smu_v11_0.c 48.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/firmware.h>
24
#include <linux/module.h>
25
#include <linux/pci.h>
26 27

#include "pp_debug.h"
28 29
#include "amdgpu.h"
#include "amdgpu_smu.h"
30
#include "atomfirmware.h"
31
#include "amdgpu_atomfirmware.h"
32
#include "smu_v11_0.h"
33
#include "soc15_common.h"
34
#include "atom.h"
35
#include "vega20_ppt.h"
36
#include "arcturus_ppt.h"
37
#include "navi10_ppt.h"
38 39 40

#include "asic_reg/thm/thm_11_0_2_offset.h"
#include "asic_reg/thm/thm_11_0_2_sh_mask.h"
41 42
#include "asic_reg/mp/mp_11_0_offset.h"
#include "asic_reg/mp/mp_11_0_sh_mask.h"
43
#include "asic_reg/nbio/nbio_7_4_offset.h"
44
#include "asic_reg/nbio/nbio_7_4_sh_mask.h"
45 46
#include "asic_reg/smuio/smuio_11_0_0_offset.h"
#include "asic_reg/smuio/smuio_11_0_0_sh_mask.h"
47

48
MODULE_FIRMWARE("amdgpu/vega20_smc.bin");
49
MODULE_FIRMWARE("amdgpu/arcturus_smc.bin");
50
MODULE_FIRMWARE("amdgpu/navi10_smc.bin");
51
MODULE_FIRMWARE("amdgpu/navi14_smc.bin");
52
MODULE_FIRMWARE("amdgpu/navi12_smc.bin");
53

54
#define SMU11_VOLTAGE_SCALE 4
55

56 57 58 59 60 61 62 63
static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu,
					      uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_66, msg);
	return 0;
}

64 65 66 67 68 69 70 71
static int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg)
{
	struct amdgpu_device *adev = smu->adev;

	*arg = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82);
	return 0;
}

72 73 74
static int smu_v11_0_wait_for_response(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
75
	uint32_t cur_value, i, timeout = adev->usec_timeout * 10;
76

77
	for (i = 0; i < timeout; i++) {
78 79 80 81 82 83 84
		cur_value = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90);
		if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0)
			break;
		udelay(1);
	}

	/* timeout means wrong logic */
85
	if (i == timeout)
86 87
		return -ETIME;

88
	return RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90) == 0x1 ? 0 : -EIO;
89 90 91 92 93
}

static int smu_v11_0_send_msg(struct smu_context *smu, uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
94 95 96 97 98
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
99 100 101 102 103

	smu_v11_0_wait_for_response(smu);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

104
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
105 106 107 108

	ret = smu_v11_0_wait_for_response(smu);

	if (ret)
109 110
		pr_err("failed send message: %10s (%d) response %#x\n",
		       smu_get_message_name(smu, msg), index, ret);
111 112 113 114 115 116 117 118 119 120 121

	return ret;

}

static int
smu_v11_0_send_msg_with_param(struct smu_context *smu, uint16_t msg,
			      uint32_t param)
{

	struct amdgpu_device *adev = smu->adev;
122 123 124 125 126
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
127 128 129

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
130 131
		pr_err("failed send message: %10s (%d) \tparam: 0x%08x response %#x\n",
		       smu_get_message_name(smu, msg), index, param, ret);
132 133 134 135 136

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82, param);

137
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
138 139 140

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
141 142
		pr_err("failed send message: %10s (%d) \tparam: 0x%08x response %#x\n",
		       smu_get_message_name(smu, msg), index, param, ret);
143 144 145 146

	return ret;
}

147 148 149
static int smu_v11_0_init_microcode(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
150 151 152 153 154 155
	const char *chip_name;
	char fw_name[30];
	int err = 0;
	const struct smc_firmware_header_v1_0 *hdr;
	const struct common_firmware_header *header;
	struct amdgpu_firmware_info *ucode = NULL;
156

157 158 159 160
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		chip_name = "vega20";
		break;
161 162 163
	case CHIP_ARCTURUS:
		chip_name = "arcturus";
		break;
164 165 166
	case CHIP_NAVI10:
		chip_name = "navi10";
		break;
167 168 169
	case CHIP_NAVI14:
		chip_name = "navi14";
		break;
170 171 172
	case CHIP_NAVI12:
		chip_name = "navi12";
		break;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
	default:
		BUG();
	}

	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name);

	err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
	if (err)
		goto out;
	err = amdgpu_ucode_validate(adev->pm.fw);
	if (err)
		goto out;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	amdgpu_ucode_print_smc_hdr(&hdr->header);
	adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
		ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC];
		ucode->ucode_id = AMDGPU_UCODE_ID_SMC;
		ucode->fw = adev->pm.fw;
		header = (const struct common_firmware_header *)ucode->fw->data;
		adev->firmware.fw_size +=
			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
	}

out:
	if (err) {
		DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n",
			  fw_name);
		release_firmware(adev->pm.fw);
		adev->pm.fw = NULL;
	}
	return err;
207 208
}

209 210
static int smu_v11_0_load_microcode(struct smu_context *smu)
{
211 212 213 214 215 216 217
	struct amdgpu_device *adev = smu->adev;
	const uint32_t *src;
	const struct smc_firmware_header_v1_0 *hdr;
	uint32_t addr_start = MP1_SRAM;
	uint32_t i;
	uint32_t mp1_fw_flags;

218
	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
	src = (const uint32_t *)(adev->pm.fw->data +
		le32_to_cpu(hdr->header.ucode_array_offset_bytes));

	for (i = 1; i < MP1_SMC_SIZE/4 - 1; i++) {
		WREG32_PCIE(addr_start, src[i]);
		addr_start += 4;
	}

	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & MP1_SMN_PUB_CTRL__RESET_MASK);
	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & ~MP1_SMN_PUB_CTRL__RESET_MASK);

	for (i = 0; i < adev->usec_timeout; i++) {
		mp1_fw_flags = RREG32_PCIE(MP1_Public |
			(smnMP1_FIRMWARE_FLAGS & 0xffffffff));
		if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
			MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
			break;
		udelay(1);
	}

	if (i == adev->usec_timeout)
		return -ETIME;

244 245 246
	return 0;
}

247 248
static int smu_v11_0_check_fw_status(struct smu_context *smu)
{
249 250 251
	struct amdgpu_device *adev = smu->adev;
	uint32_t mp1_fw_flags;

252 253
	mp1_fw_flags = RREG32_PCIE(MP1_Public |
				   (smnMP1_FIRMWARE_FLAGS & 0xffffffff));
254 255 256 257

	if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
	    MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
		return 0;
258

259
	return -EIO;
260 261
}

262 263
static int smu_v11_0_check_fw_version(struct smu_context *smu)
{
264 265 266
	uint32_t if_version = 0xff, smu_version = 0xff;
	uint16_t smu_major;
	uint8_t smu_minor, smu_debug;
267 268
	int ret = 0;

269
	ret = smu_get_smc_version(smu, &if_version, &smu_version);
270
	if (ret)
271
		return ret;
272

273 274 275 276
	smu_major = (smu_version >> 16) & 0xffff;
	smu_minor = (smu_version >> 8) & 0xff;
	smu_debug = (smu_version >> 0) & 0xff;

277 278 279 280
	switch (smu->adev->asic_type) {
	case CHIP_VEGA20:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_VG20;
		break;
281 282 283
	case CHIP_ARCTURUS:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_ARCT;
		break;
284 285 286 287 288 289 290
	case CHIP_NAVI10:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_NV10;
		break;
	case CHIP_NAVI14:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_NV14;
		break;
	default:
291
		pr_err("smu unsupported asic type:%d.\n", smu->adev->asic_type);
292 293 294 295
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_INV;
		break;
	}

296 297 298 299 300 301 302 303
	/*
	 * 1. if_version mismatch is not critical as our fw is designed
	 * to be backward compatible.
	 * 2. New fw usually brings some optimizations. But that's visible
	 * only on the paired driver.
	 * Considering above, we just leave user a warning message instead
	 * of halt driver loading.
	 */
304
	if (if_version != smu->smc_if_version) {
305 306 307 308
		pr_info("smu driver if version = 0x%08x, smu fw if version = 0x%08x, "
			"smu fw version = 0x%08x (%d.%d.%d)\n",
			smu->smc_if_version, if_version,
			smu_version, smu_major, smu_minor, smu_debug);
309
		pr_warn("SMU driver if version not matched\n");
310 311
	}

312 313 314
	return ret;
}

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
static int smu_v11_0_set_pptable_v2_0(struct smu_context *smu, void **table, uint32_t *size)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t ppt_offset_bytes;
	const struct smc_firmware_header_v2_0 *v2;

	v2 = (const struct smc_firmware_header_v2_0 *) adev->pm.fw->data;

	ppt_offset_bytes = le32_to_cpu(v2->ppt_offset_bytes);
	*size = le32_to_cpu(v2->ppt_size_bytes);
	*table = (uint8_t *)v2 + ppt_offset_bytes;

	return 0;
}

330 331
static int smu_v11_0_set_pptable_v2_1(struct smu_context *smu, void **table,
				      uint32_t *size, uint32_t pptable_id)
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
{
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v2_1 *v2_1;
	struct smc_soft_pptable_entry *entries;
	uint32_t pptable_count = 0;
	int i = 0;

	v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data;
	entries = (struct smc_soft_pptable_entry *)
		((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset));
	pptable_count = le32_to_cpu(v2_1->pptable_count);
	for (i = 0; i < pptable_count; i++) {
		if (le32_to_cpu(entries[i].id) == pptable_id) {
			*table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes));
			*size = le32_to_cpu(entries[i].ppt_size_bytes);
			break;
		}
	}

	if (i == pptable_count)
		return -EINVAL;

	return 0;
}

static int smu_v11_0_setup_pptable(struct smu_context *smu)
358
{
359 360
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v1_0 *hdr;
361
	int ret, index;
362
	uint32_t size;
363
	uint16_t atom_table_size;
364
	uint8_t frev, crev;
365
	void *table;
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
	uint16_t version_major, version_minor;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	version_major = le16_to_cpu(hdr->header.header_version_major);
	version_minor = le16_to_cpu(hdr->header.header_version_minor);
	if (version_major == 2 && smu->smu_table.boot_values.pp_table_id > 0) {
		switch (version_minor) {
		case 0:
			ret = smu_v11_0_set_pptable_v2_0(smu, &table, &size);
			break;
		case 1:
			ret = smu_v11_0_set_pptable_v2_1(smu, &table, &size,
							 smu->smu_table.boot_values.pp_table_id);
			break;
		default:
			ret = -EINVAL;
			break;
		}
		if (ret)
			return ret;
386

387 388 389
	} else {
		index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
						    powerplayinfo);
390

391
		ret = smu_get_atom_data_table(smu, index, &atom_table_size, &frev, &crev,
392 393 394
					      (uint8_t **)&table);
		if (ret)
			return ret;
395
		size = atom_table_size;
396
	}
397

398 399 400 401
	if (!smu->smu_table.power_play_table)
		smu->smu_table.power_play_table = table;
	if (!smu->smu_table.power_play_table_size)
		smu->smu_table.power_play_table_size = size;
402 403 404 405

	return 0;
}

406 407 408 409 410 411 412
static int smu_v11_0_init_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0)
		return -EINVAL;

413
	return smu_alloc_dpm_context(smu);
414 415 416 417 418 419 420 421 422 423
}

static int smu_v11_0_fini_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0)
		return -EINVAL;

	kfree(smu_dpm->dpm_context);
424
	kfree(smu_dpm->golden_dpm_context);
425 426
	kfree(smu_dpm->dpm_current_power_state);
	kfree(smu_dpm->dpm_request_power_state);
427
	smu_dpm->dpm_context = NULL;
428
	smu_dpm->golden_dpm_context = NULL;
429
	smu_dpm->dpm_context_size = 0;
430 431
	smu_dpm->dpm_current_power_state = NULL;
	smu_dpm->dpm_request_power_state = NULL;
432 433 434 435

	return 0;
}

436 437 438 439
static int smu_v11_0_init_smc_tables(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = NULL;
440
	int ret = 0;
441

442
	if (smu_table->tables || smu_table->table_count == 0)
443 444
		return -EINVAL;

445 446
	tables = kcalloc(SMU_TABLE_COUNT, sizeof(struct smu_table),
			 GFP_KERNEL);
447 448 449 450 451
	if (!tables)
		return -ENOMEM;

	smu_table->tables = tables;

452 453 454
	ret = smu_tables_init(smu, tables);
	if (ret)
		return ret;
455

456 457 458 459
	ret = smu_v11_0_init_dpm_context(smu);
	if (ret)
		return ret;

460 461 462 463 464 465
	return 0;
}

static int smu_v11_0_fini_smc_tables(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
466
	int ret = 0;
467 468 469 470 471

	if (!smu_table->tables || smu_table->table_count == 0)
		return -EINVAL;

	kfree(smu_table->tables);
472
	kfree(smu_table->metrics_table);
473 474
	smu_table->tables = NULL;
	smu_table->table_count = 0;
475 476
	smu_table->metrics_table = NULL;
	smu_table->metrics_time = 0;
477

478 479 480
	ret = smu_v11_0_fini_dpm_context(smu);
	if (ret)
		return ret;
481 482
	return 0;
}
483 484 485 486 487

static int smu_v11_0_init_power(struct smu_context *smu)
{
	struct smu_power_context *smu_power = &smu->smu_power;

488 489
	if (!smu->pm_enabled)
		return 0;
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	if (smu_power->power_context || smu_power->power_context_size != 0)
		return -EINVAL;

	smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
					   GFP_KERNEL);
	if (!smu_power->power_context)
		return -ENOMEM;
	smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context);

	return 0;
}

static int smu_v11_0_fini_power(struct smu_context *smu)
{
	struct smu_power_context *smu_power = &smu->smu_power;

506 507
	if (!smu->pm_enabled)
		return 0;
508 509 510 511 512 513 514 515 516 517
	if (!smu_power->power_context || smu_power->power_context_size == 0)
		return -EINVAL;

	kfree(smu_power->power_context);
	smu_power->power_context = NULL;
	smu_power->power_context_size = 0;

	return 0;
}

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu)
{
	int ret, index;
	uint16_t size;
	uint8_t frev, crev;
	struct atom_common_table_header *header;
	struct atom_firmware_info_v3_3 *v_3_3;
	struct atom_firmware_info_v3_1 *v_3_1;

	index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
					    firmwareinfo);

	ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev,
				      (uint8_t **)&header);
	if (ret)
		return ret;

	if (header->format_revision != 3) {
		pr_err("unknown atom_firmware_info version! for smu11\n");
		return -EINVAL;
	}

	switch (header->content_revision) {
	case 0:
	case 1:
	case 2:
		v_3_1 = (struct atom_firmware_info_v3_1 *)header;
		smu->smu_table.boot_values.revision = v_3_1->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = 0;
		break;
	case 3:
	default:
		v_3_3 = (struct atom_firmware_info_v3_3 *)header;
		smu->smu_table.boot_values.revision = v_3_3->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id;
	}

573 574 575
	smu->smu_table.boot_values.format_revision = header->format_revision;
	smu->smu_table.boot_values.content_revision = header->content_revision;

576 577 578
	return 0;
}

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
static int smu_v11_0_get_clk_info_from_vbios(struct smu_context *smu)
{
	int ret, index;
	struct amdgpu_device *adev = smu->adev;
	struct atom_get_smu_clock_info_parameters_v3_1 input = {0};
	struct atom_get_smu_clock_info_output_parameters_v3_1 *output;

	input.clk_id = SMU11_SYSPLL0_SOCCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.socclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCEFCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dcefclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_ECLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.eclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_VCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.vclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
	if ((smu->smu_table.boot_values.format_revision == 3) &&
	    (smu->smu_table.boot_values.content_revision >= 2)) {
		memset(&input, 0, sizeof(input));
		input.clk_id = SMU11_SYSPLL1_0_FCLK_ID;
		input.syspll_id = SMU11_SYSPLL1_2_ID;
		input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
		index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
						    getsmuclockinfo);

		ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
						(uint32_t *)&input);
		if (ret)
			return -EINVAL;

		output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
		smu->smu_table.boot_values.fclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;
	}

673 674 675
	return 0;
}

676 677 678 679 680 681 682 683 684 685 686
static int smu_v11_0_notify_memory_pool_location(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	int ret = 0;
	uint64_t address;
	uint32_t address_low, address_high;

	if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL)
		return ret;

687
	address = (uintptr_t)memory_pool->cpu_addr;
688 689 690 691
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

	ret = smu_send_smc_msg_with_param(smu,
692
					  SMU_MSG_SetSystemVirtualDramAddrHigh,
693 694 695 696
					  address_high);
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu,
697
					  SMU_MSG_SetSystemVirtualDramAddrLow,
698 699 700 701 702 703 704 705
					  address_low);
	if (ret)
		return ret;

	address = memory_pool->mc_address;
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

706
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh,
707 708 709
					  address_high);
	if (ret)
		return ret;
710
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow,
711 712 713
					  address_low);
	if (ret)
		return ret;
714
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize,
715 716 717 718 719 720 721
					  (uint32_t)memory_pool->size);
	if (ret)
		return ret;

	return ret;
}

722 723 724 725 726 727 728 729
static int smu_v11_0_check_pptable(struct smu_context *smu)
{
	int ret;

	ret = smu_check_powerplay_table(smu);
	return ret;
}

730 731 732 733 734
static int smu_v11_0_parse_pptable(struct smu_context *smu)
{
	int ret;

	struct smu_table_context *table_context = &smu->smu_table;
735
	struct smu_table *table = &table_context->tables[SMU_TABLE_PPTABLE];
736 737 738 739

	if (table_context->driver_pptable)
		return -EINVAL;

740
	table_context->driver_pptable = kzalloc(table->size, GFP_KERNEL);
741 742 743 744 745

	if (!table_context->driver_pptable)
		return -ENOMEM;

	ret = smu_store_powerplay_table(smu);
746 747 748 749
	if (ret)
		return -EINVAL;

	ret = smu_append_powerplay_table(smu);
750 751 752 753

	return ret;
}

754 755
static int smu_v11_0_populate_smc_pptable(struct smu_context *smu)
{
756
	int ret;
757

758
	ret = smu_set_default_dpm_table(smu);
759

760
	return ret;
761 762
}

763 764
static int smu_v11_0_write_pptable(struct smu_context *smu)
{
765
	struct smu_table_context *table_context = &smu->smu_table;
766 767
	int ret = 0;

768
	ret = smu_update_table(smu, SMU_TABLE_PPTABLE, 0,
769
			       table_context->driver_pptable, true);
770 771 772 773

	return ret;
}

774 775
static int smu_v11_0_write_watermarks_table(struct smu_context *smu)
{
776 777 778 779 780 781 782 783 784
	int ret = 0;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *table = NULL;

	table = &smu_table->tables[SMU_TABLE_WATERMARKS];

	if (!table->cpu_addr)
		return -EINVAL;

785
	ret = smu_update_table(smu, SMU_TABLE_WATERMARKS, 0, table->cpu_addr,
786
				true);
787 788

	return ret;
789 790
}

791 792 793 794 795 796 797 798 799 800 801 802
static int smu_v11_0_set_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk)
{
	int ret;

	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetMinDeepSleepDcefclk, clk);
	if (ret)
		pr_err("SMU11 attempt to set divider for DCEFCLK Failed!");

	return ret;
}

803 804 805 806
static int smu_v11_0_set_min_dcef_deep_sleep(struct smu_context *smu)
{
	struct smu_table_context *table_context = &smu->smu_table;

807 808
	if (!smu->pm_enabled)
		return 0;
809 810 811
	if (!table_context)
		return -EINVAL;

812
	return smu_set_deep_sleep_dcefclk(smu,
813 814 815
					  table_context->boot_values.dcefclk / 100);
}

816 817 818
static int smu_v11_0_set_tool_table_location(struct smu_context *smu)
{
	int ret = 0;
819
	struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG];
820 821 822

	if (tool_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
823
				SMU_MSG_SetToolsDramAddrHigh,
824 825 826
				upper_32_bits(tool_table->mc_address));
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
827
				SMU_MSG_SetToolsDramAddrLow,
828 829 830 831 832 833
				lower_32_bits(tool_table->mc_address));
	}

	return ret;
}

834
static int smu_v11_0_init_display_count(struct smu_context *smu, uint32_t count)
835 836
{
	int ret = 0;
837 838 839

	if (!smu->pm_enabled)
		return ret;
840

841
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, count);
842 843 844
	return ret;
}

845

846 847 848 849 850 851
static int smu_v11_0_set_allowed_mask(struct smu_context *smu)
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
	uint32_t feature_mask[2];

852
	mutex_lock(&feature->mutex);
853
	if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64)
854
		goto failed;
855 856 857 858 859 860

	bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64);

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh,
					  feature_mask[1]);
	if (ret)
861
		goto failed;
862 863 864 865

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow,
					  feature_mask[0]);
	if (ret)
866
		goto failed;
867

868 869
failed:
	mutex_unlock(&feature->mutex);
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
	return ret;
}

static int smu_v11_0_get_enabled_mask(struct smu_context *smu,
				      uint32_t *feature_mask, uint32_t num)
{
	uint32_t feature_mask_high = 0, feature_mask_low = 0;
	int ret = 0;

	if (!feature_mask || num < 2)
		return -EINVAL;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_high);
	if (ret)
		return ret;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_low);
	if (ret)
		return ret;

	feature_mask[0] = feature_mask_low;
	feature_mask[1] = feature_mask_high;

	return ret;
}

902 903
static int smu_v11_0_system_features_control(struct smu_context *smu,
					     bool en)
904 905 906 907 908
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_mask[2];
	int ret = 0;

909 910 911 912 913 914 915
	if (smu->pm_enabled) {
		ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures :
					     SMU_MSG_DisableAllSmuFeatures));
		if (ret)
			return ret;
	}

916 917 918 919 920 921 922 923 924 925 926 927
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
		return ret;

	bitmap_copy(feature->enabled, (unsigned long *)&feature_mask,
		    feature->feature_num);
	bitmap_copy(feature->supported, (unsigned long *)&feature_mask,
		    feature->feature_num);

	return ret;
}

928 929 930 931
static int smu_v11_0_notify_display_change(struct smu_context *smu)
{
	int ret = 0;

932 933
	if (!smu->pm_enabled)
		return ret;
934 935 936
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
	    smu->adev->gmc.vram_type == AMDGPU_VRAM_TYPE_HBM)
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1);
937 938 939 940

	return ret;
}

941 942
static int
smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock,
943
				    enum smu_clk_type clock_select)
944 945
{
	int ret = 0;
946
	int clk_id;
947

948 949
	if (!smu->pm_enabled)
		return ret;
950

951 952 953 954
	if ((smu_msg_get_index(smu, SMU_MSG_GetDcModeMaxDpmFreq) < 0) ||
	    (smu_msg_get_index(smu, SMU_MSG_GetMaxDpmFreq) < 0))
		return 0;

955 956 957 958
	clk_id = smu_clk_get_index(smu, clock_select);
	if (clk_id < 0)
		return -EINVAL;

959
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq,
960
					  clk_id << 16);
961 962 963 964 965 966 967 968 969 970 971 972 973 974
	if (ret) {
		pr_err("[GetMaxSustainableClock] Failed to get max DC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);
	if (ret)
		return ret;

	if (*clock != 0)
		return 0;

	/* if DC limit is zero, return AC limit */
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
975
					  clk_id << 16);
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
	if (ret) {
		pr_err("[GetMaxSustainableClock] failed to get max AC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);

	return ret;
}

static int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu)
{
	struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks;
	int ret = 0;

	max_sustainable_clocks = kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks),
					 GFP_KERNEL);
	smu->smu_table.max_sustainable_clocks = (void *)max_sustainable_clocks;

	max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100;
	max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100;
	max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100;
	max_sustainable_clocks->display_clock = 0xFFFFFFFF;
	max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
	max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;

1002
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1003 1004
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->uclock),
1005
							  SMU_UCLK);
1006 1007 1008 1009 1010 1011 1012
		if (ret) {
			pr_err("[%s] failed to get max UCLK from SMC!",
			       __func__);
			return ret;
		}
	}

1013
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
1014 1015
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->soc_clock),
1016
							  SMU_SOCCLK);
1017 1018 1019 1020 1021 1022 1023
		if (ret) {
			pr_err("[%s] failed to get max SOCCLK from SMC!",
			       __func__);
			return ret;
		}
	}

1024
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
1025 1026
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->dcef_clock),
1027
							  SMU_DCEFCLK);
1028 1029 1030 1031 1032 1033 1034 1035
		if (ret) {
			pr_err("[%s] failed to get max DCEFCLK from SMC!",
			       __func__);
			return ret;
		}

		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->display_clock),
1036
							  SMU_DISPCLK);
1037 1038 1039 1040 1041 1042 1043
		if (ret) {
			pr_err("[%s] failed to get max DISPCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->phy_clock),
1044
							  SMU_PHYCLK);
1045 1046 1047 1048 1049 1050 1051
		if (ret) {
			pr_err("[%s] failed to get max PHYCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->pixel_clock),
1052
							  SMU_PIXCLK);
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
		if (ret) {
			pr_err("[%s] failed to get max PIXCLK from SMC!",
			       __func__);
			return ret;
		}
	}

	if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
		max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;

	return 0;
}

1066
static int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n)
1067
{
1068
	int ret = 0;
1069

1070 1071 1072
	if (n > smu->default_power_limit) {
		pr_err("New power limit is over the max allowed %d\n",
				smu->default_power_limit);
1073
		return -EINVAL;
1074 1075
	}

1076 1077 1078
	if (n == 0)
		n = smu->default_power_limit;

1079 1080 1081
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) {
		pr_err("Setting new power limit is not supported!\n");
		return -EOPNOTSUPP;
1082 1083
	}

1084
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n);
1085
	if (ret) {
1086
		pr_err("[%s] Set power limit Failed!\n", __func__);
1087 1088
		return ret;
	}
1089
	smu->power_limit = n;
1090

1091
	return 0;
1092 1093
}

1094 1095 1096
static int smu_v11_0_get_current_clk_freq(struct smu_context *smu,
					  enum smu_clk_type clk_id,
					  uint32_t *value)
1097 1098
{
	int ret = 0;
1099
	uint32_t freq = 0;
1100
	int asic_clk_id;
1101

1102
	if (clk_id >= SMU_CLK_COUNT || !value)
1103 1104
		return -EINVAL;

1105 1106 1107 1108
	asic_clk_id = smu_clk_get_index(smu, clk_id);
	if (asic_clk_id < 0)
		return -EINVAL;

1109
	/* if don't has GetDpmClockFreq Message, try get current clock by SmuMetrics_t */
1110
	if (smu_msg_get_index(smu, SMU_MSG_GetDpmClockFreq) < 0)
1111 1112 1113
		ret =  smu_get_current_clk_freq_by_table(smu, clk_id, &freq);
	else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmClockFreq,
1114
						  (asic_clk_id << 16));
1115 1116
		if (ret)
			return ret;
1117

1118 1119 1120 1121
		ret = smu_read_smc_arg(smu, &freq);
		if (ret)
			return ret;
	}
1122 1123 1124 1125 1126 1127 1128

	freq *= 100;
	*value = freq;

	return ret;
}

1129
static int smu_v11_0_set_thermal_range(struct smu_context *smu,
1130
				       struct smu_temperature_range *range)
1131 1132
{
	struct amdgpu_device *adev = smu->adev;
1133 1134
	int low = SMU_THERMAL_MINIMUM_ALERT_TEMP;
	int high = SMU_THERMAL_MAXIMUM_ALERT_TEMP;
1135 1136
	uint32_t val;

1137 1138 1139
	if (!range)
		return -EINVAL;

1140 1141 1142 1143 1144
	if (low < range->min)
		low = range->min;
	if (high > range->max)
		high = range->max;

1145 1146 1147
	low = max(SMU_THERMAL_MINIMUM_ALERT_TEMP, range->min);
	high = min(SMU_THERMAL_MAXIMUM_ALERT_TEMP, range->max);

1148 1149 1150 1151 1152 1153
	if (low > high)
		return -EINVAL;

	val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1);
1154 1155
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 0);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 0);
1156 1157
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high & 0xff));
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low & 0xff));
1158 1159 1160 1161 1162 1163 1164
	val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);

	return 0;
}

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
static int smu_v11_0_enable_thermal_alert(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t val = 0;

	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val);

	return 0;
}

1179 1180 1181
static int smu_v11_0_start_thermal_control(struct smu_context *smu)
{
	int ret = 0;
1182
	struct smu_temperature_range range = {
1183 1184 1185 1186 1187 1188 1189 1190 1191
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX};
1192 1193
	struct amdgpu_device *adev = smu->adev;

1194 1195
	if (!smu->pm_enabled)
		return ret;
1196

1197
	ret = smu_get_thermal_temperature_range(smu, &range);
1198 1199
	if (ret)
		return ret;
1200 1201 1202 1203 1204 1205 1206 1207 1208

	if (smu->smu_table.thermal_controller_type) {
		ret = smu_v11_0_set_thermal_range(smu, &range);
		if (ret)
			return ret;

		ret = smu_v11_0_enable_thermal_alert(smu);
		if (ret)
			return ret;
1209

1210
		ret = smu_set_thermal_fan_table(smu);
1211 1212 1213 1214
		if (ret)
			return ret;
	}

1215 1216 1217 1218 1219 1220 1221 1222 1223
	adev->pm.dpm.thermal.min_temp = range.min * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_temp = range.max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_edge_emergency_temp = range.edge_emergency_max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.min_hotspot_temp = range.hotspot_min * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_hotspot_crit_temp = range.hotspot_crit_max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_hotspot_emergency_temp = range.hotspot_emergency_max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.min_mem_temp = range.mem_min * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_mem_crit_temp = range.mem_crit_max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_mem_emergency_temp = range.mem_emergency_max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
1224 1225
	adev->pm.dpm.thermal.min_temp = range.min * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
	adev->pm.dpm.thermal.max_temp = range.max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
1226 1227 1228 1229

	return ret;
}

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
static uint16_t convert_to_vddc(uint8_t vid)
{
	return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE);
}

static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t vdd = 0, val_vid = 0;

	if (!value)
		return -EINVAL;
	val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) &
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >>
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT;

	vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid);

	*value = vdd;

	return 0;

}

1254 1255 1256 1257 1258
static int smu_v11_0_read_sensor(struct smu_context *smu,
				 enum amd_pp_sensors sensor,
				 void *data, uint32_t *size)
{
	int ret = 0;
1259 1260 1261 1262

	if(!data || !size)
		return -EINVAL;

1263
	switch (sensor) {
1264
	case AMDGPU_PP_SENSOR_GFX_MCLK:
1265
		ret = smu_get_current_clk_freq(smu, SMU_UCLK, (uint32_t *)data);
1266 1267 1268
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_SCLK:
1269
		ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, (uint32_t *)data);
1270
		*size = 4;
1271
		break;
1272 1273 1274
	case AMDGPU_PP_SENSOR_VDDGFX:
		ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
		*size = 4;
1275
		break;
1276 1277 1278 1279
	case AMDGPU_PP_SENSOR_MIN_FAN_RPM:
		*(uint32_t *)data = 0;
		*size = 4;
		break;
1280
	default:
1281
		ret = smu_common_read_sensor(smu, sensor, data, size);
1282 1283 1284 1285 1286 1287 1288 1289 1290
		break;
	}

	if (ret)
		*size = 0;

	return ret;
}

1291 1292 1293 1294 1295 1296 1297
static int
smu_v11_0_display_clock_voltage_request(struct smu_context *smu,
					struct pp_display_clock_request
					*clock_req)
{
	enum amd_pp_clock_type clk_type = clock_req->clock_type;
	int ret = 0;
1298
	enum smu_clk_type clk_select = 0;
1299 1300
	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;

1301 1302
	if (!smu->pm_enabled)
		return -EINVAL;
1303

1304
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) ||
1305
		smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1306 1307
		switch (clk_type) {
		case amd_pp_dcef_clock:
1308
			clk_select = SMU_DCEFCLK;
1309 1310
			break;
		case amd_pp_disp_clock:
1311
			clk_select = SMU_DISPCLK;
1312 1313
			break;
		case amd_pp_pixel_clock:
1314
			clk_select = SMU_PIXCLK;
1315 1316
			break;
		case amd_pp_phy_clock:
1317
			clk_select = SMU_PHYCLK;
1318
			break;
1319 1320 1321
		case amd_pp_mem_clock:
			clk_select = SMU_UCLK;
			break;
1322 1323 1324 1325 1326 1327 1328 1329 1330
		default:
			pr_info("[%s] Invalid Clock Type!", __func__);
			ret = -EINVAL;
			break;
		}

		if (ret)
			goto failed;

1331 1332 1333
		if (clk_select == SMU_UCLK && smu->disable_uclk_switch)
			return 0;

1334
		mutex_lock(&smu->mutex);
1335
		ret = smu_set_hard_freq_range(smu, clk_select, clk_freq, 0);
1336
		mutex_unlock(&smu->mutex);
1337 1338 1339

		if(clk_select == SMU_UCLK)
			smu->hard_min_uclk_req_from_dal = clk_freq;
1340 1341 1342 1343 1344 1345
	}

failed:
	return ret;
}

1346 1347 1348 1349 1350 1351
static int
smu_v11_0_set_watermarks_for_clock_ranges(struct smu_context *smu, struct
					  dm_pp_wm_sets_with_clock_ranges_soc15
					  *clock_ranges)
{
	int ret = 0;
1352
	struct smu_table *watermarks = &smu->smu_table.tables[SMU_TABLE_WATERMARKS];
1353
	void *table = watermarks->cpu_addr;
1354 1355

	if (!smu->disable_watermark &&
1356 1357
	    smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
	    smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
1358
		smu_set_watermarks_table(smu, table, clock_ranges);
1359 1360 1361 1362 1363 1364 1365
		smu->watermarks_bitmap |= WATERMARKS_EXIST;
		smu->watermarks_bitmap &= ~WATERMARKS_LOADED;
	}

	return ret;
}

1366 1367 1368
static int smu_v11_0_gfx_off_control(struct smu_context *smu, bool enable)
{
	int ret = 0;
1369
	struct amdgpu_device *adev = smu->adev;
1370

1371 1372 1373 1374
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		break;
	case CHIP_NAVI10:
1375
	case CHIP_NAVI14:
1376
	case CHIP_NAVI12:
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
		if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
			return 0;
		mutex_lock(&smu->mutex);
		if (enable)
			ret = smu_send_smc_msg(smu, SMU_MSG_AllowGfxOff);
		else
			ret = smu_send_smc_msg(smu, SMU_MSG_DisallowGfxOff);
		mutex_unlock(&smu->mutex);
		break;
	default:
		break;
	}
1389 1390 1391 1392

	return ret;
}

1393 1394 1395
static uint32_t
smu_v11_0_get_fan_control_mode(struct smu_context *smu)
{
1396
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1397 1398 1399 1400 1401 1402
		return AMD_FAN_CTRL_MANUAL;
	else
		return AMD_FAN_CTRL_AUTO;
}

static int
1403
smu_v11_0_auto_fan_control(struct smu_context *smu, bool auto_fan_control)
1404 1405 1406
{
	int ret = 0;

1407
	if (!smu_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1408 1409
		return 0;

1410
	ret = smu_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, auto_fan_control);
1411 1412
	if (ret)
		pr_err("[%s]%s smc FAN CONTROL feature failed!",
1413
		       __func__, (auto_fan_control ? "Start" : "Stop"));
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436

	return ret;
}

static int
smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode)
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, TMIN, 0));
	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, FDO_PWM_MODE, mode));

	return 0;
}

static int
smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
1437
	uint32_t duty100, duty;
1438 1439 1440 1441 1442
	uint64_t tmp64;

	if (speed > 100)
		speed = 100;

1443
	if (smu_v11_0_auto_fan_control(smu, 0))
1444
		return -EINVAL;
1445

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
	duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1),
				CG_FDO_CTRL1, FMAX_DUTY100);
	if (!duty100)
		return -EINVAL;

	tmp64 = (uint64_t)speed * duty100;
	do_div(tmp64, 100);
	duty = (uint32_t)tmp64;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0),
				   CG_FDO_CTRL0, FDO_STATIC_DUTY, duty));

	return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC);
}

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
static int
smu_v11_0_set_fan_control_mode(struct smu_context *smu,
			       uint32_t mode)
{
	int ret = 0;

	switch (mode) {
	case AMD_FAN_CTRL_NONE:
		ret = smu_v11_0_set_fan_speed_percent(smu, 100);
		break;
	case AMD_FAN_CTRL_MANUAL:
1473
		ret = smu_v11_0_auto_fan_control(smu, 0);
1474 1475
		break;
	case AMD_FAN_CTRL_AUTO:
1476
		ret = smu_v11_0_auto_fan_control(smu, 1);
1477 1478 1479 1480 1481 1482
		break;
	default:
		break;
	}

	if (ret) {
1483
		pr_err("[%s]Set fan control mode failed!", __func__);
1484 1485 1486 1487 1488 1489
		return -EINVAL;
	}

	return ret;
}

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
static int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu,
				       uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	int ret;
	uint32_t tach_period, crystal_clock_freq;

	if (!speed)
		return -EINVAL;

	mutex_lock(&(smu->mutex));
1501
	ret = smu_v11_0_auto_fan_control(smu, 0);
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	if (ret)
		goto set_fan_speed_rpm_failed;

	crystal_clock_freq = amdgpu_asic_get_xclk(adev);
	tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed);
	WREG32_SOC15(THM, 0, mmCG_TACH_CTRL,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL),
				   CG_TACH_CTRL, TARGET_PERIOD,
				   tach_period));

	ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM);

set_fan_speed_rpm_failed:
	mutex_unlock(&(smu->mutex));
	return ret;
}

1519 1520 1521
#define XGMI_STATE_D0 1
#define XGMI_STATE_D3 0

1522 1523 1524
static int smu_v11_0_set_xgmi_pstate(struct smu_context *smu,
				     uint32_t pstate)
{
1525 1526 1527 1528 1529 1530 1531
	int ret = 0;
	mutex_lock(&(smu->mutex));
	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetXgmiMode,
					  pstate ? XGMI_STATE_D0 : XGMI_STATE_D3);
	mutex_unlock(&(smu->mutex));
	return ret;
1532 1533
}

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
#define THM_11_0__SRCID__THM_DIG_THERM_L2H		0		/* ASIC_TEMP > CG_THERMAL_INT.DIG_THERM_INTH  */
#define THM_11_0__SRCID__THM_DIG_THERM_H2L		1		/* ASIC_TEMP < CG_THERMAL_INT.DIG_THERM_INTL  */

static int smu_v11_0_irq_process(struct amdgpu_device *adev,
				 struct amdgpu_irq_src *source,
				 struct amdgpu_iv_entry *entry)
{
	uint32_t client_id = entry->client_id;
	uint32_t src_id = entry->src_id;

	if (client_id == SOC15_IH_CLIENTID_THM) {
		switch (src_id) {
		case THM_11_0__SRCID__THM_DIG_THERM_L2H:
			pr_warn("GPU over temperature range detected on PCIe %d:%d.%d!\n",
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;
		case THM_11_0__SRCID__THM_DIG_THERM_H2L:
			pr_warn("GPU under temperature range detected on PCIe %d:%d.%d!\n",
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;
		default:
			pr_warn("GPU under temperature range unknown src id (%d), detected on PCIe %d:%d.%d!\n",
				src_id,
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;

		}
	}

	return 0;
}

static const struct amdgpu_irq_src_funcs smu_v11_0_irq_funcs =
{
	.process = smu_v11_0_irq_process,
};

static int smu_v11_0_register_irq_handler(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	struct amdgpu_irq_src *irq_src = smu->irq_source;
	int ret = 0;

	/* already register */
	if (irq_src)
		return 0;

	irq_src = kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
	if (!irq_src)
		return -ENOMEM;
	smu->irq_source = irq_src;

	irq_src->funcs = &smu_v11_0_irq_funcs;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_L2H,
				irq_src);
	if (ret)
		return ret;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_H2L,
				irq_src);
	if (ret)
		return ret;

	return ret;
}

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
static int smu_v11_0_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
		struct pp_smu_nv_clock_table *max_clocks)
{
	struct smu_table_context *table_context = &smu->smu_table;
	struct smu_11_0_max_sustainable_clocks *sustainable_clocks = NULL;

	if (!max_clocks || !table_context->max_sustainable_clocks)
		return -EINVAL;

	sustainable_clocks = table_context->max_sustainable_clocks;

	max_clocks->dcfClockInKhz =
			(unsigned int) sustainable_clocks->dcef_clock * 1000;
	max_clocks->displayClockInKhz =
			(unsigned int) sustainable_clocks->display_clock * 1000;
	max_clocks->phyClockInKhz =
			(unsigned int) sustainable_clocks->phy_clock * 1000;
	max_clocks->pixelClockInKhz =
			(unsigned int) sustainable_clocks->pixel_clock * 1000;
	max_clocks->uClockInKhz =
			(unsigned int) sustainable_clocks->uclock * 1000;
	max_clocks->socClockInKhz =
			(unsigned int) sustainable_clocks->soc_clock * 1000;
	max_clocks->dscClockInKhz = 0;
	max_clocks->dppClockInKhz = 0;
	max_clocks->fabricClockInKhz = 0;

	return 0;
}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
static int smu_v11_0_set_azalia_d3_pme(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);
	ret = smu_send_smc_msg(smu, SMU_MSG_BacoAudioD3PME);
	mutex_unlock(&smu->mutex);

	return ret;
}

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
static int smu_v11_0_baco_set_armd3_sequence(struct smu_context *smu, enum smu_v11_0_baco_seq baco_seq)
{
	return smu_send_smc_msg_with_param(smu, SMU_MSG_ArmD3, baco_seq);
}

static bool smu_v11_0_baco_is_support(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	struct smu_baco_context *smu_baco = &smu->smu_baco;
	uint32_t val;
	bool baco_support;

	mutex_lock(&smu_baco->mutex);
	baco_support = smu_baco->platform_support;
	mutex_unlock(&smu_baco->mutex);

	if (!baco_support)
		return false;

	if (!smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT))
		return false;

	val = RREG32_SOC15(NBIO, 0, mmRCC_BIF_STRAP0);
	if (val & RCC_BIF_STRAP0__STRAP_PX_CAPABLE_MASK)
		return true;

	return false;
}

static enum smu_baco_state smu_v11_0_baco_get_state(struct smu_context *smu)
{
	struct smu_baco_context *smu_baco = &smu->smu_baco;
	enum smu_baco_state baco_state = SMU_BACO_STATE_EXIT;

	mutex_lock(&smu_baco->mutex);
	baco_state = smu_baco->state;
	mutex_unlock(&smu_baco->mutex);

	return baco_state;
}

static int smu_v11_0_baco_set_state(struct smu_context *smu, enum smu_baco_state state)
{

	struct smu_baco_context *smu_baco = &smu->smu_baco;
	int ret = 0;

	if (smu_v11_0_baco_get_state(smu) == state)
		return 0;

	mutex_lock(&smu_baco->mutex);

	if (state == SMU_BACO_STATE_ENTER)
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, BACO_SEQ_BACO);
	else
		ret = smu_send_smc_msg(smu, SMU_MSG_ExitBaco);
	if (ret)
		goto out;

	smu_baco->state = state;
out:
	mutex_unlock(&smu_baco->mutex);
	return ret;
}

static int smu_v11_0_baco_reset(struct smu_context *smu)
{
	int ret = 0;

	ret = smu_v11_0_baco_set_armd3_sequence(smu, BACO_SEQ_BACO);
	if (ret)
		return ret;

	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_ENTER);
	if (ret)
		return ret;

	msleep(10);

	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_EXIT);
	if (ret)
		return ret;

	return ret;
}

1736 1737
static const struct smu_funcs smu_v11_0_funcs = {
	.init_microcode = smu_v11_0_init_microcode,
1738
	.load_microcode = smu_v11_0_load_microcode,
1739
	.check_fw_status = smu_v11_0_check_fw_status,
1740
	.check_fw_version = smu_v11_0_check_fw_version,
1741 1742
	.send_smc_msg = smu_v11_0_send_msg,
	.send_smc_msg_with_param = smu_v11_0_send_msg_with_param,
1743
	.read_smc_arg = smu_v11_0_read_arg,
1744
	.setup_pptable = smu_v11_0_setup_pptable,
1745 1746
	.init_smc_tables = smu_v11_0_init_smc_tables,
	.fini_smc_tables = smu_v11_0_fini_smc_tables,
1747 1748
	.init_power = smu_v11_0_init_power,
	.fini_power = smu_v11_0_fini_power,
1749
	.get_vbios_bootup_values = smu_v11_0_get_vbios_bootup_values,
1750
	.get_clk_info_from_vbios = smu_v11_0_get_clk_info_from_vbios,
1751
	.notify_memory_pool_location = smu_v11_0_notify_memory_pool_location,
1752
	.check_pptable = smu_v11_0_check_pptable,
1753
	.parse_pptable = smu_v11_0_parse_pptable,
1754
	.populate_smc_pptable = smu_v11_0_populate_smc_pptable,
1755
	.write_pptable = smu_v11_0_write_pptable,
1756
	.write_watermarks_table = smu_v11_0_write_watermarks_table,
1757
	.set_min_dcef_deep_sleep = smu_v11_0_set_min_dcef_deep_sleep,
1758
	.set_tool_table_location = smu_v11_0_set_tool_table_location,
1759
	.init_display_count = smu_v11_0_init_display_count,
1760 1761
	.set_allowed_mask = smu_v11_0_set_allowed_mask,
	.get_enabled_mask = smu_v11_0_get_enabled_mask,
1762
	.system_features_control = smu_v11_0_system_features_control,
1763
	.notify_display_change = smu_v11_0_notify_display_change,
1764
	.set_power_limit = smu_v11_0_set_power_limit,
1765
	.get_current_clk_freq = smu_v11_0_get_current_clk_freq,
1766
	.init_max_sustainable_clocks = smu_v11_0_init_max_sustainable_clocks,
1767
	.start_thermal_control = smu_v11_0_start_thermal_control,
1768
	.read_sensor = smu_v11_0_read_sensor,
1769
	.set_deep_sleep_dcefclk = smu_v11_0_set_deep_sleep_dcefclk,
1770
	.display_clock_voltage_request = smu_v11_0_display_clock_voltage_request,
1771
	.set_watermarks_for_clock_ranges = smu_v11_0_set_watermarks_for_clock_ranges,
1772
	.get_fan_control_mode = smu_v11_0_get_fan_control_mode,
1773
	.set_fan_control_mode = smu_v11_0_set_fan_control_mode,
1774
	.set_fan_speed_percent = smu_v11_0_set_fan_speed_percent,
1775
	.set_fan_speed_rpm = smu_v11_0_set_fan_speed_rpm,
1776
	.set_xgmi_pstate = smu_v11_0_set_xgmi_pstate,
1777
	.gfx_off_control = smu_v11_0_gfx_off_control,
1778
	.register_irq_handler = smu_v11_0_register_irq_handler,
1779
	.set_azalia_d3_pme = smu_v11_0_set_azalia_d3_pme,
1780
	.get_max_sustainable_clocks_by_dc = smu_v11_0_get_max_sustainable_clocks_by_dc,
1781 1782 1783 1784
	.baco_is_support = smu_v11_0_baco_is_support,
	.baco_get_state = smu_v11_0_baco_get_state,
	.baco_set_state = smu_v11_0_baco_set_state,
	.baco_reset = smu_v11_0_baco_reset,
1785 1786 1787 1788
};

void smu_v11_0_set_smu_funcs(struct smu_context *smu)
{
1789 1790
	struct amdgpu_device *adev = smu->adev;

1791
	smu->funcs = &smu_v11_0_funcs;
1792 1793 1794 1795
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		vega20_set_ppt_funcs(smu);
		break;
1796 1797 1798
	case CHIP_ARCTURUS:
		arcturus_set_ppt_funcs(smu);
		break;
1799
	case CHIP_NAVI10:
1800
	case CHIP_NAVI14:
1801
	case CHIP_NAVI12:
1802 1803
		navi10_set_ppt_funcs(smu);
		break;
1804
	default:
1805
		pr_warn("Unknown asic for smu11\n");
1806
	}
1807
}