smu_v11_0.c 45.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include "pp_debug.h"
#include <linux/firmware.h>
#include "amdgpu.h"
#include "amdgpu_smu.h"
27
#include "atomfirmware.h"
28
#include "amdgpu_atomfirmware.h"
29
#include "smu_v11_0.h"
30
#include "soc15_common.h"
31
#include "atom.h"
32
#include "vega20_ppt.h"
33
#include "navi10_ppt.h"
34 35 36

#include "asic_reg/thm/thm_11_0_2_offset.h"
#include "asic_reg/thm/thm_11_0_2_sh_mask.h"
37 38
#include "asic_reg/mp/mp_11_0_offset.h"
#include "asic_reg/mp/mp_11_0_sh_mask.h"
39
#include "asic_reg/nbio/nbio_7_4_offset.h"
40 41
#include "asic_reg/smuio/smuio_11_0_0_offset.h"
#include "asic_reg/smuio/smuio_11_0_0_sh_mask.h"
42

43
MODULE_FIRMWARE("amdgpu/vega20_smc.bin");
44
MODULE_FIRMWARE("amdgpu/navi10_smc.bin");
45

46
#define SMU11_VOLTAGE_SCALE 4
47

48 49 50 51 52 53 54 55
static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu,
					      uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_66, msg);
	return 0;
}

56 57 58 59 60 61 62 63
static int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg)
{
	struct amdgpu_device *adev = smu->adev;

	*arg = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82);
	return 0;
}

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
static int smu_v11_0_wait_for_response(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t cur_value, i;

	for (i = 0; i < adev->usec_timeout; i++) {
		cur_value = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90);
		if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0)
			break;
		udelay(1);
	}

	/* timeout means wrong logic */
	if (i == adev->usec_timeout)
		return -ETIME;

80
	return RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90) == 0x1 ? 0 : -EIO;
81 82 83 84 85
}

static int smu_v11_0_send_msg(struct smu_context *smu, uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
86 87 88 89 90
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
91 92 93 94 95

	smu_v11_0_wait_for_response(smu);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

96
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
97 98 99 100

	ret = smu_v11_0_wait_for_response(smu);

	if (ret)
101
		pr_err("Failed to send message 0x%x, response 0x%x\n", index,
102 103 104 105 106 107 108 109 110 111 112 113
		       ret);

	return ret;

}

static int
smu_v11_0_send_msg_with_param(struct smu_context *smu, uint16_t msg,
			      uint32_t param)
{

	struct amdgpu_device *adev = smu->adev;
114 115 116 117 118
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
119 120 121

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
122 123
		pr_err("Failed to send message 0x%x, response 0x%x, param 0x%x\n",
		       index, ret, param);
124 125 126 127 128

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82, param);

129
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
130 131 132

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
133 134
		pr_err("Failed to send message 0x%x, response 0x%x param 0x%x\n",
		       index, ret, param);
135 136 137 138

	return ret;
}

139 140 141
static int smu_v11_0_init_microcode(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
142 143 144 145 146 147
	const char *chip_name;
	char fw_name[30];
	int err = 0;
	const struct smc_firmware_header_v1_0 *hdr;
	const struct common_firmware_header *header;
	struct amdgpu_firmware_info *ucode = NULL;
148

149 150 151 152
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		chip_name = "vega20";
		break;
153 154 155
	case CHIP_NAVI10:
		chip_name = "navi10";
		break;
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
	default:
		BUG();
	}

	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name);

	err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
	if (err)
		goto out;
	err = amdgpu_ucode_validate(adev->pm.fw);
	if (err)
		goto out;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	amdgpu_ucode_print_smc_hdr(&hdr->header);
	adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
		ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC];
		ucode->ucode_id = AMDGPU_UCODE_ID_SMC;
		ucode->fw = adev->pm.fw;
		header = (const struct common_firmware_header *)ucode->fw->data;
		adev->firmware.fw_size +=
			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
	}

out:
	if (err) {
		DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n",
			  fw_name);
		release_firmware(adev->pm.fw);
		adev->pm.fw = NULL;
	}
	return err;
190 191
}

192 193
static int smu_v11_0_load_microcode(struct smu_context *smu)
{
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
	struct amdgpu_device *adev = smu->adev;
	const uint32_t *src;
	const struct smc_firmware_header_v1_0 *hdr;
	uint32_t addr_start = MP1_SRAM;
	uint32_t i;
	uint32_t mp1_fw_flags;

	hdr = (const struct smc_firmware_header_v1_0 *)	adev->pm.fw->data;
	src = (const uint32_t *)(adev->pm.fw->data +
		le32_to_cpu(hdr->header.ucode_array_offset_bytes));

	for (i = 1; i < MP1_SMC_SIZE/4 - 1; i++) {
		WREG32_PCIE(addr_start, src[i]);
		addr_start += 4;
	}

	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & MP1_SMN_PUB_CTRL__RESET_MASK);
	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & ~MP1_SMN_PUB_CTRL__RESET_MASK);

	for (i = 0; i < adev->usec_timeout; i++) {
		mp1_fw_flags = RREG32_PCIE(MP1_Public |
			(smnMP1_FIRMWARE_FLAGS & 0xffffffff));
		if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
			MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
			break;
		udelay(1);
	}

	if (i == adev->usec_timeout)
		return -ETIME;

227 228 229
	return 0;
}

230 231
static int smu_v11_0_check_fw_status(struct smu_context *smu)
{
232 233 234
	struct amdgpu_device *adev = smu->adev;
	uint32_t mp1_fw_flags;

235 236
	mp1_fw_flags = RREG32_PCIE(MP1_Public |
				   (smnMP1_FIRMWARE_FLAGS & 0xffffffff));
237 238 239 240

	if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
	    MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
		return 0;
241

242
	return -EIO;
243 244
}

245 246
static int smu_v11_0_check_fw_version(struct smu_context *smu)
{
247 248 249
	uint32_t if_version = 0xff, smu_version = 0xff;
	uint16_t smu_major;
	uint8_t smu_minor, smu_debug;
250 251
	int ret = 0;

252
	ret = smu_get_smc_version(smu, &if_version, &smu_version);
253
	if (ret)
254
		return ret;
255

256 257 258 259 260 261
	smu_major = (smu_version >> 16) & 0xffff;
	smu_minor = (smu_version >> 8) & 0xff;
	smu_debug = (smu_version >> 0) & 0xff;

	pr_info("SMU Driver IF Version = 0x%08x, SMU FW Version = 0x%08x (%d.%d.%d)\n",
		if_version, smu_version, smu_major, smu_minor, smu_debug);
262

263 264
	if (if_version != smu->smc_if_version) {
		pr_err("SMU driver if version not matched\n");
265
		ret = -EINVAL;
266 267
	}

268 269 270
	return ret;
}

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
static int smu_v11_0_set_pptable_v2_0(struct smu_context *smu, void **table, uint32_t *size)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t ppt_offset_bytes;
	const struct smc_firmware_header_v2_0 *v2;

	v2 = (const struct smc_firmware_header_v2_0 *) adev->pm.fw->data;

	ppt_offset_bytes = le32_to_cpu(v2->ppt_offset_bytes);
	*size = le32_to_cpu(v2->ppt_size_bytes);
	*table = (uint8_t *)v2 + ppt_offset_bytes;

	return 0;
}

static int smu_v11_0_set_pptable_v2_1(struct smu_context *smu, void **table, uint32_t *size, uint32_t pptable_id)
{
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v2_1 *v2_1;
	struct smc_soft_pptable_entry *entries;
	uint32_t pptable_count = 0;
	int i = 0;

	v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data;
	entries = (struct smc_soft_pptable_entry *)
		((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset));
	pptable_count = le32_to_cpu(v2_1->pptable_count);
	for (i = 0; i < pptable_count; i++) {
		if (le32_to_cpu(entries[i].id) == pptable_id) {
			*table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes));
			*size = le32_to_cpu(entries[i].ppt_size_bytes);
			break;
		}
	}

	if (i == pptable_count)
		return -EINVAL;

	return 0;
}

static int smu_v11_0_setup_pptable(struct smu_context *smu)
313
{
314 315
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v1_0 *hdr;
316
	int ret, index;
317
	uint32_t size;
318
	uint8_t frev, crev;
319
	void *table;
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
	uint16_t version_major, version_minor;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	version_major = le16_to_cpu(hdr->header.header_version_major);
	version_minor = le16_to_cpu(hdr->header.header_version_minor);
	if (version_major == 2 && smu->smu_table.boot_values.pp_table_id > 0) {
		switch (version_minor) {
		case 0:
			ret = smu_v11_0_set_pptable_v2_0(smu, &table, &size);
			break;
		case 1:
			ret = smu_v11_0_set_pptable_v2_1(smu, &table, &size,
							 smu->smu_table.boot_values.pp_table_id);
			break;
		default:
			ret = -EINVAL;
			break;
		}
		if (ret)
			return ret;
340

341 342 343
	} else {
		index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
						    powerplayinfo);
344

345
		ret = smu_get_atom_data_table(smu, index, (uint16_t *)&size, &frev, &crev,
346 347 348 349
					      (uint8_t **)&table);
		if (ret)
			return ret;
	}
350

351 352 353 354
	if (!smu->smu_table.power_play_table)
		smu->smu_table.power_play_table = table;
	if (!smu->smu_table.power_play_table_size)
		smu->smu_table.power_play_table_size = size;
355 356 357 358

	return 0;
}

359 360 361 362 363 364 365
static int smu_v11_0_init_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0)
		return -EINVAL;

366
	return smu_alloc_dpm_context(smu);
367 368 369 370 371 372 373 374 375 376
}

static int smu_v11_0_fini_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0)
		return -EINVAL;

	kfree(smu_dpm->dpm_context);
377
	kfree(smu_dpm->golden_dpm_context);
378 379
	kfree(smu_dpm->dpm_current_power_state);
	kfree(smu_dpm->dpm_request_power_state);
380
	smu_dpm->dpm_context = NULL;
381
	smu_dpm->golden_dpm_context = NULL;
382
	smu_dpm->dpm_context_size = 0;
383 384
	smu_dpm->dpm_current_power_state = NULL;
	smu_dpm->dpm_request_power_state = NULL;
385 386 387 388

	return 0;
}

389 390 391 392
static int smu_v11_0_init_smc_tables(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = NULL;
393
	int ret = 0;
394

395
	if (smu_table->tables || smu_table->table_count == 0)
396 397
		return -EINVAL;

398 399
	tables = kcalloc(SMU_TABLE_COUNT, sizeof(struct smu_table),
			 GFP_KERNEL);
400 401 402 403 404
	if (!tables)
		return -ENOMEM;

	smu_table->tables = tables;

405 406 407
	ret = smu_tables_init(smu, tables);
	if (ret)
		return ret;
408

409 410 411 412
	ret = smu_v11_0_init_dpm_context(smu);
	if (ret)
		return ret;

413 414 415 416 417 418
	return 0;
}

static int smu_v11_0_fini_smc_tables(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
419
	int ret = 0;
420 421 422 423 424

	if (!smu_table->tables || smu_table->table_count == 0)
		return -EINVAL;

	kfree(smu_table->tables);
425
	kfree(smu_table->metrics_table);
426 427
	smu_table->tables = NULL;
	smu_table->table_count = 0;
428 429
	smu_table->metrics_table = NULL;
	smu_table->metrics_time = 0;
430

431 432 433
	ret = smu_v11_0_fini_dpm_context(smu);
	if (ret)
		return ret;
434 435
	return 0;
}
436 437 438 439 440

static int smu_v11_0_init_power(struct smu_context *smu)
{
	struct smu_power_context *smu_power = &smu->smu_power;

441 442
	if (!smu->pm_enabled)
		return 0;
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
	if (smu_power->power_context || smu_power->power_context_size != 0)
		return -EINVAL;

	smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
					   GFP_KERNEL);
	if (!smu_power->power_context)
		return -ENOMEM;
	smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context);

	return 0;
}

static int smu_v11_0_fini_power(struct smu_context *smu)
{
	struct smu_power_context *smu_power = &smu->smu_power;

459 460
	if (!smu->pm_enabled)
		return 0;
461 462 463 464 465 466 467 468 469 470
	if (!smu_power->power_context || smu_power->power_context_size == 0)
		return -EINVAL;

	kfree(smu_power->power_context);
	smu_power->power_context = NULL;
	smu_power->power_context_size = 0;

	return 0;
}

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu)
{
	int ret, index;
	uint16_t size;
	uint8_t frev, crev;
	struct atom_common_table_header *header;
	struct atom_firmware_info_v3_3 *v_3_3;
	struct atom_firmware_info_v3_1 *v_3_1;

	index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
					    firmwareinfo);

	ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev,
				      (uint8_t **)&header);
	if (ret)
		return ret;

	if (header->format_revision != 3) {
		pr_err("unknown atom_firmware_info version! for smu11\n");
		return -EINVAL;
	}

	switch (header->content_revision) {
	case 0:
	case 1:
	case 2:
		v_3_1 = (struct atom_firmware_info_v3_1 *)header;
		smu->smu_table.boot_values.revision = v_3_1->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = 0;
		break;
	case 3:
	default:
		v_3_3 = (struct atom_firmware_info_v3_3 *)header;
		smu->smu_table.boot_values.revision = v_3_3->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id;
	}

	return 0;
}

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
static int smu_v11_0_get_clk_info_from_vbios(struct smu_context *smu)
{
	int ret, index;
	struct amdgpu_device *adev = smu->adev;
	struct atom_get_smu_clock_info_parameters_v3_1 input = {0};
	struct atom_get_smu_clock_info_output_parameters_v3_1 *output;

	input.clk_id = SMU11_SYSPLL0_SOCCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.socclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCEFCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dcefclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_ECLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.eclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_VCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.vclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

605 606 607
	return 0;
}

608 609 610 611 612 613 614 615 616 617 618
static int smu_v11_0_notify_memory_pool_location(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	int ret = 0;
	uint64_t address;
	uint32_t address_low, address_high;

	if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL)
		return ret;

619
	address = (uintptr_t)memory_pool->cpu_addr;
620 621 622 623
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

	ret = smu_send_smc_msg_with_param(smu,
624
					  SMU_MSG_SetSystemVirtualDramAddrHigh,
625 626 627 628
					  address_high);
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu,
629
					  SMU_MSG_SetSystemVirtualDramAddrLow,
630 631 632 633 634 635 636 637
					  address_low);
	if (ret)
		return ret;

	address = memory_pool->mc_address;
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

638
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh,
639 640 641
					  address_high);
	if (ret)
		return ret;
642
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow,
643 644 645
					  address_low);
	if (ret)
		return ret;
646
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize,
647 648 649 650 651 652 653
					  (uint32_t)memory_pool->size);
	if (ret)
		return ret;

	return ret;
}

654 655 656 657 658 659 660 661
static int smu_v11_0_check_pptable(struct smu_context *smu)
{
	int ret;

	ret = smu_check_powerplay_table(smu);
	return ret;
}

662 663 664 665 666
static int smu_v11_0_parse_pptable(struct smu_context *smu)
{
	int ret;

	struct smu_table_context *table_context = &smu->smu_table;
667
	struct smu_table *table = &table_context->tables[SMU_TABLE_PPTABLE];
668 669 670 671

	if (table_context->driver_pptable)
		return -EINVAL;

672
	table_context->driver_pptable = kzalloc(table->size, GFP_KERNEL);
673 674 675 676 677

	if (!table_context->driver_pptable)
		return -ENOMEM;

	ret = smu_store_powerplay_table(smu);
678 679 680 681
	if (ret)
		return -EINVAL;

	ret = smu_append_powerplay_table(smu);
682 683 684 685

	return ret;
}

686 687
static int smu_v11_0_populate_smc_pptable(struct smu_context *smu)
{
688
	int ret;
689

690
	ret = smu_set_default_dpm_table(smu);
691

692
	return ret;
693 694
}

695 696
static int smu_v11_0_write_pptable(struct smu_context *smu)
{
697
	struct smu_table_context *table_context = &smu->smu_table;
698 699
	int ret = 0;

700 701
	ret = smu_update_table(smu, SMU_TABLE_PPTABLE,
			       table_context->driver_pptable, true);
702 703 704 705

	return ret;
}

706 707
static int smu_v11_0_write_watermarks_table(struct smu_context *smu)
{
708 709 710 711 712 713 714 715 716 717 718 719
	int ret = 0;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *table = NULL;

	table = &smu_table->tables[SMU_TABLE_WATERMARKS];
	if (!table)
		return -EINVAL;

	if (!table->cpu_addr)
		return -EINVAL;

	ret = smu_update_table(smu, SMU_TABLE_WATERMARKS, table->cpu_addr,
720
				true);
721 722

	return ret;
723 724
}

725 726 727 728 729 730 731 732 733 734 735 736
static int smu_v11_0_set_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk)
{
	int ret;

	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetMinDeepSleepDcefclk, clk);
	if (ret)
		pr_err("SMU11 attempt to set divider for DCEFCLK Failed!");

	return ret;
}

737 738 739 740
static int smu_v11_0_set_min_dcef_deep_sleep(struct smu_context *smu)
{
	struct smu_table_context *table_context = &smu->smu_table;

741 742
	if (!smu->pm_enabled)
		return 0;
743 744 745
	if (!table_context)
		return -EINVAL;

746
	return smu_set_deep_sleep_dcefclk(smu,
747 748 749
					  table_context->boot_values.dcefclk / 100);
}

750 751 752
static int smu_v11_0_set_tool_table_location(struct smu_context *smu)
{
	int ret = 0;
753
	struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG];
754 755 756

	if (tool_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
757
				SMU_MSG_SetToolsDramAddrHigh,
758 759 760
				upper_32_bits(tool_table->mc_address));
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
761
				SMU_MSG_SetToolsDramAddrLow,
762 763 764 765 766 767
				lower_32_bits(tool_table->mc_address));
	}

	return ret;
}

768 769 770
static int smu_v11_0_init_display(struct smu_context *smu)
{
	int ret = 0;
771 772 773

	if (!smu->pm_enabled)
		return ret;
774 775 776 777
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, 0);
	return ret;
}

778 779 780 781 782
static int smu_v11_0_update_feature_enable_state(struct smu_context *smu, uint32_t feature_id, bool enabled)
{
	uint32_t feature_low = 0, feature_high = 0;
	int ret = 0;

783 784
	if (!smu->pm_enabled)
		return ret;
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
	if (feature_id >= 0 && feature_id < 31)
		feature_low = (1 << feature_id);
	else if (feature_id > 31 && feature_id < 63)
		feature_high = (1 << feature_id);
	else
		return -EINVAL;

	if (enabled) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesLow,
						  feature_low);
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesHigh,
						  feature_high);
		if (ret)
			return ret;

	} else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesLow,
						  feature_low);
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesHigh,
						  feature_high);
		if (ret)
			return ret;

	}

	return ret;
}

817 818 819 820 821 822
static int smu_v11_0_set_allowed_mask(struct smu_context *smu)
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
	uint32_t feature_mask[2];

823
	mutex_lock(&feature->mutex);
824
	if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64)
825
		goto failed;
826 827 828 829 830 831

	bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64);

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh,
					  feature_mask[1]);
	if (ret)
832
		goto failed;
833 834 835 836

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow,
					  feature_mask[0]);
	if (ret)
837
		goto failed;
838

839 840
failed:
	mutex_unlock(&feature->mutex);
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
	return ret;
}

static int smu_v11_0_get_enabled_mask(struct smu_context *smu,
				      uint32_t *feature_mask, uint32_t num)
{
	uint32_t feature_mask_high = 0, feature_mask_low = 0;
	int ret = 0;

	if (!feature_mask || num < 2)
		return -EINVAL;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_high);
	if (ret)
		return ret;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_low);
	if (ret)
		return ret;

	feature_mask[0] = feature_mask_low;
	feature_mask[1] = feature_mask_high;

	return ret;
}

873 874
static int smu_v11_0_system_features_control(struct smu_context *smu,
					     bool en)
875 876 877 878 879
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_mask[2];
	int ret = 0;

880 881 882 883 884 885 886
	if (smu->pm_enabled) {
		ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures :
					     SMU_MSG_DisableAllSmuFeatures));
		if (ret)
			return ret;
	}

887 888 889 890 891 892 893 894 895 896 897 898
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
		return ret;

	bitmap_copy(feature->enabled, (unsigned long *)&feature_mask,
		    feature->feature_num);
	bitmap_copy(feature->supported, (unsigned long *)&feature_mask,
		    feature->feature_num);

	return ret;
}

899 900 901 902
static int smu_v11_0_notify_display_change(struct smu_context *smu)
{
	int ret = 0;

903 904
	if (!smu->pm_enabled)
		return ret;
905 906 907
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
	    smu->adev->gmc.vram_type == AMDGPU_VRAM_TYPE_HBM)
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1);
908 909 910 911

	return ret;
}

912 913
static int
smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock,
914
				    enum smu_clk_type clock_select)
915 916 917
{
	int ret = 0;

918 919
	if (!smu->pm_enabled)
		return ret;
920
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq,
921
					  smu_clk_get_index(smu, clock_select) << 16);
922 923 924 925 926 927 928 929 930 931 932 933 934 935
	if (ret) {
		pr_err("[GetMaxSustainableClock] Failed to get max DC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);
	if (ret)
		return ret;

	if (*clock != 0)
		return 0;

	/* if DC limit is zero, return AC limit */
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
936
					  smu_clk_get_index(smu, clock_select) << 16);
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
	if (ret) {
		pr_err("[GetMaxSustainableClock] failed to get max AC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);

	return ret;
}

static int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu)
{
	struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks;
	int ret = 0;

	max_sustainable_clocks = kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks),
					 GFP_KERNEL);
	smu->smu_table.max_sustainable_clocks = (void *)max_sustainable_clocks;

	max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100;
	max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100;
	max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100;
	max_sustainable_clocks->display_clock = 0xFFFFFFFF;
	max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
	max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;

963
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
964 965
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->uclock),
966
							  SMU_UCLK);
967 968 969 970 971 972 973
		if (ret) {
			pr_err("[%s] failed to get max UCLK from SMC!",
			       __func__);
			return ret;
		}
	}

974
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
975 976
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->soc_clock),
977
							  SMU_SOCCLK);
978 979 980 981 982 983 984
		if (ret) {
			pr_err("[%s] failed to get max SOCCLK from SMC!",
			       __func__);
			return ret;
		}
	}

985
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
986 987
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->dcef_clock),
988
							  SMU_DCEFCLK);
989 990 991 992 993 994 995 996
		if (ret) {
			pr_err("[%s] failed to get max DCEFCLK from SMC!",
			       __func__);
			return ret;
		}

		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->display_clock),
997
							  SMU_DISPCLK);
998 999 1000 1001 1002 1003 1004
		if (ret) {
			pr_err("[%s] failed to get max DISPCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->phy_clock),
1005
							  SMU_PHYCLK);
1006 1007 1008 1009 1010 1011 1012
		if (ret) {
			pr_err("[%s] failed to get max PHYCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->pixel_clock),
1013
							  SMU_PIXCLK);
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
		if (ret) {
			pr_err("[%s] failed to get max PIXCLK from SMC!",
			       __func__);
			return ret;
		}
	}

	if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
		max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;

	return 0;
}

1027 1028 1029
static int smu_v11_0_get_power_limit(struct smu_context *smu,
				     uint32_t *limit,
				     bool get_default)
1030
{
1031
	int ret = 0;
1032

1033 1034 1035
	if (get_default) {
		mutex_lock(&smu->mutex);
		*limit = smu->default_power_limit;
1036 1037 1038 1039
		if (smu->od_enabled) {
			*limit *= (100 + smu->smu_table.TDPODLimit);
			*limit /= 100;
		}
1040 1041 1042
		mutex_unlock(&smu->mutex);
	} else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetPptLimit,
1043
			smu_power_get_index(smu, SMU_POWER_SOURCE_AC) << 16);
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
		if (ret) {
			pr_err("[%s] get PPT limit failed!", __func__);
			return ret;
		}
		smu_read_smc_arg(smu, limit);
		smu->power_limit = *limit;
	}

	return ret;
}

static int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n)
{
1057
	uint32_t max_power_limit;
1058 1059
	int ret = 0;

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
	if (n == 0)
		n = smu->default_power_limit;

	max_power_limit = smu->default_power_limit;

	if (smu->od_enabled) {
		max_power_limit *= (100 + smu->smu_table.TDPODLimit);
		max_power_limit /= 100;
	}

1070
	if (smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT))
1071
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n);
1072
	if (ret) {
1073
		pr_err("[%s] Set power limit Failed!", __func__);
1074 1075 1076
		return ret;
	}

1077
	return ret;
1078 1079
}

1080 1081 1082
static int smu_v11_0_get_current_clk_freq(struct smu_context *smu,
					  enum smu_clk_type clk_id,
					  uint32_t *value)
1083 1084 1085 1086
{
	int ret = 0;
	uint32_t freq;

1087
	if (clk_id >= SMU_CLK_COUNT || !value)
1088 1089
		return -EINVAL;

1090 1091
	/* if don't has GetDpmClockFreq Message, try get current clock by SmuMetrics_t */
	if (smu_msg_get_index(smu, SMU_MSG_GetDpmClockFreq) == 0)
1092 1093 1094 1095 1096 1097
		ret =  smu_get_current_clk_freq_by_table(smu, clk_id, &freq);
	else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmClockFreq,
						  (smu_clk_get_index(smu, clk_id) << 16));
		if (ret)
			return ret;
1098

1099 1100 1101 1102
		ret = smu_read_smc_arg(smu, &freq);
		if (ret)
			return ret;
	}
1103 1104 1105 1106 1107 1108 1109

	freq *= 100;
	*value = freq;

	return ret;
}

1110
static int smu_v11_0_set_thermal_range(struct smu_context *smu,
1111
				       struct smu_temperature_range *range)
1112 1113
{
	struct amdgpu_device *adev = smu->adev;
1114 1115 1116 1117
	int low = SMU_THERMAL_MINIMUM_ALERT_TEMP *
		SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	int high = SMU_THERMAL_MAXIMUM_ALERT_TEMP *
		SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
1118 1119
	uint32_t val;

1120 1121 1122
	if (!range)
		return -EINVAL;

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	if (low < range->min)
		low = range->min;
	if (high > range->max)
		high = range->max;

	if (low > high)
		return -EINVAL;

	val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1);
1134 1135
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 0);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 0);
1136 1137
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high / SMU_TEMPERATURE_UNITS_PER_CENTIGRADES));
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low / SMU_TEMPERATURE_UNITS_PER_CENTIGRADES));
1138 1139 1140 1141 1142 1143 1144
	val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);

	return 0;
}

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
static int smu_v11_0_enable_thermal_alert(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t val = 0;

	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val);

	return 0;
}

1159 1160 1161
static int smu_v11_0_start_thermal_control(struct smu_context *smu)
{
	int ret = 0;
1162
	struct smu_temperature_range range = {
1163 1164 1165 1166 1167 1168 1169 1170 1171
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX};
1172 1173
	struct amdgpu_device *adev = smu->adev;

1174 1175
	if (!smu->pm_enabled)
		return ret;
1176
	ret = smu_get_thermal_temperature_range(smu, &range);
1177 1178 1179 1180 1181 1182 1183 1184 1185

	if (smu->smu_table.thermal_controller_type) {
		ret = smu_v11_0_set_thermal_range(smu, &range);
		if (ret)
			return ret;

		ret = smu_v11_0_enable_thermal_alert(smu);
		if (ret)
			return ret;
1186

1187
		ret = smu_set_thermal_fan_table(smu);
1188 1189 1190 1191 1192 1193
		if (ret)
			return ret;
	}

	adev->pm.dpm.thermal.min_temp = range.min;
	adev->pm.dpm.thermal.max_temp = range.max;
1194 1195 1196 1197 1198 1199 1200
	adev->pm.dpm.thermal.max_edge_emergency_temp = range.edge_emergency_max;
	adev->pm.dpm.thermal.min_hotspot_temp = range.hotspot_min;
	adev->pm.dpm.thermal.max_hotspot_crit_temp = range.hotspot_crit_max;
	adev->pm.dpm.thermal.max_hotspot_emergency_temp = range.hotspot_emergency_max;
	adev->pm.dpm.thermal.min_mem_temp = range.mem_min;
	adev->pm.dpm.thermal.max_mem_crit_temp = range.mem_crit_max;
	adev->pm.dpm.thermal.max_mem_emergency_temp = range.mem_emergency_max;
1201 1202 1203 1204

	return ret;
}

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
static uint16_t convert_to_vddc(uint8_t vid)
{
	return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE);
}

static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t vdd = 0, val_vid = 0;

	if (!value)
		return -EINVAL;
	val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) &
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >>
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT;

	vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid);

	*value = vdd;

	return 0;

}

1229 1230 1231 1232 1233 1234
static int smu_v11_0_read_sensor(struct smu_context *smu,
				 enum amd_pp_sensors sensor,
				 void *data, uint32_t *size)
{
	int ret = 0;
	switch (sensor) {
1235
	case AMDGPU_PP_SENSOR_GFX_MCLK:
1236
		ret = smu_get_current_clk_freq(smu, SMU_UCLK, (uint32_t *)data);
1237 1238 1239
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_SCLK:
1240
		ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, (uint32_t *)data);
1241
		*size = 4;
1242
		break;
1243 1244 1245
	case AMDGPU_PP_SENSOR_VDDGFX:
		ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
		*size = 4;
1246
		break;
1247 1248 1249 1250
	case AMDGPU_PP_SENSOR_MIN_FAN_RPM:
		*(uint32_t *)data = 0;
		*size = 4;
		break;
1251
	default:
1252
		ret = smu_common_read_sensor(smu, sensor, data, size);
1253 1254 1255
		break;
	}

1256 1257 1258 1259
	/* try get sensor data by asic */
	if (ret)
		ret = smu_asic_read_sensor(smu, sensor, data, size);

1260 1261 1262 1263 1264 1265
	if (ret)
		*size = 0;

	return ret;
}

1266 1267 1268 1269 1270 1271 1272
static int
smu_v11_0_display_clock_voltage_request(struct smu_context *smu,
					struct pp_display_clock_request
					*clock_req)
{
	enum amd_pp_clock_type clk_type = clock_req->clock_type;
	int ret = 0;
1273
	enum smu_clk_type clk_select = 0;
1274 1275
	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;

1276 1277
	if (!smu->pm_enabled)
		return -EINVAL;
1278
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
1279 1280
		switch (clk_type) {
		case amd_pp_dcef_clock:
1281
			clk_select = SMU_DCEFCLK;
1282 1283
			break;
		case amd_pp_disp_clock:
1284
			clk_select = SMU_DISPCLK;
1285 1286
			break;
		case amd_pp_pixel_clock:
1287
			clk_select = SMU_PIXCLK;
1288 1289
			break;
		case amd_pp_phy_clock:
1290
			clk_select = SMU_PHYCLK;
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
			break;
		default:
			pr_info("[%s] Invalid Clock Type!", __func__);
			ret = -EINVAL;
			break;
		}

		if (ret)
			goto failed;

		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq,
1302
			(smu_clk_get_index(smu, clk_select) << 16) | clk_freq);
1303 1304 1305 1306 1307 1308
	}

failed:
	return ret;
}

1309 1310 1311 1312 1313 1314
static int
smu_v11_0_set_watermarks_for_clock_ranges(struct smu_context *smu, struct
					  dm_pp_wm_sets_with_clock_ranges_soc15
					  *clock_ranges)
{
	int ret = 0;
1315
	struct smu_table *watermarks = &smu->smu_table.tables[SMU_TABLE_WATERMARKS];
1316
	void *table = watermarks->cpu_addr;
1317 1318

	if (!smu->disable_watermark &&
1319 1320
	    smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
	    smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
1321
		smu_set_watermarks_table(smu, table, clock_ranges);
1322 1323 1324 1325 1326 1327 1328
		smu->watermarks_bitmap |= WATERMARKS_EXIST;
		smu->watermarks_bitmap &= ~WATERMARKS_LOADED;
	}

	return ret;
}

1329 1330 1331
static int smu_v11_0_gfx_off_control(struct smu_context *smu, bool enable)
{
	int ret = 0;
1332
	struct amdgpu_device *adev = smu->adev;
1333

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		break;
	case CHIP_NAVI10:
		if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
			return 0;
		mutex_lock(&smu->mutex);
		if (enable)
			ret = smu_send_smc_msg(smu, SMU_MSG_AllowGfxOff);
		else
			ret = smu_send_smc_msg(smu, SMU_MSG_DisallowGfxOff);
		mutex_unlock(&smu->mutex);
		break;
	default:
		break;
	}
1350 1351 1352 1353

	return ret;
}

1354 1355
static int smu_v11_0_set_od8_default_settings(struct smu_context *smu,
					      bool initialize)
1356 1357
{
	struct smu_table_context *table_context = &smu->smu_table;
1358
	struct smu_table *table = &table_context->tables[SMU_TABLE_OVERDRIVE];
1359 1360
	int ret;

1361 1362 1363 1364 1365 1366 1367
	/**
	 * TODO: Enable overdrive for navi10, that replies on smc/pptable
	 * support.
	 */
	if (smu->adev->asic_type == CHIP_NAVI10)
		return 0;

1368 1369 1370
	if (initialize) {
		if (table_context->overdrive_table)
			return -EINVAL;
1371

1372
		table_context->overdrive_table = kzalloc(table->size, GFP_KERNEL);
1373

1374 1375
		if (!table_context->overdrive_table)
			return -ENOMEM;
1376

1377 1378
		ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE,
				       table_context->overdrive_table, false);
1379 1380 1381 1382
		if (ret) {
			pr_err("Failed to export over drive table!\n");
			return ret;
		}
1383

1384 1385
		smu_set_default_od8_settings(smu);
	}
1386

1387 1388
	ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE,
			       table_context->overdrive_table, true);
1389 1390 1391 1392 1393 1394 1395 1396
	if (ret) {
		pr_err("Failed to import over drive table!\n");
		return ret;
	}

	return 0;
}

1397 1398 1399 1400 1401 1402 1403
static int smu_v11_0_update_od8_settings(struct smu_context *smu,
					uint32_t index,
					uint32_t value)
{
	struct smu_table_context *table_context = &smu->smu_table;
	int ret;

1404
	ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE,
1405 1406 1407 1408 1409 1410 1411 1412
			       table_context->overdrive_table, false);
	if (ret) {
		pr_err("Failed to export over drive table!\n");
		return ret;
	}

	smu_update_specified_od8_value(smu, index, value);

1413
	ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE,
1414 1415 1416 1417 1418 1419 1420 1421 1422
			       table_context->overdrive_table, true);
	if (ret) {
		pr_err("Failed to import over drive table!\n");
		return ret;
	}

	return 0;
}

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
static int smu_v11_0_get_current_rpm(struct smu_context *smu,
				     uint32_t *current_rpm)
{
	int ret;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetCurrentRpm);

	if (ret) {
		pr_err("Attempt to get current RPM from SMC Failed!\n");
		return ret;
	}

	smu_read_smc_arg(smu, current_rpm);

	return 0;
}

1440 1441 1442
static uint32_t
smu_v11_0_get_fan_control_mode(struct smu_context *smu)
{
1443
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
		return AMD_FAN_CTRL_MANUAL;
	else
		return AMD_FAN_CTRL_AUTO;
}

static int
smu_v11_0_smc_fan_control(struct smu_context *smu, bool start)
{
	int ret = 0;

1454
	if (smu_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1455 1456
		return 0;

1457
	ret = smu_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, start);
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	if (ret)
		pr_err("[%s]%s smc FAN CONTROL feature failed!",
		       __func__, (start ? "Start" : "Stop"));

	return ret;
}

static int
smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode)
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, TMIN, 0));
	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, FDO_PWM_MODE, mode));

	return 0;
}

static int
smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t duty100;
	uint32_t duty;
	uint64_t tmp64;
	bool stop = 0;

	if (speed > 100)
		speed = 100;

	if (smu_v11_0_smc_fan_control(smu, stop))
		return -EINVAL;
	duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1),
				CG_FDO_CTRL1, FMAX_DUTY100);
	if (!duty100)
		return -EINVAL;

	tmp64 = (uint64_t)speed * duty100;
	do_div(tmp64, 100);
	duty = (uint32_t)tmp64;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0),
				   CG_FDO_CTRL0, FDO_STATIC_DUTY, duty));

	return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC);
}

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
static int
smu_v11_0_set_fan_control_mode(struct smu_context *smu,
			       uint32_t mode)
{
	int ret = 0;
	bool start = 1;
	bool stop  = 0;

	switch (mode) {
	case AMD_FAN_CTRL_NONE:
		ret = smu_v11_0_set_fan_speed_percent(smu, 100);
		break;
	case AMD_FAN_CTRL_MANUAL:
		ret = smu_v11_0_smc_fan_control(smu, stop);
		break;
	case AMD_FAN_CTRL_AUTO:
		ret = smu_v11_0_smc_fan_control(smu, start);
		break;
	default:
		break;
	}

	if (ret) {
1533
		pr_err("[%s]Set fan control mode failed!", __func__);
1534 1535 1536 1537 1538 1539
		return -EINVAL;
	}

	return ret;
}

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
static int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu,
				       uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	int ret;
	uint32_t tach_period, crystal_clock_freq;
	bool stop = 0;

	if (!speed)
		return -EINVAL;

	mutex_lock(&(smu->mutex));
	ret = smu_v11_0_smc_fan_control(smu, stop);
	if (ret)
		goto set_fan_speed_rpm_failed;

	crystal_clock_freq = amdgpu_asic_get_xclk(adev);
	tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed);
	WREG32_SOC15(THM, 0, mmCG_TACH_CTRL,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL),
				   CG_TACH_CTRL, TARGET_PERIOD,
				   tach_period));

	ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM);

set_fan_speed_rpm_failed:
	mutex_unlock(&(smu->mutex));
	return ret;
}

1570 1571 1572
#define XGMI_STATE_D0 1
#define XGMI_STATE_D3 0

1573 1574 1575
static int smu_v11_0_set_xgmi_pstate(struct smu_context *smu,
				     uint32_t pstate)
{
1576 1577 1578 1579 1580 1581 1582
	int ret = 0;
	mutex_lock(&(smu->mutex));
	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetXgmiMode,
					  pstate ? XGMI_STATE_D0 : XGMI_STATE_D3);
	mutex_unlock(&(smu->mutex));
	return ret;
1583 1584
}

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
#define THM_11_0__SRCID__THM_DIG_THERM_L2H		0		/* ASIC_TEMP > CG_THERMAL_INT.DIG_THERM_INTH  */
#define THM_11_0__SRCID__THM_DIG_THERM_H2L		1		/* ASIC_TEMP < CG_THERMAL_INT.DIG_THERM_INTL  */

static int smu_v11_0_irq_process(struct amdgpu_device *adev,
				 struct amdgpu_irq_src *source,
				 struct amdgpu_iv_entry *entry)
{
	uint32_t client_id = entry->client_id;
	uint32_t src_id = entry->src_id;

	if (client_id == SOC15_IH_CLIENTID_THM) {
		switch (src_id) {
		case THM_11_0__SRCID__THM_DIG_THERM_L2H:
			pr_warn("GPU over temperature range detected on PCIe %d:%d.%d!\n",
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;
		case THM_11_0__SRCID__THM_DIG_THERM_H2L:
			pr_warn("GPU under temperature range detected on PCIe %d:%d.%d!\n",
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;
		default:
			pr_warn("GPU under temperature range unknown src id (%d), detected on PCIe %d:%d.%d!\n",
				src_id,
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;

		}
	}

	return 0;
}

static const struct amdgpu_irq_src_funcs smu_v11_0_irq_funcs =
{
	.process = smu_v11_0_irq_process,
};

static int smu_v11_0_register_irq_handler(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	struct amdgpu_irq_src *irq_src = smu->irq_source;
	int ret = 0;

	/* already register */
	if (irq_src)
		return 0;

	irq_src = kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
	if (!irq_src)
		return -ENOMEM;
	smu->irq_source = irq_src;

	irq_src->funcs = &smu_v11_0_irq_funcs;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_L2H,
				irq_src);
	if (ret)
		return ret;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_H2L,
				irq_src);
	if (ret)
		return ret;

	return ret;
}

1660 1661
static const struct smu_funcs smu_v11_0_funcs = {
	.init_microcode = smu_v11_0_init_microcode,
1662
	.load_microcode = smu_v11_0_load_microcode,
1663
	.check_fw_status = smu_v11_0_check_fw_status,
1664
	.check_fw_version = smu_v11_0_check_fw_version,
1665 1666
	.send_smc_msg = smu_v11_0_send_msg,
	.send_smc_msg_with_param = smu_v11_0_send_msg_with_param,
1667
	.read_smc_arg = smu_v11_0_read_arg,
1668
	.setup_pptable = smu_v11_0_setup_pptable,
1669 1670
	.init_smc_tables = smu_v11_0_init_smc_tables,
	.fini_smc_tables = smu_v11_0_fini_smc_tables,
1671 1672
	.init_power = smu_v11_0_init_power,
	.fini_power = smu_v11_0_fini_power,
1673
	.get_vbios_bootup_values = smu_v11_0_get_vbios_bootup_values,
1674
	.get_clk_info_from_vbios = smu_v11_0_get_clk_info_from_vbios,
1675
	.notify_memory_pool_location = smu_v11_0_notify_memory_pool_location,
1676
	.check_pptable = smu_v11_0_check_pptable,
1677
	.parse_pptable = smu_v11_0_parse_pptable,
1678
	.populate_smc_pptable = smu_v11_0_populate_smc_pptable,
1679
	.write_pptable = smu_v11_0_write_pptable,
1680
	.write_watermarks_table = smu_v11_0_write_watermarks_table,
1681
	.set_min_dcef_deep_sleep = smu_v11_0_set_min_dcef_deep_sleep,
1682
	.set_tool_table_location = smu_v11_0_set_tool_table_location,
1683
	.init_display = smu_v11_0_init_display,
1684 1685
	.set_allowed_mask = smu_v11_0_set_allowed_mask,
	.get_enabled_mask = smu_v11_0_get_enabled_mask,
1686
	.system_features_control = smu_v11_0_system_features_control,
1687
	.update_feature_enable_state = smu_v11_0_update_feature_enable_state,
1688
	.notify_display_change = smu_v11_0_notify_display_change,
1689
	.get_power_limit = smu_v11_0_get_power_limit,
1690
	.set_power_limit = smu_v11_0_set_power_limit,
1691
	.get_current_clk_freq = smu_v11_0_get_current_clk_freq,
1692
	.init_max_sustainable_clocks = smu_v11_0_init_max_sustainable_clocks,
1693
	.start_thermal_control = smu_v11_0_start_thermal_control,
1694
	.read_sensor = smu_v11_0_read_sensor,
1695
	.set_deep_sleep_dcefclk = smu_v11_0_set_deep_sleep_dcefclk,
1696
	.display_clock_voltage_request = smu_v11_0_display_clock_voltage_request,
1697
	.set_watermarks_for_clock_ranges = smu_v11_0_set_watermarks_for_clock_ranges,
1698
	.set_od8_default_settings = smu_v11_0_set_od8_default_settings,
1699
	.update_od8_settings = smu_v11_0_update_od8_settings,
1700
	.get_current_rpm = smu_v11_0_get_current_rpm,
1701
	.get_fan_control_mode = smu_v11_0_get_fan_control_mode,
1702
	.set_fan_control_mode = smu_v11_0_set_fan_control_mode,
1703
	.set_fan_speed_percent = smu_v11_0_set_fan_speed_percent,
1704
	.set_fan_speed_rpm = smu_v11_0_set_fan_speed_rpm,
1705
	.set_xgmi_pstate = smu_v11_0_set_xgmi_pstate,
1706
	.gfx_off_control = smu_v11_0_gfx_off_control,
1707
	.register_irq_handler = smu_v11_0_register_irq_handler,
1708 1709 1710 1711
};

void smu_v11_0_set_smu_funcs(struct smu_context *smu)
{
1712 1713
	struct amdgpu_device *adev = smu->adev;

1714
	smu->funcs = &smu_v11_0_funcs;
1715 1716 1717 1718
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		vega20_set_ppt_funcs(smu);
		break;
1719 1720 1721
	case CHIP_NAVI10:
		navi10_set_ppt_funcs(smu);
		break;
1722
	default:
1723
		pr_warn("Unknown asic for smu11\n");
1724
	}
1725
}