smu_v11_0.c 46.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/firmware.h>
24
#include <linux/module.h>
25
#include <linux/pci.h>
26 27

#include "pp_debug.h"
28 29
#include "amdgpu.h"
#include "amdgpu_smu.h"
30
#include "atomfirmware.h"
31
#include "amdgpu_atomfirmware.h"
32
#include "smu_v11_0.h"
33
#include "soc15_common.h"
34
#include "atom.h"
35
#include "vega20_ppt.h"
36
#include "arcturus_ppt.h"
37
#include "navi10_ppt.h"
38 39 40

#include "asic_reg/thm/thm_11_0_2_offset.h"
#include "asic_reg/thm/thm_11_0_2_sh_mask.h"
41 42
#include "asic_reg/mp/mp_11_0_offset.h"
#include "asic_reg/mp/mp_11_0_sh_mask.h"
43
#include "asic_reg/nbio/nbio_7_4_offset.h"
44
#include "asic_reg/nbio/nbio_7_4_sh_mask.h"
45 46
#include "asic_reg/smuio/smuio_11_0_0_offset.h"
#include "asic_reg/smuio/smuio_11_0_0_sh_mask.h"
47

48
MODULE_FIRMWARE("amdgpu/vega20_smc.bin");
49
MODULE_FIRMWARE("amdgpu/arcturus_smc.bin");
50
MODULE_FIRMWARE("amdgpu/navi10_smc.bin");
51
MODULE_FIRMWARE("amdgpu/navi14_smc.bin");
52
MODULE_FIRMWARE("amdgpu/navi12_smc.bin");
53

54
#define SMU11_VOLTAGE_SCALE 4
55

56 57 58 59 60 61 62 63
static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu,
					      uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_66, msg);
	return 0;
}

64 65 66 67 68 69 70 71
static int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg)
{
	struct amdgpu_device *adev = smu->adev;

	*arg = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82);
	return 0;
}

72 73 74
static int smu_v11_0_wait_for_response(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
75
	uint32_t cur_value, i, timeout = adev->usec_timeout * 10;
76

77
	for (i = 0; i < timeout; i++) {
78 79 80 81 82 83 84
		cur_value = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90);
		if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0)
			break;
		udelay(1);
	}

	/* timeout means wrong logic */
85
	if (i == timeout)
86 87
		return -ETIME;

88
	return RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90) == 0x1 ? 0 : -EIO;
89 90 91 92 93
}

static int smu_v11_0_send_msg(struct smu_context *smu, uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
94 95 96 97 98
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
99 100 101 102 103

	smu_v11_0_wait_for_response(smu);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

104
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
105 106 107 108

	ret = smu_v11_0_wait_for_response(smu);

	if (ret)
109 110
		pr_err("failed send message: %10s (%d) response %#x\n",
		       smu_get_message_name(smu, msg), index, ret);
111 112 113 114 115 116 117 118 119 120 121

	return ret;

}

static int
smu_v11_0_send_msg_with_param(struct smu_context *smu, uint16_t msg,
			      uint32_t param)
{

	struct amdgpu_device *adev = smu->adev;
122 123 124 125 126
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
127 128 129

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
130 131
		pr_err("failed send message: %10s (%d) \tparam: 0x%08x response %#x\n",
		       smu_get_message_name(smu, msg), index, param, ret);
132 133 134 135 136

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82, param);

137
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
138 139 140

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
141 142
		pr_err("failed send message: %10s (%d) \tparam: 0x%08x response %#x\n",
		       smu_get_message_name(smu, msg), index, param, ret);
143 144 145 146

	return ret;
}

147 148 149
static int smu_v11_0_init_microcode(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
150 151 152 153 154 155
	const char *chip_name;
	char fw_name[30];
	int err = 0;
	const struct smc_firmware_header_v1_0 *hdr;
	const struct common_firmware_header *header;
	struct amdgpu_firmware_info *ucode = NULL;
156

157 158 159 160
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		chip_name = "vega20";
		break;
161 162 163
	case CHIP_ARCTURUS:
		chip_name = "arcturus";
		break;
164 165 166
	case CHIP_NAVI10:
		chip_name = "navi10";
		break;
167 168 169
	case CHIP_NAVI14:
		chip_name = "navi14";
		break;
170 171 172
	case CHIP_NAVI12:
		chip_name = "navi12";
		break;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
	default:
		BUG();
	}

	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name);

	err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
	if (err)
		goto out;
	err = amdgpu_ucode_validate(adev->pm.fw);
	if (err)
		goto out;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	amdgpu_ucode_print_smc_hdr(&hdr->header);
	adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
		ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC];
		ucode->ucode_id = AMDGPU_UCODE_ID_SMC;
		ucode->fw = adev->pm.fw;
		header = (const struct common_firmware_header *)ucode->fw->data;
		adev->firmware.fw_size +=
			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
	}

out:
	if (err) {
		DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n",
			  fw_name);
		release_firmware(adev->pm.fw);
		adev->pm.fw = NULL;
	}
	return err;
207 208
}

209 210
static int smu_v11_0_load_microcode(struct smu_context *smu)
{
211 212 213 214 215 216 217
	struct amdgpu_device *adev = smu->adev;
	const uint32_t *src;
	const struct smc_firmware_header_v1_0 *hdr;
	uint32_t addr_start = MP1_SRAM;
	uint32_t i;
	uint32_t mp1_fw_flags;

218
	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
	src = (const uint32_t *)(adev->pm.fw->data +
		le32_to_cpu(hdr->header.ucode_array_offset_bytes));

	for (i = 1; i < MP1_SMC_SIZE/4 - 1; i++) {
		WREG32_PCIE(addr_start, src[i]);
		addr_start += 4;
	}

	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & MP1_SMN_PUB_CTRL__RESET_MASK);
	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & ~MP1_SMN_PUB_CTRL__RESET_MASK);

	for (i = 0; i < adev->usec_timeout; i++) {
		mp1_fw_flags = RREG32_PCIE(MP1_Public |
			(smnMP1_FIRMWARE_FLAGS & 0xffffffff));
		if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
			MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
			break;
		udelay(1);
	}

	if (i == adev->usec_timeout)
		return -ETIME;

244 245 246
	return 0;
}

247 248
static int smu_v11_0_check_fw_status(struct smu_context *smu)
{
249 250 251
	struct amdgpu_device *adev = smu->adev;
	uint32_t mp1_fw_flags;

252 253
	mp1_fw_flags = RREG32_PCIE(MP1_Public |
				   (smnMP1_FIRMWARE_FLAGS & 0xffffffff));
254 255 256 257

	if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
	    MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
		return 0;
258

259
	return -EIO;
260 261
}

262 263
static int smu_v11_0_check_fw_version(struct smu_context *smu)
{
264 265 266
	uint32_t if_version = 0xff, smu_version = 0xff;
	uint16_t smu_major;
	uint8_t smu_minor, smu_debug;
267 268
	int ret = 0;

269
	ret = smu_get_smc_version(smu, &if_version, &smu_version);
270
	if (ret)
271
		return ret;
272

273 274 275 276
	smu_major = (smu_version >> 16) & 0xffff;
	smu_minor = (smu_version >> 8) & 0xff;
	smu_debug = (smu_version >> 0) & 0xff;

277 278 279 280 281 282 283 284
	/*
	 * 1. if_version mismatch is not critical as our fw is designed
	 * to be backward compatible.
	 * 2. New fw usually brings some optimizations. But that's visible
	 * only on the paired driver.
	 * Considering above, we just leave user a warning message instead
	 * of halt driver loading.
	 */
285
	if (if_version != smu->smc_if_version) {
286 287 288 289
		pr_info("smu driver if version = 0x%08x, smu fw if version = 0x%08x, "
			"smu fw version = 0x%08x (%d.%d.%d)\n",
			smu->smc_if_version, if_version,
			smu_version, smu_major, smu_minor, smu_debug);
290
		pr_warn("SMU driver if version not matched\n");
291 292
	}

293 294 295
	return ret;
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
static int smu_v11_0_set_pptable_v2_0(struct smu_context *smu, void **table, uint32_t *size)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t ppt_offset_bytes;
	const struct smc_firmware_header_v2_0 *v2;

	v2 = (const struct smc_firmware_header_v2_0 *) adev->pm.fw->data;

	ppt_offset_bytes = le32_to_cpu(v2->ppt_offset_bytes);
	*size = le32_to_cpu(v2->ppt_size_bytes);
	*table = (uint8_t *)v2 + ppt_offset_bytes;

	return 0;
}

311 312
static int smu_v11_0_set_pptable_v2_1(struct smu_context *smu, void **table,
				      uint32_t *size, uint32_t pptable_id)
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
{
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v2_1 *v2_1;
	struct smc_soft_pptable_entry *entries;
	uint32_t pptable_count = 0;
	int i = 0;

	v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data;
	entries = (struct smc_soft_pptable_entry *)
		((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset));
	pptable_count = le32_to_cpu(v2_1->pptable_count);
	for (i = 0; i < pptable_count; i++) {
		if (le32_to_cpu(entries[i].id) == pptable_id) {
			*table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes));
			*size = le32_to_cpu(entries[i].ppt_size_bytes);
			break;
		}
	}

	if (i == pptable_count)
		return -EINVAL;

	return 0;
}

static int smu_v11_0_setup_pptable(struct smu_context *smu)
339
{
340 341
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v1_0 *hdr;
342
	int ret, index;
343
	uint32_t size;
344
	uint8_t frev, crev;
345
	void *table;
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
	uint16_t version_major, version_minor;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	version_major = le16_to_cpu(hdr->header.header_version_major);
	version_minor = le16_to_cpu(hdr->header.header_version_minor);
	if (version_major == 2 && smu->smu_table.boot_values.pp_table_id > 0) {
		switch (version_minor) {
		case 0:
			ret = smu_v11_0_set_pptable_v2_0(smu, &table, &size);
			break;
		case 1:
			ret = smu_v11_0_set_pptable_v2_1(smu, &table, &size,
							 smu->smu_table.boot_values.pp_table_id);
			break;
		default:
			ret = -EINVAL;
			break;
		}
		if (ret)
			return ret;
366

367 368 369
	} else {
		index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
						    powerplayinfo);
370

371
		ret = smu_get_atom_data_table(smu, index, (uint16_t *)&size, &frev, &crev,
372 373 374 375
					      (uint8_t **)&table);
		if (ret)
			return ret;
	}
376

377 378 379 380
	if (!smu->smu_table.power_play_table)
		smu->smu_table.power_play_table = table;
	if (!smu->smu_table.power_play_table_size)
		smu->smu_table.power_play_table_size = size;
381 382 383 384

	return 0;
}

385 386 387 388 389 390 391
static int smu_v11_0_init_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0)
		return -EINVAL;

392
	return smu_alloc_dpm_context(smu);
393 394 395 396 397 398 399 400 401 402
}

static int smu_v11_0_fini_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0)
		return -EINVAL;

	kfree(smu_dpm->dpm_context);
403
	kfree(smu_dpm->golden_dpm_context);
404 405
	kfree(smu_dpm->dpm_current_power_state);
	kfree(smu_dpm->dpm_request_power_state);
406
	smu_dpm->dpm_context = NULL;
407
	smu_dpm->golden_dpm_context = NULL;
408
	smu_dpm->dpm_context_size = 0;
409 410
	smu_dpm->dpm_current_power_state = NULL;
	smu_dpm->dpm_request_power_state = NULL;
411 412 413 414

	return 0;
}

415 416 417 418
static int smu_v11_0_init_smc_tables(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = NULL;
419
	int ret = 0;
420

421
	if (smu_table->tables || smu_table->table_count == 0)
422 423
		return -EINVAL;

424 425
	tables = kcalloc(SMU_TABLE_COUNT, sizeof(struct smu_table),
			 GFP_KERNEL);
426 427 428 429 430
	if (!tables)
		return -ENOMEM;

	smu_table->tables = tables;

431 432 433
	ret = smu_tables_init(smu, tables);
	if (ret)
		return ret;
434

435 436 437 438
	ret = smu_v11_0_init_dpm_context(smu);
	if (ret)
		return ret;

439 440 441 442 443 444
	return 0;
}

static int smu_v11_0_fini_smc_tables(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
445
	int ret = 0;
446 447 448 449 450

	if (!smu_table->tables || smu_table->table_count == 0)
		return -EINVAL;

	kfree(smu_table->tables);
451
	kfree(smu_table->metrics_table);
452 453
	smu_table->tables = NULL;
	smu_table->table_count = 0;
454 455
	smu_table->metrics_table = NULL;
	smu_table->metrics_time = 0;
456

457 458 459
	ret = smu_v11_0_fini_dpm_context(smu);
	if (ret)
		return ret;
460 461
	return 0;
}
462 463 464 465 466

static int smu_v11_0_init_power(struct smu_context *smu)
{
	struct smu_power_context *smu_power = &smu->smu_power;

467 468
	if (!smu->pm_enabled)
		return 0;
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	if (smu_power->power_context || smu_power->power_context_size != 0)
		return -EINVAL;

	smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
					   GFP_KERNEL);
	if (!smu_power->power_context)
		return -ENOMEM;
	smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context);

	return 0;
}

static int smu_v11_0_fini_power(struct smu_context *smu)
{
	struct smu_power_context *smu_power = &smu->smu_power;

485 486
	if (!smu->pm_enabled)
		return 0;
487 488 489 490 491 492 493 494 495 496
	if (!smu_power->power_context || smu_power->power_context_size == 0)
		return -EINVAL;

	kfree(smu_power->power_context);
	smu_power->power_context = NULL;
	smu_power->power_context_size = 0;

	return 0;
}

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu)
{
	int ret, index;
	uint16_t size;
	uint8_t frev, crev;
	struct atom_common_table_header *header;
	struct atom_firmware_info_v3_3 *v_3_3;
	struct atom_firmware_info_v3_1 *v_3_1;

	index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
					    firmwareinfo);

	ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev,
				      (uint8_t **)&header);
	if (ret)
		return ret;

	if (header->format_revision != 3) {
		pr_err("unknown atom_firmware_info version! for smu11\n");
		return -EINVAL;
	}

	switch (header->content_revision) {
	case 0:
	case 1:
	case 2:
		v_3_1 = (struct atom_firmware_info_v3_1 *)header;
		smu->smu_table.boot_values.revision = v_3_1->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = 0;
		break;
	case 3:
	default:
		v_3_3 = (struct atom_firmware_info_v3_3 *)header;
		smu->smu_table.boot_values.revision = v_3_3->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id;
	}

	return 0;
}

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
static int smu_v11_0_get_clk_info_from_vbios(struct smu_context *smu)
{
	int ret, index;
	struct amdgpu_device *adev = smu->adev;
	struct atom_get_smu_clock_info_parameters_v3_1 input = {0};
	struct atom_get_smu_clock_info_output_parameters_v3_1 *output;

	input.clk_id = SMU11_SYSPLL0_SOCCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.socclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCEFCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dcefclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_ECLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.eclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_VCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.vclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

631 632 633
	return 0;
}

634 635 636 637 638 639 640 641 642 643 644
static int smu_v11_0_notify_memory_pool_location(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	int ret = 0;
	uint64_t address;
	uint32_t address_low, address_high;

	if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL)
		return ret;

645
	address = (uintptr_t)memory_pool->cpu_addr;
646 647 648 649
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

	ret = smu_send_smc_msg_with_param(smu,
650
					  SMU_MSG_SetSystemVirtualDramAddrHigh,
651 652 653 654
					  address_high);
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu,
655
					  SMU_MSG_SetSystemVirtualDramAddrLow,
656 657 658 659 660 661 662 663
					  address_low);
	if (ret)
		return ret;

	address = memory_pool->mc_address;
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

664
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh,
665 666 667
					  address_high);
	if (ret)
		return ret;
668
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow,
669 670 671
					  address_low);
	if (ret)
		return ret;
672
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize,
673 674 675 676 677 678 679
					  (uint32_t)memory_pool->size);
	if (ret)
		return ret;

	return ret;
}

680 681 682 683 684 685 686 687
static int smu_v11_0_check_pptable(struct smu_context *smu)
{
	int ret;

	ret = smu_check_powerplay_table(smu);
	return ret;
}

688 689 690 691 692
static int smu_v11_0_parse_pptable(struct smu_context *smu)
{
	int ret;

	struct smu_table_context *table_context = &smu->smu_table;
693
	struct smu_table *table = &table_context->tables[SMU_TABLE_PPTABLE];
694 695 696 697

	if (table_context->driver_pptable)
		return -EINVAL;

698
	table_context->driver_pptable = kzalloc(table->size, GFP_KERNEL);
699 700 701 702 703

	if (!table_context->driver_pptable)
		return -ENOMEM;

	ret = smu_store_powerplay_table(smu);
704 705 706 707
	if (ret)
		return -EINVAL;

	ret = smu_append_powerplay_table(smu);
708 709 710 711

	return ret;
}

712 713
static int smu_v11_0_populate_smc_pptable(struct smu_context *smu)
{
714
	int ret;
715

716
	ret = smu_set_default_dpm_table(smu);
717

718
	return ret;
719 720
}

721 722
static int smu_v11_0_write_pptable(struct smu_context *smu)
{
723
	struct smu_table_context *table_context = &smu->smu_table;
724 725
	int ret = 0;

726
	ret = smu_update_table(smu, SMU_TABLE_PPTABLE, 0,
727
			       table_context->driver_pptable, true);
728 729 730 731

	return ret;
}

732 733
static int smu_v11_0_write_watermarks_table(struct smu_context *smu)
{
734 735 736 737 738 739 740 741 742
	int ret = 0;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *table = NULL;

	table = &smu_table->tables[SMU_TABLE_WATERMARKS];

	if (!table->cpu_addr)
		return -EINVAL;

743
	ret = smu_update_table(smu, SMU_TABLE_WATERMARKS, 0, table->cpu_addr,
744
				true);
745 746

	return ret;
747 748
}

749 750 751 752 753 754 755 756 757 758 759 760
static int smu_v11_0_set_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk)
{
	int ret;

	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetMinDeepSleepDcefclk, clk);
	if (ret)
		pr_err("SMU11 attempt to set divider for DCEFCLK Failed!");

	return ret;
}

761 762 763 764
static int smu_v11_0_set_min_dcef_deep_sleep(struct smu_context *smu)
{
	struct smu_table_context *table_context = &smu->smu_table;

765 766
	if (!smu->pm_enabled)
		return 0;
767 768 769
	if (!table_context)
		return -EINVAL;

770
	return smu_set_deep_sleep_dcefclk(smu,
771 772 773
					  table_context->boot_values.dcefclk / 100);
}

774 775 776
static int smu_v11_0_set_tool_table_location(struct smu_context *smu)
{
	int ret = 0;
777
	struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG];
778 779 780

	if (tool_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
781
				SMU_MSG_SetToolsDramAddrHigh,
782 783 784
				upper_32_bits(tool_table->mc_address));
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
785
				SMU_MSG_SetToolsDramAddrLow,
786 787 788 789 790 791
				lower_32_bits(tool_table->mc_address));
	}

	return ret;
}

792
static int smu_v11_0_init_display_count(struct smu_context *smu, uint32_t count)
793 794
{
	int ret = 0;
795 796 797

	if (!smu->pm_enabled)
		return ret;
798

799
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, count);
800 801 802
	return ret;
}

803

804 805 806 807 808 809
static int smu_v11_0_set_allowed_mask(struct smu_context *smu)
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
	uint32_t feature_mask[2];

810
	mutex_lock(&feature->mutex);
811
	if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64)
812
		goto failed;
813 814 815 816 817 818

	bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64);

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh,
					  feature_mask[1]);
	if (ret)
819
		goto failed;
820 821 822 823

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow,
					  feature_mask[0]);
	if (ret)
824
		goto failed;
825

826 827
failed:
	mutex_unlock(&feature->mutex);
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
	return ret;
}

static int smu_v11_0_get_enabled_mask(struct smu_context *smu,
				      uint32_t *feature_mask, uint32_t num)
{
	uint32_t feature_mask_high = 0, feature_mask_low = 0;
	int ret = 0;

	if (!feature_mask || num < 2)
		return -EINVAL;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_high);
	if (ret)
		return ret;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_low);
	if (ret)
		return ret;

	feature_mask[0] = feature_mask_low;
	feature_mask[1] = feature_mask_high;

	return ret;
}

860 861
static int smu_v11_0_system_features_control(struct smu_context *smu,
					     bool en)
862 863 864 865 866
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_mask[2];
	int ret = 0;

867 868 869 870 871 872 873
	if (smu->pm_enabled) {
		ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures :
					     SMU_MSG_DisableAllSmuFeatures));
		if (ret)
			return ret;
	}

874 875 876 877 878 879 880 881 882 883 884 885
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
		return ret;

	bitmap_copy(feature->enabled, (unsigned long *)&feature_mask,
		    feature->feature_num);
	bitmap_copy(feature->supported, (unsigned long *)&feature_mask,
		    feature->feature_num);

	return ret;
}

886 887 888 889
static int smu_v11_0_notify_display_change(struct smu_context *smu)
{
	int ret = 0;

890 891
	if (!smu->pm_enabled)
		return ret;
892 893 894
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
	    smu->adev->gmc.vram_type == AMDGPU_VRAM_TYPE_HBM)
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1);
895 896 897 898

	return ret;
}

899 900
static int
smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock,
901
				    enum smu_clk_type clock_select)
902 903
{
	int ret = 0;
904
	int clk_id;
905

906 907
	if (!smu->pm_enabled)
		return ret;
908

909 910 911 912
	if ((smu_msg_get_index(smu, SMU_MSG_GetDcModeMaxDpmFreq) < 0) ||
	    (smu_msg_get_index(smu, SMU_MSG_GetMaxDpmFreq) < 0))
		return 0;

913 914 915 916
	clk_id = smu_clk_get_index(smu, clock_select);
	if (clk_id < 0)
		return -EINVAL;

917
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq,
918
					  clk_id << 16);
919 920 921 922 923 924 925 926 927 928 929 930 931 932
	if (ret) {
		pr_err("[GetMaxSustainableClock] Failed to get max DC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);
	if (ret)
		return ret;

	if (*clock != 0)
		return 0;

	/* if DC limit is zero, return AC limit */
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
933
					  clk_id << 16);
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
	if (ret) {
		pr_err("[GetMaxSustainableClock] failed to get max AC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);

	return ret;
}

static int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu)
{
	struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks;
	int ret = 0;

	max_sustainable_clocks = kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks),
					 GFP_KERNEL);
	smu->smu_table.max_sustainable_clocks = (void *)max_sustainable_clocks;

	max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100;
	max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100;
	max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100;
	max_sustainable_clocks->display_clock = 0xFFFFFFFF;
	max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
	max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;

960
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
961 962
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->uclock),
963
							  SMU_UCLK);
964 965 966 967 968 969 970
		if (ret) {
			pr_err("[%s] failed to get max UCLK from SMC!",
			       __func__);
			return ret;
		}
	}

971
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
972 973
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->soc_clock),
974
							  SMU_SOCCLK);
975 976 977 978 979 980 981
		if (ret) {
			pr_err("[%s] failed to get max SOCCLK from SMC!",
			       __func__);
			return ret;
		}
	}

982
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
983 984
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->dcef_clock),
985
							  SMU_DCEFCLK);
986 987 988 989 990 991 992 993
		if (ret) {
			pr_err("[%s] failed to get max DCEFCLK from SMC!",
			       __func__);
			return ret;
		}

		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->display_clock),
994
							  SMU_DISPCLK);
995 996 997 998 999 1000 1001
		if (ret) {
			pr_err("[%s] failed to get max DISPCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->phy_clock),
1002
							  SMU_PHYCLK);
1003 1004 1005 1006 1007 1008 1009
		if (ret) {
			pr_err("[%s] failed to get max PHYCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->pixel_clock),
1010
							  SMU_PIXCLK);
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
		if (ret) {
			pr_err("[%s] failed to get max PIXCLK from SMC!",
			       __func__);
			return ret;
		}
	}

	if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
		max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;

	return 0;
}

1024
static int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n)
1025
{
1026
	int ret = 0;
1027

1028 1029 1030
	if (n > smu->default_power_limit) {
		pr_err("New power limit is over the max allowed %d\n",
				smu->default_power_limit);
1031
		return -EINVAL;
1032 1033
	}

1034 1035 1036
	if (n == 0)
		n = smu->default_power_limit;

1037 1038 1039
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) {
		pr_err("Setting new power limit is not supported!\n");
		return -EOPNOTSUPP;
1040 1041
	}

1042
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n);
1043
	if (ret) {
1044
		pr_err("[%s] Set power limit Failed!\n", __func__);
1045 1046
		return ret;
	}
1047
	smu->power_limit = n;
1048

1049
	return 0;
1050 1051
}

1052 1053 1054
static int smu_v11_0_get_current_clk_freq(struct smu_context *smu,
					  enum smu_clk_type clk_id,
					  uint32_t *value)
1055 1056
{
	int ret = 0;
1057
	uint32_t freq = 0;
1058
	int asic_clk_id;
1059

1060
	if (clk_id >= SMU_CLK_COUNT || !value)
1061 1062
		return -EINVAL;

1063 1064 1065 1066
	asic_clk_id = smu_clk_get_index(smu, clk_id);
	if (asic_clk_id < 0)
		return -EINVAL;

1067
	/* if don't has GetDpmClockFreq Message, try get current clock by SmuMetrics_t */
1068
	if (smu_msg_get_index(smu, SMU_MSG_GetDpmClockFreq) < 0)
1069 1070 1071
		ret =  smu_get_current_clk_freq_by_table(smu, clk_id, &freq);
	else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmClockFreq,
1072
						  (asic_clk_id << 16));
1073 1074
		if (ret)
			return ret;
1075

1076 1077 1078 1079
		ret = smu_read_smc_arg(smu, &freq);
		if (ret)
			return ret;
	}
1080 1081 1082 1083 1084 1085 1086

	freq *= 100;
	*value = freq;

	return ret;
}

1087
static int smu_v11_0_set_thermal_range(struct smu_context *smu,
1088
				       struct smu_temperature_range *range)
1089 1090
{
	struct amdgpu_device *adev = smu->adev;
1091 1092
	int low = SMU_THERMAL_MINIMUM_ALERT_TEMP;
	int high = SMU_THERMAL_MAXIMUM_ALERT_TEMP;
1093 1094
	uint32_t val;

1095 1096 1097
	if (!range)
		return -EINVAL;

1098 1099 1100 1101 1102
	if (low < range->min)
		low = range->min;
	if (high > range->max)
		high = range->max;

1103 1104 1105
	low = max(SMU_THERMAL_MINIMUM_ALERT_TEMP, range->min);
	high = min(SMU_THERMAL_MAXIMUM_ALERT_TEMP, range->max);

1106 1107 1108 1109 1110 1111
	if (low > high)
		return -EINVAL;

	val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1);
1112 1113
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 0);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 0);
1114 1115
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high & 0xff));
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low & 0xff));
1116 1117 1118 1119 1120 1121 1122
	val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);

	return 0;
}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
static int smu_v11_0_enable_thermal_alert(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t val = 0;

	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val);

	return 0;
}

1137 1138 1139
static int smu_v11_0_start_thermal_control(struct smu_context *smu)
{
	int ret = 0;
1140
	struct smu_temperature_range range = {
1141 1142 1143 1144 1145 1146 1147 1148 1149
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX};
1150 1151
	struct amdgpu_device *adev = smu->adev;

1152 1153
	if (!smu->pm_enabled)
		return ret;
1154

1155
	ret = smu_get_thermal_temperature_range(smu, &range);
1156 1157
	if (ret)
		return ret;
1158 1159 1160 1161 1162 1163 1164 1165 1166

	if (smu->smu_table.thermal_controller_type) {
		ret = smu_v11_0_set_thermal_range(smu, &range);
		if (ret)
			return ret;

		ret = smu_v11_0_enable_thermal_alert(smu);
		if (ret)
			return ret;
1167

1168
		ret = smu_set_thermal_fan_table(smu);
1169 1170 1171 1172
		if (ret)
			return ret;
	}

1173 1174 1175 1176 1177 1178 1179 1180 1181
	adev->pm.dpm.thermal.min_temp = range.min * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_temp = range.max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_edge_emergency_temp = range.edge_emergency_max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.min_hotspot_temp = range.hotspot_min * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_hotspot_crit_temp = range.hotspot_crit_max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_hotspot_emergency_temp = range.hotspot_emergency_max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.min_mem_temp = range.mem_min * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_mem_crit_temp = range.mem_crit_max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_mem_emergency_temp = range.mem_emergency_max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
1182 1183
	adev->pm.dpm.thermal.min_temp = range.min * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_temp = range.max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
1184 1185 1186 1187

	return ret;
}

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
static uint16_t convert_to_vddc(uint8_t vid)
{
	return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE);
}

static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t vdd = 0, val_vid = 0;

	if (!value)
		return -EINVAL;
	val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) &
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >>
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT;

	vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid);

	*value = vdd;

	return 0;

}

1212 1213 1214 1215 1216 1217
static int smu_v11_0_read_sensor(struct smu_context *smu,
				 enum amd_pp_sensors sensor,
				 void *data, uint32_t *size)
{
	int ret = 0;
	switch (sensor) {
1218
	case AMDGPU_PP_SENSOR_GFX_MCLK:
1219
		ret = smu_get_current_clk_freq(smu, SMU_UCLK, (uint32_t *)data);
1220 1221 1222
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_SCLK:
1223
		ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, (uint32_t *)data);
1224
		*size = 4;
1225
		break;
1226 1227 1228
	case AMDGPU_PP_SENSOR_VDDGFX:
		ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
		*size = 4;
1229
		break;
1230 1231 1232 1233
	case AMDGPU_PP_SENSOR_MIN_FAN_RPM:
		*(uint32_t *)data = 0;
		*size = 4;
		break;
1234
	default:
1235
		ret = smu_common_read_sensor(smu, sensor, data, size);
1236 1237 1238
		break;
	}

1239 1240 1241 1242
	/* try get sensor data by asic */
	if (ret)
		ret = smu_asic_read_sensor(smu, sensor, data, size);

1243 1244 1245 1246 1247 1248
	if (ret)
		*size = 0;

	return ret;
}

1249 1250 1251 1252 1253 1254 1255
static int
smu_v11_0_display_clock_voltage_request(struct smu_context *smu,
					struct pp_display_clock_request
					*clock_req)
{
	enum amd_pp_clock_type clk_type = clock_req->clock_type;
	int ret = 0;
1256
	enum smu_clk_type clk_select = 0;
1257
	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
1258
	int clk_id;
1259

1260 1261
	if (!smu->pm_enabled)
		return -EINVAL;
1262

1263
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) ||
1264
		smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1265 1266
		switch (clk_type) {
		case amd_pp_dcef_clock:
1267
			clk_select = SMU_DCEFCLK;
1268 1269
			break;
		case amd_pp_disp_clock:
1270
			clk_select = SMU_DISPCLK;
1271 1272
			break;
		case amd_pp_pixel_clock:
1273
			clk_select = SMU_PIXCLK;
1274 1275
			break;
		case amd_pp_phy_clock:
1276
			clk_select = SMU_PHYCLK;
1277
			break;
1278 1279 1280
		case amd_pp_mem_clock:
			clk_select = SMU_UCLK;
			break;
1281 1282 1283 1284 1285 1286 1287 1288 1289
		default:
			pr_info("[%s] Invalid Clock Type!", __func__);
			ret = -EINVAL;
			break;
		}

		if (ret)
			goto failed;

1290 1291 1292
		if (clk_select == SMU_UCLK && smu->disable_uclk_switch)
			return 0;

1293 1294 1295 1296 1297 1298
		clk_id = smu_clk_get_index(smu, clk_select);
		if (clk_id < 0) {
			ret = -EINVAL;
			goto failed;
		}

1299

1300
		mutex_lock(&smu->mutex);
1301
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq,
1302
			(clk_id << 16) | clk_freq);
1303
		mutex_unlock(&smu->mutex);
1304 1305 1306

		if(clk_select == SMU_UCLK)
			smu->hard_min_uclk_req_from_dal = clk_freq;
1307 1308 1309 1310 1311 1312
	}

failed:
	return ret;
}

1313 1314 1315 1316 1317 1318
static int
smu_v11_0_set_watermarks_for_clock_ranges(struct smu_context *smu, struct
					  dm_pp_wm_sets_with_clock_ranges_soc15
					  *clock_ranges)
{
	int ret = 0;
1319
	struct smu_table *watermarks = &smu->smu_table.tables[SMU_TABLE_WATERMARKS];
1320
	void *table = watermarks->cpu_addr;
1321 1322

	if (!smu->disable_watermark &&
1323 1324
	    smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
	    smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
1325
		smu_set_watermarks_table(smu, table, clock_ranges);
1326 1327 1328 1329 1330 1331 1332
		smu->watermarks_bitmap |= WATERMARKS_EXIST;
		smu->watermarks_bitmap &= ~WATERMARKS_LOADED;
	}

	return ret;
}

1333 1334 1335
static int smu_v11_0_gfx_off_control(struct smu_context *smu, bool enable)
{
	int ret = 0;
1336
	struct amdgpu_device *adev = smu->adev;
1337

1338 1339 1340 1341
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		break;
	case CHIP_NAVI10:
1342
	case CHIP_NAVI14:
1343
	case CHIP_NAVI12:
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
		if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
			return 0;
		mutex_lock(&smu->mutex);
		if (enable)
			ret = smu_send_smc_msg(smu, SMU_MSG_AllowGfxOff);
		else
			ret = smu_send_smc_msg(smu, SMU_MSG_DisallowGfxOff);
		mutex_unlock(&smu->mutex);
		break;
	default:
		break;
	}
1356 1357 1358 1359

	return ret;
}

1360 1361 1362
static uint32_t
smu_v11_0_get_fan_control_mode(struct smu_context *smu)
{
1363
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1364 1365 1366 1367 1368 1369
		return AMD_FAN_CTRL_MANUAL;
	else
		return AMD_FAN_CTRL_AUTO;
}

static int
1370
smu_v11_0_auto_fan_control(struct smu_context *smu, bool auto_fan_control)
1371 1372 1373
{
	int ret = 0;

1374
	if (!smu_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1375 1376
		return 0;

1377
	ret = smu_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, auto_fan_control);
1378 1379
	if (ret)
		pr_err("[%s]%s smc FAN CONTROL feature failed!",
1380
		       __func__, (auto_fan_control ? "Start" : "Stop"));
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403

	return ret;
}

static int
smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode)
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, TMIN, 0));
	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, FDO_PWM_MODE, mode));

	return 0;
}

static int
smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
1404
	uint32_t duty100, duty;
1405 1406 1407 1408 1409
	uint64_t tmp64;

	if (speed > 100)
		speed = 100;

1410
	if (smu_v11_0_auto_fan_control(smu, 0))
1411
		return -EINVAL;
1412

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1),
				CG_FDO_CTRL1, FMAX_DUTY100);
	if (!duty100)
		return -EINVAL;

	tmp64 = (uint64_t)speed * duty100;
	do_div(tmp64, 100);
	duty = (uint32_t)tmp64;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0),
				   CG_FDO_CTRL0, FDO_STATIC_DUTY, duty));

	return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC);
}

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
static int
smu_v11_0_set_fan_control_mode(struct smu_context *smu,
			       uint32_t mode)
{
	int ret = 0;

	switch (mode) {
	case AMD_FAN_CTRL_NONE:
		ret = smu_v11_0_set_fan_speed_percent(smu, 100);
		break;
	case AMD_FAN_CTRL_MANUAL:
1440
		ret = smu_v11_0_auto_fan_control(smu, 0);
1441 1442
		break;
	case AMD_FAN_CTRL_AUTO:
1443
		ret = smu_v11_0_auto_fan_control(smu, 1);
1444 1445 1446 1447 1448 1449
		break;
	default:
		break;
	}

	if (ret) {
1450
		pr_err("[%s]Set fan control mode failed!", __func__);
1451 1452 1453 1454 1455 1456
		return -EINVAL;
	}

	return ret;
}

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
static int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu,
				       uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	int ret;
	uint32_t tach_period, crystal_clock_freq;

	if (!speed)
		return -EINVAL;

	mutex_lock(&(smu->mutex));
1468
	ret = smu_v11_0_auto_fan_control(smu, 0);
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
	if (ret)
		goto set_fan_speed_rpm_failed;

	crystal_clock_freq = amdgpu_asic_get_xclk(adev);
	tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed);
	WREG32_SOC15(THM, 0, mmCG_TACH_CTRL,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL),
				   CG_TACH_CTRL, TARGET_PERIOD,
				   tach_period));

	ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM);

set_fan_speed_rpm_failed:
	mutex_unlock(&(smu->mutex));
	return ret;
}

1486 1487 1488
#define XGMI_STATE_D0 1
#define XGMI_STATE_D3 0

1489 1490 1491
static int smu_v11_0_set_xgmi_pstate(struct smu_context *smu,
				     uint32_t pstate)
{
1492 1493 1494 1495 1496 1497 1498
	int ret = 0;
	mutex_lock(&(smu->mutex));
	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetXgmiMode,
					  pstate ? XGMI_STATE_D0 : XGMI_STATE_D3);
	mutex_unlock(&(smu->mutex));
	return ret;
1499 1500
}

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
#define THM_11_0__SRCID__THM_DIG_THERM_L2H		0		/* ASIC_TEMP > CG_THERMAL_INT.DIG_THERM_INTH  */
#define THM_11_0__SRCID__THM_DIG_THERM_H2L		1		/* ASIC_TEMP < CG_THERMAL_INT.DIG_THERM_INTL  */

static int smu_v11_0_irq_process(struct amdgpu_device *adev,
				 struct amdgpu_irq_src *source,
				 struct amdgpu_iv_entry *entry)
{
	uint32_t client_id = entry->client_id;
	uint32_t src_id = entry->src_id;

	if (client_id == SOC15_IH_CLIENTID_THM) {
		switch (src_id) {
		case THM_11_0__SRCID__THM_DIG_THERM_L2H:
			pr_warn("GPU over temperature range detected on PCIe %d:%d.%d!\n",
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;
		case THM_11_0__SRCID__THM_DIG_THERM_H2L:
			pr_warn("GPU under temperature range detected on PCIe %d:%d.%d!\n",
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;
		default:
			pr_warn("GPU under temperature range unknown src id (%d), detected on PCIe %d:%d.%d!\n",
				src_id,
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;

		}
	}

	return 0;
}

static const struct amdgpu_irq_src_funcs smu_v11_0_irq_funcs =
{
	.process = smu_v11_0_irq_process,
};

static int smu_v11_0_register_irq_handler(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	struct amdgpu_irq_src *irq_src = smu->irq_source;
	int ret = 0;

	/* already register */
	if (irq_src)
		return 0;

	irq_src = kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
	if (!irq_src)
		return -ENOMEM;
	smu->irq_source = irq_src;

	irq_src->funcs = &smu_v11_0_irq_funcs;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_L2H,
				irq_src);
	if (ret)
		return ret;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_H2L,
				irq_src);
	if (ret)
		return ret;

	return ret;
}

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
static int smu_v11_0_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
		struct pp_smu_nv_clock_table *max_clocks)
{
	struct smu_table_context *table_context = &smu->smu_table;
	struct smu_11_0_max_sustainable_clocks *sustainable_clocks = NULL;

	if (!max_clocks || !table_context->max_sustainable_clocks)
		return -EINVAL;

	sustainable_clocks = table_context->max_sustainable_clocks;

	max_clocks->dcfClockInKhz =
			(unsigned int) sustainable_clocks->dcef_clock * 1000;
	max_clocks->displayClockInKhz =
			(unsigned int) sustainable_clocks->display_clock * 1000;
	max_clocks->phyClockInKhz =
			(unsigned int) sustainable_clocks->phy_clock * 1000;
	max_clocks->pixelClockInKhz =
			(unsigned int) sustainable_clocks->pixel_clock * 1000;
	max_clocks->uClockInKhz =
			(unsigned int) sustainable_clocks->uclock * 1000;
	max_clocks->socClockInKhz =
			(unsigned int) sustainable_clocks->soc_clock * 1000;
	max_clocks->dscClockInKhz = 0;
	max_clocks->dppClockInKhz = 0;
	max_clocks->fabricClockInKhz = 0;

	return 0;
}

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
static int smu_v11_0_set_azalia_d3_pme(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);
	ret = smu_send_smc_msg(smu, SMU_MSG_BacoAudioD3PME);
	mutex_unlock(&smu->mutex);

	return ret;
}

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
static int smu_v11_0_baco_set_armd3_sequence(struct smu_context *smu, enum smu_v11_0_baco_seq baco_seq)
{
	return smu_send_smc_msg_with_param(smu, SMU_MSG_ArmD3, baco_seq);
}

static bool smu_v11_0_baco_is_support(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	struct smu_baco_context *smu_baco = &smu->smu_baco;
	uint32_t val;
	bool baco_support;

	mutex_lock(&smu_baco->mutex);
	baco_support = smu_baco->platform_support;
	mutex_unlock(&smu_baco->mutex);

	if (!baco_support)
		return false;

	if (!smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT))
		return false;

	val = RREG32_SOC15(NBIO, 0, mmRCC_BIF_STRAP0);
	if (val & RCC_BIF_STRAP0__STRAP_PX_CAPABLE_MASK)
		return true;

	return false;
}

static enum smu_baco_state smu_v11_0_baco_get_state(struct smu_context *smu)
{
	struct smu_baco_context *smu_baco = &smu->smu_baco;
	enum smu_baco_state baco_state = SMU_BACO_STATE_EXIT;

	mutex_lock(&smu_baco->mutex);
	baco_state = smu_baco->state;
	mutex_unlock(&smu_baco->mutex);

	return baco_state;
}

static int smu_v11_0_baco_set_state(struct smu_context *smu, enum smu_baco_state state)
{

	struct smu_baco_context *smu_baco = &smu->smu_baco;
	int ret = 0;

	if (smu_v11_0_baco_get_state(smu) == state)
		return 0;

	mutex_lock(&smu_baco->mutex);

	if (state == SMU_BACO_STATE_ENTER)
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, BACO_SEQ_BACO);
	else
		ret = smu_send_smc_msg(smu, SMU_MSG_ExitBaco);
	if (ret)
		goto out;

	smu_baco->state = state;
out:
	mutex_unlock(&smu_baco->mutex);
	return ret;
}

static int smu_v11_0_baco_reset(struct smu_context *smu)
{
	int ret = 0;

	ret = smu_v11_0_baco_set_armd3_sequence(smu, BACO_SEQ_BACO);
	if (ret)
		return ret;

	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_ENTER);
	if (ret)
		return ret;

	msleep(10);

	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_EXIT);
	if (ret)
		return ret;

	return ret;
}

1703 1704
static const struct smu_funcs smu_v11_0_funcs = {
	.init_microcode = smu_v11_0_init_microcode,
1705
	.load_microcode = smu_v11_0_load_microcode,
1706
	.check_fw_status = smu_v11_0_check_fw_status,
1707
	.check_fw_version = smu_v11_0_check_fw_version,
1708 1709
	.send_smc_msg = smu_v11_0_send_msg,
	.send_smc_msg_with_param = smu_v11_0_send_msg_with_param,
1710
	.read_smc_arg = smu_v11_0_read_arg,
1711
	.setup_pptable = smu_v11_0_setup_pptable,
1712 1713
	.init_smc_tables = smu_v11_0_init_smc_tables,
	.fini_smc_tables = smu_v11_0_fini_smc_tables,
1714 1715
	.init_power = smu_v11_0_init_power,
	.fini_power = smu_v11_0_fini_power,
1716
	.get_vbios_bootup_values = smu_v11_0_get_vbios_bootup_values,
1717
	.get_clk_info_from_vbios = smu_v11_0_get_clk_info_from_vbios,
1718
	.notify_memory_pool_location = smu_v11_0_notify_memory_pool_location,
1719
	.check_pptable = smu_v11_0_check_pptable,
1720
	.parse_pptable = smu_v11_0_parse_pptable,
1721
	.populate_smc_pptable = smu_v11_0_populate_smc_pptable,
1722
	.write_pptable = smu_v11_0_write_pptable,
1723
	.write_watermarks_table = smu_v11_0_write_watermarks_table,
1724
	.set_min_dcef_deep_sleep = smu_v11_0_set_min_dcef_deep_sleep,
1725
	.set_tool_table_location = smu_v11_0_set_tool_table_location,
1726
	.init_display_count = smu_v11_0_init_display_count,
1727 1728
	.set_allowed_mask = smu_v11_0_set_allowed_mask,
	.get_enabled_mask = smu_v11_0_get_enabled_mask,
1729
	.system_features_control = smu_v11_0_system_features_control,
1730
	.notify_display_change = smu_v11_0_notify_display_change,
1731
	.set_power_limit = smu_v11_0_set_power_limit,
1732
	.get_current_clk_freq = smu_v11_0_get_current_clk_freq,
1733
	.init_max_sustainable_clocks = smu_v11_0_init_max_sustainable_clocks,
1734
	.start_thermal_control = smu_v11_0_start_thermal_control,
1735
	.read_sensor = smu_v11_0_read_sensor,
1736
	.set_deep_sleep_dcefclk = smu_v11_0_set_deep_sleep_dcefclk,
1737
	.display_clock_voltage_request = smu_v11_0_display_clock_voltage_request,
1738
	.set_watermarks_for_clock_ranges = smu_v11_0_set_watermarks_for_clock_ranges,
1739
	.get_fan_control_mode = smu_v11_0_get_fan_control_mode,
1740
	.set_fan_control_mode = smu_v11_0_set_fan_control_mode,
1741
	.set_fan_speed_percent = smu_v11_0_set_fan_speed_percent,
1742
	.set_fan_speed_rpm = smu_v11_0_set_fan_speed_rpm,
1743
	.set_xgmi_pstate = smu_v11_0_set_xgmi_pstate,
1744
	.gfx_off_control = smu_v11_0_gfx_off_control,
1745
	.register_irq_handler = smu_v11_0_register_irq_handler,
1746
	.set_azalia_d3_pme = smu_v11_0_set_azalia_d3_pme,
1747
	.get_max_sustainable_clocks_by_dc = smu_v11_0_get_max_sustainable_clocks_by_dc,
1748 1749 1750 1751
	.baco_is_support = smu_v11_0_baco_is_support,
	.baco_get_state = smu_v11_0_baco_get_state,
	.baco_set_state = smu_v11_0_baco_set_state,
	.baco_reset = smu_v11_0_baco_reset,
1752 1753 1754 1755
};

void smu_v11_0_set_smu_funcs(struct smu_context *smu)
{
1756 1757
	struct amdgpu_device *adev = smu->adev;

1758
	smu->funcs = &smu_v11_0_funcs;
1759 1760 1761 1762
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		vega20_set_ppt_funcs(smu);
		break;
1763 1764 1765
	case CHIP_ARCTURUS:
		arcturus_set_ppt_funcs(smu);
		break;
1766
	case CHIP_NAVI10:
1767
	case CHIP_NAVI14:
1768
	case CHIP_NAVI12:
1769 1770
		navi10_set_ppt_funcs(smu);
		break;
1771
	default:
1772
		pr_warn("Unknown asic for smu11\n");
1773
	}
1774
}