smu_v11_0.c 47.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include "pp_debug.h"
#include <linux/firmware.h>
#include "amdgpu.h"
#include "amdgpu_smu.h"
27
#include "atomfirmware.h"
28
#include "amdgpu_atomfirmware.h"
29
#include "smu_v11_0.h"
30
#include "soc15_common.h"
31
#include "atom.h"
32
#include "vega20_ppt.h"
33
#include "navi10_ppt.h"
34
#include "pp_thermal.h"
35 36 37

#include "asic_reg/thm/thm_11_0_2_offset.h"
#include "asic_reg/thm/thm_11_0_2_sh_mask.h"
38 39
#include "asic_reg/mp/mp_11_0_offset.h"
#include "asic_reg/mp/mp_11_0_sh_mask.h"
40
#include "asic_reg/nbio/nbio_7_4_offset.h"
41 42
#include "asic_reg/smuio/smuio_11_0_0_offset.h"
#include "asic_reg/smuio/smuio_11_0_0_sh_mask.h"
43

44
MODULE_FIRMWARE("amdgpu/vega20_smc.bin");
45
MODULE_FIRMWARE("amdgpu/navi10_smc.bin");
46

47 48
#define SMU11_THERMAL_MINIMUM_ALERT_TEMP      0
#define SMU11_THERMAL_MAXIMUM_ALERT_TEMP      255
49

50
#define SMU11_TEMPERATURE_UNITS_PER_CENTIGRADES 1000
51
#define SMU11_VOLTAGE_SCALE 4
52

53 54 55 56 57 58 59 60
static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu,
					      uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_66, msg);
	return 0;
}

61 62 63 64 65 66 67 68
static int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg)
{
	struct amdgpu_device *adev = smu->adev;

	*arg = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82);
	return 0;
}

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
static int smu_v11_0_wait_for_response(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t cur_value, i;

	for (i = 0; i < adev->usec_timeout; i++) {
		cur_value = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90);
		if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0)
			break;
		udelay(1);
	}

	/* timeout means wrong logic */
	if (i == adev->usec_timeout)
		return -ETIME;

85
	return RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90) == 0x1 ? 0 : -EIO;
86 87 88 89 90
}

static int smu_v11_0_send_msg(struct smu_context *smu, uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
91 92 93 94 95
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
96 97 98 99 100

	smu_v11_0_wait_for_response(smu);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

101
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
102 103 104 105

	ret = smu_v11_0_wait_for_response(smu);

	if (ret)
106
		pr_err("Failed to send message 0x%x, response 0x%x\n", index,
107 108 109 110 111 112 113 114 115 116 117 118
		       ret);

	return ret;

}

static int
smu_v11_0_send_msg_with_param(struct smu_context *smu, uint16_t msg,
			      uint32_t param)
{

	struct amdgpu_device *adev = smu->adev;
119 120 121 122 123
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
124 125 126

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
127 128
		pr_err("Failed to send message 0x%x, response 0x%x, param 0x%x\n",
		       index, ret, param);
129 130 131 132 133

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82, param);

134
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
135 136 137

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
138 139
		pr_err("Failed to send message 0x%x, response 0x%x param 0x%x\n",
		       index, ret, param);
140 141 142 143

	return ret;
}

144 145 146
static int smu_v11_0_init_microcode(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
147 148 149 150 151 152
	const char *chip_name;
	char fw_name[30];
	int err = 0;
	const struct smc_firmware_header_v1_0 *hdr;
	const struct common_firmware_header *header;
	struct amdgpu_firmware_info *ucode = NULL;
153

154 155 156 157
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		chip_name = "vega20";
		break;
158 159 160
	case CHIP_NAVI10:
		chip_name = "navi10";
		break;
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	default:
		BUG();
	}

	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name);

	err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
	if (err)
		goto out;
	err = amdgpu_ucode_validate(adev->pm.fw);
	if (err)
		goto out;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	amdgpu_ucode_print_smc_hdr(&hdr->header);
	adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
		ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC];
		ucode->ucode_id = AMDGPU_UCODE_ID_SMC;
		ucode->fw = adev->pm.fw;
		header = (const struct common_firmware_header *)ucode->fw->data;
		adev->firmware.fw_size +=
			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
	}

out:
	if (err) {
		DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n",
			  fw_name);
		release_firmware(adev->pm.fw);
		adev->pm.fw = NULL;
	}
	return err;
195 196
}

197 198
static int smu_v11_0_load_microcode(struct smu_context *smu)
{
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
	struct amdgpu_device *adev = smu->adev;
	const uint32_t *src;
	const struct smc_firmware_header_v1_0 *hdr;
	uint32_t addr_start = MP1_SRAM;
	uint32_t i;
	uint32_t mp1_fw_flags;

	hdr = (const struct smc_firmware_header_v1_0 *)	adev->pm.fw->data;
	src = (const uint32_t *)(adev->pm.fw->data +
		le32_to_cpu(hdr->header.ucode_array_offset_bytes));

	for (i = 1; i < MP1_SMC_SIZE/4 - 1; i++) {
		WREG32_PCIE(addr_start, src[i]);
		addr_start += 4;
	}

	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & MP1_SMN_PUB_CTRL__RESET_MASK);
	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & ~MP1_SMN_PUB_CTRL__RESET_MASK);

	for (i = 0; i < adev->usec_timeout; i++) {
		mp1_fw_flags = RREG32_PCIE(MP1_Public |
			(smnMP1_FIRMWARE_FLAGS & 0xffffffff));
		if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
			MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
			break;
		udelay(1);
	}

	if (i == adev->usec_timeout)
		return -ETIME;

232 233 234
	return 0;
}

235 236
static int smu_v11_0_check_fw_status(struct smu_context *smu)
{
237 238 239
	struct amdgpu_device *adev = smu->adev;
	uint32_t mp1_fw_flags;

240 241
	mp1_fw_flags = RREG32_PCIE(MP1_Public |
				   (smnMP1_FIRMWARE_FLAGS & 0xffffffff));
242 243 244 245

	if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
	    MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
		return 0;
246

247
	return -EIO;
248 249
}

250 251
static int smu_v11_0_check_fw_version(struct smu_context *smu)
{
252 253 254
	uint32_t if_version = 0xff, smu_version = 0xff;
	uint16_t smu_major;
	uint8_t smu_minor, smu_debug;
255 256
	int ret = 0;

257
	ret = smu_get_smc_version(smu, &if_version, &smu_version);
258
	if (ret)
259
		return ret;
260

261 262 263 264 265 266
	smu_major = (smu_version >> 16) & 0xffff;
	smu_minor = (smu_version >> 8) & 0xff;
	smu_debug = (smu_version >> 0) & 0xff;

	pr_info("SMU Driver IF Version = 0x%08x, SMU FW Version = 0x%08x (%d.%d.%d)\n",
		if_version, smu_version, smu_major, smu_minor, smu_debug);
267

268 269
	if (if_version != smu->smc_if_version) {
		pr_err("SMU driver if version not matched\n");
270
		ret = -EINVAL;
271 272
	}

273 274 275
	return ret;
}

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
static int smu_v11_0_set_pptable_v2_0(struct smu_context *smu, void **table, uint32_t *size)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t ppt_offset_bytes;
	const struct smc_firmware_header_v2_0 *v2;

	v2 = (const struct smc_firmware_header_v2_0 *) adev->pm.fw->data;

	ppt_offset_bytes = le32_to_cpu(v2->ppt_offset_bytes);
	*size = le32_to_cpu(v2->ppt_size_bytes);
	*table = (uint8_t *)v2 + ppt_offset_bytes;

	return 0;
}

static int smu_v11_0_set_pptable_v2_1(struct smu_context *smu, void **table, uint32_t *size, uint32_t pptable_id)
{
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v2_1 *v2_1;
	struct smc_soft_pptable_entry *entries;
	uint32_t pptable_count = 0;
	int i = 0;

	v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data;
	entries = (struct smc_soft_pptable_entry *)
		((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset));
	pptable_count = le32_to_cpu(v2_1->pptable_count);
	for (i = 0; i < pptable_count; i++) {
		if (le32_to_cpu(entries[i].id) == pptable_id) {
			*table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes));
			*size = le32_to_cpu(entries[i].ppt_size_bytes);
			break;
		}
	}

	if (i == pptable_count)
		return -EINVAL;

	return 0;
}

static int smu_v11_0_setup_pptable(struct smu_context *smu)
318
{
319 320
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v1_0 *hdr;
321
	int ret, index;
322
	uint32_t size;
323
	uint8_t frev, crev;
324
	void *table;
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
	uint16_t version_major, version_minor;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	version_major = le16_to_cpu(hdr->header.header_version_major);
	version_minor = le16_to_cpu(hdr->header.header_version_minor);

	if (version_major == 2 && smu->smu_table.boot_values.pp_table_id > 0) {
		switch (version_minor) {
		case 0:
			ret = smu_v11_0_set_pptable_v2_0(smu, &table, &size);
			break;
		case 1:
			ret = smu_v11_0_set_pptable_v2_1(smu, &table, &size,
							 smu->smu_table.boot_values.pp_table_id);
			break;
		default:
			ret = -EINVAL;
			break;
		}
		if (ret)
			return ret;
346

347 348 349
	} else {
		index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
						    powerplayinfo);
350

351
		ret = smu_get_atom_data_table(smu, index, (uint16_t *)&size, &frev, &crev,
352 353 354 355
					      (uint8_t **)&table);
		if (ret)
			return ret;
	}
356

357 358 359 360
	if (!smu->smu_table.power_play_table)
		smu->smu_table.power_play_table = table;
	if (!smu->smu_table.power_play_table_size)
		smu->smu_table.power_play_table_size = size;
361 362 363 364

	return 0;
}

365 366 367 368 369 370 371
static int smu_v11_0_init_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0)
		return -EINVAL;

372
	return smu_alloc_dpm_context(smu);
373 374 375 376 377 378 379 380 381 382
}

static int smu_v11_0_fini_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0)
		return -EINVAL;

	kfree(smu_dpm->dpm_context);
383
	kfree(smu_dpm->golden_dpm_context);
384 385
	kfree(smu_dpm->dpm_current_power_state);
	kfree(smu_dpm->dpm_request_power_state);
386
	smu_dpm->dpm_context = NULL;
387
	smu_dpm->golden_dpm_context = NULL;
388
	smu_dpm->dpm_context_size = 0;
389 390
	smu_dpm->dpm_current_power_state = NULL;
	smu_dpm->dpm_request_power_state = NULL;
391 392 393 394

	return 0;
}

395 396 397 398
static int smu_v11_0_init_smc_tables(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = NULL;
399
	int ret = 0;
400

401
	if (smu_table->tables || smu_table->table_count == 0)
402 403
		return -EINVAL;

404 405
	tables = kcalloc(SMU_TABLE_COUNT, sizeof(struct smu_table),
			 GFP_KERNEL);
406 407 408 409 410
	if (!tables)
		return -ENOMEM;

	smu_table->tables = tables;

411
	smu_tables_init(smu, tables);
412

413 414 415 416
	ret = smu_v11_0_init_dpm_context(smu);
	if (ret)
		return ret;

417 418 419 420 421 422
	return 0;
}

static int smu_v11_0_fini_smc_tables(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
423
	int ret = 0;
424 425 426 427 428 429 430 431

	if (!smu_table->tables || smu_table->table_count == 0)
		return -EINVAL;

	kfree(smu_table->tables);
	smu_table->tables = NULL;
	smu_table->table_count = 0;

432 433 434
	ret = smu_v11_0_fini_dpm_context(smu);
	if (ret)
		return ret;
435 436
	return 0;
}
437 438 439 440 441

static int smu_v11_0_init_power(struct smu_context *smu)
{
	struct smu_power_context *smu_power = &smu->smu_power;

442 443
	if (!smu->pm_enabled)
		return 0;
444 445 446 447 448 449 450 451 452
	if (smu_power->power_context || smu_power->power_context_size != 0)
		return -EINVAL;

	smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
					   GFP_KERNEL);
	if (!smu_power->power_context)
		return -ENOMEM;
	smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context);

453 454 455 456 457 458 459
	smu->metrics_time = 0;
	smu->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL);
	if (!smu->metrics_table) {
		kfree(smu_power->power_context);
		return -ENOMEM;
	}

460 461 462 463 464 465 466
	return 0;
}

static int smu_v11_0_fini_power(struct smu_context *smu)
{
	struct smu_power_context *smu_power = &smu->smu_power;

467 468
	if (!smu->pm_enabled)
		return 0;
469 470 471
	if (!smu_power->power_context || smu_power->power_context_size == 0)
		return -EINVAL;

472
	kfree(smu->metrics_table);
473
	kfree(smu_power->power_context);
474
	smu->metrics_table = NULL;
475 476 477 478 479 480
	smu_power->power_context = NULL;
	smu_power->power_context_size = 0;

	return 0;
}

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu)
{
	int ret, index;
	uint16_t size;
	uint8_t frev, crev;
	struct atom_common_table_header *header;
	struct atom_firmware_info_v3_3 *v_3_3;
	struct atom_firmware_info_v3_1 *v_3_1;

	index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
					    firmwareinfo);

	ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev,
				      (uint8_t **)&header);
	if (ret)
		return ret;

	if (header->format_revision != 3) {
		pr_err("unknown atom_firmware_info version! for smu11\n");
		return -EINVAL;
	}

	switch (header->content_revision) {
	case 0:
	case 1:
	case 2:
		v_3_1 = (struct atom_firmware_info_v3_1 *)header;
		smu->smu_table.boot_values.revision = v_3_1->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = 0;
		break;
	case 3:
	default:
		v_3_3 = (struct atom_firmware_info_v3_3 *)header;
		smu->smu_table.boot_values.revision = v_3_3->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id;
	}

	return 0;
}

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
static int smu_v11_0_get_clk_info_from_vbios(struct smu_context *smu)
{
	int ret, index;
	struct amdgpu_device *adev = smu->adev;
	struct atom_get_smu_clock_info_parameters_v3_1 input = {0};
	struct atom_get_smu_clock_info_output_parameters_v3_1 *output;

	input.clk_id = SMU11_SYSPLL0_SOCCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.socclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCEFCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dcefclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_ECLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.eclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_VCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.vclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

615 616 617
	return 0;
}

618 619 620 621 622 623 624 625 626 627 628
static int smu_v11_0_notify_memory_pool_location(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	int ret = 0;
	uint64_t address;
	uint32_t address_low, address_high;

	if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL)
		return ret;

629
	address = (uintptr_t)memory_pool->cpu_addr;
630 631 632 633
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

	ret = smu_send_smc_msg_with_param(smu,
634
					  SMU_MSG_SetSystemVirtualDramAddrHigh,
635 636 637 638
					  address_high);
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu,
639
					  SMU_MSG_SetSystemVirtualDramAddrLow,
640 641 642 643 644 645 646 647
					  address_low);
	if (ret)
		return ret;

	address = memory_pool->mc_address;
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

648
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh,
649 650 651
					  address_high);
	if (ret)
		return ret;
652
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow,
653 654 655
					  address_low);
	if (ret)
		return ret;
656
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize,
657 658 659 660 661 662 663
					  (uint32_t)memory_pool->size);
	if (ret)
		return ret;

	return ret;
}

664 665 666 667 668 669 670 671
static int smu_v11_0_check_pptable(struct smu_context *smu)
{
	int ret;

	ret = smu_check_powerplay_table(smu);
	return ret;
}

672 673 674 675 676
static int smu_v11_0_parse_pptable(struct smu_context *smu)
{
	int ret;

	struct smu_table_context *table_context = &smu->smu_table;
677
	struct smu_table *table = &table_context->tables[SMU_TABLE_PPTABLE];
678 679 680 681

	if (table_context->driver_pptable)
		return -EINVAL;

682
	table_context->driver_pptable = kzalloc(table->size, GFP_KERNEL);
683 684 685 686 687

	if (!table_context->driver_pptable)
		return -ENOMEM;

	ret = smu_store_powerplay_table(smu);
688 689 690 691
	if (ret)
		return -EINVAL;

	ret = smu_append_powerplay_table(smu);
692 693 694 695

	return ret;
}

696 697
static int smu_v11_0_populate_smc_pptable(struct smu_context *smu)
{
698
	int ret;
699

700
	ret = smu_set_default_dpm_table(smu);
701

702
	return ret;
703 704
}

705 706
static int smu_v11_0_write_pptable(struct smu_context *smu)
{
707
	struct smu_table_context *table_context = &smu->smu_table;
708 709
	int ret = 0;

710 711
	ret = smu_update_table(smu, SMU_TABLE_PPTABLE,
			       table_context->driver_pptable, true);
712 713 714 715

	return ret;
}

716 717
static int smu_v11_0_write_watermarks_table(struct smu_context *smu)
{
718 719 720
	return smu_update_table(smu, SMU_TABLE_WATERMARKS,
				smu->smu_table.tables[SMU_TABLE_WATERMARKS].cpu_addr,
				true);
721 722
}

723 724 725 726 727 728 729 730 731 732 733 734
static int smu_v11_0_set_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk)
{
	int ret;

	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetMinDeepSleepDcefclk, clk);
	if (ret)
		pr_err("SMU11 attempt to set divider for DCEFCLK Failed!");

	return ret;
}

735 736 737 738
static int smu_v11_0_set_min_dcef_deep_sleep(struct smu_context *smu)
{
	struct smu_table_context *table_context = &smu->smu_table;

739 740
	if (!smu->pm_enabled)
		return 0;
741 742 743
	if (!table_context)
		return -EINVAL;

744
	return smu_set_deep_sleep_dcefclk(smu,
745 746 747
					  table_context->boot_values.dcefclk / 100);
}

748 749 750
static int smu_v11_0_set_tool_table_location(struct smu_context *smu)
{
	int ret = 0;
751
	struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG];
752 753 754

	if (tool_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
755
				SMU_MSG_SetToolsDramAddrHigh,
756 757 758
				upper_32_bits(tool_table->mc_address));
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
759
				SMU_MSG_SetToolsDramAddrLow,
760 761 762 763 764 765
				lower_32_bits(tool_table->mc_address));
	}

	return ret;
}

766 767 768
static int smu_v11_0_init_display(struct smu_context *smu)
{
	int ret = 0;
769 770 771

	if (!smu->pm_enabled)
		return ret;
772 773 774 775
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, 0);
	return ret;
}

776 777 778 779 780
static int smu_v11_0_update_feature_enable_state(struct smu_context *smu, uint32_t feature_id, bool enabled)
{
	uint32_t feature_low = 0, feature_high = 0;
	int ret = 0;

781 782
	if (!smu->pm_enabled)
		return ret;
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
	if (feature_id >= 0 && feature_id < 31)
		feature_low = (1 << feature_id);
	else if (feature_id > 31 && feature_id < 63)
		feature_high = (1 << feature_id);
	else
		return -EINVAL;

	if (enabled) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesLow,
						  feature_low);
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesHigh,
						  feature_high);
		if (ret)
			return ret;

	} else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesLow,
						  feature_low);
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesHigh,
						  feature_high);
		if (ret)
			return ret;

	}

	return ret;
}

815 816 817 818 819 820
static int smu_v11_0_set_allowed_mask(struct smu_context *smu)
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
	uint32_t feature_mask[2];

821
	mutex_lock(&feature->mutex);
822
	if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64)
823
		goto failed;
824 825 826 827 828 829

	bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64);

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh,
					  feature_mask[1]);
	if (ret)
830
		goto failed;
831 832 833 834

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow,
					  feature_mask[0]);
	if (ret)
835
		goto failed;
836

837 838
failed:
	mutex_unlock(&feature->mutex);
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
	return ret;
}

static int smu_v11_0_get_enabled_mask(struct smu_context *smu,
				      uint32_t *feature_mask, uint32_t num)
{
	uint32_t feature_mask_high = 0, feature_mask_low = 0;
	int ret = 0;

	if (!feature_mask || num < 2)
		return -EINVAL;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_high);
	if (ret)
		return ret;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_low);
	if (ret)
		return ret;

	feature_mask[0] = feature_mask_low;
	feature_mask[1] = feature_mask_high;

	return ret;
}

871 872
static int smu_v11_0_system_features_control(struct smu_context *smu,
					     bool en)
873 874 875 876 877
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_mask[2];
	int ret = 0;

878 879 880 881 882 883 884
	if (smu->pm_enabled) {
		ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures :
					     SMU_MSG_DisableAllSmuFeatures));
		if (ret)
			return ret;
	}

885 886 887 888 889 890 891 892 893 894 895 896
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
		return ret;

	bitmap_copy(feature->enabled, (unsigned long *)&feature_mask,
		    feature->feature_num);
	bitmap_copy(feature->supported, (unsigned long *)&feature_mask,
		    feature->feature_num);

	return ret;
}

897 898 899 900
static int smu_v11_0_notify_display_change(struct smu_context *smu)
{
	int ret = 0;

901 902
	if (!smu->pm_enabled)
		return ret;
903
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT))
904 905 906 907 908
	    ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1);

	return ret;
}

909 910
static int
smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock,
911
				    enum smu_clk_type clock_select)
912 913 914
{
	int ret = 0;

915 916
	if (!smu->pm_enabled)
		return ret;
917
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq,
918
					  smu_clk_get_index(smu, clock_select) << 16);
919 920 921 922 923 924 925 926 927 928 929 930 931 932
	if (ret) {
		pr_err("[GetMaxSustainableClock] Failed to get max DC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);
	if (ret)
		return ret;

	if (*clock != 0)
		return 0;

	/* if DC limit is zero, return AC limit */
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
933
					  smu_clk_get_index(smu, clock_select) << 16);
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
	if (ret) {
		pr_err("[GetMaxSustainableClock] failed to get max AC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);

	return ret;
}

static int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu)
{
	struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks;
	int ret = 0;

	max_sustainable_clocks = kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks),
					 GFP_KERNEL);
	smu->smu_table.max_sustainable_clocks = (void *)max_sustainable_clocks;

	max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100;
	max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100;
	max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100;
	max_sustainable_clocks->display_clock = 0xFFFFFFFF;
	max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
	max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;

960
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
961 962
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->uclock),
963
							  SMU_UCLK);
964 965 966 967 968 969 970
		if (ret) {
			pr_err("[%s] failed to get max UCLK from SMC!",
			       __func__);
			return ret;
		}
	}

971
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
972 973
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->soc_clock),
974
							  SMU_SOCCLK);
975 976 977 978 979 980 981
		if (ret) {
			pr_err("[%s] failed to get max SOCCLK from SMC!",
			       __func__);
			return ret;
		}
	}

982
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
983 984
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->dcef_clock),
985
							  SMU_DCEFCLK);
986 987 988 989 990 991 992 993
		if (ret) {
			pr_err("[%s] failed to get max DCEFCLK from SMC!",
			       __func__);
			return ret;
		}

		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->display_clock),
994
							  SMU_DISPCLK);
995 996 997 998 999 1000 1001
		if (ret) {
			pr_err("[%s] failed to get max DISPCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->phy_clock),
1002
							  SMU_PHYCLK);
1003 1004 1005 1006 1007 1008 1009
		if (ret) {
			pr_err("[%s] failed to get max PHYCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->pixel_clock),
1010
							  SMU_PIXCLK);
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
		if (ret) {
			pr_err("[%s] failed to get max PIXCLK from SMC!",
			       __func__);
			return ret;
		}
	}

	if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
		max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;

	return 0;
}

1024 1025 1026
static int smu_v11_0_get_power_limit(struct smu_context *smu,
				     uint32_t *limit,
				     bool get_default)
1027
{
1028
	int ret = 0;
1029

1030 1031 1032
	if (get_default) {
		mutex_lock(&smu->mutex);
		*limit = smu->default_power_limit;
1033 1034 1035 1036
		if (smu->od_enabled) {
			*limit *= (100 + smu->smu_table.TDPODLimit);
			*limit /= 100;
		}
1037 1038 1039
		mutex_unlock(&smu->mutex);
	} else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetPptLimit,
1040
			smu_power_get_index(smu, SMU_POWER_SOURCE_AC) << 16);
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
		if (ret) {
			pr_err("[%s] get PPT limit failed!", __func__);
			return ret;
		}
		smu_read_smc_arg(smu, limit);
		smu->power_limit = *limit;
	}

	return ret;
}

static int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n)
{
1054
	uint32_t max_power_limit;
1055 1056
	int ret = 0;

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	if (n == 0)
		n = smu->default_power_limit;

	max_power_limit = smu->default_power_limit;

	if (smu->od_enabled) {
		max_power_limit *= (100 + smu->smu_table.TDPODLimit);
		max_power_limit /= 100;
	}

1067
	if (smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT))
1068
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n);
1069
	if (ret) {
1070
		pr_err("[%s] Set power limit Failed!", __func__);
1071 1072 1073
		return ret;
	}

1074
	return ret;
1075 1076
}

1077 1078 1079
static int smu_v11_0_get_current_clk_freq(struct smu_context *smu,
					  enum smu_clk_type clk_id,
					  uint32_t *value)
1080 1081 1082 1083
{
	int ret = 0;
	uint32_t freq;

1084
	if (clk_id >= SMU_CLK_COUNT || !value)
1085 1086
		return -EINVAL;

1087 1088
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmClockFreq,
					  (smu_clk_get_index(smu, clk_id) << 16));
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	if (ret)
		return ret;

	ret = smu_read_smc_arg(smu, &freq);
	if (ret)
		return ret;

	freq *= 100;
	*value = freq;

	return ret;
}

1102 1103 1104
static int smu_v11_0_get_thermal_range(struct smu_context *smu,
				struct PP_TemperatureRange *range)
{
1105
	PPTable_t *pptable = smu->smu_table.driver_pptable;
1106 1107
	memcpy(range, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange));

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
	range->max = pptable->TedgeLimit *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	range->edge_emergency_max = (pptable->TedgeLimit + CTF_OFFSET_EDGE) *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	range->hotspot_crit_max = pptable->ThotspotLimit *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	range->hotspot_emergency_max = (pptable->ThotspotLimit + CTF_OFFSET_HOTSPOT) *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	range->mem_crit_max = pptable->ThbmLimit *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	range->mem_emergency_max = (pptable->ThbmLimit + CTF_OFFSET_HBM)*
1119 1120 1121 1122 1123
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;

	return 0;
}

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
static int smu_v11_0_set_thermal_range(struct smu_context *smu,
			struct PP_TemperatureRange *range)
{
	struct amdgpu_device *adev = smu->adev;
	int low = SMU11_THERMAL_MINIMUM_ALERT_TEMP *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	int high = SMU11_THERMAL_MAXIMUM_ALERT_TEMP *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	uint32_t val;

	if (low < range->min)
		low = range->min;
	if (high > range->max)
		high = range->max;

	if (low > high)
		return -EINVAL;

	val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES));
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low / PP_TEMPERATURE_UNITS_PER_CENTIGRADES));
	val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);

	return 0;
}

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
static int smu_v11_0_enable_thermal_alert(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t val = 0;

	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val);

	return 0;
}

1168 1169 1170
static int smu_v11_0_start_thermal_control(struct smu_context *smu)
{
	int ret = 0;
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	struct PP_TemperatureRange range = {
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX};
1181 1182
	struct amdgpu_device *adev = smu->adev;

1183 1184
	if (!smu->pm_enabled)
		return ret;
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	smu_v11_0_get_thermal_range(smu, &range);

	if (smu->smu_table.thermal_controller_type) {
		ret = smu_v11_0_set_thermal_range(smu, &range);
		if (ret)
			return ret;

		ret = smu_v11_0_enable_thermal_alert(smu);
		if (ret)
			return ret;
1195
		ret = smu_set_thermal_fan_table(smu);
1196 1197 1198 1199 1200 1201
		if (ret)
			return ret;
	}

	adev->pm.dpm.thermal.min_temp = range.min;
	adev->pm.dpm.thermal.max_temp = range.max;
1202 1203 1204 1205 1206 1207 1208
	adev->pm.dpm.thermal.max_edge_emergency_temp = range.edge_emergency_max;
	adev->pm.dpm.thermal.min_hotspot_temp = range.hotspot_min;
	adev->pm.dpm.thermal.max_hotspot_crit_temp = range.hotspot_crit_max;
	adev->pm.dpm.thermal.max_hotspot_emergency_temp = range.hotspot_emergency_max;
	adev->pm.dpm.thermal.min_mem_temp = range.mem_min;
	adev->pm.dpm.thermal.max_mem_crit_temp = range.mem_crit_max;
	adev->pm.dpm.thermal.max_mem_emergency_temp = range.mem_emergency_max;
1209 1210 1211 1212

	return ret;
}

1213 1214 1215 1216 1217 1218
static int smu_v11_0_get_metrics_table(struct smu_context *smu,
		SmuMetrics_t *metrics_table)
{
	int ret = 0;

	if (!smu->metrics_time || time_after(jiffies, smu->metrics_time + HZ / 1000)) {
1219
		ret = smu_update_table(smu, SMU_TABLE_SMU_METRICS,
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
				(void *)metrics_table, false);
		if (ret) {
			pr_info("Failed to export SMU metrics table!\n");
			return ret;
		}
		memcpy(smu->metrics_table, metrics_table, sizeof(SmuMetrics_t));
		smu->metrics_time = jiffies;
	} else
		memcpy(metrics_table, smu->metrics_table, sizeof(SmuMetrics_t));

	return ret;
}

1233 1234 1235
static int smu_v11_0_thermal_get_temperature(struct smu_context *smu,
					     enum amd_pp_sensors sensor,
					     uint32_t *value)
1236 1237
{
	struct amdgpu_device *adev = smu->adev;
1238
	SmuMetrics_t metrics;
1239
	uint32_t temp = 0;
1240
	int ret = 0;
1241 1242 1243 1244

	if (!value)
		return -EINVAL;

1245 1246 1247 1248 1249 1250 1251 1252 1253
	ret = smu_v11_0_get_metrics_table(smu, &metrics);
	if (ret)
		return ret;

	switch (sensor) {
	case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
		temp = RREG32_SOC15(THM, 0, mmCG_MULT_THERMAL_STATUS);
		temp = (temp & CG_MULT_THERMAL_STATUS__CTF_TEMP_MASK) >>
				CG_MULT_THERMAL_STATUS__CTF_TEMP__SHIFT;
1254

1255 1256
		temp = temp & 0x1ff;
		temp *= SMU11_TEMPERATURE_UNITS_PER_CENTIGRADES;
1257

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
		*value = temp;
		break;
	case AMDGPU_PP_SENSOR_EDGE_TEMP:
		*value = metrics.TemperatureEdge *
			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
		break;
	case AMDGPU_PP_SENSOR_MEM_TEMP:
		*value = metrics.TemperatureHBM *
			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
		break;
	default:
		pr_err("Invalid sensor for retrieving temp\n");
		return -EINVAL;
	}
1272 1273 1274 1275

	return 0;
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
static uint16_t convert_to_vddc(uint8_t vid)
{
	return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE);
}

static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t vdd = 0, val_vid = 0;

	if (!value)
		return -EINVAL;
	val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) &
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >>
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT;

	vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid);

	*value = vdd;

	return 0;

}

1300 1301 1302 1303 1304 1305 1306
static int smu_v11_0_read_sensor(struct smu_context *smu,
				 enum amd_pp_sensors sensor,
				 void *data, uint32_t *size)
{
	int ret = 0;
	switch (sensor) {
	case AMDGPU_PP_SENSOR_GPU_LOAD:
1307
	case AMDGPU_PP_SENSOR_MEM_LOAD:
1308 1309 1310
		ret = smu_get_current_activity_percent(smu,
						       sensor,
						       (uint32_t *)data);
1311
		*size = 4;
1312 1313
		break;
	case AMDGPU_PP_SENSOR_GFX_MCLK:
1314
		ret = smu_get_current_clk_freq(smu, SMU_UCLK, (uint32_t *)data);
1315 1316 1317
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_SCLK:
1318
		ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, (uint32_t *)data);
1319
		*size = 4;
1320
		break;
1321 1322 1323 1324
	case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
	case AMDGPU_PP_SENSOR_EDGE_TEMP:
	case AMDGPU_PP_SENSOR_MEM_TEMP:
		ret = smu_v11_0_thermal_get_temperature(smu, sensor, (uint32_t *)data);
1325
		*size = 4;
1326 1327
		break;
	case AMDGPU_PP_SENSOR_GPU_POWER:
1328
		ret = smu_get_gpu_power(smu, (uint32_t *)data);
1329
		*size = 4;
1330 1331 1332 1333
		break;
	case AMDGPU_PP_SENSOR_VDDGFX:
		ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
		*size = 4;
1334
		break;
1335 1336 1337 1338
	case AMDGPU_PP_SENSOR_MIN_FAN_RPM:
		*(uint32_t *)data = 0;
		*size = 4;
		break;
1339
	default:
1340
		ret = smu_common_read_sensor(smu, sensor, data, size);
1341 1342 1343
		break;
	}

1344 1345 1346 1347
	/* try get sensor data by asic */
	if (ret)
		ret = smu_asic_read_sensor(smu, sensor, data, size);

1348 1349 1350 1351 1352 1353
	if (ret)
		*size = 0;

	return ret;
}

1354 1355 1356 1357 1358 1359 1360
static int
smu_v11_0_display_clock_voltage_request(struct smu_context *smu,
					struct pp_display_clock_request
					*clock_req)
{
	enum amd_pp_clock_type clk_type = clock_req->clock_type;
	int ret = 0;
1361
	enum smu_clk_type clk_select = 0;
1362 1363
	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;

1364 1365
	if (!smu->pm_enabled)
		return -EINVAL;
1366
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
1367 1368
		switch (clk_type) {
		case amd_pp_dcef_clock:
1369
			clk_select = SMU_DCEFCLK;
1370 1371
			break;
		case amd_pp_disp_clock:
1372
			clk_select = SMU_DISPCLK;
1373 1374
			break;
		case amd_pp_pixel_clock:
1375
			clk_select = SMU_PIXCLK;
1376 1377
			break;
		case amd_pp_phy_clock:
1378
			clk_select = SMU_PHYCLK;
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
			break;
		default:
			pr_info("[%s] Invalid Clock Type!", __func__);
			ret = -EINVAL;
			break;
		}

		if (ret)
			goto failed;

		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq,
1390
			(smu_clk_get_index(smu, clk_select) << 16) | clk_freq);
1391 1392 1393 1394 1395 1396
	}

failed:
	return ret;
}

1397 1398 1399 1400 1401 1402
static int
smu_v11_0_set_watermarks_for_clock_ranges(struct smu_context *smu, struct
					  dm_pp_wm_sets_with_clock_ranges_soc15
					  *clock_ranges)
{
	int ret = 0;
1403
	struct smu_table *watermarks = &smu->smu_table.tables[SMU_TABLE_WATERMARKS];
1404
	void *table = watermarks->cpu_addr;
1405 1406

	if (!smu->disable_watermark &&
1407 1408
	    smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
	    smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
1409
		smu_set_watermarks_table(smu, table, clock_ranges);
1410 1411 1412 1413 1414 1415 1416
		smu->watermarks_bitmap |= WATERMARKS_EXIST;
		smu->watermarks_bitmap &= ~WATERMARKS_LOADED;
	}

	return ret;
}

1417 1418 1419
static int smu_v11_0_gfx_off_control(struct smu_context *smu, bool enable)
{
	int ret = 0;
1420
	struct amdgpu_device *adev = smu->adev;
1421

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		break;
	case CHIP_NAVI10:
		if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
			return 0;
		mutex_lock(&smu->mutex);
		if (enable)
			ret = smu_send_smc_msg(smu, SMU_MSG_AllowGfxOff);
		else
			ret = smu_send_smc_msg(smu, SMU_MSG_DisallowGfxOff);
		mutex_unlock(&smu->mutex);
		break;
	default:
		break;
	}
1438 1439 1440 1441 1442

	return ret;
}


1443 1444
static int smu_v11_0_get_clock_ranges(struct smu_context *smu,
				      uint32_t *clock,
1445
				      enum smu_clk_type clock_select,
1446 1447 1448 1449 1450 1451
				      bool max)
{
	int ret;
	*clock = 0;
	if (max) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
1452
				smu_clk_get_index(smu, clock_select) << 16);
1453 1454 1455 1456 1457 1458 1459
		if (ret) {
			pr_err("[GetClockRanges] Failed to get max clock from SMC!\n");
			return ret;
		}
		smu_read_smc_arg(smu, clock);
	} else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMinDpmFreq,
1460
				smu_clk_get_index(smu, clock_select) << 16);
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
		if (ret) {
			pr_err("[GetClockRanges] Failed to get min clock from SMC!\n");
			return ret;
		}
		smu_read_smc_arg(smu, clock);
	}

	return 0;
}

static uint32_t smu_v11_0_dpm_get_sclk(struct smu_context *smu, bool low)
{
	uint32_t gfx_clk;
	int ret;

1476
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) {
1477 1478 1479 1480 1481
		pr_err("[GetSclks]: gfxclk dpm not enabled!\n");
		return -EPERM;
	}

	if (low) {
1482
		ret = smu_v11_0_get_clock_ranges(smu, &gfx_clk, SMU_GFXCLK, false);
1483
		if (ret) {
1484
			pr_err("[GetSclks]: fail to get min SMU_GFXCLK\n");
1485 1486 1487
			return ret;
		}
	} else {
1488
		ret = smu_v11_0_get_clock_ranges(smu, &gfx_clk, SMU_GFXCLK, true);
1489
		if (ret) {
1490
			pr_err("[GetSclks]: fail to get max SMU_GFXCLK\n");
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
			return ret;
		}
	}

	return (gfx_clk * 100);
}

static uint32_t smu_v11_0_dpm_get_mclk(struct smu_context *smu, bool low)
{
	uint32_t mem_clk;
	int ret;

1503
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1504 1505 1506 1507 1508
		pr_err("[GetMclks]: memclk dpm not enabled!\n");
		return -EPERM;
	}

	if (low) {
1509
		ret = smu_v11_0_get_clock_ranges(smu, &mem_clk, SMU_UCLK, false);
1510
		if (ret) {
1511
			pr_err("[GetMclks]: fail to get min SMU_UCLK\n");
1512 1513 1514
			return ret;
		}
	} else {
1515
		ret = smu_v11_0_get_clock_ranges(smu, &mem_clk, SMU_GFXCLK, true);
1516
		if (ret) {
1517
			pr_err("[GetMclks]: fail to get max SMU_UCLK\n");
1518 1519 1520 1521 1522 1523 1524
			return ret;
		}
	}

	return (mem_clk * 100);
}

1525 1526
static int smu_v11_0_set_od8_default_settings(struct smu_context *smu,
					      bool initialize)
1527 1528
{
	struct smu_table_context *table_context = &smu->smu_table;
1529
	struct smu_table *table = &table_context->tables[SMU_TABLE_OVERDRIVE];
1530 1531
	int ret;

1532 1533 1534 1535 1536 1537 1538
	/**
	 * TODO: Enable overdrive for navi10, that replies on smc/pptable
	 * support.
	 */
	if (smu->adev->asic_type == CHIP_NAVI10)
		return 0;

1539 1540 1541
	if (initialize) {
		if (table_context->overdrive_table)
			return -EINVAL;
1542

1543
		table_context->overdrive_table = kzalloc(table->size, GFP_KERNEL);
1544

1545 1546
		if (!table_context->overdrive_table)
			return -ENOMEM;
1547

1548 1549
		ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE,
				       table_context->overdrive_table, false);
1550 1551 1552 1553
		if (ret) {
			pr_err("Failed to export over drive table!\n");
			return ret;
		}
1554

1555 1556
		smu_set_default_od8_settings(smu);
	}
1557

1558 1559
	ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE,
			       table_context->overdrive_table, true);
1560 1561 1562 1563 1564 1565 1566 1567
	if (ret) {
		pr_err("Failed to import over drive table!\n");
		return ret;
	}

	return 0;
}

1568 1569 1570 1571 1572 1573 1574
static int smu_v11_0_update_od8_settings(struct smu_context *smu,
					uint32_t index,
					uint32_t value)
{
	struct smu_table_context *table_context = &smu->smu_table;
	int ret;

1575
	ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE,
1576 1577 1578 1579 1580 1581 1582 1583
			       table_context->overdrive_table, false);
	if (ret) {
		pr_err("Failed to export over drive table!\n");
		return ret;
	}

	smu_update_specified_od8_value(smu, index, value);

1584
	ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE,
1585 1586 1587 1588 1589 1590 1591 1592 1593
			       table_context->overdrive_table, true);
	if (ret) {
		pr_err("Failed to import over drive table!\n");
		return ret;
	}

	return 0;
}

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
static int smu_v11_0_get_current_rpm(struct smu_context *smu,
				     uint32_t *current_rpm)
{
	int ret;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetCurrentRpm);

	if (ret) {
		pr_err("Attempt to get current RPM from SMC Failed!\n");
		return ret;
	}

	smu_read_smc_arg(smu, current_rpm);

	return 0;
}

1611 1612 1613
static uint32_t
smu_v11_0_get_fan_control_mode(struct smu_context *smu)
{
1614
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
		return AMD_FAN_CTRL_MANUAL;
	else
		return AMD_FAN_CTRL_AUTO;
}

static int
smu_v11_0_smc_fan_control(struct smu_context *smu, bool start)
{
	int ret = 0;

1625
	if (smu_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1626 1627
		return 0;

1628
	ret = smu_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, start);
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	if (ret)
		pr_err("[%s]%s smc FAN CONTROL feature failed!",
		       __func__, (start ? "Start" : "Stop"));

	return ret;
}

static int
smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode)
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, TMIN, 0));
	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, FDO_PWM_MODE, mode));

	return 0;
}

static int
smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t duty100;
	uint32_t duty;
	uint64_t tmp64;
	bool stop = 0;

	if (speed > 100)
		speed = 100;

	if (smu_v11_0_smc_fan_control(smu, stop))
		return -EINVAL;
	duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1),
				CG_FDO_CTRL1, FMAX_DUTY100);
	if (!duty100)
		return -EINVAL;

	tmp64 = (uint64_t)speed * duty100;
	do_div(tmp64, 100);
	duty = (uint32_t)tmp64;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0),
				   CG_FDO_CTRL0, FDO_STATIC_DUTY, duty));

	return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC);
}

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
static int
smu_v11_0_set_fan_control_mode(struct smu_context *smu,
			       uint32_t mode)
{
	int ret = 0;
	bool start = 1;
	bool stop  = 0;

	switch (mode) {
	case AMD_FAN_CTRL_NONE:
		ret = smu_v11_0_set_fan_speed_percent(smu, 100);
		break;
	case AMD_FAN_CTRL_MANUAL:
		ret = smu_v11_0_smc_fan_control(smu, stop);
		break;
	case AMD_FAN_CTRL_AUTO:
		ret = smu_v11_0_smc_fan_control(smu, start);
		break;
	default:
		break;
	}

	if (ret) {
1704
		pr_err("[%s]Set fan control mode failed!", __func__);
1705 1706 1707 1708 1709 1710
		return -EINVAL;
	}

	return ret;
}

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
static int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu,
				       uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	int ret;
	uint32_t tach_period, crystal_clock_freq;
	bool stop = 0;

	if (!speed)
		return -EINVAL;

	mutex_lock(&(smu->mutex));
	ret = smu_v11_0_smc_fan_control(smu, stop);
	if (ret)
		goto set_fan_speed_rpm_failed;

	crystal_clock_freq = amdgpu_asic_get_xclk(adev);
	tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed);
	WREG32_SOC15(THM, 0, mmCG_TACH_CTRL,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL),
				   CG_TACH_CTRL, TARGET_PERIOD,
				   tach_period));

	ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM);

set_fan_speed_rpm_failed:
	mutex_unlock(&(smu->mutex));
	return ret;
}

1741 1742 1743
#define XGMI_STATE_D0 1
#define XGMI_STATE_D3 0

1744 1745 1746
static int smu_v11_0_set_xgmi_pstate(struct smu_context *smu,
				     uint32_t pstate)
{
1747 1748 1749 1750 1751 1752 1753
	int ret = 0;
	mutex_lock(&(smu->mutex));
	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetXgmiMode,
					  pstate ? XGMI_STATE_D0 : XGMI_STATE_D3);
	mutex_unlock(&(smu->mutex));
	return ret;
1754 1755
}

1756 1757
static const struct smu_funcs smu_v11_0_funcs = {
	.init_microcode = smu_v11_0_init_microcode,
1758
	.load_microcode = smu_v11_0_load_microcode,
1759
	.check_fw_status = smu_v11_0_check_fw_status,
1760
	.check_fw_version = smu_v11_0_check_fw_version,
1761 1762
	.send_smc_msg = smu_v11_0_send_msg,
	.send_smc_msg_with_param = smu_v11_0_send_msg_with_param,
1763
	.read_smc_arg = smu_v11_0_read_arg,
1764
	.setup_pptable = smu_v11_0_setup_pptable,
1765 1766
	.init_smc_tables = smu_v11_0_init_smc_tables,
	.fini_smc_tables = smu_v11_0_fini_smc_tables,
1767 1768
	.init_power = smu_v11_0_init_power,
	.fini_power = smu_v11_0_fini_power,
1769
	.get_vbios_bootup_values = smu_v11_0_get_vbios_bootup_values,
1770
	.get_clk_info_from_vbios = smu_v11_0_get_clk_info_from_vbios,
1771
	.notify_memory_pool_location = smu_v11_0_notify_memory_pool_location,
1772
	.check_pptable = smu_v11_0_check_pptable,
1773
	.parse_pptable = smu_v11_0_parse_pptable,
1774
	.populate_smc_pptable = smu_v11_0_populate_smc_pptable,
1775
	.write_pptable = smu_v11_0_write_pptable,
1776
	.write_watermarks_table = smu_v11_0_write_watermarks_table,
1777
	.set_min_dcef_deep_sleep = smu_v11_0_set_min_dcef_deep_sleep,
1778
	.set_tool_table_location = smu_v11_0_set_tool_table_location,
1779
	.init_display = smu_v11_0_init_display,
1780 1781
	.set_allowed_mask = smu_v11_0_set_allowed_mask,
	.get_enabled_mask = smu_v11_0_get_enabled_mask,
1782
	.system_features_control = smu_v11_0_system_features_control,
1783
	.update_feature_enable_state = smu_v11_0_update_feature_enable_state,
1784
	.notify_display_change = smu_v11_0_notify_display_change,
1785
	.get_power_limit = smu_v11_0_get_power_limit,
1786
	.set_power_limit = smu_v11_0_set_power_limit,
1787
	.get_current_clk_freq = smu_v11_0_get_current_clk_freq,
1788
	.init_max_sustainable_clocks = smu_v11_0_init_max_sustainable_clocks,
1789
	.start_thermal_control = smu_v11_0_start_thermal_control,
1790
	.read_sensor = smu_v11_0_read_sensor,
1791
	.set_deep_sleep_dcefclk = smu_v11_0_set_deep_sleep_dcefclk,
1792
	.display_clock_voltage_request = smu_v11_0_display_clock_voltage_request,
1793
	.set_watermarks_for_clock_ranges = smu_v11_0_set_watermarks_for_clock_ranges,
1794 1795
	.get_sclk = smu_v11_0_dpm_get_sclk,
	.get_mclk = smu_v11_0_dpm_get_mclk,
1796
	.set_od8_default_settings = smu_v11_0_set_od8_default_settings,
1797
	.update_od8_settings = smu_v11_0_update_od8_settings,
1798
	.get_current_rpm = smu_v11_0_get_current_rpm,
1799
	.get_fan_control_mode = smu_v11_0_get_fan_control_mode,
1800
	.set_fan_control_mode = smu_v11_0_set_fan_control_mode,
1801
	.set_fan_speed_percent = smu_v11_0_set_fan_speed_percent,
1802
	.set_fan_speed_rpm = smu_v11_0_set_fan_speed_rpm,
1803
	.set_xgmi_pstate = smu_v11_0_set_xgmi_pstate,
1804
	.gfx_off_control = smu_v11_0_gfx_off_control,
1805 1806 1807 1808
};

void smu_v11_0_set_smu_funcs(struct smu_context *smu)
{
1809 1810
	struct amdgpu_device *adev = smu->adev;

1811
	smu->funcs = &smu_v11_0_funcs;
1812 1813 1814 1815
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		vega20_set_ppt_funcs(smu);
		break;
1816 1817 1818
	case CHIP_NAVI10:
		navi10_set_ppt_funcs(smu);
		break;
1819
	default:
1820
		pr_warn("Unknown asic for smu11\n");
1821
	}
1822
}