smu_v11_0.c 50.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/firmware.h>
24
#include <linux/module.h>
25
#include <linux/pci.h>
26

27 28
#define SMU_11_0_PARTIAL_PPTABLE

29
#include "pp_debug.h"
30 31
#include "amdgpu.h"
#include "amdgpu_smu.h"
32
#include "smu_internal.h"
33
#include "atomfirmware.h"
34
#include "amdgpu_atomfirmware.h"
35
#include "smu_v11_0.h"
36
#include "smu_v11_0_pptable.h"
37
#include "soc15_common.h"
38
#include "atom.h"
39
#include "amd_pcie.h"
40
#include "amdgpu_ras.h"
41 42 43

#include "asic_reg/thm/thm_11_0_2_offset.h"
#include "asic_reg/thm/thm_11_0_2_sh_mask.h"
44 45
#include "asic_reg/mp/mp_11_0_offset.h"
#include "asic_reg/mp/mp_11_0_sh_mask.h"
46
#include "asic_reg/nbio/nbio_7_4_offset.h"
47
#include "asic_reg/nbio/nbio_7_4_sh_mask.h"
48 49
#include "asic_reg/smuio/smuio_11_0_0_offset.h"
#include "asic_reg/smuio/smuio_11_0_0_sh_mask.h"
50

51
MODULE_FIRMWARE("amdgpu/vega20_smc.bin");
52
MODULE_FIRMWARE("amdgpu/arcturus_smc.bin");
53
MODULE_FIRMWARE("amdgpu/navi10_smc.bin");
54
MODULE_FIRMWARE("amdgpu/navi14_smc.bin");
55
MODULE_FIRMWARE("amdgpu/navi12_smc.bin");
56

57
#define SMU11_VOLTAGE_SCALE 4
58

59 60 61 62 63 64 65 66
static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu,
					      uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_66, msg);
	return 0;
}

67
static int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg)
68 69 70 71 72 73 74
{
	struct amdgpu_device *adev = smu->adev;

	*arg = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82);
	return 0;
}

75 76 77
static int smu_v11_0_wait_for_response(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
78
	uint32_t cur_value, i, timeout = adev->usec_timeout * 10;
79

80
	for (i = 0; i < timeout; i++) {
81 82
		cur_value = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90);
		if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0)
83 84
			return cur_value == 0x1 ? 0 : -EIO;

85 86 87 88
		udelay(1);
	}

	/* timeout means wrong logic */
89
	return -ETIME;
90 91
}

92
int
93 94
smu_v11_0_send_msg_with_param(struct smu_context *smu,
			      enum smu_message_type msg,
95 96
			      uint32_t param,
			      uint32_t *read_arg)
97 98
{
	struct amdgpu_device *adev = smu->adev;
99 100 101 102 103
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
104

105
	mutex_lock(&smu->message_lock);
106
	ret = smu_v11_0_wait_for_response(smu);
107 108 109
	if (ret) {
		pr_err("Msg issuing pre-check failed and "
		       "SMU may be not in the right state!\n");
110
		goto out;
111
	}
112 113 114 115 116

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82, param);

117
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
118 119

	ret = smu_v11_0_wait_for_response(smu);
120
	if (ret) {
121 122
		pr_err("failed send message: %10s (%d) \tparam: 0x%08x response %#x\n",
		       smu_get_message_name(smu, msg), index, param, ret);
123
		goto out;
124 125 126 127 128 129
	}
	if (read_arg) {
		ret = smu_v11_0_read_arg(smu, read_arg);
		if (ret) {
			pr_err("failed to read message arg: %10s (%d) \tparam: 0x%08x response %#x\n",
			       smu_get_message_name(smu, msg), index, param, ret);
130
			goto out;
131 132
		}
	}
133 134 135
out:
	mutex_unlock(&smu->message_lock);
	return ret;
136 137
}

138
int smu_v11_0_init_microcode(struct smu_context *smu)
139 140
{
	struct amdgpu_device *adev = smu->adev;
141 142 143 144 145 146
	const char *chip_name;
	char fw_name[30];
	int err = 0;
	const struct smc_firmware_header_v1_0 *hdr;
	const struct common_firmware_header *header;
	struct amdgpu_firmware_info *ucode = NULL;
147

148 149 150 151
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		chip_name = "vega20";
		break;
152 153 154
	case CHIP_ARCTURUS:
		chip_name = "arcturus";
		break;
155 156 157
	case CHIP_NAVI10:
		chip_name = "navi10";
		break;
158 159 160
	case CHIP_NAVI14:
		chip_name = "navi14";
		break;
161 162 163
	case CHIP_NAVI12:
		chip_name = "navi12";
		break;
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
	default:
		BUG();
	}

	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name);

	err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
	if (err)
		goto out;
	err = amdgpu_ucode_validate(adev->pm.fw);
	if (err)
		goto out;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	amdgpu_ucode_print_smc_hdr(&hdr->header);
	adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
		ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC];
		ucode->ucode_id = AMDGPU_UCODE_ID_SMC;
		ucode->fw = adev->pm.fw;
		header = (const struct common_firmware_header *)ucode->fw->data;
		adev->firmware.fw_size +=
			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
	}

out:
	if (err) {
		DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n",
			  fw_name);
		release_firmware(adev->pm.fw);
		adev->pm.fw = NULL;
	}
	return err;
198 199
}

200
int smu_v11_0_load_microcode(struct smu_context *smu)
201
{
202 203 204 205 206 207 208
	struct amdgpu_device *adev = smu->adev;
	const uint32_t *src;
	const struct smc_firmware_header_v1_0 *hdr;
	uint32_t addr_start = MP1_SRAM;
	uint32_t i;
	uint32_t mp1_fw_flags;

209
	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
	src = (const uint32_t *)(adev->pm.fw->data +
		le32_to_cpu(hdr->header.ucode_array_offset_bytes));

	for (i = 1; i < MP1_SMC_SIZE/4 - 1; i++) {
		WREG32_PCIE(addr_start, src[i]);
		addr_start += 4;
	}

	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & MP1_SMN_PUB_CTRL__RESET_MASK);
	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & ~MP1_SMN_PUB_CTRL__RESET_MASK);

	for (i = 0; i < adev->usec_timeout; i++) {
		mp1_fw_flags = RREG32_PCIE(MP1_Public |
			(smnMP1_FIRMWARE_FLAGS & 0xffffffff));
		if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
			MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
			break;
		udelay(1);
	}

	if (i == adev->usec_timeout)
		return -ETIME;

235 236 237
	return 0;
}

238
int smu_v11_0_check_fw_status(struct smu_context *smu)
239
{
240 241 242
	struct amdgpu_device *adev = smu->adev;
	uint32_t mp1_fw_flags;

243 244
	mp1_fw_flags = RREG32_PCIE(MP1_Public |
				   (smnMP1_FIRMWARE_FLAGS & 0xffffffff));
245 246 247 248

	if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
	    MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
		return 0;
249

250
	return -EIO;
251 252
}

253
int smu_v11_0_check_fw_version(struct smu_context *smu)
254
{
255 256 257
	uint32_t if_version = 0xff, smu_version = 0xff;
	uint16_t smu_major;
	uint8_t smu_minor, smu_debug;
258 259
	int ret = 0;

260
	ret = smu_get_smc_version(smu, &if_version, &smu_version);
261
	if (ret)
262
		return ret;
263

264 265 266 267
	smu_major = (smu_version >> 16) & 0xffff;
	smu_minor = (smu_version >> 8) & 0xff;
	smu_debug = (smu_version >> 0) & 0xff;

268 269 270 271
	switch (smu->adev->asic_type) {
	case CHIP_VEGA20:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_VG20;
		break;
272 273 274
	case CHIP_ARCTURUS:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_ARCT;
		break;
275 276 277 278 279 280 281
	case CHIP_NAVI10:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_NV10;
		break;
	case CHIP_NAVI14:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_NV14;
		break;
	default:
282
		pr_err("smu unsupported asic type:%d.\n", smu->adev->asic_type);
283 284 285 286
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_INV;
		break;
	}

287 288 289 290 291 292 293 294
	/*
	 * 1. if_version mismatch is not critical as our fw is designed
	 * to be backward compatible.
	 * 2. New fw usually brings some optimizations. But that's visible
	 * only on the paired driver.
	 * Considering above, we just leave user a warning message instead
	 * of halt driver loading.
	 */
295
	if (if_version != smu->smc_if_version) {
296 297 298 299
		pr_info("smu driver if version = 0x%08x, smu fw if version = 0x%08x, "
			"smu fw version = 0x%08x (%d.%d.%d)\n",
			smu->smc_if_version, if_version,
			smu_version, smu_major, smu_minor, smu_debug);
300
		pr_warn("SMU driver if version not matched\n");
301 302
	}

303 304 305
	return ret;
}

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
static int smu_v11_0_set_pptable_v2_0(struct smu_context *smu, void **table, uint32_t *size)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t ppt_offset_bytes;
	const struct smc_firmware_header_v2_0 *v2;

	v2 = (const struct smc_firmware_header_v2_0 *) adev->pm.fw->data;

	ppt_offset_bytes = le32_to_cpu(v2->ppt_offset_bytes);
	*size = le32_to_cpu(v2->ppt_size_bytes);
	*table = (uint8_t *)v2 + ppt_offset_bytes;

	return 0;
}

321 322
static int smu_v11_0_set_pptable_v2_1(struct smu_context *smu, void **table,
				      uint32_t *size, uint32_t pptable_id)
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
{
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v2_1 *v2_1;
	struct smc_soft_pptable_entry *entries;
	uint32_t pptable_count = 0;
	int i = 0;

	v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data;
	entries = (struct smc_soft_pptable_entry *)
		((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset));
	pptable_count = le32_to_cpu(v2_1->pptable_count);
	for (i = 0; i < pptable_count; i++) {
		if (le32_to_cpu(entries[i].id) == pptable_id) {
			*table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes));
			*size = le32_to_cpu(entries[i].ppt_size_bytes);
			break;
		}
	}

	if (i == pptable_count)
		return -EINVAL;

	return 0;
}

348
int smu_v11_0_setup_pptable(struct smu_context *smu)
349
{
350 351
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v1_0 *hdr;
352
	int ret, index;
353
	uint32_t size = 0;
354
	uint16_t atom_table_size;
355
	uint8_t frev, crev;
356
	void *table;
357 358 359 360 361 362
	uint16_t version_major, version_minor;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	version_major = le16_to_cpu(hdr->header.header_version_major);
	version_minor = le16_to_cpu(hdr->header.header_version_minor);
	if (version_major == 2 && smu->smu_table.boot_values.pp_table_id > 0) {
363
		pr_info("use driver provided pptable %d\n", smu->smu_table.boot_values.pp_table_id);
364 365 366 367 368 369 370 371 372 373 374 375 376 377
		switch (version_minor) {
		case 0:
			ret = smu_v11_0_set_pptable_v2_0(smu, &table, &size);
			break;
		case 1:
			ret = smu_v11_0_set_pptable_v2_1(smu, &table, &size,
							 smu->smu_table.boot_values.pp_table_id);
			break;
		default:
			ret = -EINVAL;
			break;
		}
		if (ret)
			return ret;
378

379
	} else {
380
		pr_info("use vbios provided pptable\n");
381 382
		index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
						    powerplayinfo);
383

384
		ret = smu_get_atom_data_table(smu, index, &atom_table_size, &frev, &crev,
385 386 387
					      (uint8_t **)&table);
		if (ret)
			return ret;
388
		size = atom_table_size;
389
	}
390

391 392 393 394
	if (!smu->smu_table.power_play_table)
		smu->smu_table.power_play_table = table;
	if (!smu->smu_table.power_play_table_size)
		smu->smu_table.power_play_table_size = size;
395 396 397 398

	return 0;
}

399 400 401 402 403 404 405
static int smu_v11_0_init_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0)
		return -EINVAL;

406
	return smu_alloc_dpm_context(smu);
407 408 409 410 411 412 413 414 415 416
}

static int smu_v11_0_fini_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0)
		return -EINVAL;

	kfree(smu_dpm->dpm_context);
417
	kfree(smu_dpm->golden_dpm_context);
418 419
	kfree(smu_dpm->dpm_current_power_state);
	kfree(smu_dpm->dpm_request_power_state);
420
	smu_dpm->dpm_context = NULL;
421
	smu_dpm->golden_dpm_context = NULL;
422
	smu_dpm->dpm_context_size = 0;
423 424
	smu_dpm->dpm_current_power_state = NULL;
	smu_dpm->dpm_request_power_state = NULL;
425 426 427 428

	return 0;
}

429
int smu_v11_0_init_smc_tables(struct smu_context *smu)
430 431 432
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = NULL;
433
	int ret = 0;
434

435
	if (smu_table->tables)
436 437
		return -EINVAL;

438 439
	tables = kcalloc(SMU_TABLE_COUNT, sizeof(struct smu_table),
			 GFP_KERNEL);
440 441 442 443 444
	if (!tables)
		return -ENOMEM;

	smu_table->tables = tables;

445 446 447
	ret = smu_tables_init(smu, tables);
	if (ret)
		return ret;
448

449 450 451 452
	ret = smu_v11_0_init_dpm_context(smu);
	if (ret)
		return ret;

453 454 455
	return 0;
}

456
int smu_v11_0_fini_smc_tables(struct smu_context *smu)
457 458
{
	struct smu_table_context *smu_table = &smu->smu_table;
459
	int ret = 0;
460

461
	if (!smu_table->tables)
462 463 464
		return -EINVAL;

	kfree(smu_table->tables);
465
	kfree(smu_table->metrics_table);
466
	kfree(smu_table->watermarks_table);
467
	smu_table->tables = NULL;
468
	smu_table->metrics_table = NULL;
469
	smu_table->watermarks_table = NULL;
470
	smu_table->metrics_time = 0;
471

472 473 474
	ret = smu_v11_0_fini_dpm_context(smu);
	if (ret)
		return ret;
475 476
	return 0;
}
477

478
int smu_v11_0_init_power(struct smu_context *smu)
479 480 481
{
	struct smu_power_context *smu_power = &smu->smu_power;

482 483
	if (!smu->pm_enabled)
		return 0;
484 485 486 487 488 489 490 491 492 493 494 495
	if (smu_power->power_context || smu_power->power_context_size != 0)
		return -EINVAL;

	smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
					   GFP_KERNEL);
	if (!smu_power->power_context)
		return -ENOMEM;
	smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context);

	return 0;
}

496
int smu_v11_0_fini_power(struct smu_context *smu)
497 498 499
{
	struct smu_power_context *smu_power = &smu->smu_power;

500 501
	if (!smu->pm_enabled)
		return 0;
502 503 504 505 506 507 508 509 510 511
	if (!smu_power->power_context || smu_power->power_context_size == 0)
		return -EINVAL;

	kfree(smu_power->power_context);
	smu_power->power_context = NULL;
	smu_power->power_context_size = 0;

	return 0;
}

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu)
{
	int ret, index;
	uint16_t size;
	uint8_t frev, crev;
	struct atom_common_table_header *header;
	struct atom_firmware_info_v3_3 *v_3_3;
	struct atom_firmware_info_v3_1 *v_3_1;

	index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
					    firmwareinfo);

	ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev,
				      (uint8_t **)&header);
	if (ret)
		return ret;

	if (header->format_revision != 3) {
		pr_err("unknown atom_firmware_info version! for smu11\n");
		return -EINVAL;
	}

	switch (header->content_revision) {
	case 0:
	case 1:
	case 2:
		v_3_1 = (struct atom_firmware_info_v3_1 *)header;
		smu->smu_table.boot_values.revision = v_3_1->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = 0;
		break;
	case 3:
	default:
		v_3_3 = (struct atom_firmware_info_v3_3 *)header;
		smu->smu_table.boot_values.revision = v_3_3->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id;
	}

567 568 569
	smu->smu_table.boot_values.format_revision = header->format_revision;
	smu->smu_table.boot_values.content_revision = header->content_revision;

570 571 572
	return 0;
}

573
int smu_v11_0_get_clk_info_from_vbios(struct smu_context *smu)
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
{
	int ret, index;
	struct amdgpu_device *adev = smu->adev;
	struct atom_get_smu_clock_info_parameters_v3_1 input = {0};
	struct atom_get_smu_clock_info_output_parameters_v3_1 *output;

	input.clk_id = SMU11_SYSPLL0_SOCCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.socclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCEFCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dcefclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_ECLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.eclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_VCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.vclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
	if ((smu->smu_table.boot_values.format_revision == 3) &&
	    (smu->smu_table.boot_values.content_revision >= 2)) {
		memset(&input, 0, sizeof(input));
		input.clk_id = SMU11_SYSPLL1_0_FCLK_ID;
		input.syspll_id = SMU11_SYSPLL1_2_ID;
		input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
		index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
						    getsmuclockinfo);

		ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
						(uint32_t *)&input);
		if (ret)
			return -EINVAL;

		output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
		smu->smu_table.boot_values.fclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;
	}

667 668 669
	return 0;
}

670
int smu_v11_0_notify_memory_pool_location(struct smu_context *smu)
671 672 673 674 675 676 677 678 679 680
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	int ret = 0;
	uint64_t address;
	uint32_t address_low, address_high;

	if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL)
		return ret;

681
	address = (uintptr_t)memory_pool->cpu_addr;
682 683 684 685
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

	ret = smu_send_smc_msg_with_param(smu,
686
					  SMU_MSG_SetSystemVirtualDramAddrHigh,
687 688
					  address_high,
					  NULL);
689 690 691
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu,
692
					  SMU_MSG_SetSystemVirtualDramAddrLow,
693 694
					  address_low,
					  NULL);
695 696 697 698 699 700 701
	if (ret)
		return ret;

	address = memory_pool->mc_address;
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

702
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh,
703
					  address_high, NULL);
704 705
	if (ret)
		return ret;
706
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow,
707
					  address_low, NULL);
708 709
	if (ret)
		return ret;
710
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize,
711
					  (uint32_t)memory_pool->size, NULL);
712 713 714 715 716 717
	if (ret)
		return ret;

	return ret;
}

718
int smu_v11_0_check_pptable(struct smu_context *smu)
719 720 721 722 723 724 725
{
	int ret;

	ret = smu_check_powerplay_table(smu);
	return ret;
}

726
int smu_v11_0_parse_pptable(struct smu_context *smu)
727 728 729 730
{
	int ret;

	struct smu_table_context *table_context = &smu->smu_table;
731
	struct smu_table *table = &table_context->tables[SMU_TABLE_PPTABLE];
732 733 734 735

	if (table_context->driver_pptable)
		return -EINVAL;

736
	table_context->driver_pptable = kzalloc(table->size, GFP_KERNEL);
737 738 739 740 741

	if (!table_context->driver_pptable)
		return -ENOMEM;

	ret = smu_store_powerplay_table(smu);
742 743 744 745
	if (ret)
		return -EINVAL;

	ret = smu_append_powerplay_table(smu);
746 747 748 749

	return ret;
}

750
int smu_v11_0_populate_smc_pptable(struct smu_context *smu)
751
{
752
	int ret;
753

754
	ret = smu_set_default_dpm_table(smu);
755

756
	return ret;
757 758
}

759
int smu_v11_0_write_pptable(struct smu_context *smu)
760
{
761
	struct smu_table_context *table_context = &smu->smu_table;
762 763
	int ret = 0;

764
	ret = smu_update_table(smu, SMU_TABLE_PPTABLE, 0,
765
			       table_context->driver_pptable, true);
766 767 768 769

	return ret;
}

770
int smu_v11_0_set_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk)
771 772 773 774
{
	int ret;

	ret = smu_send_smc_msg_with_param(smu,
775
					  SMU_MSG_SetMinDeepSleepDcefclk, clk, NULL);
776 777 778 779 780 781
	if (ret)
		pr_err("SMU11 attempt to set divider for DCEFCLK Failed!");

	return ret;
}

782
int smu_v11_0_set_min_dcef_deep_sleep(struct smu_context *smu)
783 784 785
{
	struct smu_table_context *table_context = &smu->smu_table;

786 787
	if (!smu->pm_enabled)
		return 0;
788 789 790
	if (!table_context)
		return -EINVAL;

791
	return smu_v11_0_set_deep_sleep_dcefclk(smu, table_context->boot_values.dcefclk / 100);
792 793
}

794 795 796 797 798 799 800 801
int smu_v11_0_set_driver_table_location(struct smu_context *smu)
{
	struct smu_table *driver_table = &smu->smu_table.driver_table;
	int ret = 0;

	if (driver_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
				SMU_MSG_SetDriverDramAddrHigh,
802 803
				upper_32_bits(driver_table->mc_address),
				NULL);
804 805 806
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
				SMU_MSG_SetDriverDramAddrLow,
807 808
				lower_32_bits(driver_table->mc_address),
				NULL);
809 810 811 812 813
	}

	return ret;
}

814
int smu_v11_0_set_tool_table_location(struct smu_context *smu)
815 816
{
	int ret = 0;
817
	struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG];
818 819 820

	if (tool_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
821
				SMU_MSG_SetToolsDramAddrHigh,
822 823
				upper_32_bits(tool_table->mc_address),
				NULL);
824 825
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
826
				SMU_MSG_SetToolsDramAddrLow,
827 828
				lower_32_bits(tool_table->mc_address),
				NULL);
829 830 831 832 833
	}

	return ret;
}

834
int smu_v11_0_init_display_count(struct smu_context *smu, uint32_t count)
835 836
{
	int ret = 0;
837 838 839

	if (!smu->pm_enabled)
		return ret;
840

841
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, count, NULL);
842 843 844
	return ret;
}

845

846
int smu_v11_0_set_allowed_mask(struct smu_context *smu)
847 848 849 850 851
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
	uint32_t feature_mask[2];

852
	mutex_lock(&feature->mutex);
853
	if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64)
854
		goto failed;
855 856 857 858

	bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64);

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh,
859
					  feature_mask[1], NULL);
860
	if (ret)
861
		goto failed;
862 863

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow,
864
					  feature_mask[0], NULL);
865
	if (ret)
866
		goto failed;
867

868 869
failed:
	mutex_unlock(&feature->mutex);
870 871 872
	return ret;
}

873
int smu_v11_0_get_enabled_mask(struct smu_context *smu,
874 875 876
				      uint32_t *feature_mask, uint32_t num)
{
	uint32_t feature_mask_high = 0, feature_mask_low = 0;
877
	struct smu_feature *feature = &smu->smu_feature;
878 879 880 881 882
	int ret = 0;

	if (!feature_mask || num < 2)
		return -EINVAL;

883
	if (bitmap_empty(feature->enabled, feature->feature_num)) {
884
		ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh, &feature_mask_high);
885 886
		if (ret)
			return ret;
887

888
		ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow, &feature_mask_low);
889 890
		if (ret)
			return ret;
891

892 893 894 895 896 897
		feature_mask[0] = feature_mask_low;
		feature_mask[1] = feature_mask_high;
	} else {
		bitmap_copy((unsigned long *)feature_mask, feature->enabled,
			     feature->feature_num);
	}
898 899 900 901

	return ret;
}

902
int smu_v11_0_system_features_control(struct smu_context *smu,
903
					     bool en)
904 905 906 907 908
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_mask[2];
	int ret = 0;

909
	ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures :
910
				     SMU_MSG_DisableAllSmuFeatures), NULL);
911 912 913
	if (ret)
		return ret;

914 915 916
	bitmap_zero(feature->enabled, feature->feature_num);
	bitmap_zero(feature->supported, feature->feature_num);

917 918 919 920 921 922 923 924 925 926
	if (en) {
		ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
		if (ret)
			return ret;

		bitmap_copy(feature->enabled, (unsigned long *)&feature_mask,
			    feature->feature_num);
		bitmap_copy(feature->supported, (unsigned long *)&feature_mask,
			    feature->feature_num);
	}
927 928 929 930

	return ret;
}

931
int smu_v11_0_notify_display_change(struct smu_context *smu)
932 933 934
{
	int ret = 0;

935 936
	if (!smu->pm_enabled)
		return ret;
937 938
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
	    smu->adev->gmc.vram_type == AMDGPU_VRAM_TYPE_HBM)
939
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1, NULL);
940 941 942 943

	return ret;
}

944 945
static int
smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock,
946
				    enum smu_clk_type clock_select)
947 948
{
	int ret = 0;
949
	int clk_id;
950

951 952
	if (!smu->pm_enabled)
		return ret;
953

954 955 956 957
	if ((smu_msg_get_index(smu, SMU_MSG_GetDcModeMaxDpmFreq) < 0) ||
	    (smu_msg_get_index(smu, SMU_MSG_GetMaxDpmFreq) < 0))
		return 0;

958 959 960 961
	clk_id = smu_clk_get_index(smu, clock_select);
	if (clk_id < 0)
		return -EINVAL;

962
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq,
963
					  clk_id << 16, clock);
964 965 966 967 968 969 970 971 972 973
	if (ret) {
		pr_err("[GetMaxSustainableClock] Failed to get max DC clock from SMC!");
		return ret;
	}

	if (*clock != 0)
		return 0;

	/* if DC limit is zero, return AC limit */
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
974
					  clk_id << 16, clock);
975 976 977 978 979
	if (ret) {
		pr_err("[GetMaxSustainableClock] failed to get max AC clock from SMC!");
		return ret;
	}

980
	return 0;
981 982
}

983
int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu)
984 985 986 987
{
	struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks;
	int ret = 0;

988 989
	if (!smu->smu_table.max_sustainable_clocks)
		max_sustainable_clocks = kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks),
990
					 GFP_KERNEL);
991 992 993
	else
		max_sustainable_clocks = smu->smu_table.max_sustainable_clocks;

994 995 996 997 998 999 1000 1001 1002
	smu->smu_table.max_sustainable_clocks = (void *)max_sustainable_clocks;

	max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100;
	max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100;
	max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100;
	max_sustainable_clocks->display_clock = 0xFFFFFFFF;
	max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
	max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;

1003
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1004 1005
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->uclock),
1006
							  SMU_UCLK);
1007 1008 1009 1010 1011 1012 1013
		if (ret) {
			pr_err("[%s] failed to get max UCLK from SMC!",
			       __func__);
			return ret;
		}
	}

1014
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
1015 1016
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->soc_clock),
1017
							  SMU_SOCCLK);
1018 1019 1020 1021 1022 1023 1024
		if (ret) {
			pr_err("[%s] failed to get max SOCCLK from SMC!",
			       __func__);
			return ret;
		}
	}

1025
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
1026 1027
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->dcef_clock),
1028
							  SMU_DCEFCLK);
1029 1030 1031 1032 1033 1034 1035 1036
		if (ret) {
			pr_err("[%s] failed to get max DCEFCLK from SMC!",
			       __func__);
			return ret;
		}

		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->display_clock),
1037
							  SMU_DISPCLK);
1038 1039 1040 1041 1042 1043 1044
		if (ret) {
			pr_err("[%s] failed to get max DISPCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->phy_clock),
1045
							  SMU_PHYCLK);
1046 1047 1048 1049 1050 1051 1052
		if (ret) {
			pr_err("[%s] failed to get max PHYCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->pixel_clock),
1053
							  SMU_PIXCLK);
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
		if (ret) {
			pr_err("[%s] failed to get max PIXCLK from SMC!",
			       __func__);
			return ret;
		}
	}

	if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
		max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;

	return 0;
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
uint32_t smu_v11_0_get_max_power_limit(struct smu_context *smu) {
	uint32_t od_limit, max_power_limit;
	struct smu_11_0_powerplay_table *powerplay_table = NULL;
	struct smu_table_context *table_context = &smu->smu_table;
	powerplay_table = table_context->power_play_table;

	max_power_limit = smu_get_pptable_power_limit(smu);

	if (!max_power_limit) {
		// If we couldn't get the table limit, fall back on first-read value
		if (!smu->default_power_limit)
			smu->default_power_limit = smu->power_limit;
		max_power_limit = smu->default_power_limit;
	}

	if (smu->od_enabled) {
		od_limit = le32_to_cpu(powerplay_table->overdrive_table.max[SMU_11_0_ODSETTING_POWERPERCENTAGE]);

		pr_debug("ODSETTING_POWERPERCENTAGE: %d (default: %d)\n", od_limit, smu->default_power_limit);

		max_power_limit *= (100 + od_limit);
		max_power_limit /= 100;
	}

	return max_power_limit;
}

1094
int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n)
1095
{
1096
	int ret = 0;
1097 1098 1099
	uint32_t max_power_limit;

	max_power_limit = smu_v11_0_get_max_power_limit(smu);
1100

1101 1102 1103 1104
	if (n > max_power_limit) {
		pr_err("New power limit (%d) is over the max allowed %d\n",
				n,
				max_power_limit);
1105
		return -EINVAL;
1106 1107
	}

1108 1109 1110
	if (n == 0)
		n = smu->default_power_limit;

1111 1112 1113
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) {
		pr_err("Setting new power limit is not supported!\n");
		return -EOPNOTSUPP;
1114 1115
	}

1116
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n, NULL);
1117
	if (ret) {
1118
		pr_err("[%s] Set power limit Failed!\n", __func__);
1119 1120
		return ret;
	}
1121
	smu->power_limit = n;
1122

1123
	return 0;
1124 1125
}

1126
int smu_v11_0_get_current_clk_freq(struct smu_context *smu,
1127 1128
					  enum smu_clk_type clk_id,
					  uint32_t *value)
1129 1130
{
	int ret = 0;
1131
	uint32_t freq = 0;
1132
	int asic_clk_id;
1133

1134
	if (clk_id >= SMU_CLK_COUNT || !value)
1135 1136
		return -EINVAL;

1137 1138 1139 1140
	asic_clk_id = smu_clk_get_index(smu, clk_id);
	if (asic_clk_id < 0)
		return -EINVAL;

1141
	/* if don't has GetDpmClockFreq Message, try get current clock by SmuMetrics_t */
1142
	if (smu_msg_get_index(smu, SMU_MSG_GetDpmClockFreq) < 0)
1143 1144 1145
		ret =  smu_get_current_clk_freq_by_table(smu, clk_id, &freq);
	else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmClockFreq,
1146
						  (asic_clk_id << 16), &freq);
1147 1148 1149
		if (ret)
			return ret;
	}
1150 1151 1152 1153 1154 1155 1156

	freq *= 100;
	*value = freq;

	return ret;
}

1157
static int smu_v11_0_set_thermal_range(struct smu_context *smu,
1158
				       struct smu_temperature_range range)
1159 1160
{
	struct amdgpu_device *adev = smu->adev;
1161 1162
	int low = SMU_THERMAL_MINIMUM_ALERT_TEMP;
	int high = SMU_THERMAL_MAXIMUM_ALERT_TEMP;
1163
	uint32_t val;
1164 1165
	struct smu_table_context *table_context = &smu->smu_table;
	struct smu_11_0_powerplay_table *powerplay_table = table_context->power_play_table;
1166

1167 1168
	low = max(SMU_THERMAL_MINIMUM_ALERT_TEMP,
			range.min / SMU_TEMPERATURE_UNITS_PER_CENTIGRADES);
1169
	high = min((uint16_t)SMU_THERMAL_MAXIMUM_ALERT_TEMP, powerplay_table->software_shutdown_temp);
1170

1171 1172 1173 1174 1175 1176
	if (low > high)
		return -EINVAL;

	val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1);
1177 1178
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 0);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 0);
1179 1180
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high & 0xff));
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low & 0xff));
1181 1182 1183 1184 1185 1186 1187
	val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);

	return 0;
}

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
static int smu_v11_0_enable_thermal_alert(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t val = 0;

	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val);

	return 0;
}

1202
int smu_v11_0_start_thermal_control(struct smu_context *smu)
1203 1204
{
	int ret = 0;
1205
	struct smu_temperature_range range;
1206 1207
	struct amdgpu_device *adev = smu->adev;

1208 1209
	if (!smu->pm_enabled)
		return ret;
1210

1211 1212
	memcpy(&range, &smu11_thermal_policy[0], sizeof(struct smu_temperature_range));

1213
	ret = smu_get_thermal_temperature_range(smu, &range);
1214 1215
	if (ret)
		return ret;
1216 1217

	if (smu->smu_table.thermal_controller_type) {
1218
		ret = smu_v11_0_set_thermal_range(smu, range);
1219 1220 1221 1222 1223 1224
		if (ret)
			return ret;

		ret = smu_v11_0_enable_thermal_alert(smu);
		if (ret)
			return ret;
1225

1226
		ret = smu_set_thermal_fan_table(smu);
1227 1228 1229 1230
		if (ret)
			return ret;
	}

1231 1232 1233 1234 1235 1236 1237 1238 1239
	adev->pm.dpm.thermal.min_temp = range.min;
	adev->pm.dpm.thermal.max_temp = range.max;
	adev->pm.dpm.thermal.max_edge_emergency_temp = range.edge_emergency_max;
	adev->pm.dpm.thermal.min_hotspot_temp = range.hotspot_min;
	adev->pm.dpm.thermal.max_hotspot_crit_temp = range.hotspot_crit_max;
	adev->pm.dpm.thermal.max_hotspot_emergency_temp = range.hotspot_emergency_max;
	adev->pm.dpm.thermal.min_mem_temp = range.mem_min;
	adev->pm.dpm.thermal.max_mem_crit_temp = range.mem_crit_max;
	adev->pm.dpm.thermal.max_mem_emergency_temp = range.mem_emergency_max;
1240 1241 1242 1243

	return ret;
}

1244
int smu_v11_0_stop_thermal_control(struct smu_context *smu)
1245 1246 1247 1248 1249 1250 1251 1252
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, 0);

	return 0;
}

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
static uint16_t convert_to_vddc(uint8_t vid)
{
	return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE);
}

static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t vdd = 0, val_vid = 0;

	if (!value)
		return -EINVAL;
	val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) &
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >>
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT;

	vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid);

	*value = vdd;

	return 0;

}

1277
int smu_v11_0_read_sensor(struct smu_context *smu,
1278 1279 1280 1281
				 enum amd_pp_sensors sensor,
				 void *data, uint32_t *size)
{
	int ret = 0;
1282 1283 1284 1285

	if(!data || !size)
		return -EINVAL;

1286
	switch (sensor) {
1287
	case AMDGPU_PP_SENSOR_GFX_MCLK:
1288
		ret = smu_get_current_clk_freq(smu, SMU_UCLK, (uint32_t *)data);
1289 1290 1291
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_SCLK:
1292
		ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, (uint32_t *)data);
1293
		*size = 4;
1294
		break;
1295 1296 1297
	case AMDGPU_PP_SENSOR_VDDGFX:
		ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
		*size = 4;
1298
		break;
1299 1300 1301 1302
	case AMDGPU_PP_SENSOR_MIN_FAN_RPM:
		*(uint32_t *)data = 0;
		*size = 4;
		break;
1303
	default:
1304
		ret = smu_common_read_sensor(smu, sensor, data, size);
1305 1306 1307 1308 1309 1310 1311 1312 1313
		break;
	}

	if (ret)
		*size = 0;

	return ret;
}

1314
int
1315 1316 1317 1318 1319 1320
smu_v11_0_display_clock_voltage_request(struct smu_context *smu,
					struct pp_display_clock_request
					*clock_req)
{
	enum amd_pp_clock_type clk_type = clock_req->clock_type;
	int ret = 0;
1321
	enum smu_clk_type clk_select = 0;
1322 1323
	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;

1324 1325
	if (!smu->pm_enabled)
		return -EINVAL;
1326

1327
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) ||
1328
		smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1329 1330
		switch (clk_type) {
		case amd_pp_dcef_clock:
1331
			clk_select = SMU_DCEFCLK;
1332 1333
			break;
		case amd_pp_disp_clock:
1334
			clk_select = SMU_DISPCLK;
1335 1336
			break;
		case amd_pp_pixel_clock:
1337
			clk_select = SMU_PIXCLK;
1338 1339
			break;
		case amd_pp_phy_clock:
1340
			clk_select = SMU_PHYCLK;
1341
			break;
1342 1343 1344
		case amd_pp_mem_clock:
			clk_select = SMU_UCLK;
			break;
1345 1346 1347 1348 1349 1350 1351 1352 1353
		default:
			pr_info("[%s] Invalid Clock Type!", __func__);
			ret = -EINVAL;
			break;
		}

		if (ret)
			goto failed;

1354 1355 1356
		if (clk_select == SMU_UCLK && smu->disable_uclk_switch)
			return 0;

1357
		ret = smu_set_hard_freq_range(smu, clk_select, clk_freq, 0);
1358 1359 1360

		if(clk_select == SMU_UCLK)
			smu->hard_min_uclk_req_from_dal = clk_freq;
1361 1362 1363 1364 1365 1366
	}

failed:
	return ret;
}

1367
int smu_v11_0_gfx_off_control(struct smu_context *smu, bool enable)
1368 1369
{
	int ret = 0;
1370
	struct amdgpu_device *adev = smu->adev;
1371

1372 1373 1374 1375
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		break;
	case CHIP_NAVI10:
1376
	case CHIP_NAVI14:
1377
	case CHIP_NAVI12:
1378 1379 1380
		if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
			return 0;
		if (enable)
1381
			ret = smu_send_smc_msg(smu, SMU_MSG_AllowGfxOff, NULL);
1382
		else
1383
			ret = smu_send_smc_msg(smu, SMU_MSG_DisallowGfxOff, NULL);
1384 1385 1386 1387
		break;
	default:
		break;
	}
1388 1389 1390 1391

	return ret;
}

1392
uint32_t
1393 1394
smu_v11_0_get_fan_control_mode(struct smu_context *smu)
{
1395
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1396 1397 1398 1399 1400 1401
		return AMD_FAN_CTRL_MANUAL;
	else
		return AMD_FAN_CTRL_AUTO;
}

static int
1402
smu_v11_0_auto_fan_control(struct smu_context *smu, bool auto_fan_control)
1403 1404 1405
{
	int ret = 0;

1406
	if (!smu_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1407 1408
		return 0;

1409
	ret = smu_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, auto_fan_control);
1410 1411
	if (ret)
		pr_err("[%s]%s smc FAN CONTROL feature failed!",
1412
		       __func__, (auto_fan_control ? "Start" : "Stop"));
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431

	return ret;
}

static int
smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode)
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, TMIN, 0));
	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, FDO_PWM_MODE, mode));

	return 0;
}

1432
int
1433 1434 1435
smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
1436
	uint32_t duty100, duty;
1437 1438 1439 1440 1441
	uint64_t tmp64;

	if (speed > 100)
		speed = 100;

1442
	if (smu_v11_0_auto_fan_control(smu, 0))
1443
		return -EINVAL;
1444

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
	duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1),
				CG_FDO_CTRL1, FMAX_DUTY100);
	if (!duty100)
		return -EINVAL;

	tmp64 = (uint64_t)speed * duty100;
	do_div(tmp64, 100);
	duty = (uint32_t)tmp64;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0),
				   CG_FDO_CTRL0, FDO_STATIC_DUTY, duty));

	return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC);
}

1461
int
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
smu_v11_0_set_fan_control_mode(struct smu_context *smu,
			       uint32_t mode)
{
	int ret = 0;

	switch (mode) {
	case AMD_FAN_CTRL_NONE:
		ret = smu_v11_0_set_fan_speed_percent(smu, 100);
		break;
	case AMD_FAN_CTRL_MANUAL:
1472
		ret = smu_v11_0_auto_fan_control(smu, 0);
1473 1474
		break;
	case AMD_FAN_CTRL_AUTO:
1475
		ret = smu_v11_0_auto_fan_control(smu, 1);
1476 1477 1478 1479 1480 1481
		break;
	default:
		break;
	}

	if (ret) {
1482
		pr_err("[%s]Set fan control mode failed!", __func__);
1483 1484 1485 1486 1487 1488
		return -EINVAL;
	}

	return ret;
}

1489
int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu,
1490 1491 1492 1493 1494 1495 1496 1497 1498
				       uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	int ret;
	uint32_t tach_period, crystal_clock_freq;

	if (!speed)
		return -EINVAL;

1499
	ret = smu_v11_0_auto_fan_control(smu, 0);
1500
	if (ret)
1501
		return ret;
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

	crystal_clock_freq = amdgpu_asic_get_xclk(adev);
	tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed);
	WREG32_SOC15(THM, 0, mmCG_TACH_CTRL,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL),
				   CG_TACH_CTRL, TARGET_PERIOD,
				   tach_period));

	ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM);

	return ret;
}

1515
int smu_v11_0_set_xgmi_pstate(struct smu_context *smu,
1516 1517
				     uint32_t pstate)
{
1518 1519 1520
	int ret = 0;
	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetXgmiMode,
1521 1522
					  pstate ? XGMI_MODE_PSTATE_D0 : XGMI_MODE_PSTATE_D3,
					  NULL);
1523
	return ret;
1524 1525
}

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
#define THM_11_0__SRCID__THM_DIG_THERM_L2H		0		/* ASIC_TEMP > CG_THERMAL_INT.DIG_THERM_INTH  */
#define THM_11_0__SRCID__THM_DIG_THERM_H2L		1		/* ASIC_TEMP < CG_THERMAL_INT.DIG_THERM_INTL  */

static int smu_v11_0_irq_process(struct amdgpu_device *adev,
				 struct amdgpu_irq_src *source,
				 struct amdgpu_iv_entry *entry)
{
	uint32_t client_id = entry->client_id;
	uint32_t src_id = entry->src_id;

	if (client_id == SOC15_IH_CLIENTID_THM) {
		switch (src_id) {
		case THM_11_0__SRCID__THM_DIG_THERM_L2H:
			pr_warn("GPU over temperature range detected on PCIe %d:%d.%d!\n",
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;
		case THM_11_0__SRCID__THM_DIG_THERM_H2L:
			pr_warn("GPU under temperature range detected on PCIe %d:%d.%d!\n",
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;
		default:
			pr_warn("GPU under temperature range unknown src id (%d), detected on PCIe %d:%d.%d!\n",
				src_id,
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;

		}
	}

	return 0;
}

static const struct amdgpu_irq_src_funcs smu_v11_0_irq_funcs =
{
	.process = smu_v11_0_irq_process,
};

1569
int smu_v11_0_register_irq_handler(struct smu_context *smu)
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
{
	struct amdgpu_device *adev = smu->adev;
	struct amdgpu_irq_src *irq_src = smu->irq_source;
	int ret = 0;

	/* already register */
	if (irq_src)
		return 0;

	irq_src = kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
	if (!irq_src)
		return -ENOMEM;
	smu->irq_source = irq_src;

	irq_src->funcs = &smu_v11_0_irq_funcs;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_L2H,
				irq_src);
	if (ret)
		return ret;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_H2L,
				irq_src);
	if (ret)
		return ret;

	return ret;
}

1601
int smu_v11_0_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
		struct pp_smu_nv_clock_table *max_clocks)
{
	struct smu_table_context *table_context = &smu->smu_table;
	struct smu_11_0_max_sustainable_clocks *sustainable_clocks = NULL;

	if (!max_clocks || !table_context->max_sustainable_clocks)
		return -EINVAL;

	sustainable_clocks = table_context->max_sustainable_clocks;

	max_clocks->dcfClockInKhz =
			(unsigned int) sustainable_clocks->dcef_clock * 1000;
	max_clocks->displayClockInKhz =
			(unsigned int) sustainable_clocks->display_clock * 1000;
	max_clocks->phyClockInKhz =
			(unsigned int) sustainable_clocks->phy_clock * 1000;
	max_clocks->pixelClockInKhz =
			(unsigned int) sustainable_clocks->pixel_clock * 1000;
	max_clocks->uClockInKhz =
			(unsigned int) sustainable_clocks->uclock * 1000;
	max_clocks->socClockInKhz =
			(unsigned int) sustainable_clocks->soc_clock * 1000;
	max_clocks->dscClockInKhz = 0;
	max_clocks->dppClockInKhz = 0;
	max_clocks->fabricClockInKhz = 0;

	return 0;
}

1631
int smu_v11_0_set_azalia_d3_pme(struct smu_context *smu)
1632 1633 1634
{
	int ret = 0;

1635
	ret = smu_send_smc_msg(smu, SMU_MSG_BacoAudioD3PME, NULL);
1636 1637 1638 1639

	return ret;
}

1640 1641
static int smu_v11_0_baco_set_armd3_sequence(struct smu_context *smu, enum smu_v11_0_baco_seq baco_seq)
{
1642
	return smu_send_smc_msg_with_param(smu, SMU_MSG_ArmD3, baco_seq, NULL);
1643 1644
}

1645
bool smu_v11_0_baco_is_support(struct smu_context *smu)
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
{
	struct amdgpu_device *adev = smu->adev;
	struct smu_baco_context *smu_baco = &smu->smu_baco;
	uint32_t val;
	bool baco_support;

	mutex_lock(&smu_baco->mutex);
	baco_support = smu_baco->platform_support;
	mutex_unlock(&smu_baco->mutex);

	if (!baco_support)
		return false;

1659 1660 1661
	/* Arcturus does not support this bit mask */
	if (smu_feature_is_supported(smu, SMU_FEATURE_BACO_BIT) &&
	   !smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT))
1662 1663 1664 1665 1666 1667 1668 1669 1670
		return false;

	val = RREG32_SOC15(NBIO, 0, mmRCC_BIF_STRAP0);
	if (val & RCC_BIF_STRAP0__STRAP_PX_CAPABLE_MASK)
		return true;

	return false;
}

1671
enum smu_baco_state smu_v11_0_baco_get_state(struct smu_context *smu)
1672 1673
{
	struct smu_baco_context *smu_baco = &smu->smu_baco;
1674
	enum smu_baco_state baco_state;
1675 1676 1677 1678 1679 1680 1681 1682

	mutex_lock(&smu_baco->mutex);
	baco_state = smu_baco->state;
	mutex_unlock(&smu_baco->mutex);

	return baco_state;
}

1683
int smu_v11_0_baco_set_state(struct smu_context *smu, enum smu_baco_state state)
1684 1685 1686
{

	struct smu_baco_context *smu_baco = &smu->smu_baco;
1687 1688 1689 1690
	struct amdgpu_device *adev = smu->adev;
	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
	uint32_t bif_doorbell_intr_cntl;
	uint32_t data;
1691 1692 1693 1694 1695 1696 1697
	int ret = 0;

	if (smu_v11_0_baco_get_state(smu) == state)
		return 0;

	mutex_lock(&smu_baco->mutex);

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
	bif_doorbell_intr_cntl = RREG32_SOC15(NBIO, 0, mmBIF_DOORBELL_INT_CNTL);

	if (state == SMU_BACO_STATE_ENTER) {
		bif_doorbell_intr_cntl = REG_SET_FIELD(bif_doorbell_intr_cntl,
						BIF_DOORBELL_INT_CNTL,
						DOORBELL_INTERRUPT_DISABLE, 1);
		WREG32_SOC15(NBIO, 0, mmBIF_DOORBELL_INT_CNTL, bif_doorbell_intr_cntl);

		if (!ras || !ras->supported) {
			data = RREG32_SOC15(THM, 0, mmTHM_BACO_CNTL);
			data |= 0x80000000;
			WREG32_SOC15(THM, 0, mmTHM_BACO_CNTL, data);

1711
			ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, 0, NULL);
1712
		} else {
1713
			ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, 1, NULL);
1714 1715
		}
	} else {
1716
		ret = smu_send_smc_msg(smu, SMU_MSG_ExitBaco, NULL);
1717 1718 1719
		if (ret)
			goto out;

1720 1721 1722 1723
		bif_doorbell_intr_cntl = REG_SET_FIELD(bif_doorbell_intr_cntl,
						BIF_DOORBELL_INT_CNTL,
						DOORBELL_INTERRUPT_DISABLE, 0);
		WREG32_SOC15(NBIO, 0, mmBIF_DOORBELL_INT_CNTL, bif_doorbell_intr_cntl);
1724 1725 1726 1727

		/* clear vbios scratch 6 and 7 for coming asic reinit */
		WREG32(adev->bios_scratch_reg_offset + 6, 0);
		WREG32(adev->bios_scratch_reg_offset + 7, 0);
1728
	}
1729 1730 1731 1732 1733 1734 1735 1736 1737
	if (ret)
		goto out;

	smu_baco->state = state;
out:
	mutex_unlock(&smu_baco->mutex);
	return ret;
}

1738
int smu_v11_0_baco_enter(struct smu_context *smu)
1739
{
1740
	struct amdgpu_device *adev = smu->adev;
1741 1742
	int ret = 0;

1743 1744 1745 1746 1747 1748
	/* Arcturus does not need this audio workaround */
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_v11_0_baco_set_armd3_sequence(smu, BACO_SEQ_BACO);
		if (ret)
			return ret;
	}
1749 1750 1751 1752 1753 1754 1755

	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_ENTER);
	if (ret)
		return ret;

	msleep(10);

1756 1757 1758 1759 1760 1761 1762
	return ret;
}

int smu_v11_0_baco_exit(struct smu_context *smu)
{
	int ret = 0;

1763 1764 1765 1766 1767 1768 1769
	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_EXIT);
	if (ret)
		return ret;

	return ret;
}

1770
int smu_v11_0_get_dpm_ultimate_freq(struct smu_context *smu, enum smu_clk_type clk_type,
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
						 uint32_t *min, uint32_t *max)
{
	int ret = 0, clk_id = 0;
	uint32_t param = 0;

	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0) {
		ret = -EINVAL;
		goto failed;
	}
	param = (clk_id & 0xffff) << 16;

	if (max) {
1784
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq, param, max);
1785 1786 1787 1788 1789
		if (ret)
			goto failed;
	}

	if (min) {
1790
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMinDpmFreq, param, min);
1791 1792 1793 1794 1795 1796 1797 1798
		if (ret)
			goto failed;
	}

failed:
	return ret;
}

1799
int smu_v11_0_set_soft_freq_limited_range(struct smu_context *smu, enum smu_clk_type clk_type,
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
			    uint32_t min, uint32_t max)
{
	int ret = 0, clk_id = 0;
	uint32_t param;

	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	if (max > 0) {
		param = (uint32_t)((clk_id << 16) | (max & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxByFreq,
1812
						  param, NULL);
1813 1814 1815 1816 1817 1818 1819
		if (ret)
			return ret;
	}

	if (min > 0) {
		param = (uint32_t)((clk_id << 16) | (min & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMinByFreq,
1820
						  param, NULL);
1821 1822 1823 1824 1825 1826 1827
		if (ret)
			return ret;
	}

	return ret;
}

1828
int smu_v11_0_override_pcie_parameters(struct smu_context *smu)
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t pcie_gen = 0, pcie_width = 0;
	int ret;

	if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4)
		pcie_gen = 3;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
		pcie_gen = 2;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2)
		pcie_gen = 1;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1)
		pcie_gen = 0;

	/* Bit 31:16: LCLK DPM level. 0 is DPM0, and 1 is DPM1
	 * Bit 15:8:  PCIE GEN, 0 to 3 corresponds to GEN1 to GEN4
	 * Bit 7:0:   PCIE lane width, 1 to 7 corresponds is x1 to x32
	 */
	if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
		pcie_width = 6;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
		pcie_width = 5;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
		pcie_width = 4;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
		pcie_width = 3;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
		pcie_width = 2;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
		pcie_width = 1;

	ret = smu_update_pcie_parameters(smu, pcie_gen, pcie_width);

	if (ret)
		pr_err("[%s] Attempt to override pcie params failed!\n", __func__);

	return ret;

}
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886

int smu_v11_0_set_default_od_settings(struct smu_context *smu, bool initialize, size_t overdrive_table_size)
{
	struct smu_table_context *table_context = &smu->smu_table;
	int ret = 0;

	if (initialize) {
		if (table_context->overdrive_table) {
			return -EINVAL;
		}
		table_context->overdrive_table = kzalloc(overdrive_table_size, GFP_KERNEL);
		if (!table_context->overdrive_table) {
			return -ENOMEM;
		}
		ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, false);
		if (ret) {
			pr_err("Failed to export overdrive table!\n");
			return ret;
		}
1887 1888 1889 1890 1891 1892
		if (!table_context->boot_overdrive_table) {
			table_context->boot_overdrive_table = kmemdup(table_context->overdrive_table, overdrive_table_size, GFP_KERNEL);
			if (!table_context->boot_overdrive_table) {
				return -ENOMEM;
			}
		}
1893 1894 1895 1896 1897 1898 1899 1900
	}
	ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, true);
	if (ret) {
		pr_err("Failed to import overdrive table!\n");
		return ret;
	}
	return ret;
}
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939

int smu_v11_0_set_performance_level(struct smu_context *smu,
				    enum amd_dpm_forced_level level)
{
	int ret = 0;
	uint32_t sclk_mask, mclk_mask, soc_mask;

	switch (level) {
	case AMD_DPM_FORCED_LEVEL_HIGH:
		ret = smu_force_dpm_limit_value(smu, true);
		break;
	case AMD_DPM_FORCED_LEVEL_LOW:
		ret = smu_force_dpm_limit_value(smu, false);
		break;
	case AMD_DPM_FORCED_LEVEL_AUTO:
	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
		ret = smu_unforce_dpm_levels(smu);
		break;
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
		ret = smu_get_profiling_clk_mask(smu, level,
						 &sclk_mask,
						 &mclk_mask,
						 &soc_mask);
		if (ret)
			return ret;
		smu_force_clk_levels(smu, SMU_SCLK, 1 << sclk_mask, false);
		smu_force_clk_levels(smu, SMU_MCLK, 1 << mclk_mask, false);
		smu_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask, false);
		break;
	case AMD_DPM_FORCED_LEVEL_MANUAL:
	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
	default:
		break;
	}
	return ret;
}