smu_v11_0.c 49.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/firmware.h>
24
#include <linux/module.h>
25
#include <linux/pci.h>
26

27 28
#define SMU_11_0_PARTIAL_PPTABLE

29
#include "pp_debug.h"
30 31
#include "amdgpu.h"
#include "amdgpu_smu.h"
32
#include "smu_internal.h"
33
#include "atomfirmware.h"
34
#include "amdgpu_atomfirmware.h"
35
#include "smu_v11_0.h"
36
#include "smu_v11_0_pptable.h"
37
#include "soc15_common.h"
38
#include "atom.h"
39
#include "amd_pcie.h"
40
#include "amdgpu_ras.h"
41 42 43

#include "asic_reg/thm/thm_11_0_2_offset.h"
#include "asic_reg/thm/thm_11_0_2_sh_mask.h"
44 45
#include "asic_reg/mp/mp_11_0_offset.h"
#include "asic_reg/mp/mp_11_0_sh_mask.h"
46
#include "asic_reg/nbio/nbio_7_4_offset.h"
47
#include "asic_reg/nbio/nbio_7_4_sh_mask.h"
48 49
#include "asic_reg/smuio/smuio_11_0_0_offset.h"
#include "asic_reg/smuio/smuio_11_0_0_sh_mask.h"
50

51
MODULE_FIRMWARE("amdgpu/vega20_smc.bin");
52
MODULE_FIRMWARE("amdgpu/arcturus_smc.bin");
53
MODULE_FIRMWARE("amdgpu/navi10_smc.bin");
54
MODULE_FIRMWARE("amdgpu/navi14_smc.bin");
55
MODULE_FIRMWARE("amdgpu/navi12_smc.bin");
56

57
#define SMU11_VOLTAGE_SCALE 4
58

59 60 61 62 63 64 65 66
static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu,
					      uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_66, msg);
	return 0;
}

67
int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg)
68 69 70 71 72 73 74
{
	struct amdgpu_device *adev = smu->adev;

	*arg = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82);
	return 0;
}

75 76 77
static int smu_v11_0_wait_for_response(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
78
	uint32_t cur_value, i, timeout = adev->usec_timeout * 10;
79

80
	for (i = 0; i < timeout; i++) {
81 82
		cur_value = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90);
		if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0)
83 84
			return cur_value == 0x1 ? 0 : -EIO;

85 86 87 88
		udelay(1);
	}

	/* timeout means wrong logic */
89
	return -ETIME;
90 91
}

92
int
93 94
smu_v11_0_send_msg_with_param(struct smu_context *smu,
			      enum smu_message_type msg,
95 96 97
			      uint32_t param)
{
	struct amdgpu_device *adev = smu->adev;
98 99 100 101 102
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
103 104

	ret = smu_v11_0_wait_for_response(smu);
105 106 107 108 109
	if (ret) {
		pr_err("Msg issuing pre-check failed and "
		       "SMU may be not in the right state!\n");
		return ret;
	}
110 111 112 113 114

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82, param);

115
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
116 117 118

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
119 120
		pr_err("failed send message: %10s (%d) \tparam: 0x%08x response %#x\n",
		       smu_get_message_name(smu, msg), index, param, ret);
121 122 123 124

	return ret;
}

125
int smu_v11_0_init_microcode(struct smu_context *smu)
126 127
{
	struct amdgpu_device *adev = smu->adev;
128 129 130 131 132 133
	const char *chip_name;
	char fw_name[30];
	int err = 0;
	const struct smc_firmware_header_v1_0 *hdr;
	const struct common_firmware_header *header;
	struct amdgpu_firmware_info *ucode = NULL;
134

135 136 137 138
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		chip_name = "vega20";
		break;
139 140 141
	case CHIP_ARCTURUS:
		chip_name = "arcturus";
		break;
142 143 144
	case CHIP_NAVI10:
		chip_name = "navi10";
		break;
145 146 147
	case CHIP_NAVI14:
		chip_name = "navi14";
		break;
148 149 150
	case CHIP_NAVI12:
		chip_name = "navi12";
		break;
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
	default:
		BUG();
	}

	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name);

	err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
	if (err)
		goto out;
	err = amdgpu_ucode_validate(adev->pm.fw);
	if (err)
		goto out;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	amdgpu_ucode_print_smc_hdr(&hdr->header);
	adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
		ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC];
		ucode->ucode_id = AMDGPU_UCODE_ID_SMC;
		ucode->fw = adev->pm.fw;
		header = (const struct common_firmware_header *)ucode->fw->data;
		adev->firmware.fw_size +=
			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
	}

out:
	if (err) {
		DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n",
			  fw_name);
		release_firmware(adev->pm.fw);
		adev->pm.fw = NULL;
	}
	return err;
185 186
}

187
int smu_v11_0_load_microcode(struct smu_context *smu)
188
{
189 190 191 192 193 194 195
	struct amdgpu_device *adev = smu->adev;
	const uint32_t *src;
	const struct smc_firmware_header_v1_0 *hdr;
	uint32_t addr_start = MP1_SRAM;
	uint32_t i;
	uint32_t mp1_fw_flags;

196
	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
	src = (const uint32_t *)(adev->pm.fw->data +
		le32_to_cpu(hdr->header.ucode_array_offset_bytes));

	for (i = 1; i < MP1_SMC_SIZE/4 - 1; i++) {
		WREG32_PCIE(addr_start, src[i]);
		addr_start += 4;
	}

	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & MP1_SMN_PUB_CTRL__RESET_MASK);
	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & ~MP1_SMN_PUB_CTRL__RESET_MASK);

	for (i = 0; i < adev->usec_timeout; i++) {
		mp1_fw_flags = RREG32_PCIE(MP1_Public |
			(smnMP1_FIRMWARE_FLAGS & 0xffffffff));
		if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
			MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
			break;
		udelay(1);
	}

	if (i == adev->usec_timeout)
		return -ETIME;

222 223 224
	return 0;
}

225
int smu_v11_0_check_fw_status(struct smu_context *smu)
226
{
227 228 229
	struct amdgpu_device *adev = smu->adev;
	uint32_t mp1_fw_flags;

230 231
	mp1_fw_flags = RREG32_PCIE(MP1_Public |
				   (smnMP1_FIRMWARE_FLAGS & 0xffffffff));
232 233 234 235

	if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
	    MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
		return 0;
236

237
	return -EIO;
238 239
}

240
int smu_v11_0_check_fw_version(struct smu_context *smu)
241
{
242 243 244
	uint32_t if_version = 0xff, smu_version = 0xff;
	uint16_t smu_major;
	uint8_t smu_minor, smu_debug;
245 246
	int ret = 0;

247
	ret = smu_get_smc_version(smu, &if_version, &smu_version);
248
	if (ret)
249
		return ret;
250

251 252 253 254
	smu_major = (smu_version >> 16) & 0xffff;
	smu_minor = (smu_version >> 8) & 0xff;
	smu_debug = (smu_version >> 0) & 0xff;

255 256 257 258
	switch (smu->adev->asic_type) {
	case CHIP_VEGA20:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_VG20;
		break;
259 260 261
	case CHIP_ARCTURUS:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_ARCT;
		break;
262 263 264 265 266 267 268
	case CHIP_NAVI10:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_NV10;
		break;
	case CHIP_NAVI14:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_NV14;
		break;
	default:
269
		pr_err("smu unsupported asic type:%d.\n", smu->adev->asic_type);
270 271 272 273
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_INV;
		break;
	}

274 275 276 277 278 279 280 281
	/*
	 * 1. if_version mismatch is not critical as our fw is designed
	 * to be backward compatible.
	 * 2. New fw usually brings some optimizations. But that's visible
	 * only on the paired driver.
	 * Considering above, we just leave user a warning message instead
	 * of halt driver loading.
	 */
282
	if (if_version != smu->smc_if_version) {
283 284 285 286
		pr_info("smu driver if version = 0x%08x, smu fw if version = 0x%08x, "
			"smu fw version = 0x%08x (%d.%d.%d)\n",
			smu->smc_if_version, if_version,
			smu_version, smu_major, smu_minor, smu_debug);
287
		pr_warn("SMU driver if version not matched\n");
288 289
	}

290 291 292
	return ret;
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
static int smu_v11_0_set_pptable_v2_0(struct smu_context *smu, void **table, uint32_t *size)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t ppt_offset_bytes;
	const struct smc_firmware_header_v2_0 *v2;

	v2 = (const struct smc_firmware_header_v2_0 *) adev->pm.fw->data;

	ppt_offset_bytes = le32_to_cpu(v2->ppt_offset_bytes);
	*size = le32_to_cpu(v2->ppt_size_bytes);
	*table = (uint8_t *)v2 + ppt_offset_bytes;

	return 0;
}

308 309
static int smu_v11_0_set_pptable_v2_1(struct smu_context *smu, void **table,
				      uint32_t *size, uint32_t pptable_id)
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
{
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v2_1 *v2_1;
	struct smc_soft_pptable_entry *entries;
	uint32_t pptable_count = 0;
	int i = 0;

	v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data;
	entries = (struct smc_soft_pptable_entry *)
		((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset));
	pptable_count = le32_to_cpu(v2_1->pptable_count);
	for (i = 0; i < pptable_count; i++) {
		if (le32_to_cpu(entries[i].id) == pptable_id) {
			*table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes));
			*size = le32_to_cpu(entries[i].ppt_size_bytes);
			break;
		}
	}

	if (i == pptable_count)
		return -EINVAL;

	return 0;
}

335
int smu_v11_0_setup_pptable(struct smu_context *smu)
336
{
337 338
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v1_0 *hdr;
339
	int ret, index;
340
	uint32_t size = 0;
341
	uint16_t atom_table_size;
342
	uint8_t frev, crev;
343
	void *table;
344 345 346 347 348 349
	uint16_t version_major, version_minor;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	version_major = le16_to_cpu(hdr->header.header_version_major);
	version_minor = le16_to_cpu(hdr->header.header_version_minor);
	if (version_major == 2 && smu->smu_table.boot_values.pp_table_id > 0) {
350
		pr_info("use driver provided pptable %d\n", smu->smu_table.boot_values.pp_table_id);
351 352 353 354 355 356 357 358 359 360 361 362 363 364
		switch (version_minor) {
		case 0:
			ret = smu_v11_0_set_pptable_v2_0(smu, &table, &size);
			break;
		case 1:
			ret = smu_v11_0_set_pptable_v2_1(smu, &table, &size,
							 smu->smu_table.boot_values.pp_table_id);
			break;
		default:
			ret = -EINVAL;
			break;
		}
		if (ret)
			return ret;
365

366
	} else {
367
		pr_info("use vbios provided pptable\n");
368 369
		index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
						    powerplayinfo);
370

371
		ret = smu_get_atom_data_table(smu, index, &atom_table_size, &frev, &crev,
372 373 374
					      (uint8_t **)&table);
		if (ret)
			return ret;
375
		size = atom_table_size;
376
	}
377

378 379 380 381
	if (!smu->smu_table.power_play_table)
		smu->smu_table.power_play_table = table;
	if (!smu->smu_table.power_play_table_size)
		smu->smu_table.power_play_table_size = size;
382 383 384 385

	return 0;
}

386 387 388 389 390 391 392
static int smu_v11_0_init_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0)
		return -EINVAL;

393
	return smu_alloc_dpm_context(smu);
394 395 396 397 398 399 400 401 402 403
}

static int smu_v11_0_fini_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0)
		return -EINVAL;

	kfree(smu_dpm->dpm_context);
404
	kfree(smu_dpm->golden_dpm_context);
405 406
	kfree(smu_dpm->dpm_current_power_state);
	kfree(smu_dpm->dpm_request_power_state);
407
	smu_dpm->dpm_context = NULL;
408
	smu_dpm->golden_dpm_context = NULL;
409
	smu_dpm->dpm_context_size = 0;
410 411
	smu_dpm->dpm_current_power_state = NULL;
	smu_dpm->dpm_request_power_state = NULL;
412 413 414 415

	return 0;
}

416
int smu_v11_0_init_smc_tables(struct smu_context *smu)
417 418 419
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = NULL;
420
	int ret = 0;
421

422
	if (smu_table->tables)
423 424
		return -EINVAL;

425 426
	tables = kcalloc(SMU_TABLE_COUNT, sizeof(struct smu_table),
			 GFP_KERNEL);
427 428 429 430 431
	if (!tables)
		return -ENOMEM;

	smu_table->tables = tables;

432 433 434
	ret = smu_tables_init(smu, tables);
	if (ret)
		return ret;
435

436 437 438 439
	ret = smu_v11_0_init_dpm_context(smu);
	if (ret)
		return ret;

440 441 442
	return 0;
}

443
int smu_v11_0_fini_smc_tables(struct smu_context *smu)
444 445
{
	struct smu_table_context *smu_table = &smu->smu_table;
446
	int ret = 0;
447

448
	if (!smu_table->tables)
449 450 451
		return -EINVAL;

	kfree(smu_table->tables);
452
	kfree(smu_table->metrics_table);
453
	smu_table->tables = NULL;
454 455
	smu_table->metrics_table = NULL;
	smu_table->metrics_time = 0;
456

457 458 459
	ret = smu_v11_0_fini_dpm_context(smu);
	if (ret)
		return ret;
460 461
	return 0;
}
462

463
int smu_v11_0_init_power(struct smu_context *smu)
464 465 466
{
	struct smu_power_context *smu_power = &smu->smu_power;

467 468
	if (!smu->pm_enabled)
		return 0;
469 470 471 472 473 474 475 476 477 478 479 480
	if (smu_power->power_context || smu_power->power_context_size != 0)
		return -EINVAL;

	smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
					   GFP_KERNEL);
	if (!smu_power->power_context)
		return -ENOMEM;
	smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context);

	return 0;
}

481
int smu_v11_0_fini_power(struct smu_context *smu)
482 483 484
{
	struct smu_power_context *smu_power = &smu->smu_power;

485 486
	if (!smu->pm_enabled)
		return 0;
487 488 489 490 491 492 493 494 495 496
	if (!smu_power->power_context || smu_power->power_context_size == 0)
		return -EINVAL;

	kfree(smu_power->power_context);
	smu_power->power_context = NULL;
	smu_power->power_context_size = 0;

	return 0;
}

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu)
{
	int ret, index;
	uint16_t size;
	uint8_t frev, crev;
	struct atom_common_table_header *header;
	struct atom_firmware_info_v3_3 *v_3_3;
	struct atom_firmware_info_v3_1 *v_3_1;

	index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
					    firmwareinfo);

	ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev,
				      (uint8_t **)&header);
	if (ret)
		return ret;

	if (header->format_revision != 3) {
		pr_err("unknown atom_firmware_info version! for smu11\n");
		return -EINVAL;
	}

	switch (header->content_revision) {
	case 0:
	case 1:
	case 2:
		v_3_1 = (struct atom_firmware_info_v3_1 *)header;
		smu->smu_table.boot_values.revision = v_3_1->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = 0;
		break;
	case 3:
	default:
		v_3_3 = (struct atom_firmware_info_v3_3 *)header;
		smu->smu_table.boot_values.revision = v_3_3->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id;
	}

552 553 554
	smu->smu_table.boot_values.format_revision = header->format_revision;
	smu->smu_table.boot_values.content_revision = header->content_revision;

555 556 557
	return 0;
}

558
int smu_v11_0_get_clk_info_from_vbios(struct smu_context *smu)
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
{
	int ret, index;
	struct amdgpu_device *adev = smu->adev;
	struct atom_get_smu_clock_info_parameters_v3_1 input = {0};
	struct atom_get_smu_clock_info_output_parameters_v3_1 *output;

	input.clk_id = SMU11_SYSPLL0_SOCCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.socclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCEFCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dcefclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_ECLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.eclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_VCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.vclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
	if ((smu->smu_table.boot_values.format_revision == 3) &&
	    (smu->smu_table.boot_values.content_revision >= 2)) {
		memset(&input, 0, sizeof(input));
		input.clk_id = SMU11_SYSPLL1_0_FCLK_ID;
		input.syspll_id = SMU11_SYSPLL1_2_ID;
		input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
		index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
						    getsmuclockinfo);

		ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
						(uint32_t *)&input);
		if (ret)
			return -EINVAL;

		output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
		smu->smu_table.boot_values.fclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;
	}

652 653 654
	return 0;
}

655
int smu_v11_0_notify_memory_pool_location(struct smu_context *smu)
656 657 658 659 660 661 662 663 664 665
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	int ret = 0;
	uint64_t address;
	uint32_t address_low, address_high;

	if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL)
		return ret;

666
	address = (uintptr_t)memory_pool->cpu_addr;
667 668 669 670
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

	ret = smu_send_smc_msg_with_param(smu,
671
					  SMU_MSG_SetSystemVirtualDramAddrHigh,
672 673 674 675
					  address_high);
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu,
676
					  SMU_MSG_SetSystemVirtualDramAddrLow,
677 678 679 680 681 682 683 684
					  address_low);
	if (ret)
		return ret;

	address = memory_pool->mc_address;
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

685
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh,
686 687 688
					  address_high);
	if (ret)
		return ret;
689
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow,
690 691 692
					  address_low);
	if (ret)
		return ret;
693
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize,
694 695 696 697 698 699 700
					  (uint32_t)memory_pool->size);
	if (ret)
		return ret;

	return ret;
}

701
int smu_v11_0_check_pptable(struct smu_context *smu)
702 703 704 705 706 707 708
{
	int ret;

	ret = smu_check_powerplay_table(smu);
	return ret;
}

709
int smu_v11_0_parse_pptable(struct smu_context *smu)
710 711 712 713
{
	int ret;

	struct smu_table_context *table_context = &smu->smu_table;
714
	struct smu_table *table = &table_context->tables[SMU_TABLE_PPTABLE];
715 716 717 718

	if (table_context->driver_pptable)
		return -EINVAL;

719
	table_context->driver_pptable = kzalloc(table->size, GFP_KERNEL);
720 721 722 723 724

	if (!table_context->driver_pptable)
		return -ENOMEM;

	ret = smu_store_powerplay_table(smu);
725 726 727 728
	if (ret)
		return -EINVAL;

	ret = smu_append_powerplay_table(smu);
729 730 731 732

	return ret;
}

733
int smu_v11_0_populate_smc_pptable(struct smu_context *smu)
734
{
735
	int ret;
736

737
	ret = smu_set_default_dpm_table(smu);
738

739
	return ret;
740 741
}

742
int smu_v11_0_write_pptable(struct smu_context *smu)
743
{
744
	struct smu_table_context *table_context = &smu->smu_table;
745 746
	int ret = 0;

747
	ret = smu_update_table(smu, SMU_TABLE_PPTABLE, 0,
748
			       table_context->driver_pptable, true);
749 750 751 752

	return ret;
}

753
int smu_v11_0_set_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk)
754 755 756 757 758 759 760 761 762 763 764
{
	int ret;

	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetMinDeepSleepDcefclk, clk);
	if (ret)
		pr_err("SMU11 attempt to set divider for DCEFCLK Failed!");

	return ret;
}

765
int smu_v11_0_set_min_dcef_deep_sleep(struct smu_context *smu)
766 767 768
{
	struct smu_table_context *table_context = &smu->smu_table;

769 770
	if (!smu->pm_enabled)
		return 0;
771 772 773
	if (!table_context)
		return -EINVAL;

774
	return smu_v11_0_set_deep_sleep_dcefclk(smu, table_context->boot_values.dcefclk / 100);
775 776
}

777
int smu_v11_0_set_tool_table_location(struct smu_context *smu)
778 779
{
	int ret = 0;
780
	struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG];
781 782 783

	if (tool_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
784
				SMU_MSG_SetToolsDramAddrHigh,
785 786 787
				upper_32_bits(tool_table->mc_address));
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
788
				SMU_MSG_SetToolsDramAddrLow,
789 790 791 792 793 794
				lower_32_bits(tool_table->mc_address));
	}

	return ret;
}

795
int smu_v11_0_init_display_count(struct smu_context *smu, uint32_t count)
796 797
{
	int ret = 0;
798 799 800

	if (!smu->pm_enabled)
		return ret;
801

802
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, count);
803 804 805
	return ret;
}

806

807
int smu_v11_0_set_allowed_mask(struct smu_context *smu)
808 809 810 811 812
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
	uint32_t feature_mask[2];

813
	mutex_lock(&feature->mutex);
814
	if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64)
815
		goto failed;
816 817 818 819 820 821

	bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64);

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh,
					  feature_mask[1]);
	if (ret)
822
		goto failed;
823 824 825 826

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow,
					  feature_mask[0]);
	if (ret)
827
		goto failed;
828

829 830
failed:
	mutex_unlock(&feature->mutex);
831 832 833
	return ret;
}

834
int smu_v11_0_get_enabled_mask(struct smu_context *smu,
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
				      uint32_t *feature_mask, uint32_t num)
{
	uint32_t feature_mask_high = 0, feature_mask_low = 0;
	int ret = 0;

	if (!feature_mask || num < 2)
		return -EINVAL;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_high);
	if (ret)
		return ret;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_low);
	if (ret)
		return ret;

	feature_mask[0] = feature_mask_low;
	feature_mask[1] = feature_mask_high;

	return ret;
}

863
int smu_v11_0_system_features_control(struct smu_context *smu,
864
					     bool en)
865 866 867 868 869
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_mask[2];
	int ret = 0;

870 871 872 873 874 875 876
	if (smu->pm_enabled) {
		ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures :
					     SMU_MSG_DisableAllSmuFeatures));
		if (ret)
			return ret;
	}

877 878 879 880 881 882 883 884 885 886 887 888
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
		return ret;

	bitmap_copy(feature->enabled, (unsigned long *)&feature_mask,
		    feature->feature_num);
	bitmap_copy(feature->supported, (unsigned long *)&feature_mask,
		    feature->feature_num);

	return ret;
}

889
int smu_v11_0_notify_display_change(struct smu_context *smu)
890 891 892
{
	int ret = 0;

893 894
	if (!smu->pm_enabled)
		return ret;
895 896 897
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
	    smu->adev->gmc.vram_type == AMDGPU_VRAM_TYPE_HBM)
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1);
898 899 900 901

	return ret;
}

902 903
static int
smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock,
904
				    enum smu_clk_type clock_select)
905 906
{
	int ret = 0;
907
	int clk_id;
908

909 910
	if (!smu->pm_enabled)
		return ret;
911

912 913 914 915
	if ((smu_msg_get_index(smu, SMU_MSG_GetDcModeMaxDpmFreq) < 0) ||
	    (smu_msg_get_index(smu, SMU_MSG_GetMaxDpmFreq) < 0))
		return 0;

916 917 918 919
	clk_id = smu_clk_get_index(smu, clock_select);
	if (clk_id < 0)
		return -EINVAL;

920
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq,
921
					  clk_id << 16);
922 923 924 925 926 927 928 929 930 931 932 933 934 935
	if (ret) {
		pr_err("[GetMaxSustainableClock] Failed to get max DC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);
	if (ret)
		return ret;

	if (*clock != 0)
		return 0;

	/* if DC limit is zero, return AC limit */
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
936
					  clk_id << 16);
937 938 939 940 941 942 943 944 945 946
	if (ret) {
		pr_err("[GetMaxSustainableClock] failed to get max AC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);

	return ret;
}

947
int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu)
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
{
	struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks;
	int ret = 0;

	max_sustainable_clocks = kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks),
					 GFP_KERNEL);
	smu->smu_table.max_sustainable_clocks = (void *)max_sustainable_clocks;

	max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100;
	max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100;
	max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100;
	max_sustainable_clocks->display_clock = 0xFFFFFFFF;
	max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
	max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;

963
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
964 965
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->uclock),
966
							  SMU_UCLK);
967 968 969 970 971 972 973
		if (ret) {
			pr_err("[%s] failed to get max UCLK from SMC!",
			       __func__);
			return ret;
		}
	}

974
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
975 976
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->soc_clock),
977
							  SMU_SOCCLK);
978 979 980 981 982 983 984
		if (ret) {
			pr_err("[%s] failed to get max SOCCLK from SMC!",
			       __func__);
			return ret;
		}
	}

985
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
986 987
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->dcef_clock),
988
							  SMU_DCEFCLK);
989 990 991 992 993 994 995 996
		if (ret) {
			pr_err("[%s] failed to get max DCEFCLK from SMC!",
			       __func__);
			return ret;
		}

		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->display_clock),
997
							  SMU_DISPCLK);
998 999 1000 1001 1002 1003 1004
		if (ret) {
			pr_err("[%s] failed to get max DISPCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->phy_clock),
1005
							  SMU_PHYCLK);
1006 1007 1008 1009 1010 1011 1012
		if (ret) {
			pr_err("[%s] failed to get max PHYCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->pixel_clock),
1013
							  SMU_PIXCLK);
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
		if (ret) {
			pr_err("[%s] failed to get max PIXCLK from SMC!",
			       __func__);
			return ret;
		}
	}

	if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
		max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;

	return 0;
}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
uint32_t smu_v11_0_get_max_power_limit(struct smu_context *smu) {
	uint32_t od_limit, max_power_limit;
	struct smu_11_0_powerplay_table *powerplay_table = NULL;
	struct smu_table_context *table_context = &smu->smu_table;
	powerplay_table = table_context->power_play_table;

	max_power_limit = smu_get_pptable_power_limit(smu);

	if (!max_power_limit) {
		// If we couldn't get the table limit, fall back on first-read value
		if (!smu->default_power_limit)
			smu->default_power_limit = smu->power_limit;
		max_power_limit = smu->default_power_limit;
	}

	if (smu->od_enabled) {
		od_limit = le32_to_cpu(powerplay_table->overdrive_table.max[SMU_11_0_ODSETTING_POWERPERCENTAGE]);

		pr_debug("ODSETTING_POWERPERCENTAGE: %d (default: %d)\n", od_limit, smu->default_power_limit);

		max_power_limit *= (100 + od_limit);
		max_power_limit /= 100;
	}

	return max_power_limit;
}

1054
int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n)
1055
{
1056
	int ret = 0;
1057 1058 1059
	uint32_t max_power_limit;

	max_power_limit = smu_v11_0_get_max_power_limit(smu);
1060

1061 1062 1063 1064
	if (n > max_power_limit) {
		pr_err("New power limit (%d) is over the max allowed %d\n",
				n,
				max_power_limit);
1065
		return -EINVAL;
1066 1067
	}

1068 1069 1070
	if (n == 0)
		n = smu->default_power_limit;

1071 1072 1073
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) {
		pr_err("Setting new power limit is not supported!\n");
		return -EOPNOTSUPP;
1074 1075
	}

1076
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n);
1077
	if (ret) {
1078
		pr_err("[%s] Set power limit Failed!\n", __func__);
1079 1080
		return ret;
	}
1081
	smu->power_limit = n;
1082

1083
	return 0;
1084 1085
}

1086
int smu_v11_0_get_current_clk_freq(struct smu_context *smu,
1087 1088
					  enum smu_clk_type clk_id,
					  uint32_t *value)
1089 1090
{
	int ret = 0;
1091
	uint32_t freq = 0;
1092
	int asic_clk_id;
1093

1094
	if (clk_id >= SMU_CLK_COUNT || !value)
1095 1096
		return -EINVAL;

1097 1098 1099 1100
	asic_clk_id = smu_clk_get_index(smu, clk_id);
	if (asic_clk_id < 0)
		return -EINVAL;

1101
	/* if don't has GetDpmClockFreq Message, try get current clock by SmuMetrics_t */
1102
	if (smu_msg_get_index(smu, SMU_MSG_GetDpmClockFreq) < 0)
1103 1104 1105
		ret =  smu_get_current_clk_freq_by_table(smu, clk_id, &freq);
	else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmClockFreq,
1106
						  (asic_clk_id << 16));
1107 1108
		if (ret)
			return ret;
1109

1110 1111 1112 1113
		ret = smu_read_smc_arg(smu, &freq);
		if (ret)
			return ret;
	}
1114 1115 1116 1117 1118 1119 1120

	freq *= 100;
	*value = freq;

	return ret;
}

1121
static int smu_v11_0_set_thermal_range(struct smu_context *smu,
1122
				       struct smu_temperature_range range)
1123 1124
{
	struct amdgpu_device *adev = smu->adev;
1125 1126
	int low = SMU_THERMAL_MINIMUM_ALERT_TEMP;
	int high = SMU_THERMAL_MAXIMUM_ALERT_TEMP;
1127 1128
	uint32_t val;

1129 1130 1131 1132
	low = max(SMU_THERMAL_MINIMUM_ALERT_TEMP,
			range.min / SMU_TEMPERATURE_UNITS_PER_CENTIGRADES);
	high = min(SMU_THERMAL_MAXIMUM_ALERT_TEMP,
			range.max / SMU_TEMPERATURE_UNITS_PER_CENTIGRADES);
1133

1134 1135 1136 1137 1138 1139
	if (low > high)
		return -EINVAL;

	val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1);
1140 1141
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 0);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 0);
1142 1143
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high & 0xff));
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low & 0xff));
1144 1145 1146 1147 1148 1149 1150
	val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);

	return 0;
}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
static int smu_v11_0_enable_thermal_alert(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t val = 0;

	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val);

	return 0;
}

1165
int smu_v11_0_start_thermal_control(struct smu_context *smu)
1166 1167
{
	int ret = 0;
1168
	struct smu_temperature_range range;
1169 1170
	struct amdgpu_device *adev = smu->adev;

1171 1172
	if (!smu->pm_enabled)
		return ret;
1173

1174 1175
	memcpy(&range, &smu11_thermal_policy[0], sizeof(struct smu_temperature_range));

1176
	ret = smu_get_thermal_temperature_range(smu, &range);
1177 1178
	if (ret)
		return ret;
1179 1180

	if (smu->smu_table.thermal_controller_type) {
1181
		ret = smu_v11_0_set_thermal_range(smu, range);
1182 1183 1184 1185 1186 1187
		if (ret)
			return ret;

		ret = smu_v11_0_enable_thermal_alert(smu);
		if (ret)
			return ret;
1188

1189
		ret = smu_set_thermal_fan_table(smu);
1190 1191 1192 1193
		if (ret)
			return ret;
	}

1194 1195 1196 1197 1198 1199 1200 1201 1202
	adev->pm.dpm.thermal.min_temp = range.min;
	adev->pm.dpm.thermal.max_temp = range.max;
	adev->pm.dpm.thermal.max_edge_emergency_temp = range.edge_emergency_max;
	adev->pm.dpm.thermal.min_hotspot_temp = range.hotspot_min;
	adev->pm.dpm.thermal.max_hotspot_crit_temp = range.hotspot_crit_max;
	adev->pm.dpm.thermal.max_hotspot_emergency_temp = range.hotspot_emergency_max;
	adev->pm.dpm.thermal.min_mem_temp = range.mem_min;
	adev->pm.dpm.thermal.max_mem_crit_temp = range.mem_crit_max;
	adev->pm.dpm.thermal.max_mem_emergency_temp = range.mem_emergency_max;
1203 1204 1205 1206

	return ret;
}

1207
int smu_v11_0_stop_thermal_control(struct smu_context *smu)
1208 1209 1210 1211 1212 1213 1214 1215
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, 0);

	return 0;
}

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
static uint16_t convert_to_vddc(uint8_t vid)
{
	return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE);
}

static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t vdd = 0, val_vid = 0;

	if (!value)
		return -EINVAL;
	val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) &
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >>
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT;

	vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid);

	*value = vdd;

	return 0;

}

1240
int smu_v11_0_read_sensor(struct smu_context *smu,
1241 1242 1243 1244
				 enum amd_pp_sensors sensor,
				 void *data, uint32_t *size)
{
	int ret = 0;
1245 1246 1247 1248

	if(!data || !size)
		return -EINVAL;

1249
	switch (sensor) {
1250
	case AMDGPU_PP_SENSOR_GFX_MCLK:
1251
		ret = smu_get_current_clk_freq(smu, SMU_UCLK, (uint32_t *)data);
1252 1253 1254
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_SCLK:
1255
		ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, (uint32_t *)data);
1256
		*size = 4;
1257
		break;
1258 1259 1260
	case AMDGPU_PP_SENSOR_VDDGFX:
		ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
		*size = 4;
1261
		break;
1262 1263 1264 1265
	case AMDGPU_PP_SENSOR_MIN_FAN_RPM:
		*(uint32_t *)data = 0;
		*size = 4;
		break;
1266
	default:
1267
		ret = smu_common_read_sensor(smu, sensor, data, size);
1268 1269 1270 1271 1272 1273 1274 1275 1276
		break;
	}

	if (ret)
		*size = 0;

	return ret;
}

1277
int
1278 1279 1280 1281 1282 1283
smu_v11_0_display_clock_voltage_request(struct smu_context *smu,
					struct pp_display_clock_request
					*clock_req)
{
	enum amd_pp_clock_type clk_type = clock_req->clock_type;
	int ret = 0;
1284
	enum smu_clk_type clk_select = 0;
1285 1286
	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;

1287 1288
	if (!smu->pm_enabled)
		return -EINVAL;
1289

1290
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) ||
1291
		smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1292 1293
		switch (clk_type) {
		case amd_pp_dcef_clock:
1294
			clk_select = SMU_DCEFCLK;
1295 1296
			break;
		case amd_pp_disp_clock:
1297
			clk_select = SMU_DISPCLK;
1298 1299
			break;
		case amd_pp_pixel_clock:
1300
			clk_select = SMU_PIXCLK;
1301 1302
			break;
		case amd_pp_phy_clock:
1303
			clk_select = SMU_PHYCLK;
1304
			break;
1305 1306 1307
		case amd_pp_mem_clock:
			clk_select = SMU_UCLK;
			break;
1308 1309 1310 1311 1312 1313 1314 1315 1316
		default:
			pr_info("[%s] Invalid Clock Type!", __func__);
			ret = -EINVAL;
			break;
		}

		if (ret)
			goto failed;

1317 1318 1319
		if (clk_select == SMU_UCLK && smu->disable_uclk_switch)
			return 0;

1320
		ret = smu_set_hard_freq_range(smu, clk_select, clk_freq, 0);
1321 1322 1323

		if(clk_select == SMU_UCLK)
			smu->hard_min_uclk_req_from_dal = clk_freq;
1324 1325 1326 1327 1328 1329
	}

failed:
	return ret;
}

1330
int smu_v11_0_gfx_off_control(struct smu_context *smu, bool enable)
1331 1332
{
	int ret = 0;
1333
	struct amdgpu_device *adev = smu->adev;
1334

1335 1336 1337 1338
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		break;
	case CHIP_NAVI10:
1339
	case CHIP_NAVI14:
1340
	case CHIP_NAVI12:
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
		if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
			return 0;
		if (enable)
			ret = smu_send_smc_msg(smu, SMU_MSG_AllowGfxOff);
		else
			ret = smu_send_smc_msg(smu, SMU_MSG_DisallowGfxOff);
		break;
	default:
		break;
	}
1351 1352 1353 1354

	return ret;
}

1355
uint32_t
1356 1357
smu_v11_0_get_fan_control_mode(struct smu_context *smu)
{
1358
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1359 1360 1361 1362 1363 1364
		return AMD_FAN_CTRL_MANUAL;
	else
		return AMD_FAN_CTRL_AUTO;
}

static int
1365
smu_v11_0_auto_fan_control(struct smu_context *smu, bool auto_fan_control)
1366 1367 1368
{
	int ret = 0;

1369
	if (!smu_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1370 1371
		return 0;

1372
	ret = smu_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, auto_fan_control);
1373 1374
	if (ret)
		pr_err("[%s]%s smc FAN CONTROL feature failed!",
1375
		       __func__, (auto_fan_control ? "Start" : "Stop"));
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394

	return ret;
}

static int
smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode)
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, TMIN, 0));
	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, FDO_PWM_MODE, mode));

	return 0;
}

1395
int
1396 1397 1398
smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
1399
	uint32_t duty100, duty;
1400 1401 1402 1403 1404
	uint64_t tmp64;

	if (speed > 100)
		speed = 100;

1405
	if (smu_v11_0_auto_fan_control(smu, 0))
1406
		return -EINVAL;
1407

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1),
				CG_FDO_CTRL1, FMAX_DUTY100);
	if (!duty100)
		return -EINVAL;

	tmp64 = (uint64_t)speed * duty100;
	do_div(tmp64, 100);
	duty = (uint32_t)tmp64;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0),
				   CG_FDO_CTRL0, FDO_STATIC_DUTY, duty));

	return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC);
}

1424
int
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
smu_v11_0_set_fan_control_mode(struct smu_context *smu,
			       uint32_t mode)
{
	int ret = 0;

	switch (mode) {
	case AMD_FAN_CTRL_NONE:
		ret = smu_v11_0_set_fan_speed_percent(smu, 100);
		break;
	case AMD_FAN_CTRL_MANUAL:
1435
		ret = smu_v11_0_auto_fan_control(smu, 0);
1436 1437
		break;
	case AMD_FAN_CTRL_AUTO:
1438
		ret = smu_v11_0_auto_fan_control(smu, 1);
1439 1440 1441 1442 1443 1444
		break;
	default:
		break;
	}

	if (ret) {
1445
		pr_err("[%s]Set fan control mode failed!", __func__);
1446 1447 1448 1449 1450 1451
		return -EINVAL;
	}

	return ret;
}

1452
int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu,
1453 1454 1455 1456 1457 1458 1459 1460 1461
				       uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	int ret;
	uint32_t tach_period, crystal_clock_freq;

	if (!speed)
		return -EINVAL;

1462
	ret = smu_v11_0_auto_fan_control(smu, 0);
1463
	if (ret)
1464
		return ret;
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477

	crystal_clock_freq = amdgpu_asic_get_xclk(adev);
	tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed);
	WREG32_SOC15(THM, 0, mmCG_TACH_CTRL,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL),
				   CG_TACH_CTRL, TARGET_PERIOD,
				   tach_period));

	ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM);

	return ret;
}

1478
int smu_v11_0_set_xgmi_pstate(struct smu_context *smu,
1479 1480
				     uint32_t pstate)
{
1481 1482 1483
	int ret = 0;
	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetXgmiMode,
1484
					  pstate ? XGMI_MODE_PSTATE_D0 : XGMI_MODE_PSTATE_D3);
1485
	return ret;
1486 1487
}

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
#define THM_11_0__SRCID__THM_DIG_THERM_L2H		0		/* ASIC_TEMP > CG_THERMAL_INT.DIG_THERM_INTH  */
#define THM_11_0__SRCID__THM_DIG_THERM_H2L		1		/* ASIC_TEMP < CG_THERMAL_INT.DIG_THERM_INTL  */

static int smu_v11_0_irq_process(struct amdgpu_device *adev,
				 struct amdgpu_irq_src *source,
				 struct amdgpu_iv_entry *entry)
{
	uint32_t client_id = entry->client_id;
	uint32_t src_id = entry->src_id;

	if (client_id == SOC15_IH_CLIENTID_THM) {
		switch (src_id) {
		case THM_11_0__SRCID__THM_DIG_THERM_L2H:
			pr_warn("GPU over temperature range detected on PCIe %d:%d.%d!\n",
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;
		case THM_11_0__SRCID__THM_DIG_THERM_H2L:
			pr_warn("GPU under temperature range detected on PCIe %d:%d.%d!\n",
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;
		default:
			pr_warn("GPU under temperature range unknown src id (%d), detected on PCIe %d:%d.%d!\n",
				src_id,
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;

		}
	}

	return 0;
}

static const struct amdgpu_irq_src_funcs smu_v11_0_irq_funcs =
{
	.process = smu_v11_0_irq_process,
};

1531
int smu_v11_0_register_irq_handler(struct smu_context *smu)
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
{
	struct amdgpu_device *adev = smu->adev;
	struct amdgpu_irq_src *irq_src = smu->irq_source;
	int ret = 0;

	/* already register */
	if (irq_src)
		return 0;

	irq_src = kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
	if (!irq_src)
		return -ENOMEM;
	smu->irq_source = irq_src;

	irq_src->funcs = &smu_v11_0_irq_funcs;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_L2H,
				irq_src);
	if (ret)
		return ret;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_H2L,
				irq_src);
	if (ret)
		return ret;

	return ret;
}

1563
int smu_v11_0_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
		struct pp_smu_nv_clock_table *max_clocks)
{
	struct smu_table_context *table_context = &smu->smu_table;
	struct smu_11_0_max_sustainable_clocks *sustainable_clocks = NULL;

	if (!max_clocks || !table_context->max_sustainable_clocks)
		return -EINVAL;

	sustainable_clocks = table_context->max_sustainable_clocks;

	max_clocks->dcfClockInKhz =
			(unsigned int) sustainable_clocks->dcef_clock * 1000;
	max_clocks->displayClockInKhz =
			(unsigned int) sustainable_clocks->display_clock * 1000;
	max_clocks->phyClockInKhz =
			(unsigned int) sustainable_clocks->phy_clock * 1000;
	max_clocks->pixelClockInKhz =
			(unsigned int) sustainable_clocks->pixel_clock * 1000;
	max_clocks->uClockInKhz =
			(unsigned int) sustainable_clocks->uclock * 1000;
	max_clocks->socClockInKhz =
			(unsigned int) sustainable_clocks->soc_clock * 1000;
	max_clocks->dscClockInKhz = 0;
	max_clocks->dppClockInKhz = 0;
	max_clocks->fabricClockInKhz = 0;

	return 0;
}

1593
int smu_v11_0_set_azalia_d3_pme(struct smu_context *smu)
1594 1595 1596 1597 1598 1599 1600 1601
{
	int ret = 0;

	ret = smu_send_smc_msg(smu, SMU_MSG_BacoAudioD3PME);

	return ret;
}

1602 1603 1604 1605 1606
static int smu_v11_0_baco_set_armd3_sequence(struct smu_context *smu, enum smu_v11_0_baco_seq baco_seq)
{
	return smu_send_smc_msg_with_param(smu, SMU_MSG_ArmD3, baco_seq);
}

1607
bool smu_v11_0_baco_is_support(struct smu_context *smu)
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
{
	struct amdgpu_device *adev = smu->adev;
	struct smu_baco_context *smu_baco = &smu->smu_baco;
	uint32_t val;
	bool baco_support;

	mutex_lock(&smu_baco->mutex);
	baco_support = smu_baco->platform_support;
	mutex_unlock(&smu_baco->mutex);

	if (!baco_support)
		return false;

1621 1622 1623
	/* Arcturus does not support this bit mask */
	if (smu_feature_is_supported(smu, SMU_FEATURE_BACO_BIT) &&
	   !smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT))
1624 1625 1626 1627 1628 1629 1630 1631 1632
		return false;

	val = RREG32_SOC15(NBIO, 0, mmRCC_BIF_STRAP0);
	if (val & RCC_BIF_STRAP0__STRAP_PX_CAPABLE_MASK)
		return true;

	return false;
}

1633
enum smu_baco_state smu_v11_0_baco_get_state(struct smu_context *smu)
1634 1635
{
	struct smu_baco_context *smu_baco = &smu->smu_baco;
1636
	enum smu_baco_state baco_state;
1637 1638 1639 1640 1641 1642 1643 1644

	mutex_lock(&smu_baco->mutex);
	baco_state = smu_baco->state;
	mutex_unlock(&smu_baco->mutex);

	return baco_state;
}

1645
int smu_v11_0_baco_set_state(struct smu_context *smu, enum smu_baco_state state)
1646 1647 1648
{

	struct smu_baco_context *smu_baco = &smu->smu_baco;
1649 1650 1651 1652
	struct amdgpu_device *adev = smu->adev;
	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
	uint32_t bif_doorbell_intr_cntl;
	uint32_t data;
1653 1654 1655 1656 1657 1658 1659
	int ret = 0;

	if (smu_v11_0_baco_get_state(smu) == state)
		return 0;

	mutex_lock(&smu_baco->mutex);

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
	bif_doorbell_intr_cntl = RREG32_SOC15(NBIO, 0, mmBIF_DOORBELL_INT_CNTL);

	if (state == SMU_BACO_STATE_ENTER) {
		bif_doorbell_intr_cntl = REG_SET_FIELD(bif_doorbell_intr_cntl,
						BIF_DOORBELL_INT_CNTL,
						DOORBELL_INTERRUPT_DISABLE, 1);
		WREG32_SOC15(NBIO, 0, mmBIF_DOORBELL_INT_CNTL, bif_doorbell_intr_cntl);

		if (!ras || !ras->supported) {
			data = RREG32_SOC15(THM, 0, mmTHM_BACO_CNTL);
			data |= 0x80000000;
			WREG32_SOC15(THM, 0, mmTHM_BACO_CNTL, data);

			ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, 0);
		} else {
			ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, 1);
		}
	} else {
1678
		ret = smu_send_smc_msg(smu, SMU_MSG_ExitBaco);
1679 1680 1681
		if (ret)
			goto out;

1682 1683 1684 1685
		bif_doorbell_intr_cntl = REG_SET_FIELD(bif_doorbell_intr_cntl,
						BIF_DOORBELL_INT_CNTL,
						DOORBELL_INTERRUPT_DISABLE, 0);
		WREG32_SOC15(NBIO, 0, mmBIF_DOORBELL_INT_CNTL, bif_doorbell_intr_cntl);
1686 1687 1688 1689

		/* clear vbios scratch 6 and 7 for coming asic reinit */
		WREG32(adev->bios_scratch_reg_offset + 6, 0);
		WREG32(adev->bios_scratch_reg_offset + 7, 0);
1690
	}
1691 1692 1693 1694 1695 1696 1697 1698 1699
	if (ret)
		goto out;

	smu_baco->state = state;
out:
	mutex_unlock(&smu_baco->mutex);
	return ret;
}

1700
int smu_v11_0_baco_enter(struct smu_context *smu)
1701
{
1702
	struct amdgpu_device *adev = smu->adev;
1703 1704
	int ret = 0;

1705 1706 1707 1708 1709 1710
	/* Arcturus does not need this audio workaround */
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_v11_0_baco_set_armd3_sequence(smu, BACO_SEQ_BACO);
		if (ret)
			return ret;
	}
1711 1712 1713 1714 1715 1716 1717

	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_ENTER);
	if (ret)
		return ret;

	msleep(10);

1718 1719 1720 1721 1722 1723 1724
	return ret;
}

int smu_v11_0_baco_exit(struct smu_context *smu)
{
	int ret = 0;

1725 1726 1727 1728 1729 1730 1731
	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_EXIT);
	if (ret)
		return ret;

	return ret;
}

1732
int smu_v11_0_get_dpm_ultimate_freq(struct smu_context *smu, enum smu_clk_type clk_type,
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
						 uint32_t *min, uint32_t *max)
{
	int ret = 0, clk_id = 0;
	uint32_t param = 0;

	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0) {
		ret = -EINVAL;
		goto failed;
	}
	param = (clk_id & 0xffff) << 16;

	if (max) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq, param);
		if (ret)
			goto failed;
		ret = smu_read_smc_arg(smu, max);
		if (ret)
			goto failed;
	}

	if (min) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMinDpmFreq, param);
		if (ret)
			goto failed;
		ret = smu_read_smc_arg(smu, min);
		if (ret)
			goto failed;
	}

failed:
	return ret;
}

1767
int smu_v11_0_set_soft_freq_limited_range(struct smu_context *smu, enum smu_clk_type clk_type,
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
			    uint32_t min, uint32_t max)
{
	int ret = 0, clk_id = 0;
	uint32_t param;

	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	if (max > 0) {
		param = (uint32_t)((clk_id << 16) | (max & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxByFreq,
						  param);
		if (ret)
			return ret;
	}

	if (min > 0) {
		param = (uint32_t)((clk_id << 16) | (min & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMinByFreq,
						  param);
		if (ret)
			return ret;
	}

	return ret;
}

1796
int smu_v11_0_override_pcie_parameters(struct smu_context *smu)
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t pcie_gen = 0, pcie_width = 0;
	int ret;

	if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4)
		pcie_gen = 3;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
		pcie_gen = 2;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2)
		pcie_gen = 1;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1)
		pcie_gen = 0;

	/* Bit 31:16: LCLK DPM level. 0 is DPM0, and 1 is DPM1
	 * Bit 15:8:  PCIE GEN, 0 to 3 corresponds to GEN1 to GEN4
	 * Bit 7:0:   PCIE lane width, 1 to 7 corresponds is x1 to x32
	 */
	if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
		pcie_width = 6;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
		pcie_width = 5;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
		pcie_width = 4;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
		pcie_width = 3;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
		pcie_width = 2;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
		pcie_width = 1;

	ret = smu_update_pcie_parameters(smu, pcie_gen, pcie_width);

	if (ret)
		pr_err("[%s] Attempt to override pcie params failed!\n", __func__);

	return ret;

}
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862

int smu_v11_0_set_default_od_settings(struct smu_context *smu, bool initialize, size_t overdrive_table_size)
{
	struct smu_table_context *table_context = &smu->smu_table;
	int ret = 0;

	if (initialize) {
		if (table_context->overdrive_table) {
			return -EINVAL;
		}
		table_context->overdrive_table = kzalloc(overdrive_table_size, GFP_KERNEL);
		if (!table_context->overdrive_table) {
			return -ENOMEM;
		}
		ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, false);
		if (ret) {
			pr_err("Failed to export overdrive table!\n");
			return ret;
		}
	}
	ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, true);
	if (ret) {
		pr_err("Failed to import overdrive table!\n");
		return ret;
	}
	return ret;
}
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901

int smu_v11_0_set_performance_level(struct smu_context *smu,
				    enum amd_dpm_forced_level level)
{
	int ret = 0;
	uint32_t sclk_mask, mclk_mask, soc_mask;

	switch (level) {
	case AMD_DPM_FORCED_LEVEL_HIGH:
		ret = smu_force_dpm_limit_value(smu, true);
		break;
	case AMD_DPM_FORCED_LEVEL_LOW:
		ret = smu_force_dpm_limit_value(smu, false);
		break;
	case AMD_DPM_FORCED_LEVEL_AUTO:
	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
		ret = smu_unforce_dpm_levels(smu);
		break;
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
		ret = smu_get_profiling_clk_mask(smu, level,
						 &sclk_mask,
						 &mclk_mask,
						 &soc_mask);
		if (ret)
			return ret;
		smu_force_clk_levels(smu, SMU_SCLK, 1 << sclk_mask, false);
		smu_force_clk_levels(smu, SMU_MCLK, 1 << mclk_mask, false);
		smu_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask, false);
		break;
	case AMD_DPM_FORCED_LEVEL_MANUAL:
	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
	default:
		break;
	}
	return ret;
}