smu_v11_0.c 49.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/firmware.h>
24
#include <linux/module.h>
25
#include <linux/pci.h>
26

27 28
#define SMU_11_0_PARTIAL_PPTABLE

29
#include "pp_debug.h"
30 31
#include "amdgpu.h"
#include "amdgpu_smu.h"
32
#include "smu_internal.h"
33
#include "atomfirmware.h"
34
#include "amdgpu_atomfirmware.h"
35
#include "smu_v11_0.h"
36
#include "smu_v11_0_pptable.h"
37
#include "soc15_common.h"
38
#include "atom.h"
39
#include "amd_pcie.h"
40
#include "amdgpu_ras.h"
41 42 43

#include "asic_reg/thm/thm_11_0_2_offset.h"
#include "asic_reg/thm/thm_11_0_2_sh_mask.h"
44 45
#include "asic_reg/mp/mp_11_0_offset.h"
#include "asic_reg/mp/mp_11_0_sh_mask.h"
46
#include "asic_reg/nbio/nbio_7_4_offset.h"
47
#include "asic_reg/nbio/nbio_7_4_sh_mask.h"
48 49
#include "asic_reg/smuio/smuio_11_0_0_offset.h"
#include "asic_reg/smuio/smuio_11_0_0_sh_mask.h"
50

51
MODULE_FIRMWARE("amdgpu/vega20_smc.bin");
52
MODULE_FIRMWARE("amdgpu/arcturus_smc.bin");
53
MODULE_FIRMWARE("amdgpu/navi10_smc.bin");
54
MODULE_FIRMWARE("amdgpu/navi14_smc.bin");
55
MODULE_FIRMWARE("amdgpu/navi12_smc.bin");
56

57
#define SMU11_VOLTAGE_SCALE 4
58

59 60 61 62 63 64 65 66
static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu,
					      uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_66, msg);
	return 0;
}

67
int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg)
68 69 70 71 72 73 74
{
	struct amdgpu_device *adev = smu->adev;

	*arg = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82);
	return 0;
}

75 76 77
static int smu_v11_0_wait_for_response(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
78
	uint32_t cur_value, i, timeout = adev->usec_timeout * 10;
79

80
	for (i = 0; i < timeout; i++) {
81 82
		cur_value = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90);
		if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0)
83 84
			return cur_value == 0x1 ? 0 : -EIO;

85 86 87 88
		udelay(1);
	}

	/* timeout means wrong logic */
89
	return -ETIME;
90 91
}

92
int
93 94
smu_v11_0_send_msg_with_param(struct smu_context *smu,
			      enum smu_message_type msg,
95 96 97
			      uint32_t param)
{
	struct amdgpu_device *adev = smu->adev;
98 99 100 101 102
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
103 104

	ret = smu_v11_0_wait_for_response(smu);
105 106 107 108 109
	if (ret) {
		pr_err("Msg issuing pre-check failed and "
		       "SMU may be not in the right state!\n");
		return ret;
	}
110 111 112 113 114

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82, param);

115
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
116 117 118

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
119 120
		pr_err("failed send message: %10s (%d) \tparam: 0x%08x response %#x\n",
		       smu_get_message_name(smu, msg), index, param, ret);
121 122 123 124

	return ret;
}

125
int smu_v11_0_init_microcode(struct smu_context *smu)
126 127
{
	struct amdgpu_device *adev = smu->adev;
128 129 130 131 132 133
	const char *chip_name;
	char fw_name[30];
	int err = 0;
	const struct smc_firmware_header_v1_0 *hdr;
	const struct common_firmware_header *header;
	struct amdgpu_firmware_info *ucode = NULL;
134

135 136 137 138
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		chip_name = "vega20";
		break;
139 140 141
	case CHIP_ARCTURUS:
		chip_name = "arcturus";
		break;
142 143 144
	case CHIP_NAVI10:
		chip_name = "navi10";
		break;
145 146 147
	case CHIP_NAVI14:
		chip_name = "navi14";
		break;
148 149 150
	case CHIP_NAVI12:
		chip_name = "navi12";
		break;
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
	default:
		BUG();
	}

	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name);

	err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
	if (err)
		goto out;
	err = amdgpu_ucode_validate(adev->pm.fw);
	if (err)
		goto out;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	amdgpu_ucode_print_smc_hdr(&hdr->header);
	adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
		ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC];
		ucode->ucode_id = AMDGPU_UCODE_ID_SMC;
		ucode->fw = adev->pm.fw;
		header = (const struct common_firmware_header *)ucode->fw->data;
		adev->firmware.fw_size +=
			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
	}

out:
	if (err) {
		DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n",
			  fw_name);
		release_firmware(adev->pm.fw);
		adev->pm.fw = NULL;
	}
	return err;
185 186
}

187
int smu_v11_0_load_microcode(struct smu_context *smu)
188
{
189 190 191 192 193 194 195
	struct amdgpu_device *adev = smu->adev;
	const uint32_t *src;
	const struct smc_firmware_header_v1_0 *hdr;
	uint32_t addr_start = MP1_SRAM;
	uint32_t i;
	uint32_t mp1_fw_flags;

196
	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
	src = (const uint32_t *)(adev->pm.fw->data +
		le32_to_cpu(hdr->header.ucode_array_offset_bytes));

	for (i = 1; i < MP1_SMC_SIZE/4 - 1; i++) {
		WREG32_PCIE(addr_start, src[i]);
		addr_start += 4;
	}

	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & MP1_SMN_PUB_CTRL__RESET_MASK);
	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & ~MP1_SMN_PUB_CTRL__RESET_MASK);

	for (i = 0; i < adev->usec_timeout; i++) {
		mp1_fw_flags = RREG32_PCIE(MP1_Public |
			(smnMP1_FIRMWARE_FLAGS & 0xffffffff));
		if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
			MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
			break;
		udelay(1);
	}

	if (i == adev->usec_timeout)
		return -ETIME;

222 223 224
	return 0;
}

225
int smu_v11_0_check_fw_status(struct smu_context *smu)
226
{
227 228 229
	struct amdgpu_device *adev = smu->adev;
	uint32_t mp1_fw_flags;

230 231
	mp1_fw_flags = RREG32_PCIE(MP1_Public |
				   (smnMP1_FIRMWARE_FLAGS & 0xffffffff));
232 233 234 235

	if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
	    MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
		return 0;
236

237
	return -EIO;
238 239
}

240
int smu_v11_0_check_fw_version(struct smu_context *smu)
241
{
242 243 244
	uint32_t if_version = 0xff, smu_version = 0xff;
	uint16_t smu_major;
	uint8_t smu_minor, smu_debug;
245 246
	int ret = 0;

247
	ret = smu_get_smc_version(smu, &if_version, &smu_version);
248
	if (ret)
249
		return ret;
250

251 252 253 254
	smu_major = (smu_version >> 16) & 0xffff;
	smu_minor = (smu_version >> 8) & 0xff;
	smu_debug = (smu_version >> 0) & 0xff;

255 256 257 258
	switch (smu->adev->asic_type) {
	case CHIP_VEGA20:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_VG20;
		break;
259 260 261
	case CHIP_ARCTURUS:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_ARCT;
		break;
262 263 264 265 266 267 268
	case CHIP_NAVI10:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_NV10;
		break;
	case CHIP_NAVI14:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_NV14;
		break;
	default:
269
		pr_err("smu unsupported asic type:%d.\n", smu->adev->asic_type);
270 271 272 273
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_INV;
		break;
	}

274 275 276 277 278 279 280 281
	/*
	 * 1. if_version mismatch is not critical as our fw is designed
	 * to be backward compatible.
	 * 2. New fw usually brings some optimizations. But that's visible
	 * only on the paired driver.
	 * Considering above, we just leave user a warning message instead
	 * of halt driver loading.
	 */
282
	if (if_version != smu->smc_if_version) {
283 284 285 286
		pr_info("smu driver if version = 0x%08x, smu fw if version = 0x%08x, "
			"smu fw version = 0x%08x (%d.%d.%d)\n",
			smu->smc_if_version, if_version,
			smu_version, smu_major, smu_minor, smu_debug);
287
		pr_warn("SMU driver if version not matched\n");
288 289
	}

290 291 292
	return ret;
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
static int smu_v11_0_set_pptable_v2_0(struct smu_context *smu, void **table, uint32_t *size)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t ppt_offset_bytes;
	const struct smc_firmware_header_v2_0 *v2;

	v2 = (const struct smc_firmware_header_v2_0 *) adev->pm.fw->data;

	ppt_offset_bytes = le32_to_cpu(v2->ppt_offset_bytes);
	*size = le32_to_cpu(v2->ppt_size_bytes);
	*table = (uint8_t *)v2 + ppt_offset_bytes;

	return 0;
}

308 309
static int smu_v11_0_set_pptable_v2_1(struct smu_context *smu, void **table,
				      uint32_t *size, uint32_t pptable_id)
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
{
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v2_1 *v2_1;
	struct smc_soft_pptable_entry *entries;
	uint32_t pptable_count = 0;
	int i = 0;

	v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data;
	entries = (struct smc_soft_pptable_entry *)
		((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset));
	pptable_count = le32_to_cpu(v2_1->pptable_count);
	for (i = 0; i < pptable_count; i++) {
		if (le32_to_cpu(entries[i].id) == pptable_id) {
			*table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes));
			*size = le32_to_cpu(entries[i].ppt_size_bytes);
			break;
		}
	}

	if (i == pptable_count)
		return -EINVAL;

	return 0;
}

335
int smu_v11_0_setup_pptable(struct smu_context *smu)
336
{
337 338
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v1_0 *hdr;
339
	int ret, index;
340
	uint32_t size = 0;
341
	uint16_t atom_table_size;
342
	uint8_t frev, crev;
343
	void *table;
344 345 346 347 348 349
	uint16_t version_major, version_minor;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	version_major = le16_to_cpu(hdr->header.header_version_major);
	version_minor = le16_to_cpu(hdr->header.header_version_minor);
	if (version_major == 2 && smu->smu_table.boot_values.pp_table_id > 0) {
350
		pr_info("use driver provided pptable %d\n", smu->smu_table.boot_values.pp_table_id);
351 352 353 354 355 356 357 358 359 360 361 362 363 364
		switch (version_minor) {
		case 0:
			ret = smu_v11_0_set_pptable_v2_0(smu, &table, &size);
			break;
		case 1:
			ret = smu_v11_0_set_pptable_v2_1(smu, &table, &size,
							 smu->smu_table.boot_values.pp_table_id);
			break;
		default:
			ret = -EINVAL;
			break;
		}
		if (ret)
			return ret;
365

366
	} else {
367
		pr_info("use vbios provided pptable\n");
368 369
		index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
						    powerplayinfo);
370

371
		ret = smu_get_atom_data_table(smu, index, &atom_table_size, &frev, &crev,
372 373 374
					      (uint8_t **)&table);
		if (ret)
			return ret;
375
		size = atom_table_size;
376
	}
377

378 379 380 381
	if (!smu->smu_table.power_play_table)
		smu->smu_table.power_play_table = table;
	if (!smu->smu_table.power_play_table_size)
		smu->smu_table.power_play_table_size = size;
382 383 384 385

	return 0;
}

386 387 388 389 390 391 392
static int smu_v11_0_init_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0)
		return -EINVAL;

393
	return smu_alloc_dpm_context(smu);
394 395 396 397 398 399 400 401 402 403
}

static int smu_v11_0_fini_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0)
		return -EINVAL;

	kfree(smu_dpm->dpm_context);
404
	kfree(smu_dpm->golden_dpm_context);
405 406
	kfree(smu_dpm->dpm_current_power_state);
	kfree(smu_dpm->dpm_request_power_state);
407
	smu_dpm->dpm_context = NULL;
408
	smu_dpm->golden_dpm_context = NULL;
409
	smu_dpm->dpm_context_size = 0;
410 411
	smu_dpm->dpm_current_power_state = NULL;
	smu_dpm->dpm_request_power_state = NULL;
412 413 414 415

	return 0;
}

416
int smu_v11_0_init_smc_tables(struct smu_context *smu)
417 418 419
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = NULL;
420
	int ret = 0;
421

422
	if (smu_table->tables)
423 424
		return -EINVAL;

425 426
	tables = kcalloc(SMU_TABLE_COUNT, sizeof(struct smu_table),
			 GFP_KERNEL);
427 428 429 430 431
	if (!tables)
		return -ENOMEM;

	smu_table->tables = tables;

432 433 434
	ret = smu_tables_init(smu, tables);
	if (ret)
		return ret;
435

436 437 438 439
	ret = smu_v11_0_init_dpm_context(smu);
	if (ret)
		return ret;

440 441 442
	return 0;
}

443
int smu_v11_0_fini_smc_tables(struct smu_context *smu)
444 445
{
	struct smu_table_context *smu_table = &smu->smu_table;
446
	int ret = 0;
447

448
	if (!smu_table->tables)
449 450 451
		return -EINVAL;

	kfree(smu_table->tables);
452
	kfree(smu_table->metrics_table);
453
	kfree(smu_table->watermarks_table);
454
	smu_table->tables = NULL;
455
	smu_table->metrics_table = NULL;
456
	smu_table->watermarks_table = NULL;
457
	smu_table->metrics_time = 0;
458

459 460 461
	ret = smu_v11_0_fini_dpm_context(smu);
	if (ret)
		return ret;
462 463
	return 0;
}
464

465
int smu_v11_0_init_power(struct smu_context *smu)
466 467 468
{
	struct smu_power_context *smu_power = &smu->smu_power;

469 470
	if (!smu->pm_enabled)
		return 0;
471 472 473 474 475 476 477 478 479 480 481 482
	if (smu_power->power_context || smu_power->power_context_size != 0)
		return -EINVAL;

	smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
					   GFP_KERNEL);
	if (!smu_power->power_context)
		return -ENOMEM;
	smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context);

	return 0;
}

483
int smu_v11_0_fini_power(struct smu_context *smu)
484 485 486
{
	struct smu_power_context *smu_power = &smu->smu_power;

487 488
	if (!smu->pm_enabled)
		return 0;
489 490 491 492 493 494 495 496 497 498
	if (!smu_power->power_context || smu_power->power_context_size == 0)
		return -EINVAL;

	kfree(smu_power->power_context);
	smu_power->power_context = NULL;
	smu_power->power_context_size = 0;

	return 0;
}

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu)
{
	int ret, index;
	uint16_t size;
	uint8_t frev, crev;
	struct atom_common_table_header *header;
	struct atom_firmware_info_v3_3 *v_3_3;
	struct atom_firmware_info_v3_1 *v_3_1;

	index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
					    firmwareinfo);

	ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev,
				      (uint8_t **)&header);
	if (ret)
		return ret;

	if (header->format_revision != 3) {
		pr_err("unknown atom_firmware_info version! for smu11\n");
		return -EINVAL;
	}

	switch (header->content_revision) {
	case 0:
	case 1:
	case 2:
		v_3_1 = (struct atom_firmware_info_v3_1 *)header;
		smu->smu_table.boot_values.revision = v_3_1->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = 0;
		break;
	case 3:
	default:
		v_3_3 = (struct atom_firmware_info_v3_3 *)header;
		smu->smu_table.boot_values.revision = v_3_3->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id;
	}

554 555 556
	smu->smu_table.boot_values.format_revision = header->format_revision;
	smu->smu_table.boot_values.content_revision = header->content_revision;

557 558 559
	return 0;
}

560
int smu_v11_0_get_clk_info_from_vbios(struct smu_context *smu)
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
{
	int ret, index;
	struct amdgpu_device *adev = smu->adev;
	struct atom_get_smu_clock_info_parameters_v3_1 input = {0};
	struct atom_get_smu_clock_info_output_parameters_v3_1 *output;

	input.clk_id = SMU11_SYSPLL0_SOCCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.socclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCEFCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dcefclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_ECLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.eclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_VCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.vclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
	if ((smu->smu_table.boot_values.format_revision == 3) &&
	    (smu->smu_table.boot_values.content_revision >= 2)) {
		memset(&input, 0, sizeof(input));
		input.clk_id = SMU11_SYSPLL1_0_FCLK_ID;
		input.syspll_id = SMU11_SYSPLL1_2_ID;
		input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
		index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
						    getsmuclockinfo);

		ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
						(uint32_t *)&input);
		if (ret)
			return -EINVAL;

		output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
		smu->smu_table.boot_values.fclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;
	}

654 655 656
	return 0;
}

657
int smu_v11_0_notify_memory_pool_location(struct smu_context *smu)
658 659 660 661 662 663 664 665 666 667
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	int ret = 0;
	uint64_t address;
	uint32_t address_low, address_high;

	if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL)
		return ret;

668
	address = (uintptr_t)memory_pool->cpu_addr;
669 670 671 672
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

	ret = smu_send_smc_msg_with_param(smu,
673
					  SMU_MSG_SetSystemVirtualDramAddrHigh,
674 675 676 677
					  address_high);
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu,
678
					  SMU_MSG_SetSystemVirtualDramAddrLow,
679 680 681 682 683 684 685 686
					  address_low);
	if (ret)
		return ret;

	address = memory_pool->mc_address;
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

687
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh,
688 689 690
					  address_high);
	if (ret)
		return ret;
691
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow,
692 693 694
					  address_low);
	if (ret)
		return ret;
695
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize,
696 697 698 699 700 701 702
					  (uint32_t)memory_pool->size);
	if (ret)
		return ret;

	return ret;
}

703
int smu_v11_0_check_pptable(struct smu_context *smu)
704 705 706 707 708 709 710
{
	int ret;

	ret = smu_check_powerplay_table(smu);
	return ret;
}

711
int smu_v11_0_parse_pptable(struct smu_context *smu)
712 713 714 715
{
	int ret;

	struct smu_table_context *table_context = &smu->smu_table;
716
	struct smu_table *table = &table_context->tables[SMU_TABLE_PPTABLE];
717 718 719 720

	if (table_context->driver_pptable)
		return -EINVAL;

721
	table_context->driver_pptable = kzalloc(table->size, GFP_KERNEL);
722 723 724 725 726

	if (!table_context->driver_pptable)
		return -ENOMEM;

	ret = smu_store_powerplay_table(smu);
727 728 729 730
	if (ret)
		return -EINVAL;

	ret = smu_append_powerplay_table(smu);
731 732 733 734

	return ret;
}

735
int smu_v11_0_populate_smc_pptable(struct smu_context *smu)
736
{
737
	int ret;
738

739
	ret = smu_set_default_dpm_table(smu);
740

741
	return ret;
742 743
}

744
int smu_v11_0_write_pptable(struct smu_context *smu)
745
{
746
	struct smu_table_context *table_context = &smu->smu_table;
747 748
	int ret = 0;

749
	ret = smu_update_table(smu, SMU_TABLE_PPTABLE, 0,
750
			       table_context->driver_pptable, true);
751 752 753 754

	return ret;
}

755
int smu_v11_0_set_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk)
756 757 758 759 760 761 762 763 764 765 766
{
	int ret;

	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetMinDeepSleepDcefclk, clk);
	if (ret)
		pr_err("SMU11 attempt to set divider for DCEFCLK Failed!");

	return ret;
}

767
int smu_v11_0_set_min_dcef_deep_sleep(struct smu_context *smu)
768 769 770
{
	struct smu_table_context *table_context = &smu->smu_table;

771 772
	if (!smu->pm_enabled)
		return 0;
773 774 775
	if (!table_context)
		return -EINVAL;

776
	return smu_v11_0_set_deep_sleep_dcefclk(smu, table_context->boot_values.dcefclk / 100);
777 778
}

779
int smu_v11_0_set_tool_table_location(struct smu_context *smu)
780 781
{
	int ret = 0;
782
	struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG];
783 784 785

	if (tool_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
786
				SMU_MSG_SetToolsDramAddrHigh,
787 788 789
				upper_32_bits(tool_table->mc_address));
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
790
				SMU_MSG_SetToolsDramAddrLow,
791 792 793 794 795 796
				lower_32_bits(tool_table->mc_address));
	}

	return ret;
}

797
int smu_v11_0_init_display_count(struct smu_context *smu, uint32_t count)
798 799
{
	int ret = 0;
800 801 802

	if (!smu->pm_enabled)
		return ret;
803

804
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, count);
805 806 807
	return ret;
}

808

809
int smu_v11_0_set_allowed_mask(struct smu_context *smu)
810 811 812 813 814
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
	uint32_t feature_mask[2];

815
	mutex_lock(&feature->mutex);
816
	if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64)
817
		goto failed;
818 819 820 821 822 823

	bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64);

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh,
					  feature_mask[1]);
	if (ret)
824
		goto failed;
825 826 827 828

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow,
					  feature_mask[0]);
	if (ret)
829
		goto failed;
830

831 832
failed:
	mutex_unlock(&feature->mutex);
833 834 835
	return ret;
}

836
int smu_v11_0_get_enabled_mask(struct smu_context *smu,
837 838 839
				      uint32_t *feature_mask, uint32_t num)
{
	uint32_t feature_mask_high = 0, feature_mask_low = 0;
840
	struct smu_feature *feature = &smu->smu_feature;
841 842 843 844 845
	int ret = 0;

	if (!feature_mask || num < 2)
		return -EINVAL;

846 847 848 849 850 851 852
	if (bitmap_empty(feature->enabled, feature->feature_num)) {
		ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh);
		if (ret)
			return ret;
		ret = smu_read_smc_arg(smu, &feature_mask_high);
		if (ret)
			return ret;
853

854 855 856 857 858 859
		ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow);
		if (ret)
			return ret;
		ret = smu_read_smc_arg(smu, &feature_mask_low);
		if (ret)
			return ret;
860

861 862 863 864 865 866
		feature_mask[0] = feature_mask_low;
		feature_mask[1] = feature_mask_high;
	} else {
		bitmap_copy((unsigned long *)feature_mask, feature->enabled,
			     feature->feature_num);
	}
867 868 869 870

	return ret;
}

871
int smu_v11_0_system_features_control(struct smu_context *smu,
872
					     bool en)
873 874 875 876 877
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_mask[2];
	int ret = 0;

878 879
	ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures :
				     SMU_MSG_DisableAllSmuFeatures));
880 881 882
	if (ret)
		return ret;

883 884 885 886 887 888 889 890 891 892 893 894 895
	if (en) {
		ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
		if (ret)
			return ret;

		bitmap_copy(feature->enabled, (unsigned long *)&feature_mask,
			    feature->feature_num);
		bitmap_copy(feature->supported, (unsigned long *)&feature_mask,
			    feature->feature_num);
	} else {
		bitmap_zero(feature->enabled, feature->feature_num);
		bitmap_zero(feature->supported, feature->feature_num);
	}
896 897 898 899

	return ret;
}

900
int smu_v11_0_notify_display_change(struct smu_context *smu)
901 902 903
{
	int ret = 0;

904 905
	if (!smu->pm_enabled)
		return ret;
906 907 908
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
	    smu->adev->gmc.vram_type == AMDGPU_VRAM_TYPE_HBM)
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1);
909 910 911 912

	return ret;
}

913 914
static int
smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock,
915
				    enum smu_clk_type clock_select)
916 917
{
	int ret = 0;
918
	int clk_id;
919

920 921
	if (!smu->pm_enabled)
		return ret;
922

923 924 925 926
	if ((smu_msg_get_index(smu, SMU_MSG_GetDcModeMaxDpmFreq) < 0) ||
	    (smu_msg_get_index(smu, SMU_MSG_GetMaxDpmFreq) < 0))
		return 0;

927 928 929 930
	clk_id = smu_clk_get_index(smu, clock_select);
	if (clk_id < 0)
		return -EINVAL;

931
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq,
932
					  clk_id << 16);
933 934 935 936 937 938 939 940 941 942 943 944 945 946
	if (ret) {
		pr_err("[GetMaxSustainableClock] Failed to get max DC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);
	if (ret)
		return ret;

	if (*clock != 0)
		return 0;

	/* if DC limit is zero, return AC limit */
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
947
					  clk_id << 16);
948 949 950 951 952 953 954 955 956 957
	if (ret) {
		pr_err("[GetMaxSustainableClock] failed to get max AC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);

	return ret;
}

958
int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu)
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
{
	struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks;
	int ret = 0;

	max_sustainable_clocks = kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks),
					 GFP_KERNEL);
	smu->smu_table.max_sustainable_clocks = (void *)max_sustainable_clocks;

	max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100;
	max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100;
	max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100;
	max_sustainable_clocks->display_clock = 0xFFFFFFFF;
	max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
	max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;

974
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
975 976
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->uclock),
977
							  SMU_UCLK);
978 979 980 981 982 983 984
		if (ret) {
			pr_err("[%s] failed to get max UCLK from SMC!",
			       __func__);
			return ret;
		}
	}

985
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
986 987
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->soc_clock),
988
							  SMU_SOCCLK);
989 990 991 992 993 994 995
		if (ret) {
			pr_err("[%s] failed to get max SOCCLK from SMC!",
			       __func__);
			return ret;
		}
	}

996
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
997 998
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->dcef_clock),
999
							  SMU_DCEFCLK);
1000 1001 1002 1003 1004 1005 1006 1007
		if (ret) {
			pr_err("[%s] failed to get max DCEFCLK from SMC!",
			       __func__);
			return ret;
		}

		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->display_clock),
1008
							  SMU_DISPCLK);
1009 1010 1011 1012 1013 1014 1015
		if (ret) {
			pr_err("[%s] failed to get max DISPCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->phy_clock),
1016
							  SMU_PHYCLK);
1017 1018 1019 1020 1021 1022 1023
		if (ret) {
			pr_err("[%s] failed to get max PHYCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->pixel_clock),
1024
							  SMU_PIXCLK);
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		if (ret) {
			pr_err("[%s] failed to get max PIXCLK from SMC!",
			       __func__);
			return ret;
		}
	}

	if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
		max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;

	return 0;
}

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
uint32_t smu_v11_0_get_max_power_limit(struct smu_context *smu) {
	uint32_t od_limit, max_power_limit;
	struct smu_11_0_powerplay_table *powerplay_table = NULL;
	struct smu_table_context *table_context = &smu->smu_table;
	powerplay_table = table_context->power_play_table;

	max_power_limit = smu_get_pptable_power_limit(smu);

	if (!max_power_limit) {
		// If we couldn't get the table limit, fall back on first-read value
		if (!smu->default_power_limit)
			smu->default_power_limit = smu->power_limit;
		max_power_limit = smu->default_power_limit;
	}

	if (smu->od_enabled) {
		od_limit = le32_to_cpu(powerplay_table->overdrive_table.max[SMU_11_0_ODSETTING_POWERPERCENTAGE]);

		pr_debug("ODSETTING_POWERPERCENTAGE: %d (default: %d)\n", od_limit, smu->default_power_limit);

		max_power_limit *= (100 + od_limit);
		max_power_limit /= 100;
	}

	return max_power_limit;
}

1065
int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n)
1066
{
1067
	int ret = 0;
1068 1069 1070
	uint32_t max_power_limit;

	max_power_limit = smu_v11_0_get_max_power_limit(smu);
1071

1072 1073 1074 1075
	if (n > max_power_limit) {
		pr_err("New power limit (%d) is over the max allowed %d\n",
				n,
				max_power_limit);
1076
		return -EINVAL;
1077 1078
	}

1079 1080 1081
	if (n == 0)
		n = smu->default_power_limit;

1082 1083 1084
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) {
		pr_err("Setting new power limit is not supported!\n");
		return -EOPNOTSUPP;
1085 1086
	}

1087
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n);
1088
	if (ret) {
1089
		pr_err("[%s] Set power limit Failed!\n", __func__);
1090 1091
		return ret;
	}
1092
	smu->power_limit = n;
1093

1094
	return 0;
1095 1096
}

1097
int smu_v11_0_get_current_clk_freq(struct smu_context *smu,
1098 1099
					  enum smu_clk_type clk_id,
					  uint32_t *value)
1100 1101
{
	int ret = 0;
1102
	uint32_t freq = 0;
1103
	int asic_clk_id;
1104

1105
	if (clk_id >= SMU_CLK_COUNT || !value)
1106 1107
		return -EINVAL;

1108 1109 1110 1111
	asic_clk_id = smu_clk_get_index(smu, clk_id);
	if (asic_clk_id < 0)
		return -EINVAL;

1112
	/* if don't has GetDpmClockFreq Message, try get current clock by SmuMetrics_t */
1113
	if (smu_msg_get_index(smu, SMU_MSG_GetDpmClockFreq) < 0)
1114 1115 1116
		ret =  smu_get_current_clk_freq_by_table(smu, clk_id, &freq);
	else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmClockFreq,
1117
						  (asic_clk_id << 16));
1118 1119
		if (ret)
			return ret;
1120

1121 1122 1123 1124
		ret = smu_read_smc_arg(smu, &freq);
		if (ret)
			return ret;
	}
1125 1126 1127 1128 1129 1130 1131

	freq *= 100;
	*value = freq;

	return ret;
}

1132
static int smu_v11_0_set_thermal_range(struct smu_context *smu,
1133
				       struct smu_temperature_range range)
1134 1135
{
	struct amdgpu_device *adev = smu->adev;
1136 1137
	int low = SMU_THERMAL_MINIMUM_ALERT_TEMP;
	int high = SMU_THERMAL_MAXIMUM_ALERT_TEMP;
1138 1139
	uint32_t val;

1140 1141 1142 1143
	low = max(SMU_THERMAL_MINIMUM_ALERT_TEMP,
			range.min / SMU_TEMPERATURE_UNITS_PER_CENTIGRADES);
	high = min(SMU_THERMAL_MAXIMUM_ALERT_TEMP,
			range.max / SMU_TEMPERATURE_UNITS_PER_CENTIGRADES);
1144

1145 1146 1147 1148 1149 1150
	if (low > high)
		return -EINVAL;

	val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1);
1151 1152
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 0);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 0);
1153 1154
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high & 0xff));
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low & 0xff));
1155 1156 1157 1158 1159 1160 1161
	val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);

	return 0;
}

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
static int smu_v11_0_enable_thermal_alert(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t val = 0;

	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val);

	return 0;
}

1176
int smu_v11_0_start_thermal_control(struct smu_context *smu)
1177 1178
{
	int ret = 0;
1179
	struct smu_temperature_range range;
1180 1181
	struct amdgpu_device *adev = smu->adev;

1182 1183
	if (!smu->pm_enabled)
		return ret;
1184

1185 1186
	memcpy(&range, &smu11_thermal_policy[0], sizeof(struct smu_temperature_range));

1187
	ret = smu_get_thermal_temperature_range(smu, &range);
1188 1189
	if (ret)
		return ret;
1190 1191

	if (smu->smu_table.thermal_controller_type) {
1192
		ret = smu_v11_0_set_thermal_range(smu, range);
1193 1194 1195 1196 1197 1198
		if (ret)
			return ret;

		ret = smu_v11_0_enable_thermal_alert(smu);
		if (ret)
			return ret;
1199

1200
		ret = smu_set_thermal_fan_table(smu);
1201 1202 1203 1204
		if (ret)
			return ret;
	}

1205 1206 1207 1208 1209 1210 1211 1212 1213
	adev->pm.dpm.thermal.min_temp = range.min;
	adev->pm.dpm.thermal.max_temp = range.max;
	adev->pm.dpm.thermal.max_edge_emergency_temp = range.edge_emergency_max;
	adev->pm.dpm.thermal.min_hotspot_temp = range.hotspot_min;
	adev->pm.dpm.thermal.max_hotspot_crit_temp = range.hotspot_crit_max;
	adev->pm.dpm.thermal.max_hotspot_emergency_temp = range.hotspot_emergency_max;
	adev->pm.dpm.thermal.min_mem_temp = range.mem_min;
	adev->pm.dpm.thermal.max_mem_crit_temp = range.mem_crit_max;
	adev->pm.dpm.thermal.max_mem_emergency_temp = range.mem_emergency_max;
1214 1215 1216 1217

	return ret;
}

1218
int smu_v11_0_stop_thermal_control(struct smu_context *smu)
1219 1220 1221 1222 1223 1224 1225 1226
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, 0);

	return 0;
}

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
static uint16_t convert_to_vddc(uint8_t vid)
{
	return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE);
}

static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t vdd = 0, val_vid = 0;

	if (!value)
		return -EINVAL;
	val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) &
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >>
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT;

	vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid);

	*value = vdd;

	return 0;

}

1251
int smu_v11_0_read_sensor(struct smu_context *smu,
1252 1253 1254 1255
				 enum amd_pp_sensors sensor,
				 void *data, uint32_t *size)
{
	int ret = 0;
1256 1257 1258 1259

	if(!data || !size)
		return -EINVAL;

1260
	switch (sensor) {
1261
	case AMDGPU_PP_SENSOR_GFX_MCLK:
1262
		ret = smu_get_current_clk_freq(smu, SMU_UCLK, (uint32_t *)data);
1263 1264 1265
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_SCLK:
1266
		ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, (uint32_t *)data);
1267
		*size = 4;
1268
		break;
1269 1270 1271
	case AMDGPU_PP_SENSOR_VDDGFX:
		ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
		*size = 4;
1272
		break;
1273 1274 1275 1276
	case AMDGPU_PP_SENSOR_MIN_FAN_RPM:
		*(uint32_t *)data = 0;
		*size = 4;
		break;
1277
	default:
1278
		ret = smu_common_read_sensor(smu, sensor, data, size);
1279 1280 1281 1282 1283 1284 1285 1286 1287
		break;
	}

	if (ret)
		*size = 0;

	return ret;
}

1288
int
1289 1290 1291 1292 1293 1294
smu_v11_0_display_clock_voltage_request(struct smu_context *smu,
					struct pp_display_clock_request
					*clock_req)
{
	enum amd_pp_clock_type clk_type = clock_req->clock_type;
	int ret = 0;
1295
	enum smu_clk_type clk_select = 0;
1296 1297
	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;

1298 1299
	if (!smu->pm_enabled)
		return -EINVAL;
1300

1301
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) ||
1302
		smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1303 1304
		switch (clk_type) {
		case amd_pp_dcef_clock:
1305
			clk_select = SMU_DCEFCLK;
1306 1307
			break;
		case amd_pp_disp_clock:
1308
			clk_select = SMU_DISPCLK;
1309 1310
			break;
		case amd_pp_pixel_clock:
1311
			clk_select = SMU_PIXCLK;
1312 1313
			break;
		case amd_pp_phy_clock:
1314
			clk_select = SMU_PHYCLK;
1315
			break;
1316 1317 1318
		case amd_pp_mem_clock:
			clk_select = SMU_UCLK;
			break;
1319 1320 1321 1322 1323 1324 1325 1326 1327
		default:
			pr_info("[%s] Invalid Clock Type!", __func__);
			ret = -EINVAL;
			break;
		}

		if (ret)
			goto failed;

1328 1329 1330
		if (clk_select == SMU_UCLK && smu->disable_uclk_switch)
			return 0;

1331
		ret = smu_set_hard_freq_range(smu, clk_select, clk_freq, 0);
1332 1333 1334

		if(clk_select == SMU_UCLK)
			smu->hard_min_uclk_req_from_dal = clk_freq;
1335 1336 1337 1338 1339 1340
	}

failed:
	return ret;
}

1341
int smu_v11_0_gfx_off_control(struct smu_context *smu, bool enable)
1342 1343
{
	int ret = 0;
1344
	struct amdgpu_device *adev = smu->adev;
1345

1346 1347 1348 1349
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		break;
	case CHIP_NAVI10:
1350
	case CHIP_NAVI14:
1351
	case CHIP_NAVI12:
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
		if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
			return 0;
		if (enable)
			ret = smu_send_smc_msg(smu, SMU_MSG_AllowGfxOff);
		else
			ret = smu_send_smc_msg(smu, SMU_MSG_DisallowGfxOff);
		break;
	default:
		break;
	}
1362 1363 1364 1365

	return ret;
}

1366
uint32_t
1367 1368
smu_v11_0_get_fan_control_mode(struct smu_context *smu)
{
1369
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1370 1371 1372 1373 1374 1375
		return AMD_FAN_CTRL_MANUAL;
	else
		return AMD_FAN_CTRL_AUTO;
}

static int
1376
smu_v11_0_auto_fan_control(struct smu_context *smu, bool auto_fan_control)
1377 1378 1379
{
	int ret = 0;

1380
	if (!smu_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1381 1382
		return 0;

1383
	ret = smu_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, auto_fan_control);
1384 1385
	if (ret)
		pr_err("[%s]%s smc FAN CONTROL feature failed!",
1386
		       __func__, (auto_fan_control ? "Start" : "Stop"));
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405

	return ret;
}

static int
smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode)
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, TMIN, 0));
	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, FDO_PWM_MODE, mode));

	return 0;
}

1406
int
1407 1408 1409
smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
1410
	uint32_t duty100, duty;
1411 1412 1413 1414 1415
	uint64_t tmp64;

	if (speed > 100)
		speed = 100;

1416
	if (smu_v11_0_auto_fan_control(smu, 0))
1417
		return -EINVAL;
1418

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
	duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1),
				CG_FDO_CTRL1, FMAX_DUTY100);
	if (!duty100)
		return -EINVAL;

	tmp64 = (uint64_t)speed * duty100;
	do_div(tmp64, 100);
	duty = (uint32_t)tmp64;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0),
				   CG_FDO_CTRL0, FDO_STATIC_DUTY, duty));

	return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC);
}

1435
int
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
smu_v11_0_set_fan_control_mode(struct smu_context *smu,
			       uint32_t mode)
{
	int ret = 0;

	switch (mode) {
	case AMD_FAN_CTRL_NONE:
		ret = smu_v11_0_set_fan_speed_percent(smu, 100);
		break;
	case AMD_FAN_CTRL_MANUAL:
1446
		ret = smu_v11_0_auto_fan_control(smu, 0);
1447 1448
		break;
	case AMD_FAN_CTRL_AUTO:
1449
		ret = smu_v11_0_auto_fan_control(smu, 1);
1450 1451 1452 1453 1454 1455
		break;
	default:
		break;
	}

	if (ret) {
1456
		pr_err("[%s]Set fan control mode failed!", __func__);
1457 1458 1459 1460 1461 1462
		return -EINVAL;
	}

	return ret;
}

1463
int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu,
1464 1465 1466 1467 1468 1469 1470 1471 1472
				       uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	int ret;
	uint32_t tach_period, crystal_clock_freq;

	if (!speed)
		return -EINVAL;

1473
	ret = smu_v11_0_auto_fan_control(smu, 0);
1474
	if (ret)
1475
		return ret;
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488

	crystal_clock_freq = amdgpu_asic_get_xclk(adev);
	tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed);
	WREG32_SOC15(THM, 0, mmCG_TACH_CTRL,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL),
				   CG_TACH_CTRL, TARGET_PERIOD,
				   tach_period));

	ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM);

	return ret;
}

1489
int smu_v11_0_set_xgmi_pstate(struct smu_context *smu,
1490 1491
				     uint32_t pstate)
{
1492 1493 1494
	int ret = 0;
	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetXgmiMode,
1495
					  pstate ? XGMI_MODE_PSTATE_D0 : XGMI_MODE_PSTATE_D3);
1496
	return ret;
1497 1498
}

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
#define THM_11_0__SRCID__THM_DIG_THERM_L2H		0		/* ASIC_TEMP > CG_THERMAL_INT.DIG_THERM_INTH  */
#define THM_11_0__SRCID__THM_DIG_THERM_H2L		1		/* ASIC_TEMP < CG_THERMAL_INT.DIG_THERM_INTL  */

static int smu_v11_0_irq_process(struct amdgpu_device *adev,
				 struct amdgpu_irq_src *source,
				 struct amdgpu_iv_entry *entry)
{
	uint32_t client_id = entry->client_id;
	uint32_t src_id = entry->src_id;

	if (client_id == SOC15_IH_CLIENTID_THM) {
		switch (src_id) {
		case THM_11_0__SRCID__THM_DIG_THERM_L2H:
			pr_warn("GPU over temperature range detected on PCIe %d:%d.%d!\n",
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;
		case THM_11_0__SRCID__THM_DIG_THERM_H2L:
			pr_warn("GPU under temperature range detected on PCIe %d:%d.%d!\n",
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;
		default:
			pr_warn("GPU under temperature range unknown src id (%d), detected on PCIe %d:%d.%d!\n",
				src_id,
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;

		}
	}

	return 0;
}

static const struct amdgpu_irq_src_funcs smu_v11_0_irq_funcs =
{
	.process = smu_v11_0_irq_process,
};

1542
int smu_v11_0_register_irq_handler(struct smu_context *smu)
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
{
	struct amdgpu_device *adev = smu->adev;
	struct amdgpu_irq_src *irq_src = smu->irq_source;
	int ret = 0;

	/* already register */
	if (irq_src)
		return 0;

	irq_src = kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
	if (!irq_src)
		return -ENOMEM;
	smu->irq_source = irq_src;

	irq_src->funcs = &smu_v11_0_irq_funcs;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_L2H,
				irq_src);
	if (ret)
		return ret;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_H2L,
				irq_src);
	if (ret)
		return ret;

	return ret;
}

1574
int smu_v11_0_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
		struct pp_smu_nv_clock_table *max_clocks)
{
	struct smu_table_context *table_context = &smu->smu_table;
	struct smu_11_0_max_sustainable_clocks *sustainable_clocks = NULL;

	if (!max_clocks || !table_context->max_sustainable_clocks)
		return -EINVAL;

	sustainable_clocks = table_context->max_sustainable_clocks;

	max_clocks->dcfClockInKhz =
			(unsigned int) sustainable_clocks->dcef_clock * 1000;
	max_clocks->displayClockInKhz =
			(unsigned int) sustainable_clocks->display_clock * 1000;
	max_clocks->phyClockInKhz =
			(unsigned int) sustainable_clocks->phy_clock * 1000;
	max_clocks->pixelClockInKhz =
			(unsigned int) sustainable_clocks->pixel_clock * 1000;
	max_clocks->uClockInKhz =
			(unsigned int) sustainable_clocks->uclock * 1000;
	max_clocks->socClockInKhz =
			(unsigned int) sustainable_clocks->soc_clock * 1000;
	max_clocks->dscClockInKhz = 0;
	max_clocks->dppClockInKhz = 0;
	max_clocks->fabricClockInKhz = 0;

	return 0;
}

1604
int smu_v11_0_set_azalia_d3_pme(struct smu_context *smu)
1605 1606 1607 1608 1609 1610 1611 1612
{
	int ret = 0;

	ret = smu_send_smc_msg(smu, SMU_MSG_BacoAudioD3PME);

	return ret;
}

1613 1614 1615 1616 1617
static int smu_v11_0_baco_set_armd3_sequence(struct smu_context *smu, enum smu_v11_0_baco_seq baco_seq)
{
	return smu_send_smc_msg_with_param(smu, SMU_MSG_ArmD3, baco_seq);
}

1618
bool smu_v11_0_baco_is_support(struct smu_context *smu)
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
{
	struct amdgpu_device *adev = smu->adev;
	struct smu_baco_context *smu_baco = &smu->smu_baco;
	uint32_t val;
	bool baco_support;

	mutex_lock(&smu_baco->mutex);
	baco_support = smu_baco->platform_support;
	mutex_unlock(&smu_baco->mutex);

	if (!baco_support)
		return false;

1632 1633 1634
	/* Arcturus does not support this bit mask */
	if (smu_feature_is_supported(smu, SMU_FEATURE_BACO_BIT) &&
	   !smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT))
1635 1636 1637 1638 1639 1640 1641 1642 1643
		return false;

	val = RREG32_SOC15(NBIO, 0, mmRCC_BIF_STRAP0);
	if (val & RCC_BIF_STRAP0__STRAP_PX_CAPABLE_MASK)
		return true;

	return false;
}

1644
enum smu_baco_state smu_v11_0_baco_get_state(struct smu_context *smu)
1645 1646
{
	struct smu_baco_context *smu_baco = &smu->smu_baco;
1647
	enum smu_baco_state baco_state;
1648 1649 1650 1651 1652 1653 1654 1655

	mutex_lock(&smu_baco->mutex);
	baco_state = smu_baco->state;
	mutex_unlock(&smu_baco->mutex);

	return baco_state;
}

1656
int smu_v11_0_baco_set_state(struct smu_context *smu, enum smu_baco_state state)
1657 1658 1659
{

	struct smu_baco_context *smu_baco = &smu->smu_baco;
1660 1661 1662 1663
	struct amdgpu_device *adev = smu->adev;
	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
	uint32_t bif_doorbell_intr_cntl;
	uint32_t data;
1664 1665 1666 1667 1668 1669 1670
	int ret = 0;

	if (smu_v11_0_baco_get_state(smu) == state)
		return 0;

	mutex_lock(&smu_baco->mutex);

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
	bif_doorbell_intr_cntl = RREG32_SOC15(NBIO, 0, mmBIF_DOORBELL_INT_CNTL);

	if (state == SMU_BACO_STATE_ENTER) {
		bif_doorbell_intr_cntl = REG_SET_FIELD(bif_doorbell_intr_cntl,
						BIF_DOORBELL_INT_CNTL,
						DOORBELL_INTERRUPT_DISABLE, 1);
		WREG32_SOC15(NBIO, 0, mmBIF_DOORBELL_INT_CNTL, bif_doorbell_intr_cntl);

		if (!ras || !ras->supported) {
			data = RREG32_SOC15(THM, 0, mmTHM_BACO_CNTL);
			data |= 0x80000000;
			WREG32_SOC15(THM, 0, mmTHM_BACO_CNTL, data);

			ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, 0);
		} else {
			ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, 1);
		}
	} else {
1689
		ret = smu_send_smc_msg(smu, SMU_MSG_ExitBaco);
1690 1691 1692
		if (ret)
			goto out;

1693 1694 1695 1696
		bif_doorbell_intr_cntl = REG_SET_FIELD(bif_doorbell_intr_cntl,
						BIF_DOORBELL_INT_CNTL,
						DOORBELL_INTERRUPT_DISABLE, 0);
		WREG32_SOC15(NBIO, 0, mmBIF_DOORBELL_INT_CNTL, bif_doorbell_intr_cntl);
1697 1698 1699 1700

		/* clear vbios scratch 6 and 7 for coming asic reinit */
		WREG32(adev->bios_scratch_reg_offset + 6, 0);
		WREG32(adev->bios_scratch_reg_offset + 7, 0);
1701
	}
1702 1703 1704 1705 1706 1707 1708 1709 1710
	if (ret)
		goto out;

	smu_baco->state = state;
out:
	mutex_unlock(&smu_baco->mutex);
	return ret;
}

1711
int smu_v11_0_baco_enter(struct smu_context *smu)
1712
{
1713
	struct amdgpu_device *adev = smu->adev;
1714 1715
	int ret = 0;

1716 1717 1718 1719 1720 1721
	/* Arcturus does not need this audio workaround */
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_v11_0_baco_set_armd3_sequence(smu, BACO_SEQ_BACO);
		if (ret)
			return ret;
	}
1722 1723 1724 1725 1726 1727 1728

	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_ENTER);
	if (ret)
		return ret;

	msleep(10);

1729 1730 1731 1732 1733 1734 1735
	return ret;
}

int smu_v11_0_baco_exit(struct smu_context *smu)
{
	int ret = 0;

1736 1737 1738 1739 1740 1741 1742
	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_EXIT);
	if (ret)
		return ret;

	return ret;
}

1743
int smu_v11_0_get_dpm_ultimate_freq(struct smu_context *smu, enum smu_clk_type clk_type,
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
						 uint32_t *min, uint32_t *max)
{
	int ret = 0, clk_id = 0;
	uint32_t param = 0;

	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0) {
		ret = -EINVAL;
		goto failed;
	}
	param = (clk_id & 0xffff) << 16;

	if (max) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq, param);
		if (ret)
			goto failed;
		ret = smu_read_smc_arg(smu, max);
		if (ret)
			goto failed;
	}

	if (min) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMinDpmFreq, param);
		if (ret)
			goto failed;
		ret = smu_read_smc_arg(smu, min);
		if (ret)
			goto failed;
	}

failed:
	return ret;
}

1778
int smu_v11_0_set_soft_freq_limited_range(struct smu_context *smu, enum smu_clk_type clk_type,
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
			    uint32_t min, uint32_t max)
{
	int ret = 0, clk_id = 0;
	uint32_t param;

	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	if (max > 0) {
		param = (uint32_t)((clk_id << 16) | (max & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxByFreq,
						  param);
		if (ret)
			return ret;
	}

	if (min > 0) {
		param = (uint32_t)((clk_id << 16) | (min & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMinByFreq,
						  param);
		if (ret)
			return ret;
	}

	return ret;
}

1807
int smu_v11_0_override_pcie_parameters(struct smu_context *smu)
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t pcie_gen = 0, pcie_width = 0;
	int ret;

	if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4)
		pcie_gen = 3;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
		pcie_gen = 2;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2)
		pcie_gen = 1;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1)
		pcie_gen = 0;

	/* Bit 31:16: LCLK DPM level. 0 is DPM0, and 1 is DPM1
	 * Bit 15:8:  PCIE GEN, 0 to 3 corresponds to GEN1 to GEN4
	 * Bit 7:0:   PCIE lane width, 1 to 7 corresponds is x1 to x32
	 */
	if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
		pcie_width = 6;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
		pcie_width = 5;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
		pcie_width = 4;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
		pcie_width = 3;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
		pcie_width = 2;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
		pcie_width = 1;

	ret = smu_update_pcie_parameters(smu, pcie_gen, pcie_width);

	if (ret)
		pr_err("[%s] Attempt to override pcie params failed!\n", __func__);

	return ret;

}
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873

int smu_v11_0_set_default_od_settings(struct smu_context *smu, bool initialize, size_t overdrive_table_size)
{
	struct smu_table_context *table_context = &smu->smu_table;
	int ret = 0;

	if (initialize) {
		if (table_context->overdrive_table) {
			return -EINVAL;
		}
		table_context->overdrive_table = kzalloc(overdrive_table_size, GFP_KERNEL);
		if (!table_context->overdrive_table) {
			return -ENOMEM;
		}
		ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, false);
		if (ret) {
			pr_err("Failed to export overdrive table!\n");
			return ret;
		}
	}
	ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, true);
	if (ret) {
		pr_err("Failed to import overdrive table!\n");
		return ret;
	}
	return ret;
}
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912

int smu_v11_0_set_performance_level(struct smu_context *smu,
				    enum amd_dpm_forced_level level)
{
	int ret = 0;
	uint32_t sclk_mask, mclk_mask, soc_mask;

	switch (level) {
	case AMD_DPM_FORCED_LEVEL_HIGH:
		ret = smu_force_dpm_limit_value(smu, true);
		break;
	case AMD_DPM_FORCED_LEVEL_LOW:
		ret = smu_force_dpm_limit_value(smu, false);
		break;
	case AMD_DPM_FORCED_LEVEL_AUTO:
	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
		ret = smu_unforce_dpm_levels(smu);
		break;
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
		ret = smu_get_profiling_clk_mask(smu, level,
						 &sclk_mask,
						 &mclk_mask,
						 &soc_mask);
		if (ret)
			return ret;
		smu_force_clk_levels(smu, SMU_SCLK, 1 << sclk_mask, false);
		smu_force_clk_levels(smu, SMU_MCLK, 1 << mclk_mask, false);
		smu_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask, false);
		break;
	case AMD_DPM_FORCED_LEVEL_MANUAL:
	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
	default:
		break;
	}
	return ret;
}