 467 468 469

	if (!smu_table->tables || smu_table->table_count == 0)
		return -EINVAL;

	kfree(smu_table->tables);
470
	kfree(smu_table->metrics_table);
471 472
	smu_table->tables = NULL;
	smu_table->table_count = 0;
473 474
	smu_table->metrics_table = NULL;
	smu_table->metrics_time = 0;
475

476 477 478
	ret = smu_v11_0_fini_dpm_context(smu);
	if (ret)
		return ret;
479 480
	return 0;
}
481 482 483 484 485

static int smu_v11_0_init_power(struct smu_context *smu)
{
	struct smu_power_context *smu_power = &smu->smu_power;

486 487
	if (!smu->pm_enabled)
		return 0;
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
	if (smu_power->power_context || smu_power->power_context_size != 0)
		return -EINVAL;

	smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
					   GFP_KERNEL);
	if (!smu_power->power_context)
		return -ENOMEM;
	smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context);

	return 0;
}

static int smu_v11_0_fini_power(struct smu_context *smu)
{
	struct smu_power_context *smu_power = &smu->smu_power;

504 505
	if (!smu->pm_enabled)
		return 0;
506 507 508 509 510 511 512 513 514 515
	if (!smu_power->power_context || smu_power->power_context_size == 0)
		return -EINVAL;

	kfree(smu_power->power_context);
	smu_power->power_context = NULL;
	smu_power->power_context_size = 0;

	return 0;
}

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu)
{
	int ret, index;
	uint16_t size;
	uint8_t frev, crev;
	struct atom_common_table_header *header;
	struct atom_firmware_info_v3_3 *v_3_3;
	struct atom_firmware_info_v3_1 *v_3_1;

	index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
					    firmwareinfo);

	ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev,
				      (uint8_t **)&header);
	if (ret)
		return ret;

	if (header->format_revision != 3) {
		pr_err("unknown atom_firmware_info version! for smu11\n");
		return -EINVAL;
	}

	switch (header->content_revision) {
	case 0:
	case 1:
	case 2:
		v_3_1 = (struct atom_firmware_info_v3_1 *)header;
		smu->smu_table.boot_values.revision = v_3_1->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = 0;
		break;
	case 3:
	default:
		v_3_3 = (struct atom_firmware_info_v3_3 *)header;
		smu->smu_table.boot_values.revision = v_3_3->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id;
	}

	return 0;
}

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
static int smu_v11_0_get_clk_info_from_vbios(struct smu_context *smu)
{
	int ret, index;
	struct amdgpu_device *adev = smu->adev;
	struct atom_get_smu_clock_info_parameters_v3_1 input = {0};
	struct atom_get_smu_clock_info_output_parameters_v3_1 *output;

	input.clk_id = SMU11_SYSPLL0_SOCCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.socclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCEFCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dcefclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_ECLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.eclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_VCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.vclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

650 651 652
	return 0;
}

653 654 655 656 657 658 659 660 661 662 663
static int smu_v11_0_notify_memory_pool_location(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	int ret = 0;
	uint64_t address;
	uint32_t address_low, address_high;

	if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL)
		return ret;

664
	address = (uintptr_t)memory_pool->cpu_addr;
665 666 667 668
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

	ret = smu_send_smc_msg_with_param(smu,
669
					  SMU_MSG_SetSystemVirtualDramAddrHigh,
670 671 672 673
					  address_high);
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu,
674
					  SMU_MSG_SetSystemVirtualDramAddrLow,
675 676 677 678 679 680 681 682
					  address_low);
	if (ret)
		return ret;

	address = memory_pool->mc_address;
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

683
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh,
684 685 686
					  address_high);
	if (ret)
		return ret;
687
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow,
688 689 690
					  address_low);
	if (ret)
		return ret;
691
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize,
692 693 694 695 696 697 698
					  (uint32_t)memory_pool->size);
	if (ret)
		return ret;

	return ret;
}

699 700 701 702 703 704 705 706
static int smu_v11_0_check_pptable(struct smu_context *smu)
{
	int ret;

	ret = smu_check_powerplay_table(smu);
	return ret;
}

707 708 709 710 711
static int smu_v11_0_parse_pptable(struct smu_context *smu)
{
	int ret;

	struct smu_table_context *table_context = &smu->smu_table;
712
	struct smu_table *table = &table_context->tables[SMU_TABLE_PPTABLE];
713 714 715 716

	if (table_context->driver_pptable)
		return -EINVAL;

717
	table_context->driver_pptable = kzalloc(table->size, GFP_KERNEL);
718 719 720 721 722

	if (!table_context->driver_pptable)
		return -ENOMEM;

	ret = smu_store_powerplay_table(smu);
723 724 725 726
	if (ret)
		return -EINVAL;

	ret = smu_append_powerplay_table(smu);
727 728 729 730

	return ret;
}

731 732
static int smu_v11_0_populate_smc_pptable(struct smu_context *smu)
{
733
	int ret;
734

735
	ret = smu_set_default_dpm_table(smu);
736

737
	return ret;
738 739
}

740 741
static int smu_v11_0_write_pptable(struct smu_context *smu)
{
742
	struct smu_table_context *table_context = &smu->smu_table;
743 744
	int ret = 0;

745
	ret = smu_update_table(smu, SMU_TABLE_PPTABLE, 0,
746
			       table_context->driver_pptable, true);
747 748 749 750

	return ret;
}

751 752
static int smu_v11_0_write_watermarks_table(struct smu_context *smu)
{
753 754 755 756 757 758 759 760 761
	int ret = 0;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *table = NULL;

	table = &smu_table->tables[SMU_TABLE_WATERMARKS];

	if (!table->cpu_addr)
		return -EINVAL;

762
	ret = smu_update_table(smu, SMU_TABLE_WATERMARKS, 0, table->cpu_addr,
763
				true);
764 765

	return ret;
766 767
}

768 769 770 771 772 773 774 775 776 777 778 779
static int smu_v11_0_set_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk)
{
	int ret;

	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetMinDeepSleepDcefclk, clk);
	if (ret)
		pr_err("SMU11 attempt to set divider for DCEFCLK Failed!");

	return ret;
}

780 781 782 783
static int smu_v11_0_set_min_dcef_deep_sleep(struct smu_context *smu)
{
	struct smu_table_context *table_context = &smu->smu_table;

784 785
	if (!smu->pm_enabled)
		return 0;
786 787 788
	if (!table_context)
		return -EINVAL;

789
	return smu_set_deep_sleep_dcefclk(smu,
790 791 792
					  table_context->boot_values.dcefclk / 100);
}

793 794 795
static int smu_v11_0_set_tool_table_location(struct smu_context *smu)
{
	int ret = 0;
796
	struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG];
797 798 799

	if (tool_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
800
				SMU_MSG_SetToolsDramAddrHigh,
801 802 803
				upper_32_bits(tool_table->mc_address));
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
804
				SMU_MSG_SetToolsDramAddrLow,
805 806 807 808 809 810
				lower_32_bits(tool_table->mc_address));
	}

	return ret;
}

811
static int smu_v11_0_init_display_count(struct smu_context *smu, uint32_t count)
812 813
{
	int ret = 0;
814 815 816

	if (!smu->pm_enabled)
		return ret;
817

818
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, count);
819 820 821
	return ret;
}

822

823 824 825 826 827 828
static int smu_v11_0_set_allowed_mask(struct smu_context *smu)
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
	uint32_t feature_mask[2];

829
	mutex_lock(&feature->mutex);
830
	if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64)
831
		goto failed;
832 833 834 835 836 837

	bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64);

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh,
					  feature_mask[1]);
	if (ret)
838
		goto failed;
839 840 841 842

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow,
					  feature_mask[0]);
	if (ret)
843
		goto failed;
844

845 846
failed:
	mutex_unlock(&feature->mutex);
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
	return ret;
}

static int smu_v11_0_get_enabled_mask(struct smu_context *smu,
				      uint32_t *feature_mask, uint32_t num)
{
	uint32_t feature_mask_high = 0, feature_mask_low = 0;
	int ret = 0;

	if (!feature_mask || num < 2)
		return -EINVAL;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_high);
	if (ret)
		return ret;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_low);
	if (ret)
		return ret;

	feature_mask[0] = feature_mask_low;
	feature_mask[1] = feature_mask_high;

	return ret;
}

879 880
static int smu_v11_0_system_features_control(struct smu_context *smu,
					     bool en)
881 882 883 884 885
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_mask[2];
	int ret = 0;

886 887 888 889 890 891 892
	if (smu->pm_enabled) {
		ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures :
					     SMU_MSG_DisableAllSmuFeatures));
		if (ret)
			return ret;
	}

893 894 895 896 897 898 899 900 901 902 903 904
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
		return ret;

	bitmap_copy(feature->enabled, (unsigned long *)&feature_mask,
		    feature->feature_num);
	bitmap_copy(feature->supported, (unsigned long *)&feature_mask,
		    feature->feature_num);

	return ret;
}

905 906 907 908
static int smu_v11_0_notify_display_change(struct smu_context *smu)
{
	int ret = 0;

909 910
	if (!smu->pm_enabled)
		return ret;
911 912 913
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
	    smu->adev->gmc.vram_type == AMDGPU_VRAM_TYPE_HBM)
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1);
914 915 916 917

	return ret;
}

918 919
static int
smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock,
920
				    enum smu_clk_type clock_select)
921 922
{
	int ret = 0;
923
	int clk_id;
924

925 926
	if (!smu->pm_enabled)
		return ret;
927

928 929 930 931
	if ((smu_msg_get_index(smu, SMU_MSG_GetDcModeMaxDpmFreq) < 0) ||
	    (smu_msg_get_index(smu, SMU_MSG_GetMaxDpmFreq) < 0))
		return 0;

932 933 934 935
	clk_id = smu_clk_get_index(smu, clock_select);
	if (clk_id < 0)
		return -EINVAL;

936
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq,
937
					  clk_id << 16);
938 939 940 941 942 943 944 945 946 947 948 949 950 951
	if (ret) {
		pr_err("[GetMaxSustainableClock] Failed to get max DC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);
	if (ret)
		return ret;

	if (*clock != 0)
		return 0;

	/* if DC limit is zero, return AC limit */
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
952
					  clk_id << 16);
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
	if (ret) {
		pr_err("[GetMaxSustainableClock] failed to get max AC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);

	return ret;
}

static int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu)
{
	struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks;
	int ret = 0;

	max_sustainable_clocks = kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks),
					 GFP_KERNEL);
	smu->smu_table.max_sustainable_clocks = (void *)max_sustainable_clocks;

	max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100;
	max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100;
	max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100;
	max_sustainable_clocks->display_clock = 0xFFFFFFFF;
	max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
	max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;

979
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
980 981
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->uclock),
982
							  SMU_UCLK);
983 984 985 986 987 988 989
		if (ret) {
			pr_err("[%s] failed to get max UCLK from SMC!",
			       __func__);
			return ret;
		}
	}

990
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
991 992
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->soc_clock),
993
							  SMU_SOCCLK);
994 995 996 997 998 999 1000
		if (ret) {
			pr_err("[%s] failed to get max SOCCLK from SMC!",
			       __func__);
			return ret;
		}
	}

1001
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
1002 1003
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->dcef_clock),
1004
							  SMU_DCEFCLK);
1005 1006 1007 1008 1009 1010 1011 1012
		if (ret) {
			pr_err("[%s] failed to get max DCEFCLK from SMC!",
			       __func__);
			return ret;
		}

		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->display_clock),
1013
							  SMU_DISPCLK);
1014 1015 1016 1017 1018 1019 1020
		if (ret) {
			pr_err("[%s] failed to get max DISPCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->phy_clock),
1021
							  SMU_PHYCLK);
1022 1023 1024 1025 1026 1027 1028
		if (ret) {
			pr_err("[%s] failed to get max PHYCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->pixel_clock),
1029
							  SMU_PIXCLK);
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
		if (ret) {
			pr_err("[%s] failed to get max PIXCLK from SMC!",
			       __func__);
			return ret;
		}
	}

	if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
		max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;

	return 0;
}

1043
static int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n)
1044
{
1045
	int ret = 0;
1046

1047 1048 1049
	if (n > smu->default_power_limit) {
		pr_err("New power limit is over the max allowed %d\n",
				smu->default_power_limit);
1050
		return -EINVAL;
1051 1052
	}

1053 1054 1055
	if (n == 0)
		n = smu->default_power_limit;

1056 1057 1058
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) {
		pr_err("Setting new power limit is not supported!\n");
		return -EOPNOTSUPP;
1059 1060
	}

1061
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n);
1062
	if (ret) {
1063
		pr_err("[%s] Set power limit Failed!\n", __func__);
1064 1065
		return ret;
	}
1066
	smu->power_limit = n;
1067

1068
	return 0;
1069 1070
}

1071 1072 1073
static int smu_v11_0_get_current_clk_freq(struct smu_context *smu,
					  enum smu_clk_type clk_id,
					  uint32_t *value)
1074 1075
{
	int ret = 0;
1076
	uint32_t freq = 0;
1077
	int asic_clk_id;
1078

1079
	if (clk_id >= SMU_CLK_COUNT || !value)
1080 1081
		return -EINVAL;

1082 1083 1084 1085
	asic_clk_id = smu_clk_get_index(smu, clk_id);
	if (asic_clk_id < 0)
		return -EINVAL;

1086
	/* if don't has GetDpmClockFreq Message, try get current clock by SmuMetrics_t */
1087
	if (smu_msg_get_index(smu, SMU_MSG_GetDpmClockFreq) < 0)
1088 1089 1090
		ret =  smu_get_current_clk_freq_by_table(smu, clk_id, &freq);
	else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmClockFreq,
1091
						  (asic_clk_id << 16));
1092 1093
		if (ret)
			return ret;
1094

1095 1096 1097 1098
		ret = smu_read_smc_arg(smu, &freq);
		if (ret)
			return ret;
	}
1099 1100 1101 1102 1103 1104 1105

	freq *= 100;
	*value = freq;

	return ret;
}

1106
static int smu_v11_0_set_thermal_range(struct smu_context *smu,
1107
				       struct smu_temperature_range *range)
1108 1109
{
	struct amdgpu_device *adev = smu->adev;
1110 1111
	int low = SMU_THERMAL_MINIMUM_ALERT_TEMP;
	int high = SMU_THERMAL_MAXIMUM_ALERT_TEMP;
1112 1113
	uint32_t val;

1114 1115 1116
	if (!range)
		return -EINVAL;

1117 1118 1119 1120 1121
	if (low < range->min)
		low = range->min;
	if (high > range->max)
		high = range->max;

1122 1123 1124
	low = max(SMU_THERMAL_MINIMUM_ALERT_TEMP, range->min);
	high = min(SMU_THERMAL_MAXIMUM_ALERT_TEMP, range->max);

1125 1126 1127 1128 1129 1130
	if (low > high)
		return -EINVAL;

	val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1);
1131 1132
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 0);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 0);
1133 1134
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high & 0xff));
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low & 0xff));
1135 1136 1137 1138 1139 1140 1141
	val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);

	return 0;
}

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
static int smu_v11_0_enable_thermal_alert(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t val = 0;

	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val);

	return 0;
}

1156 1157 1158
static int smu_v11_0_start_thermal_control(struct smu_context *smu)
{
	int ret = 0;
1159
	struct smu_temperature_range range = {
1160 1161 1162 1163 1164 1165 1166 1167 1168
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX};
1169 1170
	struct amdgpu_device *adev = smu->adev;

1171 1172
	if (!smu->pm_enabled)
		return ret;
1173

1174
	ret = smu_get_thermal_temperature_range(smu, &range);
1175 1176
	if (ret)
		return ret;
1177 1178 1179 1180 1181 1182 1183 1184 1185

	if (smu->smu_table.thermal_controller_type) {
		ret = smu_v11_0_set_thermal_range(smu, &range);
		if (ret)
			return ret;

		ret = smu_v11_0_enable_thermal_alert(smu);
		if (ret)
			return ret;
1186

1187
		ret = smu_set_thermal_fan_table(smu);
1188 1189 1190 1191
		if (ret)
			return ret;
	}

1192 1193 1194 1195 1196 1197 1198 1199 1200
	adev->pm.dpm.thermal.min_temp = range.min * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_temp = range.max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_edge_emergency_temp = range.edge_emergency_max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.min_hotspot_temp = range.hotspot_min * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_hotspot_crit_temp = range.hotspot_crit_max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_hotspot_emergency_temp = range.hotspot_emergency_max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.min_mem_temp = range.mem_min * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_mem_crit_temp = range.mem_crit_max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_mem_emergency_temp = range.mem_emergency_max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
1201 1202
	adev->pm.dpm.thermal.min_temp = range.min * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_temp = range.max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
1203 1204 1205 1206

	return ret;
}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
static uint16_t convert_to_vddc(uint8_t vid)
{
	return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE);
}

static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t vdd = 0, val_vid = 0;

	if (!value)
		return -EINVAL;
	val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) &
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >>
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT;

	vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid);

	*value = vdd;

	return 0;

}

1231 1232 1233 1234 1235
static int smu_v11_0_read_sensor(struct smu_context *smu,
				 enum amd_pp_sensors sensor,
				 void *data, uint32_t *size)
{
	int ret = 0;
1236 1237 1238 1239

	if(!data || !size)
		return -EINVAL;

1240
	switch (sensor) {
1241
	case AMDGPU_PP_SENSOR_GFX_MCLK:
1242
		ret = smu_get_current_clk_freq(smu, SMU_UCLK, (uint32_t *)data);
1243 1244 1245
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_SCLK:
1246
		ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, (uint32_t *)data);
1247
		*size = 4;
1248
		break;
1249 1250 1251
	case AMDGPU_PP_SENSOR_VDDGFX:
		ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
		*size = 4;
1252
		break;
1253 1254 1255 1256
	case AMDGPU_PP_SENSOR_MIN_FAN_RPM:
		*(uint32_t *)data = 0;
		*size = 4;
		break;
1257
	default:
1258
		ret = smu_common_read_sensor(smu, sensor, data, size);
1259 1260 1261 1262 1263 1264 1265 1266 1267
		break;
	}

	if (ret)
		*size = 0;

	return ret;
}

1268 1269 1270 1271 1272 1273 1274
static int
smu_v11_0_display_clock_voltage_request(struct smu_context *smu,
					struct pp_display_clock_request
					*clock_req)
{
	enum amd_pp_clock_type clk_type = clock_req->clock_type;
	int ret = 0;
1275
	enum smu_clk_type clk_select = 0;
1276
	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
1277
	int clk_id;
1278

1279 1280
	if (!smu->pm_enabled)
		return -EINVAL;
1281

1282
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) ||
1283
		smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1284 1285
		switch (clk_type) {
		case amd_pp_dcef_clock:
1286
			clk_select = SMU_DCEFCLK;
1287 1288
			break;
		case amd_pp_disp_clock:
1289
			clk_select = SMU_DISPCLK;
1290 1291
			break;
		case amd_pp_pixel_clock:
1292
			clk_select = SMU_PIXCLK;
1293 1294
			break;
		case amd_pp_phy_clock:
1295
			clk_select = SMU_PHYCLK;
1296
			break;
1297 1298 1299
		case amd_pp_mem_clock:
			clk_select = SMU_UCLK;
			break;
1300 1301 1302 1303 1304 1305 1306 1307 1308
		default:
			pr_info("[%s] Invalid Clock Type!", __func__);
			ret = -EINVAL;
			break;
		}

		if (ret)
			goto failed;

1309 1310 1311
		if (clk_select == SMU_UCLK && smu->disable_uclk_switch)
			return 0;

1312 1313 1314 1315 1316 1317
		clk_id = smu_clk_get_index(smu, clk_select);
		if (clk_id < 0) {
			ret = -EINVAL;
			goto failed;
		}

1318

1319
		mutex_lock(&smu->mutex);
1320
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq,
1321
			(clk_id << 16) | clk_freq);
1322
		mutex_unlock(&smu->mutex);
1323 1324 1325

		if(clk_select == SMU_UCLK)
			smu->hard_min_uclk_req_from_dal = clk_freq;
1326 1327 1328 1329 1330 1331
	}

failed:
	return ret;
}

1332 1333 1334 1335 1336 1337
static int
smu_v11_0_set_watermarks_for_clock_ranges(struct smu_context *smu, struct
					  dm_pp_wm_sets_with_clock_ranges_soc15
					  *clock_ranges)
{
	int ret = 0;
1338
	struct smu_table *watermarks = &smu->smu_table.tables[SMU_TABLE_WATERMARKS];
1339
	void *table = watermarks->cpu_addr;
1340 1341

	if (!smu->disable_watermark &&
1342 1343
	    smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
	    smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
1344
		smu_set_watermarks_table(smu, table, clock_ranges);
1345 1346 1347 1348 1349 1350 1351
		smu->watermarks_bitmap |= WATERMARKS_EXIST;
		smu->watermarks_bitmap &= ~WATERMARKS_LOADED;
	}

	return ret;
}

1352 1353 1354
static int smu_v11_0_gfx_off_control(struct smu_context *smu, bool enable)
{
	int ret = 0;
1355
	struct amdgpu_device *adev = smu->adev;
1356

1357 1358 1359 1360
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		break;
	case CHIP_NAVI10:
1361
	case CHIP_NAVI14:
1362
	case CHIP_NAVI12:
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
		if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
			return 0;
		mutex_lock(&smu->mutex);
		if (enable)
			ret = smu_send_smc_msg(smu, SMU_MSG_AllowGfxOff);
		else
			ret = smu_send_smc_msg(smu, SMU_MSG_DisallowGfxOff);
		mutex_unlock(&smu->mutex);
		break;
	default:
		break;
	}
1375 1376 1377 1378

	return ret;
}

1379 1380 1381
static uint32_t
smu_v11_0_get_fan_control_mode(struct smu_context *smu)
{
1382
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1383 1384 1385 1386 1387 1388
		return AMD_FAN_CTRL_MANUAL;
	else
		return AMD_FAN_CTRL_AUTO;
}

static int
1389
smu_v11_0_auto_fan_control(struct smu_context *smu, bool auto_fan_control)
1390 1391 1392
{
	int ret = 0;

1393
	if (!smu_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1394 1395
		return 0;

1396
	ret = smu_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, auto_fan_control);
1397 1398
	if (ret)
		pr_err("[%s]%s smc FAN CONTROL feature failed!",
1399
		       __func__, (auto_fan_control ? "Start" : "Stop"));
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422

	return ret;
}

static int
smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode)
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, TMIN, 0));
	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, FDO_PWM_MODE, mode));

	return 0;
}

static int
smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
1423
	uint32_t duty100, duty;
1424 1425 1426 1427 1428
	uint64_t tmp64;

	if (speed > 100)
		speed = 100;

1429
	if (smu_v11_0_auto_fan_control(smu, 0))
1430
		return -EINVAL;
1431

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
	duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1),
				CG_FDO_CTRL1, FMAX_DUTY100);
	if (!duty100)
		return -EINVAL;

	tmp64 = (uint64_t)speed * duty100;
	do_div(tmp64, 100);
	duty = (uint32_t)tmp64;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0),
				   CG_FDO_CTRL0, FDO_STATIC_DUTY, duty));

	return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC);
}

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
static int
smu_v11_0_set_fan_control_mode(struct smu_context *smu,
			       uint32_t mode)
{
	int ret = 0;

	switch (mode) {
	case AMD_FAN_CTRL_NONE:
		ret = smu_v11_0_set_fan_speed_percent(smu, 100);
		break;
	case AMD_FAN_CTRL_MANUAL:
1459
		ret = smu_v11_0_auto_fan_control(smu, 0);
1460 1461
		break;
	case AMD_FAN_CTRL_AUTO:
1462
		ret = smu_v11_0_auto_fan_control(smu, 1);
1463 1464 1465 1466 1467 1468
		break;
	default:
		break;
	}

	if (ret) {
1469
		pr_err("[%s]Set fan control mode failed!", __func__);
1470 1471 1472 1473 1474 1475
		return -EINVAL;
	}

	return ret;
}

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
static int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu,
				       uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	int ret;
	uint32_t tach_period, crystal_clock_freq;

	if (!speed)
		return -EINVAL;

	mutex_lock(&(smu->mutex));
1487
	ret = smu_v11_0_auto_fan_control(smu, 0);
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
	if (ret)
		goto set_fan_speed_rpm_failed;

	crystal_clock_freq = amdgpu_asic_get_xclk(adev);
	tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed);
	WREG32_SOC15(THM, 0, mmCG_TACH_CTRL,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL),
				   CG_TACH_CTRL, TARGET_PERIOD,
				   tach_period));

	ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM);

set_fan_speed_rpm_failed:
	mutex_unlock(&(smu->mutex));
	return ret;
}

1505 1506 1507
#define XGMI_STATE_D0 1
#define XGMI_STATE_D3 0

1508 1509 1510
static int smu_v11_0_set_xgmi_pstate(struct smu_context *smu,
				     uint32_t pstate)
{
1511 1512 1513 1514 1515 1516 1517
	int ret = 0;
	mutex_lock(&(smu->mutex));
	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetXgmiMode,
					  pstate ? XGMI_STATE_D0 : XGMI_STATE_D3);
	mutex_unlock(&(smu->mutex));
	return ret;
1518 1519
}

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
#define THM_11_0__SRCID__THM_DIG_THERM_L2H		0		/* ASIC_TEMP > CG_THERMAL_INT.DIG_THERM_INTH  */
#define THM_11_0__SRCID__THM_DIG_THERM_H2L		1		/* ASIC_TEMP < CG_THERMAL_INT.DIG_THERM_INTL  */

static int smu_v11_0_irq_process(struct amdgpu_device *adev,
				 struct amdgpu_irq_src *source,
				 struct amdgpu_iv_entry *entry)
{
	uint32_t client_id = entry->client_id;
	uint32_t src_id = entry->src_id;

	if (client_id == SOC15_IH_CLIENTID_THM) {
		switch (src_id) {
		case THM_11_0__SRCID__THM_DIG_THERM_L2H:
			pr_warn("GPU over temperature range detected on PCIe %d:%d.%d!\n",
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;
		case THM_11_0__SRCID__THM_DIG_THERM_H2L:
			pr_warn("GPU under temperature range detected on PCIe %d:%d.%d!\n",
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;
		default:
			pr_warn("GPU under temperature range unknown src id (%d), detected on PCIe %d:%d.%d!\n",
				src_id,
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;

		}
	}

	return 0;
}

static const struct amdgpu_irq_src_funcs smu_v11_0_irq_funcs =
{
	.process = smu_v11_0_irq_process,
};

static int smu_v11_0_register_irq_handler(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	struct amdgpu_irq_src *irq_src = smu->irq_source;
	int ret = 0;

	/* already register */
	if (irq_src)
		return 0;

	irq_src = kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
	if (!irq_src)
		return -ENOMEM;
	smu->irq_source = irq_src;

	irq_src->funcs = &smu_v11_0_irq_funcs;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_L2H,
				irq_src);
	if (ret)
		return ret;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_H2L,
				irq_src);
	if (ret)
		return ret;

	return ret;
}

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
static int smu_v11_0_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
		struct pp_smu_nv_clock_table *max_clocks)
{
	struct smu_table_context *table_context = &smu->smu_table;
	struct smu_11_0_max_sustainable_clocks *sustainable_clocks = NULL;

	if (!max_clocks || !table_context->max_sustainable_clocks)
		return -EINVAL;

	sustainable_clocks = table_context->max_sustainable_clocks;

	max_clocks->dcfClockInKhz =
			(unsigned int) sustainable_clocks->dcef_clock * 1000;
	max_clocks->displayClockInKhz =
			(unsigned int) sustainable_clocks->display_clock * 1000;
	max_clocks->phyClockInKhz =
			(unsigned int) sustainable_clocks->phy_clock * 1000;
	max_clocks->pixelClockInKhz =
			(unsigned int) sustainable_clocks->pixel_clock * 1000;
	max_clocks->uClockInKhz =
			(unsigned int) sustainable_clocks->uclock * 1000;
	max_clocks->socClockInKhz =
			(unsigned int) sustainable_clocks->soc_clock * 1000;
	max_clocks->dscClockInKhz = 0;
	max_clocks->dppClockInKhz = 0;
	max_clocks->fabricClockInKhz = 0;

	return 0;
}

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
static int smu_v11_0_set_azalia_d3_pme(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);
	ret = smu_send_smc_msg(smu, SMU_MSG_BacoAudioD3PME);
	mutex_unlock(&smu->mutex);

	return ret;
}

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
static int smu_v11_0_baco_set_armd3_sequence(struct smu_context *smu, enum smu_v11_0_baco_seq baco_seq)
{
	return smu_send_smc_msg_with_param(smu, SMU_MSG_ArmD3, baco_seq);
}

static bool smu_v11_0_baco_is_support(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	struct smu_baco_context *smu_baco = &smu->smu_baco;
	uint32_t val;
	bool baco_support;

	mutex_lock(&smu_baco->mutex);
	baco_support = smu_baco->platform_support;
	mutex_unlock(&smu_baco->mutex);

	if (!baco_support)
		return false;

	if (!smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT))
		return false;

	val = RREG32_SOC15(NBIO, 0, mmRCC_BIF_STRAP0);
	if (val & RCC_BIF_STRAP0__STRAP_PX_CAPABLE_MASK)
		return true;

	return false;
}

static enum smu_baco_state smu_v11_0_baco_get_state(struct smu_context *smu)
{
	struct smu_baco_context *smu_baco = &smu->smu_baco;
	enum smu_baco_state baco_state = SMU_BACO_STATE_EXIT;

	mutex_lock(&smu_baco->mutex);
	baco_state = smu_baco->state;
	mutex_unlock(&smu_baco->mutex);

	return baco_state;
}

static int smu_v11_0_baco_set_state(struct smu_context *smu, enum smu_baco_state state)
{

	struct smu_baco_context *smu_baco = &smu->smu_baco;
	int ret = 0;

	if (smu_v11_0_baco_get_state(smu) == state)
		return 0;

	mutex_lock(&smu_baco->mutex);

	if (state == SMU_BACO_STATE_ENTER)
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, BACO_SEQ_BACO);
	else
		ret = smu_send_smc_msg(smu, SMU_MSG_ExitBaco);
	if (ret)
		goto out;

	smu_baco->state = state;
out:
	mutex_unlock(&smu_baco->mutex);
	return ret;
}

static int smu_v11_0_baco_reset(struct smu_context *smu)
{
	int ret = 0;

	ret = smu_v11_0_baco_set_armd3_sequence(smu, BACO_SEQ_BACO);
	if (ret)
		return ret;

	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_ENTER);
	if (ret)
		return ret;

	msleep(10);

	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_EXIT);
	if (ret)
		return ret;

	return ret;
}

1722 1723
static const struct smu_funcs smu_v11_0_funcs = {
	.init_microcode = smu_v11_0_init_microcode,
1724
	.load_microcode = smu_v11_0_load_microcode,
1725
	.check_fw_status = smu_v11_0_check_fw_status,
1726
	.check_fw_version = smu_v11_0_check_fw_version,
1727 1728
	.send_smc_msg = smu_v11_0_send_msg,
	.send_smc_msg_with_param = smu_v11_0_send_msg_with_param,
1729
	.read_smc_arg = smu_v11_0_read_arg,
1730
	.setup_pptable = smu_v11_0_setup_pptable,
1731 1732
	.init_smc_tables = smu_v11_0_init_smc_tables,
	.fini_smc_tables = smu_v11_0_fini_smc_tables,
1733 1734
	.init_power = smu_v11_0_init_power,
	.fini_power = smu_v11_0_fini_power,
1735
	.get_vbios_bootup_values = smu_v11_0_get_vbios_bootup_values,
1736
	.get_clk_info_from_vbios = smu_v11_0_get_clk_info_from_vbios,
1737
	.notify_memory_pool_location = smu_v11_0_notify_memory_pool_location,
1738
	.check_pptable = smu_v11_0_check_pptable,
1739
	.parse_pptable = smu_v11_0_parse_pptable,
1740
	.populate_smc_pptable = smu_v11_0_populate_smc_pptable,
1741
	.write_pptable = smu_v11_0_write_pptable,
1742
	.write_watermarks_table = smu_v11_0_write_watermarks_table,
1743
	.set_min_dcef_deep_sleep = smu_v11_0_set_min_dcef_deep_sleep,
1744
	.set_tool_table_location = smu_v11_0_set_tool_table_location,
1745
	.init_display_count = smu_v11_0_init_display_count,
1746 1747
	.set_allowed_mask = smu_v11_0_set_allowed_mask,
	.get_enabled_mask = smu_v11_0_get_enabled_mask,
1748
	.system_features_control = smu_v11_0_system_features_control,
1749
	.notify_display_change = smu_v11_0_notify_display_change,
1750
	.set_power_limit = smu_v11_0_set_power_limit,
1751
	.get_current_clk_freq = smu_v11_0_get_current_clk_freq,
1752
	.init_max_sustainable_clocks = smu_v11_0_init_max_sustainable_clocks,
1753
	.start_thermal_control = smu_v11_0_start_thermal_control,
1754
	.read_sensor = smu_v11_0_read_sensor,
1755
	.set_deep_sleep_dcefclk = smu_v11_0_set_deep_sleep_dcefclk,
1756
	.display_clock_voltage_request = smu_v11_0_display_clock_voltage_request,
1757
	.set_watermarks_for_clock_ranges = smu_v11_0_set_watermarks_for_clock_ranges,
1758
	.get_fan_control_mode = smu_v11_0_get_fan_control_mode,
1759
	.set_fan_control_mode = smu_v11_0_set_fan_control_mode,
1760
	.set_fan_speed_percent = smu_v11_0_set_fan_speed_percent,
1761
	.set_fan_speed_rpm = smu_v11_0_set_fan_speed_rpm,
1762
	.set_xgmi_pstate = smu_v11_0_set_xgmi_pstate,
1763
	.gfx_off_control = smu_v11_0_gfx_off_control,
1764
	.register_irq_handler = smu_v11_0_register_irq_handler,
1765
	.set_azalia_d3_pme = smu_v11_0_set_azalia_d3_pme,
1766
	.get_max_sustainable_clocks_by_dc = smu_v11_0_get_max_sustainable_clocks_by_dc,
1767 1768 1769 1770
	.baco_is_support = smu_v11_0_baco_is_support,
	.baco_get_state = smu_v11_0_baco_get_state,
	.baco_set_state = smu_v11_0_baco_set_state,
	.baco_reset = smu_v11_0_baco_reset,
1771 1772 1773 1774
};

void smu_v11_0_set_smu_funcs(struct smu_context *smu)
{
1775 1776
	struct amdgpu_device *adev = smu->adev;

1777
	smu->funcs = &smu_v11_0_funcs;
1778 1779 1780 1781
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		vega20_set_ppt_funcs(smu);
		break;
1782 1783 1784
	case CHIP_ARCTURUS:
		arcturus_set_ppt_funcs(smu);
		break;
1785
	case CHIP_NAVI10:
1786
	case CHIP_NAVI14:
1787
	case CHIP_NAVI12:
1788 1789
		navi10_set_ppt_funcs(smu);
		break;
1790
	default:
1791
		pr_warn("Unknown asic for smu11\n");
1792
	}
1793
}