smu_v11_0.c 47.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/firmware.h>
24
#include <linux/module.h>
25
#include <linux/pci.h>
26 27

#include "pp_debug.h"
28 29
#include "amdgpu.h"
#include "amdgpu_smu.h"
30
#include "atomfirmware.h"
31
#include "amdgpu_atomfirmware.h"
32
#include "smu_v11_0.h"
33
#include "soc15_common.h"
34
#include "atom.h"
35
#include "vega20_ppt.h"
36
#include "navi10_ppt.h"
37 38 39

#include "asic_reg/thm/thm_11_0_2_offset.h"
#include "asic_reg/thm/thm_11_0_2_sh_mask.h"
40 41
#include "asic_reg/mp/mp_11_0_offset.h"
#include "asic_reg/mp/mp_11_0_sh_mask.h"
42
#include "asic_reg/nbio/nbio_7_4_offset.h"
43
#include "asic_reg/nbio/nbio_7_4_sh_mask.h"
44 45
#include "asic_reg/smuio/smuio_11_0_0_offset.h"
#include "asic_reg/smuio/smuio_11_0_0_sh_mask.h"
46

47
MODULE_FIRMWARE("amdgpu/vega20_smc.bin");
48
MODULE_FIRMWARE("amdgpu/navi10_smc.bin");
49

50
#define SMU11_VOLTAGE_SCALE 4
51

52 53 54 55 56 57 58 59
static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu,
					      uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_66, msg);
	return 0;
}

60 61 62 63 64 65 66 67
static int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg)
{
	struct amdgpu_device *adev = smu->adev;

	*arg = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82);
	return 0;
}

68 69 70
static int smu_v11_0_wait_for_response(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
71
	uint32_t cur_value, i, timeout = adev->usec_timeout * 10;
72

73
	for (i = 0; i < timeout; i++) {
74 75 76 77 78 79 80
		cur_value = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90);
		if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0)
			break;
		udelay(1);
	}

	/* timeout means wrong logic */
81
	if (i == timeout)
82 83
		return -ETIME;

84
	return RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90) == 0x1 ? 0 : -EIO;
85 86 87 88 89
}

static int smu_v11_0_send_msg(struct smu_context *smu, uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
90 91 92 93 94
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
95 96 97 98 99

	smu_v11_0_wait_for_response(smu);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

100
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
101 102 103 104

	ret = smu_v11_0_wait_for_response(smu);

	if (ret)
105
		pr_err("Failed to send message 0x%x, response 0x%x\n", index,
106 107 108 109 110 111 112 113 114 115 116 117
		       ret);

	return ret;

}

static int
smu_v11_0_send_msg_with_param(struct smu_context *smu, uint16_t msg,
			      uint32_t param)
{

	struct amdgpu_device *adev = smu->adev;
118 119 120 121 122
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
123 124 125

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
126 127
		pr_err("Failed to send message 0x%x, response 0x%x, param 0x%x\n",
		       index, ret, param);
128 129 130 131 132

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82, param);

133
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
134 135 136

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
137 138
		pr_err("Failed to send message 0x%x, response 0x%x param 0x%x\n",
		       index, ret, param);
139 140 141 142

	return ret;
}

143 144 145
static int smu_v11_0_init_microcode(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
146 147 148 149 150 151
	const char *chip_name;
	char fw_name[30];
	int err = 0;
	const struct smc_firmware_header_v1_0 *hdr;
	const struct common_firmware_header *header;
	struct amdgpu_firmware_info *ucode = NULL;
152

153 154 155 156
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		chip_name = "vega20";
		break;
157 158 159
	case CHIP_NAVI10:
		chip_name = "navi10";
		break;
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	default:
		BUG();
	}

	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name);

	err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
	if (err)
		goto out;
	err = amdgpu_ucode_validate(adev->pm.fw);
	if (err)
		goto out;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	amdgpu_ucode_print_smc_hdr(&hdr->header);
	adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
		ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC];
		ucode->ucode_id = AMDGPU_UCODE_ID_SMC;
		ucode->fw = adev->pm.fw;
		header = (const struct common_firmware_header *)ucode->fw->data;
		adev->firmware.fw_size +=
			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
	}

out:
	if (err) {
		DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n",
			  fw_name);
		release_firmware(adev->pm.fw);
		adev->pm.fw = NULL;
	}
	return err;
194 195
}

196 197
static int smu_v11_0_load_microcode(struct smu_context *smu)
{
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
	struct amdgpu_device *adev = smu->adev;
	const uint32_t *src;
	const struct smc_firmware_header_v1_0 *hdr;
	uint32_t addr_start = MP1_SRAM;
	uint32_t i;
	uint32_t mp1_fw_flags;

	hdr = (const struct smc_firmware_header_v1_0 *)	adev->pm.fw->data;
	src = (const uint32_t *)(adev->pm.fw->data +
		le32_to_cpu(hdr->header.ucode_array_offset_bytes));

	for (i = 1; i < MP1_SMC_SIZE/4 - 1; i++) {
		WREG32_PCIE(addr_start, src[i]);
		addr_start += 4;
	}

	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & MP1_SMN_PUB_CTRL__RESET_MASK);
	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & ~MP1_SMN_PUB_CTRL__RESET_MASK);

	for (i = 0; i < adev->usec_timeout; i++) {
		mp1_fw_flags = RREG32_PCIE(MP1_Public |
			(smnMP1_FIRMWARE_FLAGS & 0xffffffff));
		if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
			MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
			break;
		udelay(1);
	}

	if (i == adev->usec_timeout)
		return -ETIME;

231 232 233
	return 0;
}

234 235
static int smu_v11_0_check_fw_status(struct smu_context *smu)
{
236 237 238
	struct amdgpu_device *adev = smu->adev;
	uint32_t mp1_fw_flags;

239 240
	mp1_fw_flags = RREG32_PCIE(MP1_Public |
				   (smnMP1_FIRMWARE_FLAGS & 0xffffffff));
241 242 243 244

	if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
	    MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
		return 0;
245

246
	return -EIO;
247 248
}

249 250
static int smu_v11_0_check_fw_version(struct smu_context *smu)
{
251 252 253
	uint32_t if_version = 0xff, smu_version = 0xff;
	uint16_t smu_major;
	uint8_t smu_minor, smu_debug;
254 255
	int ret = 0;

256
	ret = smu_get_smc_version(smu, &if_version, &smu_version);
257
	if (ret)
258
		return ret;
259

260 261 262 263
	smu_major = (smu_version >> 16) & 0xffff;
	smu_minor = (smu_version >> 8) & 0xff;
	smu_debug = (smu_version >> 0) & 0xff;

264

265
	if (if_version != smu->smc_if_version) {
266 267 268 269
		pr_info("smu driver if version = 0x%08x, smu fw if version = 0x%08x, "
			"smu fw version = 0x%08x (%d.%d.%d)\n",
			smu->smc_if_version, if_version,
			smu_version, smu_major, smu_minor, smu_debug);
270
		pr_err("SMU driver if version not matched\n");
271
		ret = -EINVAL;
272 273
	}

274 275 276
	return ret;
}

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
static int smu_v11_0_set_pptable_v2_0(struct smu_context *smu, void **table, uint32_t *size)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t ppt_offset_bytes;
	const struct smc_firmware_header_v2_0 *v2;

	v2 = (const struct smc_firmware_header_v2_0 *) adev->pm.fw->data;

	ppt_offset_bytes = le32_to_cpu(v2->ppt_offset_bytes);
	*size = le32_to_cpu(v2->ppt_size_bytes);
	*table = (uint8_t *)v2 + ppt_offset_bytes;

	return 0;
}

static int smu_v11_0_set_pptable_v2_1(struct smu_context *smu, void **table, uint32_t *size, uint32_t pptable_id)
{
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v2_1 *v2_1;
	struct smc_soft_pptable_entry *entries;
	uint32_t pptable_count = 0;
	int i = 0;

	v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data;
	entries = (struct smc_soft_pptable_entry *)
		((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset));
	pptable_count = le32_to_cpu(v2_1->pptable_count);
	for (i = 0; i < pptable_count; i++) {
		if (le32_to_cpu(entries[i].id) == pptable_id) {
			*table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes));
			*size = le32_to_cpu(entries[i].ppt_size_bytes);
			break;
		}
	}

	if (i == pptable_count)
		return -EINVAL;

	return 0;
}

static int smu_v11_0_setup_pptable(struct smu_context *smu)
319
{
320 321
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v1_0 *hdr;
322
	int ret, index;
323
	uint32_t size;
324
	uint8_t frev, crev;
325
	void *table;
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
	uint16_t version_major, version_minor;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	version_major = le16_to_cpu(hdr->header.header_version_major);
	version_minor = le16_to_cpu(hdr->header.header_version_minor);
	if (version_major == 2 && smu->smu_table.boot_values.pp_table_id > 0) {
		switch (version_minor) {
		case 0:
			ret = smu_v11_0_set_pptable_v2_0(smu, &table, &size);
			break;
		case 1:
			ret = smu_v11_0_set_pptable_v2_1(smu, &table, &size,
							 smu->smu_table.boot_values.pp_table_id);
			break;
		default:
			ret = -EINVAL;
			break;
		}
		if (ret)
			return ret;
346

347 348 349
	} else {
		index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
						    powerplayinfo);
350

351
		ret = smu_get_atom_data_table(smu, index, (uint16_t *)&size, &frev, &crev,
352 353 354 355
					      (uint8_t **)&table);
		if (ret)
			return ret;
	}
356

357 358 359 360
	if (!smu->smu_table.power_play_table)
		smu->smu_table.power_play_table = table;
	if (!smu->smu_table.power_play_table_size)
		smu->smu_table.power_play_table_size = size;
361 362 363 364

	return 0;
}

365 366 367 368 369 370 371
static int smu_v11_0_init_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0)
		return -EINVAL;

372
	return smu_alloc_dpm_context(smu);
373 374 375 376 377 378 379 380 381 382
}

static int smu_v11_0_fini_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0)
		return -EINVAL;

	kfree(smu_dpm->dpm_context);
383
	kfree(smu_dpm->golden_dpm_context);
384 385
	kfree(smu_dpm->dpm_current_power_state);
	kfree(smu_dpm->dpm_request_power_state);
386
	smu_dpm->dpm_context = NULL;
387
	smu_dpm->golden_dpm_context = NULL;
388
	smu_dpm->dpm_context_size = 0;
389 390
	smu_dpm->dpm_current_power_state = NULL;
	smu_dpm->dpm_request_power_state = NULL;
391 392 393 394

	return 0;
}

395 396 397 398
static int smu_v11_0_init_smc_tables(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = NULL;
399
	int ret = 0;
400

401
	if (smu_table->tables || smu_table->table_count == 0)
402 403
		return -EINVAL;

404 405
	tables = kcalloc(SMU_TABLE_COUNT, sizeof(struct smu_table),
			 GFP_KERNEL);
406 407 408 409 410
	if (!tables)
		return -ENOMEM;

	smu_table->tables = tables;

411 412 413
	ret = smu_tables_init(smu, tables);
	if (ret)
		return ret;
414

415 416 417 418
	ret = smu_v11_0_init_dpm_context(smu);
	if (ret)
		return ret;

419 420 421 422 423 424
	return 0;
}

static int smu_v11_0_fini_smc_tables(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
425
	int ret = 0;
426 427 428 429 430

	if (!smu_table->tables || smu_table->table_count == 0)
		return -EINVAL;

	kfree(smu_table->tables);
431
	kfree(smu_table->metrics_table);
432 433
	smu_table->tables = NULL;
	smu_table->table_count = 0;
434 435
	smu_table->metrics_table = NULL;
	smu_table->metrics_time = 0;
436

437 438 439
	ret = smu_v11_0_fini_dpm_context(smu);
	if (ret)
		return ret;
440 441
	return 0;
}
442 443 444 445 446

static int smu_v11_0_init_power(struct smu_context *smu)
{
	struct smu_power_context *smu_power = &smu->smu_power;

447 448
	if (!smu->pm_enabled)
		return 0;
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
	if (smu_power->power_context || smu_power->power_context_size != 0)
		return -EINVAL;

	smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
					   GFP_KERNEL);
	if (!smu_power->power_context)
		return -ENOMEM;
	smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context);

	return 0;
}

static int smu_v11_0_fini_power(struct smu_context *smu)
{
	struct smu_power_context *smu_power = &smu->smu_power;

465 466
	if (!smu->pm_enabled)
		return 0;
467 468 469 470 471 472 473 474 475 476
	if (!smu_power->power_context || smu_power->power_context_size == 0)
		return -EINVAL;

	kfree(smu_power->power_context);
	smu_power->power_context = NULL;
	smu_power->power_context_size = 0;

	return 0;
}

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu)
{
	int ret, index;
	uint16_t size;
	uint8_t frev, crev;
	struct atom_common_table_header *header;
	struct atom_firmware_info_v3_3 *v_3_3;
	struct atom_firmware_info_v3_1 *v_3_1;

	index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
					    firmwareinfo);

	ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev,
				      (uint8_t **)&header);
	if (ret)
		return ret;

	if (header->format_revision != 3) {
		pr_err("unknown atom_firmware_info version! for smu11\n");
		return -EINVAL;
	}

	switch (header->content_revision) {
	case 0:
	case 1:
	case 2:
		v_3_1 = (struct atom_firmware_info_v3_1 *)header;
		smu->smu_table.boot_values.revision = v_3_1->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = 0;
		break;
	case 3:
	default:
		v_3_3 = (struct atom_firmware_info_v3_3 *)header;
		smu->smu_table.boot_values.revision = v_3_3->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id;
	}

	return 0;
}

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
static int smu_v11_0_get_clk_info_from_vbios(struct smu_context *smu)
{
	int ret, index;
	struct amdgpu_device *adev = smu->adev;
	struct atom_get_smu_clock_info_parameters_v3_1 input = {0};
	struct atom_get_smu_clock_info_output_parameters_v3_1 *output;

	input.clk_id = SMU11_SYSPLL0_SOCCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.socclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCEFCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dcefclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_ECLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.eclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_VCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.vclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

611 612 613
	return 0;
}

614 615 616 617 618 619 620 621 622 623 624
static int smu_v11_0_notify_memory_pool_location(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	int ret = 0;
	uint64_t address;
	uint32_t address_low, address_high;

	if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL)
		return ret;

625
	address = (uintptr_t)memory_pool->cpu_addr;
626 627 628 629
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

	ret = smu_send_smc_msg_with_param(smu,
630
					  SMU_MSG_SetSystemVirtualDramAddrHigh,
631 632 633 634
					  address_high);
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu,
635
					  SMU_MSG_SetSystemVirtualDramAddrLow,
636 637 638 639 640 641 642 643
					  address_low);
	if (ret)
		return ret;

	address = memory_pool->mc_address;
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

644
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh,
645 646 647
					  address_high);
	if (ret)
		return ret;
648
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow,
649 650 651
					  address_low);
	if (ret)
		return ret;
652
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize,
653 654 655 656 657 658 659
					  (uint32_t)memory_pool->size);
	if (ret)
		return ret;

	return ret;
}

660 661 662 663 664 665 666 667
static int smu_v11_0_check_pptable(struct smu_context *smu)
{
	int ret;

	ret = smu_check_powerplay_table(smu);
	return ret;
}

668 669 670 671 672
static int smu_v11_0_parse_pptable(struct smu_context *smu)
{
	int ret;

	struct smu_table_context *table_context = &smu->smu_table;
673
	struct smu_table *table = &table_context->tables[SMU_TABLE_PPTABLE];
674 675 676 677

	if (table_context->driver_pptable)
		return -EINVAL;

678
	table_context->driver_pptable = kzalloc(table->size, GFP_KERNEL);
679 680 681 682 683

	if (!table_context->driver_pptable)
		return -ENOMEM;

	ret = smu_store_powerplay_table(smu);
684 685 686 687
	if (ret)
		return -EINVAL;

	ret = smu_append_powerplay_table(smu);
688 689 690 691

	return ret;
}

692 693
static int smu_v11_0_populate_smc_pptable(struct smu_context *smu)
{
694
	int ret;
695

696
	ret = smu_set_default_dpm_table(smu);
697

698
	return ret;
699 700
}

701 702
static int smu_v11_0_write_pptable(struct smu_context *smu)
{
703
	struct smu_table_context *table_context = &smu->smu_table;
704 705
	int ret = 0;

706
	ret = smu_update_table(smu, SMU_TABLE_PPTABLE, 0,
707
			       table_context->driver_pptable, true);
708 709 710 711

	return ret;
}

712 713
static int smu_v11_0_write_watermarks_table(struct smu_context *smu)
{
714 715 716 717 718 719 720 721 722 723 724
	int ret = 0;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *table = NULL;

	table = &smu_table->tables[SMU_TABLE_WATERMARKS];
	if (!table)
		return -EINVAL;

	if (!table->cpu_addr)
		return -EINVAL;

725
	ret = smu_update_table(smu, SMU_TABLE_WATERMARKS, 0, table->cpu_addr,
726
				true);
727 728

	return ret;
729 730
}

731 732 733 734 735 736 737 738 739 740 741 742
static int smu_v11_0_set_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk)
{
	int ret;

	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetMinDeepSleepDcefclk, clk);
	if (ret)
		pr_err("SMU11 attempt to set divider for DCEFCLK Failed!");

	return ret;
}

743 744 745 746
static int smu_v11_0_set_min_dcef_deep_sleep(struct smu_context *smu)
{
	struct smu_table_context *table_context = &smu->smu_table;

747 748
	if (!smu->pm_enabled)
		return 0;
749 750 751
	if (!table_context)
		return -EINVAL;

752
	return smu_set_deep_sleep_dcefclk(smu,
753 754 755
					  table_context->boot_values.dcefclk / 100);
}

756 757 758
static int smu_v11_0_set_tool_table_location(struct smu_context *smu)
{
	int ret = 0;
759
	struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG];
760 761 762

	if (tool_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
763
				SMU_MSG_SetToolsDramAddrHigh,
764 765 766
				upper_32_bits(tool_table->mc_address));
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
767
				SMU_MSG_SetToolsDramAddrLow,
768 769 770 771 772 773
				lower_32_bits(tool_table->mc_address));
	}

	return ret;
}

774
static int smu_v11_0_init_display_count(struct smu_context *smu, uint32_t count)
775 776
{
	int ret = 0;
777 778 779

	if (!smu->pm_enabled)
		return ret;
780

781
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, count);
782 783 784
	return ret;
}

785 786 787 788 789
static int smu_v11_0_update_feature_enable_state(struct smu_context *smu, uint32_t feature_id, bool enabled)
{
	uint32_t feature_low = 0, feature_high = 0;
	int ret = 0;

790 791
	if (!smu->pm_enabled)
		return ret;
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
	if (feature_id >= 0 && feature_id < 31)
		feature_low = (1 << feature_id);
	else if (feature_id > 31 && feature_id < 63)
		feature_high = (1 << feature_id);
	else
		return -EINVAL;

	if (enabled) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesLow,
						  feature_low);
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesHigh,
						  feature_high);
		if (ret)
			return ret;

	} else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesLow,
						  feature_low);
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesHigh,
						  feature_high);
		if (ret)
			return ret;

	}

	return ret;
}

824 825 826 827 828 829
static int smu_v11_0_set_allowed_mask(struct smu_context *smu)
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
	uint32_t feature_mask[2];

830
	mutex_lock(&feature->mutex);
831
	if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64)
832
		goto failed;
833 834 835 836 837 838

	bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64);

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh,
					  feature_mask[1]);
	if (ret)
839
		goto failed;
840 841 842 843

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow,
					  feature_mask[0]);
	if (ret)
844
		goto failed;
845

846 847
failed:
	mutex_unlock(&feature->mutex);
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
	return ret;
}

static int smu_v11_0_get_enabled_mask(struct smu_context *smu,
				      uint32_t *feature_mask, uint32_t num)
{
	uint32_t feature_mask_high = 0, feature_mask_low = 0;
	int ret = 0;

	if (!feature_mask || num < 2)
		return -EINVAL;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_high);
	if (ret)
		return ret;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_low);
	if (ret)
		return ret;

	feature_mask[0] = feature_mask_low;
	feature_mask[1] = feature_mask_high;

	return ret;
}

880 881
static int smu_v11_0_system_features_control(struct smu_context *smu,
					     bool en)
882 883 884 885 886
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_mask[2];
	int ret = 0;

887 888 889 890 891 892 893
	if (smu->pm_enabled) {
		ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures :
					     SMU_MSG_DisableAllSmuFeatures));
		if (ret)
			return ret;
	}

894 895 896 897 898 899 900 901 902 903 904 905
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
		return ret;

	bitmap_copy(feature->enabled, (unsigned long *)&feature_mask,
		    feature->feature_num);
	bitmap_copy(feature->supported, (unsigned long *)&feature_mask,
		    feature->feature_num);

	return ret;
}

906 907 908 909
static int smu_v11_0_notify_display_change(struct smu_context *smu)
{
	int ret = 0;

910 911
	if (!smu->pm_enabled)
		return ret;
912 913 914
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
	    smu->adev->gmc.vram_type == AMDGPU_VRAM_TYPE_HBM)
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1);
915 916 917 918

	return ret;
}

919 920
static int
smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock,
921
				    enum smu_clk_type clock_select)
922 923 924
{
	int ret = 0;

925 926
	if (!smu->pm_enabled)
		return ret;
927
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq,
928
					  smu_clk_get_index(smu, clock_select) << 16);
929 930 931 932 933 934 935 936 937 938 939 940 941 942
	if (ret) {
		pr_err("[GetMaxSustainableClock] Failed to get max DC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);
	if (ret)
		return ret;

	if (*clock != 0)
		return 0;

	/* if DC limit is zero, return AC limit */
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
943
					  smu_clk_get_index(smu, clock_select) << 16);
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
	if (ret) {
		pr_err("[GetMaxSustainableClock] failed to get max AC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);

	return ret;
}

static int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu)
{
	struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks;
	int ret = 0;

	max_sustainable_clocks = kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks),
					 GFP_KERNEL);
	smu->smu_table.max_sustainable_clocks = (void *)max_sustainable_clocks;

	max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100;
	max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100;
	max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100;
	max_sustainable_clocks->display_clock = 0xFFFFFFFF;
	max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
	max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;

970
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
971 972
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->uclock),
973
							  SMU_UCLK);
974 975 976 977 978 979 980
		if (ret) {
			pr_err("[%s] failed to get max UCLK from SMC!",
			       __func__);
			return ret;
		}
	}

981
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
982 983
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->soc_clock),
984
							  SMU_SOCCLK);
985 986 987 988 989 990 991
		if (ret) {
			pr_err("[%s] failed to get max SOCCLK from SMC!",
			       __func__);
			return ret;
		}
	}

992
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
993 994
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->dcef_clock),
995
							  SMU_DCEFCLK);
996 997 998 999 1000 1001 1002 1003
		if (ret) {
			pr_err("[%s] failed to get max DCEFCLK from SMC!",
			       __func__);
			return ret;
		}

		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->display_clock),
1004
							  SMU_DISPCLK);
1005 1006 1007 1008 1009 1010 1011
		if (ret) {
			pr_err("[%s] failed to get max DISPCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->phy_clock),
1012
							  SMU_PHYCLK);
1013 1014 1015 1016 1017 1018 1019
		if (ret) {
			pr_err("[%s] failed to get max PHYCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->pixel_clock),
1020
							  SMU_PIXCLK);
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
		if (ret) {
			pr_err("[%s] failed to get max PIXCLK from SMC!",
			       __func__);
			return ret;
		}
	}

	if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
		max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;

	return 0;
}

1034 1035 1036
static int smu_v11_0_get_power_limit(struct smu_context *smu,
				     uint32_t *limit,
				     bool get_default)
1037
{
1038
	int ret = 0;
1039

1040 1041 1042
	if (get_default) {
		mutex_lock(&smu->mutex);
		*limit = smu->default_power_limit;
1043 1044 1045 1046
		if (smu->od_enabled) {
			*limit *= (100 + smu->smu_table.TDPODLimit);
			*limit /= 100;
		}
1047 1048 1049
		mutex_unlock(&smu->mutex);
	} else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetPptLimit,
1050
			smu_power_get_index(smu, SMU_POWER_SOURCE_AC) << 16);
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
		if (ret) {
			pr_err("[%s] get PPT limit failed!", __func__);
			return ret;
		}
		smu_read_smc_arg(smu, limit);
		smu->power_limit = *limit;
	}

	return ret;
}

static int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n)
{
1064
	uint32_t max_power_limit;
1065 1066
	int ret = 0;

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	if (n == 0)
		n = smu->default_power_limit;

	max_power_limit = smu->default_power_limit;

	if (smu->od_enabled) {
		max_power_limit *= (100 + smu->smu_table.TDPODLimit);
		max_power_limit /= 100;
	}

1077
	if (smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT))
1078
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n);
1079
	if (ret) {
1080
		pr_err("[%s] Set power limit Failed!", __func__);
1081 1082 1083
		return ret;
	}

1084
	return ret;
1085 1086
}

1087 1088 1089
static int smu_v11_0_get_current_clk_freq(struct smu_context *smu,
					  enum smu_clk_type clk_id,
					  uint32_t *value)
1090 1091
{
	int ret = 0;
1092
	uint32_t freq = 0;
1093

1094
	if (clk_id >= SMU_CLK_COUNT || !value)
1095 1096
		return -EINVAL;

1097 1098
	/* if don't has GetDpmClockFreq Message, try get current clock by SmuMetrics_t */
	if (smu_msg_get_index(smu, SMU_MSG_GetDpmClockFreq) == 0)
1099 1100 1101 1102 1103 1104
		ret =  smu_get_current_clk_freq_by_table(smu, clk_id, &freq);
	else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmClockFreq,
						  (smu_clk_get_index(smu, clk_id) << 16));
		if (ret)
			return ret;
1105

1106 1107 1108 1109
		ret = smu_read_smc_arg(smu, &freq);
		if (ret)
			return ret;
	}
1110 1111 1112 1113 1114 1115 1116

	freq *= 100;
	*value = freq;

	return ret;
}

1117
static int smu_v11_0_set_thermal_range(struct smu_context *smu,
1118
				       struct smu_temperature_range *range)
1119 1120
{
	struct amdgpu_device *adev = smu->adev;
1121 1122 1123 1124
	int low = SMU_THERMAL_MINIMUM_ALERT_TEMP *
		SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	int high = SMU_THERMAL_MAXIMUM_ALERT_TEMP *
		SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
1125 1126
	uint32_t val;

1127 1128 1129
	if (!range)
		return -EINVAL;

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	if (low < range->min)
		low = range->min;
	if (high > range->max)
		high = range->max;

	if (low > high)
		return -EINVAL;

	val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1);
1141 1142
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 0);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 0);
1143 1144
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high / SMU_TEMPERATURE_UNITS_PER_CENTIGRADES));
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low / SMU_TEMPERATURE_UNITS_PER_CENTIGRADES));
1145 1146 1147 1148 1149 1150 1151
	val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);

	return 0;
}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
static int smu_v11_0_enable_thermal_alert(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t val = 0;

	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val);

	return 0;
}

1166 1167 1168
static int smu_v11_0_start_thermal_control(struct smu_context *smu)
{
	int ret = 0;
1169
	struct smu_temperature_range range = {
1170 1171 1172 1173 1174 1175 1176 1177 1178
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX};
1179 1180
	struct amdgpu_device *adev = smu->adev;

1181 1182
	if (!smu->pm_enabled)
		return ret;
1183
	ret = smu_get_thermal_temperature_range(smu, &range);
1184 1185 1186 1187 1188 1189 1190 1191 1192

	if (smu->smu_table.thermal_controller_type) {
		ret = smu_v11_0_set_thermal_range(smu, &range);
		if (ret)
			return ret;

		ret = smu_v11_0_enable_thermal_alert(smu);
		if (ret)
			return ret;
1193

1194
		ret = smu_set_thermal_fan_table(smu);
1195 1196 1197 1198 1199 1200
		if (ret)
			return ret;
	}

	adev->pm.dpm.thermal.min_temp = range.min;
	adev->pm.dpm.thermal.max_temp = range.max;
1201 1202 1203 1204 1205 1206 1207
	adev->pm.dpm.thermal.max_edge_emergency_temp = range.edge_emergency_max;
	adev->pm.dpm.thermal.min_hotspot_temp = range.hotspot_min;
	adev->pm.dpm.thermal.max_hotspot_crit_temp = range.hotspot_crit_max;
	adev->pm.dpm.thermal.max_hotspot_emergency_temp = range.hotspot_emergency_max;
	adev->pm.dpm.thermal.min_mem_temp = range.mem_min;
	adev->pm.dpm.thermal.max_mem_crit_temp = range.mem_crit_max;
	adev->pm.dpm.thermal.max_mem_emergency_temp = range.mem_emergency_max;
1208 1209 1210 1211

	return ret;
}

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
static uint16_t convert_to_vddc(uint8_t vid)
{
	return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE);
}

static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t vdd = 0, val_vid = 0;

	if (!value)
		return -EINVAL;
	val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) &
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >>
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT;

	vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid);

	*value = vdd;

	return 0;

}

1236 1237 1238 1239 1240 1241
static int smu_v11_0_read_sensor(struct smu_context *smu,
				 enum amd_pp_sensors sensor,
				 void *data, uint32_t *size)
{
	int ret = 0;
	switch (sensor) {
1242
	case AMDGPU_PP_SENSOR_GFX_MCLK:
1243
		ret = smu_get_current_clk_freq(smu, SMU_UCLK, (uint32_t *)data);
1244 1245 1246
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_SCLK:
1247
		ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, (uint32_t *)data);
1248
		*size = 4;
1249
		break;
1250 1251 1252
	case AMDGPU_PP_SENSOR_VDDGFX:
		ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
		*size = 4;
1253
		break;
1254 1255 1256 1257
	case AMDGPU_PP_SENSOR_MIN_FAN_RPM:
		*(uint32_t *)data = 0;
		*size = 4;
		break;
1258
	default:
1259
		ret = smu_common_read_sensor(smu, sensor, data, size);
1260 1261 1262
		break;
	}

1263 1264 1265 1266
	/* try get sensor data by asic */
	if (ret)
		ret = smu_asic_read_sensor(smu, sensor, data, size);

1267 1268 1269 1270 1271 1272
	if (ret)
		*size = 0;

	return ret;
}

1273 1274 1275 1276 1277 1278 1279
static int
smu_v11_0_display_clock_voltage_request(struct smu_context *smu,
					struct pp_display_clock_request
					*clock_req)
{
	enum amd_pp_clock_type clk_type = clock_req->clock_type;
	int ret = 0;
1280
	enum smu_clk_type clk_select = 0;
1281 1282
	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;

1283 1284
	if (!smu->pm_enabled)
		return -EINVAL;
1285

1286
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) ||
1287
		smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1288 1289
		switch (clk_type) {
		case amd_pp_dcef_clock:
1290
			clk_select = SMU_DCEFCLK;
1291 1292
			break;
		case amd_pp_disp_clock:
1293
			clk_select = SMU_DISPCLK;
1294 1295
			break;
		case amd_pp_pixel_clock:
1296
			clk_select = SMU_PIXCLK;
1297 1298
			break;
		case amd_pp_phy_clock:
1299
			clk_select = SMU_PHYCLK;
1300
			break;
1301 1302 1303
		case amd_pp_mem_clock:
			clk_select = SMU_UCLK;
			break;
1304 1305 1306 1307 1308 1309 1310 1311 1312
		default:
			pr_info("[%s] Invalid Clock Type!", __func__);
			ret = -EINVAL;
			break;
		}

		if (ret)
			goto failed;

1313
		mutex_lock(&smu->mutex);
1314
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq,
1315
			(smu_clk_get_index(smu, clk_select) << 16) | clk_freq);
1316
		mutex_unlock(&smu->mutex);
1317 1318 1319 1320 1321 1322
	}

failed:
	return ret;
}

1323 1324 1325 1326 1327 1328
static int
smu_v11_0_set_watermarks_for_clock_ranges(struct smu_context *smu, struct
					  dm_pp_wm_sets_with_clock_ranges_soc15
					  *clock_ranges)
{
	int ret = 0;
1329
	struct smu_table *watermarks = &smu->smu_table.tables[SMU_TABLE_WATERMARKS];
1330
	void *table = watermarks->cpu_addr;
1331 1332

	if (!smu->disable_watermark &&
1333 1334
	    smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
	    smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
1335
		smu_set_watermarks_table(smu, table, clock_ranges);
1336 1337 1338 1339 1340 1341 1342
		smu->watermarks_bitmap |= WATERMARKS_EXIST;
		smu->watermarks_bitmap &= ~WATERMARKS_LOADED;
	}

	return ret;
}

1343 1344 1345
static int smu_v11_0_gfx_off_control(struct smu_context *smu, bool enable)
{
	int ret = 0;
1346
	struct amdgpu_device *adev = smu->adev;
1347

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		break;
	case CHIP_NAVI10:
		if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
			return 0;
		mutex_lock(&smu->mutex);
		if (enable)
			ret = smu_send_smc_msg(smu, SMU_MSG_AllowGfxOff);
		else
			ret = smu_send_smc_msg(smu, SMU_MSG_DisallowGfxOff);
		mutex_unlock(&smu->mutex);
		break;
	default:
		break;
	}
1364 1365 1366 1367

	return ret;
}

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
static int smu_v11_0_get_current_rpm(struct smu_context *smu,
				     uint32_t *current_rpm)
{
	int ret;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetCurrentRpm);

	if (ret) {
		pr_err("Attempt to get current RPM from SMC Failed!\n");
		return ret;
	}

	smu_read_smc_arg(smu, current_rpm);

	return 0;
}

1385 1386 1387
static uint32_t
smu_v11_0_get_fan_control_mode(struct smu_context *smu)
{
1388
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
		return AMD_FAN_CTRL_MANUAL;
	else
		return AMD_FAN_CTRL_AUTO;
}

static int
smu_v11_0_smc_fan_control(struct smu_context *smu, bool start)
{
	int ret = 0;

1399
	if (smu_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1400 1401
		return 0;

1402
	ret = smu_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, start);
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	if (ret)
		pr_err("[%s]%s smc FAN CONTROL feature failed!",
		       __func__, (start ? "Start" : "Stop"));

	return ret;
}

static int
smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode)
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, TMIN, 0));
	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, FDO_PWM_MODE, mode));

	return 0;
}

static int
smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t duty100;
	uint32_t duty;
	uint64_t tmp64;
	bool stop = 0;

	if (speed > 100)
		speed = 100;

	if (smu_v11_0_smc_fan_control(smu, stop))
		return -EINVAL;
	duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1),
				CG_FDO_CTRL1, FMAX_DUTY100);
	if (!duty100)
		return -EINVAL;

	tmp64 = (uint64_t)speed * duty100;
	do_div(tmp64, 100);
	duty = (uint32_t)tmp64;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0),
				   CG_FDO_CTRL0, FDO_STATIC_DUTY, duty));

	return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC);
}

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
static int
smu_v11_0_set_fan_control_mode(struct smu_context *smu,
			       uint32_t mode)
{
	int ret = 0;
	bool start = 1;
	bool stop  = 0;

	switch (mode) {
	case AMD_FAN_CTRL_NONE:
		ret = smu_v11_0_set_fan_speed_percent(smu, 100);
		break;
	case AMD_FAN_CTRL_MANUAL:
		ret = smu_v11_0_smc_fan_control(smu, stop);
		break;
	case AMD_FAN_CTRL_AUTO:
		ret = smu_v11_0_smc_fan_control(smu, start);
		break;
	default:
		break;
	}

	if (ret) {
1478
		pr_err("[%s]Set fan control mode failed!", __func__);
1479 1480 1481 1482 1483 1484
		return -EINVAL;
	}

	return ret;
}

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
static int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu,
				       uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	int ret;
	uint32_t tach_period, crystal_clock_freq;
	bool stop = 0;

	if (!speed)
		return -EINVAL;

	mutex_lock(&(smu->mutex));
	ret = smu_v11_0_smc_fan_control(smu, stop);
	if (ret)
		goto set_fan_speed_rpm_failed;

	crystal_clock_freq = amdgpu_asic_get_xclk(adev);
	tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed);
	WREG32_SOC15(THM, 0, mmCG_TACH_CTRL,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL),
				   CG_TACH_CTRL, TARGET_PERIOD,
				   tach_period));

	ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM);

set_fan_speed_rpm_failed:
	mutex_unlock(&(smu->mutex));
	return ret;
}

1515 1516 1517
#define XGMI_STATE_D0 1
#define XGMI_STATE_D3 0

1518 1519 1520
static int smu_v11_0_set_xgmi_pstate(struct smu_context *smu,
				     uint32_t pstate)
{
1521 1522 1523 1524 1525 1526 1527
	int ret = 0;
	mutex_lock(&(smu->mutex));
	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetXgmiMode,
					  pstate ? XGMI_STATE_D0 : XGMI_STATE_D3);
	mutex_unlock(&(smu->mutex));
	return ret;
1528 1529
}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
#define THM_11_0__SRCID__THM_DIG_THERM_L2H		0		/* ASIC_TEMP > CG_THERMAL_INT.DIG_THERM_INTH  */
#define THM_11_0__SRCID__THM_DIG_THERM_H2L		1		/* ASIC_TEMP < CG_THERMAL_INT.DIG_THERM_INTL  */

static int smu_v11_0_irq_process(struct amdgpu_device *adev,
				 struct amdgpu_irq_src *source,
				 struct amdgpu_iv_entry *entry)
{
	uint32_t client_id = entry->client_id;
	uint32_t src_id = entry->src_id;

	if (client_id == SOC15_IH_CLIENTID_THM) {
		switch (src_id) {
		case THM_11_0__SRCID__THM_DIG_THERM_L2H:
			pr_warn("GPU over temperature range detected on PCIe %d:%d.%d!\n",
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;
		case THM_11_0__SRCID__THM_DIG_THERM_H2L:
			pr_warn("GPU under temperature range detected on PCIe %d:%d.%d!\n",
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;
		default:
			pr_warn("GPU under temperature range unknown src id (%d), detected on PCIe %d:%d.%d!\n",
				src_id,
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;

		}
	}

	return 0;
}

static const struct amdgpu_irq_src_funcs smu_v11_0_irq_funcs =
{
	.process = smu_v11_0_irq_process,
};

static int smu_v11_0_register_irq_handler(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	struct amdgpu_irq_src *irq_src = smu->irq_source;
	int ret = 0;

	/* already register */
	if (irq_src)
		return 0;

	irq_src = kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
	if (!irq_src)
		return -ENOMEM;
	smu->irq_source = irq_src;

	irq_src->funcs = &smu_v11_0_irq_funcs;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_L2H,
				irq_src);
	if (ret)
		return ret;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_H2L,
				irq_src);
	if (ret)
		return ret;

	return ret;
}

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
static int smu_v11_0_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
		struct pp_smu_nv_clock_table *max_clocks)
{
	struct smu_table_context *table_context = &smu->smu_table;
	struct smu_11_0_max_sustainable_clocks *sustainable_clocks = NULL;

	if (!max_clocks || !table_context->max_sustainable_clocks)
		return -EINVAL;

	sustainable_clocks = table_context->max_sustainable_clocks;

	max_clocks->dcfClockInKhz =
			(unsigned int) sustainable_clocks->dcef_clock * 1000;
	max_clocks->displayClockInKhz =
			(unsigned int) sustainable_clocks->display_clock * 1000;
	max_clocks->phyClockInKhz =
			(unsigned int) sustainable_clocks->phy_clock * 1000;
	max_clocks->pixelClockInKhz =
			(unsigned int) sustainable_clocks->pixel_clock * 1000;
	max_clocks->uClockInKhz =
			(unsigned int) sustainable_clocks->uclock * 1000;
	max_clocks->socClockInKhz =
			(unsigned int) sustainable_clocks->soc_clock * 1000;
	max_clocks->dscClockInKhz = 0;
	max_clocks->dppClockInKhz = 0;
	max_clocks->fabricClockInKhz = 0;

	return 0;
}

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
static int smu_v11_0_set_azalia_d3_pme(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);
	ret = smu_send_smc_msg(smu, SMU_MSG_BacoAudioD3PME);
	mutex_unlock(&smu->mutex);

	return ret;
}

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
static int smu_v11_0_baco_set_armd3_sequence(struct smu_context *smu, enum smu_v11_0_baco_seq baco_seq)
{
	return smu_send_smc_msg_with_param(smu, SMU_MSG_ArmD3, baco_seq);
}

static bool smu_v11_0_baco_is_support(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	struct smu_baco_context *smu_baco = &smu->smu_baco;
	uint32_t val;
	bool baco_support;

	mutex_lock(&smu_baco->mutex);
	baco_support = smu_baco->platform_support;
	mutex_unlock(&smu_baco->mutex);

	if (!baco_support)
		return false;

	if (!smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT))
		return false;

	val = RREG32_SOC15(NBIO, 0, mmRCC_BIF_STRAP0);
	if (val & RCC_BIF_STRAP0__STRAP_PX_CAPABLE_MASK)
		return true;

	return false;
}

static enum smu_baco_state smu_v11_0_baco_get_state(struct smu_context *smu)
{
	struct smu_baco_context *smu_baco = &smu->smu_baco;
	enum smu_baco_state baco_state = SMU_BACO_STATE_EXIT;

	mutex_lock(&smu_baco->mutex);
	baco_state = smu_baco->state;
	mutex_unlock(&smu_baco->mutex);

	return baco_state;
}

static int smu_v11_0_baco_set_state(struct smu_context *smu, enum smu_baco_state state)
{

	struct smu_baco_context *smu_baco = &smu->smu_baco;
	int ret = 0;

	if (smu_v11_0_baco_get_state(smu) == state)
		return 0;

	mutex_lock(&smu_baco->mutex);

	if (state == SMU_BACO_STATE_ENTER)
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, BACO_SEQ_BACO);
	else
		ret = smu_send_smc_msg(smu, SMU_MSG_ExitBaco);
	if (ret)
		goto out;

	smu_baco->state = state;
out:
	mutex_unlock(&smu_baco->mutex);
	return ret;
}

static int smu_v11_0_baco_reset(struct smu_context *smu)
{
	int ret = 0;

	ret = smu_v11_0_baco_set_armd3_sequence(smu, BACO_SEQ_BACO);
	if (ret)
		return ret;

	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_ENTER);
	if (ret)
		return ret;

	msleep(10);

	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_EXIT);
	if (ret)
		return ret;

	return ret;
}

1732 1733
static const struct smu_funcs smu_v11_0_funcs = {
	.init_microcode = smu_v11_0_init_microcode,
1734
	.load_microcode = smu_v11_0_load_microcode,
1735
	.check_fw_status = smu_v11_0_check_fw_status,
1736
	.check_fw_version = smu_v11_0_check_fw_version,
1737 1738
	.send_smc_msg = smu_v11_0_send_msg,
	.send_smc_msg_with_param = smu_v11_0_send_msg_with_param,
1739
	.read_smc_arg = smu_v11_0_read_arg,
1740
	.setup_pptable = smu_v11_0_setup_pptable,
1741 1742
	.init_smc_tables = smu_v11_0_init_smc_tables,
	.fini_smc_tables = smu_v11_0_fini_smc_tables,
1743 1744
	.init_power = smu_v11_0_init_power,
	.fini_power = smu_v11_0_fini_power,
1745
	.get_vbios_bootup_values = smu_v11_0_get_vbios_bootup_values,
1746
	.get_clk_info_from_vbios = smu_v11_0_get_clk_info_from_vbios,
1747
	.notify_memory_pool_location = smu_v11_0_notify_memory_pool_location,
1748
	.check_pptable = smu_v11_0_check_pptable,
1749
	.parse_pptable = smu_v11_0_parse_pptable,
1750
	.populate_smc_pptable = smu_v11_0_populate_smc_pptable,
1751
	.write_pptable = smu_v11_0_write_pptable,
1752
	.write_watermarks_table = smu_v11_0_write_watermarks_table,
1753
	.set_min_dcef_deep_sleep = smu_v11_0_set_min_dcef_deep_sleep,
1754
	.set_tool_table_location = smu_v11_0_set_tool_table_location,
1755
	.init_display_count = smu_v11_0_init_display_count,
1756 1757
	.set_allowed_mask = smu_v11_0_set_allowed_mask,
	.get_enabled_mask = smu_v11_0_get_enabled_mask,
1758
	.system_features_control = smu_v11_0_system_features_control,
1759
	.update_feature_enable_state = smu_v11_0_update_feature_enable_state,
1760
	.notify_display_change = smu_v11_0_notify_display_change,
1761
	.get_power_limit = smu_v11_0_get_power_limit,
1762
	.set_power_limit = smu_v11_0_set_power_limit,
1763
	.get_current_clk_freq = smu_v11_0_get_current_clk_freq,
1764
	.init_max_sustainable_clocks = smu_v11_0_init_max_sustainable_clocks,
1765
	.start_thermal_control = smu_v11_0_start_thermal_control,
1766
	.read_sensor = smu_v11_0_read_sensor,
1767
	.set_deep_sleep_dcefclk = smu_v11_0_set_deep_sleep_dcefclk,
1768
	.display_clock_voltage_request = smu_v11_0_display_clock_voltage_request,
1769
	.set_watermarks_for_clock_ranges = smu_v11_0_set_watermarks_for_clock_ranges,
1770
	.get_current_rpm = smu_v11_0_get_current_rpm,
1771
	.get_fan_control_mode = smu_v11_0_get_fan_control_mode,
1772
	.set_fan_control_mode = smu_v11_0_set_fan_control_mode,
1773
	.set_fan_speed_percent = smu_v11_0_set_fan_speed_percent,
1774
	.set_fan_speed_rpm = smu_v11_0_set_fan_speed_rpm,
1775
	.set_xgmi_pstate = smu_v11_0_set_xgmi_pstate,
1776
	.gfx_off_control = smu_v11_0_gfx_off_control,
1777
	.register_irq_handler = smu_v11_0_register_irq_handler,
1778
	.set_azalia_d3_pme = smu_v11_0_set_azalia_d3_pme,
1779
	.get_max_sustainable_clocks_by_dc = smu_v11_0_get_max_sustainable_clocks_by_dc,
1780 1781 1782 1783
	.baco_is_support = smu_v11_0_baco_is_support,
	.baco_get_state = smu_v11_0_baco_get_state,
	.baco_set_state = smu_v11_0_baco_set_state,
	.baco_reset = smu_v11_0_baco_reset,
1784 1785 1786 1787
};

void smu_v11_0_set_smu_funcs(struct smu_context *smu)
{
1788 1789
	struct amdgpu_device *adev = smu->adev;

1790
	smu->funcs = &smu_v11_0_funcs;
1791 1792 1793 1794
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		vega20_set_ppt_funcs(smu);
		break;
1795 1796 1797
	case CHIP_NAVI10:
		navi10_set_ppt_funcs(smu);
		break;
1798
	default:
1799
		pr_warn("Unknown asic for smu11\n");
1800
	}
1801
}