smu_v11_0.c 49.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/firmware.h>
24
#include <linux/module.h>
25
#include <linux/pci.h>
26
#include <linux/reboot.h>
27

28 29
#define SMU_11_0_PARTIAL_PPTABLE

30 31
#include "amdgpu.h"
#include "amdgpu_smu.h"
32
#include "smu_internal.h"
33
#include "atomfirmware.h"
34
#include "amdgpu_atomfirmware.h"
35
#include "smu_v11_0.h"
36
#include "soc15_common.h"
37
#include "atom.h"
38
#include "amd_pcie.h"
39
#include "amdgpu_ras.h"
40 41 42

#include "asic_reg/thm/thm_11_0_2_offset.h"
#include "asic_reg/thm/thm_11_0_2_sh_mask.h"
43 44 45 46
#include "asic_reg/mp/mp_11_0_offset.h"
#include "asic_reg/mp/mp_11_0_sh_mask.h"
#include "asic_reg/smuio/smuio_11_0_0_offset.h"
#include "asic_reg/smuio/smuio_11_0_0_sh_mask.h"
47

48 49 50 51 52 53 54 55 56 57
/*
 * DO NOT use these for err/warn/info/debug messages.
 * Use dev_err, dev_warn, dev_info and dev_dbg instead.
 * They are more MGPU friendly.
 */
#undef pr_err
#undef pr_warn
#undef pr_info
#undef pr_debug

58
MODULE_FIRMWARE("amdgpu/arcturus_smc.bin");
59
MODULE_FIRMWARE("amdgpu/navi10_smc.bin");
60
MODULE_FIRMWARE("amdgpu/navi14_smc.bin");
61
MODULE_FIRMWARE("amdgpu/navi12_smc.bin");
62
MODULE_FIRMWARE("amdgpu/sienna_cichlid_smc.bin");
63

64
#define SMU11_VOLTAGE_SCALE 4
65

66 67 68 69
static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu,
					      uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
70
	WREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_66, msg);
71 72 73
	return 0;
}

74
static int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg)
75 76 77
{
	struct amdgpu_device *adev = smu->adev;

78
	*arg = RREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_82);
79 80 81
	return 0;
}

82 83 84
static int smu_v11_0_wait_for_response(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
85
	uint32_t cur_value, i, timeout = adev->usec_timeout * 10;
86

87
	for (i = 0; i < timeout; i++) {
88
		cur_value = RREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_90);
89
		if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0)
90 91
			return cur_value == 0x1 ? 0 : -EIO;

92 93 94 95
		udelay(1);
	}

	/* timeout means wrong logic */
96 97 98 99
	if (i == timeout)
		return -ETIME;

	return RREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_90) == 0x1 ? 0 : -EIO;
100 101
}

102
int
103 104
smu_v11_0_send_msg_with_param(struct smu_context *smu,
			      enum smu_message_type msg,
105 106
			      uint32_t param,
			      uint32_t *read_arg)
107 108
{
	struct amdgpu_device *adev = smu->adev;
109 110 111 112
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
113
		return index == -EACCES ? 0 : index;
114

115
	mutex_lock(&smu->message_lock);
116
	ret = smu_v11_0_wait_for_response(smu);
117
	if (ret) {
118
		dev_err(adev->dev, "Msg issuing pre-check failed and "
119
		       "SMU may be not in the right state!\n");
120
		goto out;
121
	}
122

123
	WREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);
124

125
	WREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_82, param);
126

127
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
128 129

	ret = smu_v11_0_wait_for_response(smu);
130
	if (ret) {
131
		dev_err(adev->dev, "failed send message: %10s (%d) \tparam: 0x%08x response %#x\n",
132
		       smu_get_message_name(smu, msg), index, param, ret);
133
		goto out;
134
	}
135

136 137 138
	if (read_arg) {
		ret = smu_v11_0_read_arg(smu, read_arg);
		if (ret) {
139
			dev_err(adev->dev, "failed to read message arg: %10s (%d) \tparam: 0x%08x response %#x\n",
140
			       smu_get_message_name(smu, msg), index, param, ret);
141
			goto out;
142 143
		}
	}
144 145 146
out:
	mutex_unlock(&smu->message_lock);
	return ret;
147 148
}

149
int smu_v11_0_init_microcode(struct smu_context *smu)
150 151
{
	struct amdgpu_device *adev = smu->adev;
152 153 154 155 156 157
	const char *chip_name;
	char fw_name[30];
	int err = 0;
	const struct smc_firmware_header_v1_0 *hdr;
	const struct common_firmware_header *header;
	struct amdgpu_firmware_info *ucode = NULL;
158

159
	switch (adev->asic_type) {
160 161 162
	case CHIP_ARCTURUS:
		chip_name = "arcturus";
		break;
163 164 165
	case CHIP_NAVI10:
		chip_name = "navi10";
		break;
166 167 168
	case CHIP_NAVI14:
		chip_name = "navi14";
		break;
169 170 171
	case CHIP_NAVI12:
		chip_name = "navi12";
		break;
172 173 174
	case CHIP_SIENNA_CICHLID:
		chip_name = "sienna_cichlid";
		break;
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
	default:
		BUG();
	}

	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name);

	err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
	if (err)
		goto out;
	err = amdgpu_ucode_validate(adev->pm.fw);
	if (err)
		goto out;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	amdgpu_ucode_print_smc_hdr(&hdr->header);
	adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
		ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC];
		ucode->ucode_id = AMDGPU_UCODE_ID_SMC;
		ucode->fw = adev->pm.fw;
		header = (const struct common_firmware_header *)ucode->fw->data;
		adev->firmware.fw_size +=
			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
	}

out:
	if (err) {
		DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n",
			  fw_name);
		release_firmware(adev->pm.fw);
		adev->pm.fw = NULL;
	}
	return err;
209 210
}

211 212 213 214 215 216 217 218 219
void smu_v11_0_fini_microcode(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;

	release_firmware(adev->pm.fw);
	adev->pm.fw = NULL;
	adev->pm.fw_version = 0;
}

220
int smu_v11_0_load_microcode(struct smu_context *smu)
221
{
222 223 224 225 226
	struct amdgpu_device *adev = smu->adev;
	const uint32_t *src;
	const struct smc_firmware_header_v1_0 *hdr;
	uint32_t addr_start = MP1_SRAM;
	uint32_t i;
227
	uint32_t smc_fw_size;
228 229
	uint32_t mp1_fw_flags;

230
	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
231 232
	src = (const uint32_t *)(adev->pm.fw->data +
		le32_to_cpu(hdr->header.ucode_array_offset_bytes));
233
	smc_fw_size = hdr->header.ucode_size_bytes;
234

235
	for (i = 1; i < smc_fw_size/4 - 1; i++) {
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
		WREG32_PCIE(addr_start, src[i]);
		addr_start += 4;
	}

	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & MP1_SMN_PUB_CTRL__RESET_MASK);
	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & ~MP1_SMN_PUB_CTRL__RESET_MASK);

	for (i = 0; i < adev->usec_timeout; i++) {
		mp1_fw_flags = RREG32_PCIE(MP1_Public |
			(smnMP1_FIRMWARE_FLAGS & 0xffffffff));
		if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
			MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
			break;
		udelay(1);
	}

	if (i == adev->usec_timeout)
		return -ETIME;

257 258 259
	return 0;
}

260
int smu_v11_0_check_fw_status(struct smu_context *smu)
261
{
262 263 264
	struct amdgpu_device *adev = smu->adev;
	uint32_t mp1_fw_flags;

265 266
	mp1_fw_flags = RREG32_PCIE(MP1_Public |
				   (smnMP1_FIRMWARE_FLAGS & 0xffffffff));
267 268 269 270

	if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
	    MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
		return 0;
271

272
	return -EIO;
273 274
}

275
int smu_v11_0_check_fw_version(struct smu_context *smu)
276
{
277 278 279
	uint32_t if_version = 0xff, smu_version = 0xff;
	uint16_t smu_major;
	uint8_t smu_minor, smu_debug;
280 281
	int ret = 0;

282
	ret = smu_get_smc_version(smu, &if_version, &smu_version);
283
	if (ret)
284
		return ret;
285

286 287 288 289
	smu_major = (smu_version >> 16) & 0xffff;
	smu_minor = (smu_version >> 8) & 0xff;
	smu_debug = (smu_version >> 0) & 0xff;

290
	switch (smu->adev->asic_type) {
291
	case CHIP_ARCTURUS:
292
		smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_ARCT;
293
		break;
294
	case CHIP_NAVI10:
295
		smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_NV10;
296
		break;
297
	case CHIP_NAVI12:
298
		smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_NV12;
299
		break;
300
	case CHIP_NAVI14:
301
		smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_NV14;
302
		break;
303 304 305
	case CHIP_SIENNA_CICHLID:
		smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_Sienna_Cichlid;
		break;
306
	default:
307
		dev_err(smu->adev->dev, "smu unsupported asic type:%d.\n", smu->adev->asic_type);
308
		smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_INV;
309 310 311
		break;
	}

312 313 314 315 316 317 318 319
	/*
	 * 1. if_version mismatch is not critical as our fw is designed
	 * to be backward compatible.
	 * 2. New fw usually brings some optimizations. But that's visible
	 * only on the paired driver.
	 * Considering above, we just leave user a warning message instead
	 * of halt driver loading.
	 */
320
	if (if_version != smu->smc_driver_if_version) {
321
		dev_info(smu->adev->dev, "smu driver if version = 0x%08x, smu fw if version = 0x%08x, "
322
			"smu fw version = 0x%08x (%d.%d.%d)\n",
323
			smu->smc_driver_if_version, if_version,
324
			smu_version, smu_major, smu_minor, smu_debug);
325
		dev_warn(smu->adev->dev, "SMU driver if version not matched\n");
326 327
	}

328 329 330
	return ret;
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
static int smu_v11_0_set_pptable_v2_0(struct smu_context *smu, void **table, uint32_t *size)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t ppt_offset_bytes;
	const struct smc_firmware_header_v2_0 *v2;

	v2 = (const struct smc_firmware_header_v2_0 *) adev->pm.fw->data;

	ppt_offset_bytes = le32_to_cpu(v2->ppt_offset_bytes);
	*size = le32_to_cpu(v2->ppt_size_bytes);
	*table = (uint8_t *)v2 + ppt_offset_bytes;

	return 0;
}

346 347
static int smu_v11_0_set_pptable_v2_1(struct smu_context *smu, void **table,
				      uint32_t *size, uint32_t pptable_id)
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
{
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v2_1 *v2_1;
	struct smc_soft_pptable_entry *entries;
	uint32_t pptable_count = 0;
	int i = 0;

	v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data;
	entries = (struct smc_soft_pptable_entry *)
		((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset));
	pptable_count = le32_to_cpu(v2_1->pptable_count);
	for (i = 0; i < pptable_count; i++) {
		if (le32_to_cpu(entries[i].id) == pptable_id) {
			*table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes));
			*size = le32_to_cpu(entries[i].ppt_size_bytes);
			break;
		}
	}

	if (i == pptable_count)
		return -EINVAL;

	return 0;
}

373
int smu_v11_0_setup_pptable(struct smu_context *smu)
374
{
375 376
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v1_0 *hdr;
377
	int ret, index;
378
	uint32_t size = 0;
379
	uint16_t atom_table_size;
380
	uint8_t frev, crev;
381
	void *table;
382 383 384 385 386
	uint16_t version_major, version_minor;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	version_major = le16_to_cpu(hdr->header.header_version_major);
	version_minor = le16_to_cpu(hdr->header.header_version_minor);
387
	if (version_major == 2 && smu->smu_table.boot_values.pp_table_id > 0) {
388
		dev_info(adev->dev, "use driver provided pptable %d\n", smu->smu_table.boot_values.pp_table_id);
389 390 391 392 393 394 395 396 397 398 399 400 401 402
		switch (version_minor) {
		case 0:
			ret = smu_v11_0_set_pptable_v2_0(smu, &table, &size);
			break;
		case 1:
			ret = smu_v11_0_set_pptable_v2_1(smu, &table, &size,
							 smu->smu_table.boot_values.pp_table_id);
			break;
		default:
			ret = -EINVAL;
			break;
		}
		if (ret)
			return ret;
403

404
	} else {
405
		dev_info(adev->dev, "use vbios provided pptable\n");
406 407
		index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
						    powerplayinfo);
408

409
		ret = smu_get_atom_data_table(smu, index, &atom_table_size, &frev, &crev,
410 411 412
					      (uint8_t **)&table);
		if (ret)
			return ret;
413
		size = atom_table_size;
414
	}
415

416 417 418 419
	if (!smu->smu_table.power_play_table)
		smu->smu_table.power_play_table = table;
	if (!smu->smu_table.power_play_table_size)
		smu->smu_table.power_play_table_size = size;
420 421 422 423

	return 0;
}

424 425 426 427 428 429 430
static int smu_v11_0_init_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0)
		return -EINVAL;

431
	return smu_alloc_dpm_context(smu);
432 433 434 435 436 437 438 439 440 441
}

static int smu_v11_0_fini_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0)
		return -EINVAL;

	kfree(smu_dpm->dpm_context);
442
	kfree(smu_dpm->golden_dpm_context);
443 444
	kfree(smu_dpm->dpm_current_power_state);
	kfree(smu_dpm->dpm_request_power_state);
445
	smu_dpm->dpm_context = NULL;
446
	smu_dpm->golden_dpm_context = NULL;
447
	smu_dpm->dpm_context_size = 0;
448 449
	smu_dpm->dpm_current_power_state = NULL;
	smu_dpm->dpm_request_power_state = NULL;
450 451 452 453

	return 0;
}

454
int smu_v11_0_init_smc_tables(struct smu_context *smu)
455 456 457
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = NULL;
458
	int ret = 0;
459

460 461
	tables = kcalloc(SMU_TABLE_COUNT, sizeof(struct smu_table),
			 GFP_KERNEL);
462 463 464 465
	if (!tables) {
		ret = -ENOMEM;
		goto err0_out;
	}
466 467
	smu_table->tables = tables;

468 469
	ret = smu_tables_init(smu, tables);
	if (ret)
470
		goto err1_out;
471

472 473
	ret = smu_v11_0_init_dpm_context(smu);
	if (ret)
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
		goto err1_out;

	smu_table->driver_pptable =
		kzalloc(tables[SMU_TABLE_PPTABLE].size, GFP_KERNEL);
	if (!smu_table->driver_pptable) {
		ret = -ENOMEM;
		goto err2_out;
	}

	smu_table->max_sustainable_clocks =
		kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks), GFP_KERNEL);
	if (!smu_table->max_sustainable_clocks) {
		ret = -ENOMEM;
		goto err3_out;
	}

	/* Arcturus does not support OVERDRIVE */
	if (tables[SMU_TABLE_OVERDRIVE].size) {
		smu_table->overdrive_table =
			kzalloc(tables[SMU_TABLE_OVERDRIVE].size, GFP_KERNEL);
		if (!smu_table->overdrive_table) {
			ret = -ENOMEM;
			goto err4_out;
		}

		smu_table->boot_overdrive_table =
			kzalloc(tables[SMU_TABLE_OVERDRIVE].size, GFP_KERNEL);
		if (!smu_table->boot_overdrive_table) {
			ret = -ENOMEM;
			goto err5_out;
		}
	}
506

507
	return 0;
508 509 510 511 512 513 514 515 516 517 518 519 520

err5_out:
	kfree(smu_table->overdrive_table);
err4_out:
	kfree(smu_table->max_sustainable_clocks);
err3_out:
	kfree(smu_table->driver_pptable);
err2_out:
	smu_v11_0_fini_dpm_context(smu);
err1_out:
	kfree(tables);
err0_out:
	return ret;
521 522
}

523
int smu_v11_0_fini_smc_tables(struct smu_context *smu)
524 525
{
	struct smu_table_context *smu_table = &smu->smu_table;
526
	int ret = 0;
527

528
	if (!smu_table->tables)
529 530
		return -EINVAL;

531 532 533 534 535 536 537 538 539 540 541
	kfree(smu_table->boot_overdrive_table);
	kfree(smu_table->overdrive_table);
	kfree(smu_table->max_sustainable_clocks);
	kfree(smu_table->driver_pptable);
	smu_table->boot_overdrive_table = NULL;
	smu_table->overdrive_table = NULL;
	smu_table->max_sustainable_clocks = NULL;
	smu_table->driver_pptable = NULL;
	kfree(smu_table->hardcode_pptable);
	smu_table->hardcode_pptable = NULL;

542
	kfree(smu_table->tables);
543
	kfree(smu_table->metrics_table);
544
	kfree(smu_table->watermarks_table);
545
	smu_table->tables = NULL;
546
	smu_table->metrics_table = NULL;
547
	smu_table->watermarks_table = NULL;
548
	smu_table->metrics_time = 0;
549

550 551 552
	ret = smu_v11_0_fini_dpm_context(smu);
	if (ret)
		return ret;
553 554
	return 0;
}
555

556
int smu_v11_0_init_power(struct smu_context *smu)
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
{
	struct smu_power_context *smu_power = &smu->smu_power;

	if (smu_power->power_context || smu_power->power_context_size != 0)
		return -EINVAL;

	smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
					   GFP_KERNEL);
	if (!smu_power->power_context)
		return -ENOMEM;
	smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context);

	return 0;
}

572
int smu_v11_0_fini_power(struct smu_context *smu)
573 574 575 576 577 578 579 580 581 582 583 584 585
{
	struct smu_power_context *smu_power = &smu->smu_power;

	if (!smu_power->power_context || smu_power->power_context_size == 0)
		return -EINVAL;

	kfree(smu_power->power_context);
	smu_power->power_context = NULL;
	smu_power->power_context_size = 0;

	return 0;
}

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
static int smu_v11_0_atom_get_smu_clockinfo(struct amdgpu_device *adev,
					    uint8_t clk_id,
					    uint8_t syspll_id,
					    uint32_t *clk_freq)
{
	struct atom_get_smu_clock_info_parameters_v3_1 input = {0};
	struct atom_get_smu_clock_info_output_parameters_v3_1 *output;
	int ret, index;

	input.clk_id = clk_id;
	input.syspll_id = syspll_id;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	*clk_freq = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	return 0;
}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu)
{
	int ret, index;
	uint16_t size;
	uint8_t frev, crev;
	struct atom_common_table_header *header;
	struct atom_firmware_info_v3_3 *v_3_3;
	struct atom_firmware_info_v3_1 *v_3_1;

	index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
					    firmwareinfo);

	ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev,
				      (uint8_t **)&header);
	if (ret)
		return ret;

	if (header->format_revision != 3) {
630
		dev_err(smu->adev->dev, "unknown atom_firmware_info version! for smu11\n");
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
		return -EINVAL;
	}

	switch (header->content_revision) {
	case 0:
	case 1:
	case 2:
		v_3_1 = (struct atom_firmware_info_v3_1 *)header;
		smu->smu_table.boot_values.revision = v_3_1->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = 0;
		break;
	case 3:
	default:
		v_3_3 = (struct atom_firmware_info_v3_3 *)header;
		smu->smu_table.boot_values.revision = v_3_3->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id;
	}

667 668 669
	smu->smu_table.boot_values.format_revision = header->format_revision;
	smu->smu_table.boot_values.content_revision = header->content_revision;

670 671 672 673
	smu_v11_0_atom_get_smu_clockinfo(smu->adev,
					 (uint8_t)SMU11_SYSPLL0_SOCCLK_ID,
					 (uint8_t)0,
					 &smu->smu_table.boot_values.socclk);
674

675 676 677 678
	smu_v11_0_atom_get_smu_clockinfo(smu->adev,
					 (uint8_t)SMU11_SYSPLL0_DCEFCLK_ID,
					 (uint8_t)0,
					 &smu->smu_table.boot_values.dcefclk);
679

680 681 682 683
	smu_v11_0_atom_get_smu_clockinfo(smu->adev,
					 (uint8_t)SMU11_SYSPLL0_ECLK_ID,
					 (uint8_t)0,
					 &smu->smu_table.boot_values.eclk);
684

685 686 687 688
	smu_v11_0_atom_get_smu_clockinfo(smu->adev,
					 (uint8_t)SMU11_SYSPLL0_VCLK_ID,
					 (uint8_t)0,
					 &smu->smu_table.boot_values.vclk);
689

690 691 692 693
	smu_v11_0_atom_get_smu_clockinfo(smu->adev,
					 (uint8_t)SMU11_SYSPLL0_DCLK_ID,
					 (uint8_t)0,
					 &smu->smu_table.boot_values.dclk);
694

695
	if ((smu->smu_table.boot_values.format_revision == 3) &&
696 697 698 699 700
	    (smu->smu_table.boot_values.content_revision >= 2))
		smu_v11_0_atom_get_smu_clockinfo(smu->adev,
						 (uint8_t)SMU11_SYSPLL1_0_FCLK_ID,
						 (uint8_t)SMU11_SYSPLL1_2_ID,
						 &smu->smu_table.boot_values.fclk);
701

702 703 704
	return 0;
}

705
int smu_v11_0_notify_memory_pool_location(struct smu_context *smu)
706 707 708 709 710 711 712 713 714 715
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	int ret = 0;
	uint64_t address;
	uint32_t address_low, address_high;

	if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL)
		return ret;

716
	address = (uintptr_t)memory_pool->cpu_addr;
717 718 719 720
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

	ret = smu_send_smc_msg_with_param(smu,
721
					  SMU_MSG_SetSystemVirtualDramAddrHigh,
722 723
					  address_high,
					  NULL);
724 725 726
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu,
727
					  SMU_MSG_SetSystemVirtualDramAddrLow,
728 729
					  address_low,
					  NULL);
730 731 732 733 734 735 736
	if (ret)
		return ret;

	address = memory_pool->mc_address;
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

737
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh,
738
					  address_high, NULL);
739 740
	if (ret)
		return ret;
741
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow,
742
					  address_low, NULL);
743 744
	if (ret)
		return ret;
745
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize,
746
					  (uint32_t)memory_pool->size, NULL);
747 748 749 750 751 752
	if (ret)
		return ret;

	return ret;
}

753
int smu_v11_0_populate_smc_pptable(struct smu_context *smu)
754
{
755
	int ret;
756

757
	ret = smu_set_default_dpm_table(smu);
758

759
	return ret;
760 761
}

762
int smu_v11_0_write_pptable(struct smu_context *smu)
763
{
764
	struct smu_table_context *table_context = &smu->smu_table;
765 766
	int ret = 0;

767
	ret = smu_update_table(smu, SMU_TABLE_PPTABLE, 0,
768
			       table_context->driver_pptable, true);
769 770 771 772

	return ret;
}

773
int smu_v11_0_set_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk)
774 775 776 777
{
	int ret;

	ret = smu_send_smc_msg_with_param(smu,
778
					  SMU_MSG_SetMinDeepSleepDcefclk, clk, NULL);
779
	if (ret)
780
		dev_err(smu->adev->dev, "SMU11 attempt to set divider for DCEFCLK Failed!");
781 782 783 784

	return ret;
}

785
int smu_v11_0_set_min_dcef_deep_sleep(struct smu_context *smu)
786 787 788 789 790 791
{
	struct smu_table_context *table_context = &smu->smu_table;

	if (!table_context)
		return -EINVAL;

792
	return smu_v11_0_set_deep_sleep_dcefclk(smu, table_context->boot_values.dcefclk / 100);
793 794
}

795 796 797 798 799 800 801 802
int smu_v11_0_set_driver_table_location(struct smu_context *smu)
{
	struct smu_table *driver_table = &smu->smu_table.driver_table;
	int ret = 0;

	if (driver_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
				SMU_MSG_SetDriverDramAddrHigh,
803 804
				upper_32_bits(driver_table->mc_address),
				NULL);
805 806 807
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
				SMU_MSG_SetDriverDramAddrLow,
808 809
				lower_32_bits(driver_table->mc_address),
				NULL);
810 811 812 813 814
	}

	return ret;
}

815
int smu_v11_0_set_tool_table_location(struct smu_context *smu)
816 817
{
	int ret = 0;
818
	struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG];
819 820 821

	if (tool_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
822
				SMU_MSG_SetToolsDramAddrHigh,
823 824
				upper_32_bits(tool_table->mc_address),
				NULL);
825 826
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
827
				SMU_MSG_SetToolsDramAddrLow,
828 829
				lower_32_bits(tool_table->mc_address),
				NULL);
830 831 832 833 834
	}

	return ret;
}

835
int smu_v11_0_init_display_count(struct smu_context *smu, uint32_t count)
836 837
{
	int ret = 0;
838

839 840 841
	if (!smu->pm_enabled)
		return ret;

842
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, count, NULL);
843 844 845
	return ret;
}

846

847
int smu_v11_0_set_allowed_mask(struct smu_context *smu)
848 849 850 851 852
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
	uint32_t feature_mask[2];

853
	mutex_lock(&feature->mutex);
854
	if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64)
855
		goto failed;
856 857 858 859

	bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64);

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh,
860
					  feature_mask[1], NULL);
861
	if (ret)
862
		goto failed;
863 864

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow,
865
					  feature_mask[0], NULL);
866
	if (ret)
867
		goto failed;
868

869 870
failed:
	mutex_unlock(&feature->mutex);
871 872 873
	return ret;
}

874
int smu_v11_0_get_enabled_mask(struct smu_context *smu,
875 876 877
				      uint32_t *feature_mask, uint32_t num)
{
	uint32_t feature_mask_high = 0, feature_mask_low = 0;
878
	struct smu_feature *feature = &smu->smu_feature;
879 880 881 882 883
	int ret = 0;

	if (!feature_mask || num < 2)
		return -EINVAL;

884
	if (bitmap_empty(feature->enabled, feature->feature_num)) {
885
		ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh, &feature_mask_high);
886 887
		if (ret)
			return ret;
888

889
		ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow, &feature_mask_low);
890 891
		if (ret)
			return ret;
892

893 894 895 896 897 898
		feature_mask[0] = feature_mask_low;
		feature_mask[1] = feature_mask_high;
	} else {
		bitmap_copy((unsigned long *)feature_mask, feature->enabled,
			     feature->feature_num);
	}
899 900 901 902

	return ret;
}

903
int smu_v11_0_system_features_control(struct smu_context *smu,
904
					     bool en)
905 906 907 908 909
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_mask[2];
	int ret = 0;

910
	ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures :
911
				     SMU_MSG_DisableAllSmuFeatures), NULL);
912 913 914
	if (ret)
		return ret;

915 916 917
	bitmap_zero(feature->enabled, feature->feature_num);
	bitmap_zero(feature->supported, feature->feature_num);

918 919 920 921 922 923 924 925 926 927
	if (en) {
		ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
		if (ret)
			return ret;

		bitmap_copy(feature->enabled, (unsigned long *)&feature_mask,
			    feature->feature_num);
		bitmap_copy(feature->supported, (unsigned long *)&feature_mask,
			    feature->feature_num);
	}
928 929 930 931

	return ret;
}

932
int smu_v11_0_notify_display_change(struct smu_context *smu)
933 934 935
{
	int ret = 0;

936 937 938
	if (!smu->pm_enabled)
		return ret;

939 940
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
	    smu->adev->gmc.vram_type == AMDGPU_VRAM_TYPE_HBM)
941
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1, NULL);
942 943 944 945

	return ret;
}

946 947
static int
smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock,
948
				    enum smu_clk_type clock_select)
949 950
{
	int ret = 0;
951
	int clk_id;
952

953 954 955 956
	if ((smu_msg_get_index(smu, SMU_MSG_GetDcModeMaxDpmFreq) < 0) ||
	    (smu_msg_get_index(smu, SMU_MSG_GetMaxDpmFreq) < 0))
		return 0;

957 958 959 960
	clk_id = smu_clk_get_index(smu, clock_select);
	if (clk_id < 0)
		return -EINVAL;

961
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq,
962
					  clk_id << 16, clock);
963
	if (ret) {
964
		dev_err(smu->adev->dev, "[GetMaxSustainableClock] Failed to get max DC clock from SMC!");
965 966 967 968 969 970 971 972
		return ret;
	}

	if (*clock != 0)
		return 0;

	/* if DC limit is zero, return AC limit */
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
973
					  clk_id << 16, clock);
974
	if (ret) {
975
		dev_err(smu->adev->dev, "[GetMaxSustainableClock] failed to get max AC clock from SMC!");
976 977 978
		return ret;
	}

979
	return 0;
980 981
}

982
int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu)
983
{
984 985
	struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks =
			smu->smu_table.max_sustainable_clocks;
986 987 988 989 990 991 992 993 994
	int ret = 0;

	max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100;
	max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100;
	max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100;
	max_sustainable_clocks->display_clock = 0xFFFFFFFF;
	max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
	max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;

995
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
996 997
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->uclock),
998
							  SMU_UCLK);
999
		if (ret) {
1000
			dev_err(smu->adev->dev, "[%s] failed to get max UCLK from SMC!",
1001 1002 1003 1004 1005
			       __func__);
			return ret;
		}
	}

1006
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
1007 1008
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->soc_clock),
1009
							  SMU_SOCCLK);
1010
		if (ret) {
1011
			dev_err(smu->adev->dev, "[%s] failed to get max SOCCLK from SMC!",
1012 1013 1014 1015 1016
			       __func__);
			return ret;
		}
	}

1017
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
1018 1019
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->dcef_clock),
1020
							  SMU_DCEFCLK);
1021
		if (ret) {
1022
			dev_err(smu->adev->dev, "[%s] failed to get max DCEFCLK from SMC!",
1023 1024 1025 1026 1027 1028
			       __func__);
			return ret;
		}

		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->display_clock),
1029
							  SMU_DISPCLK);
1030
		if (ret) {
1031
			dev_err(smu->adev->dev, "[%s] failed to get max DISPCLK from SMC!",
1032 1033 1034 1035 1036
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->phy_clock),
1037
							  SMU_PHYCLK);
1038
		if (ret) {
1039
			dev_err(smu->adev->dev, "[%s] failed to get max PHYCLK from SMC!",
1040 1041 1042 1043 1044
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->pixel_clock),
1045
							  SMU_PIXCLK);
1046
		if (ret) {
1047
			dev_err(smu->adev->dev, "[%s] failed to get max PIXCLK from SMC!",
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
			       __func__);
			return ret;
		}
	}

	if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
		max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;

	return 0;
}

1059
int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n)
1060
{
1061
	int ret = 0;
1062 1063
	uint32_t max_power_limit;

1064
	max_power_limit = smu_get_max_power_limit(smu);
1065

1066
	if (n > max_power_limit) {
1067
		dev_err(smu->adev->dev, "New power limit (%d) is over the max allowed %d\n",
1068 1069
				n,
				max_power_limit);
1070
		return -EINVAL;
1071 1072
	}

1073 1074 1075
	if (n == 0)
		n = smu->default_power_limit;

1076
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) {
1077
		dev_err(smu->adev->dev, "Setting new power limit is not supported!\n");
1078
		return -EOPNOTSUPP;
1079 1080
	}

1081
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n, NULL);
1082
	if (ret) {
1083
		dev_err(smu->adev->dev, "[%s] Set power limit Failed!\n", __func__);
1084 1085
		return ret;
	}
1086
	smu->power_limit = n;
1087

1088
	return 0;
1089 1090
}

1091
int smu_v11_0_get_current_clk_freq(struct smu_context *smu,
1092 1093
					  enum smu_clk_type clk_id,
					  uint32_t *value)
1094 1095
{
	int ret = 0;
1096
	uint32_t freq = 0;
1097
	int asic_clk_id;
1098

1099
	if (clk_id >= SMU_CLK_COUNT || !value)
1100 1101
		return -EINVAL;

1102 1103 1104 1105
	asic_clk_id = smu_clk_get_index(smu, clk_id);
	if (asic_clk_id < 0)
		return -EINVAL;

1106
	/* if don't has GetDpmClockFreq Message, try get current clock by SmuMetrics_t */
1107
	if (smu_msg_get_index(smu, SMU_MSG_GetDpmClockFreq) < 0)
1108 1109 1110
		ret =  smu_get_current_clk_freq_by_table(smu, clk_id, &freq);
	else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmClockFreq,
1111
						  (asic_clk_id << 16), &freq);
1112 1113 1114
		if (ret)
			return ret;
	}
1115 1116 1117 1118 1119 1120 1121

	freq *= 100;
	*value = freq;

	return ret;
}

1122
int smu_v11_0_enable_thermal_alert(struct smu_context *smu)
1123 1124
{
	int ret = 0;
1125
	struct smu_temperature_range range;
1126 1127
	struct amdgpu_device *adev = smu->adev;

1128 1129
	memcpy(&range, &smu11_thermal_policy[0], sizeof(struct smu_temperature_range));

1130
	ret = smu_get_thermal_temperature_range(smu, &range);
1131 1132
	if (ret)
		return ret;
1133 1134

	if (smu->smu_table.thermal_controller_type) {
1135
		ret = smu_set_thermal_range(smu, range);
1136 1137 1138
		if (ret)
			return ret;

1139
		ret = amdgpu_irq_get(adev, &smu->irq_source, 0);
1140 1141
		if (ret)
			return ret;
1142

1143
		ret = smu_set_thermal_fan_table(smu);
1144 1145 1146 1147
		if (ret)
			return ret;
	}

1148 1149 1150 1151 1152 1153 1154 1155 1156
	adev->pm.dpm.thermal.min_temp = range.min;
	adev->pm.dpm.thermal.max_temp = range.max;
	adev->pm.dpm.thermal.max_edge_emergency_temp = range.edge_emergency_max;
	adev->pm.dpm.thermal.min_hotspot_temp = range.hotspot_min;
	adev->pm.dpm.thermal.max_hotspot_crit_temp = range.hotspot_crit_max;
	adev->pm.dpm.thermal.max_hotspot_emergency_temp = range.hotspot_emergency_max;
	adev->pm.dpm.thermal.min_mem_temp = range.mem_min;
	adev->pm.dpm.thermal.max_mem_crit_temp = range.mem_crit_max;
	adev->pm.dpm.thermal.max_mem_emergency_temp = range.mem_emergency_max;
1157 1158 1159 1160

	return ret;
}

1161
int smu_v11_0_disable_thermal_alert(struct smu_context *smu)
1162
{
1163
	return amdgpu_irq_put(smu->adev, &smu->irq_source, 0);
1164 1165
}

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
static uint16_t convert_to_vddc(uint8_t vid)
{
	return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE);
}

static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t vdd = 0, val_vid = 0;

	if (!value)
		return -EINVAL;
	val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) &
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >>
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT;

	vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid);

	*value = vdd;

	return 0;

}

1190
int smu_v11_0_read_sensor(struct smu_context *smu,
1191 1192 1193 1194
				 enum amd_pp_sensors sensor,
				 void *data, uint32_t *size)
{
	int ret = 0;
1195 1196 1197 1198

	if(!data || !size)
		return -EINVAL;

1199
	switch (sensor) {
1200
	case AMDGPU_PP_SENSOR_GFX_MCLK:
1201
		ret = smu_get_current_clk_freq(smu, SMU_UCLK, (uint32_t *)data);
1202 1203 1204
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_SCLK:
1205
		ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, (uint32_t *)data);
1206
		*size = 4;
1207
		break;
1208 1209 1210
	case AMDGPU_PP_SENSOR_VDDGFX:
		ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
		*size = 4;
1211
		break;
1212 1213 1214 1215
	case AMDGPU_PP_SENSOR_MIN_FAN_RPM:
		*(uint32_t *)data = 0;
		*size = 4;
		break;
1216
	default:
1217
		ret = smu_common_read_sensor(smu, sensor, data, size);
1218 1219 1220 1221 1222 1223 1224 1225 1226
		break;
	}

	if (ret)
		*size = 0;

	return ret;
}

1227
int
1228 1229 1230 1231 1232 1233
smu_v11_0_display_clock_voltage_request(struct smu_context *smu,
					struct pp_display_clock_request
					*clock_req)
{
	enum amd_pp_clock_type clk_type = clock_req->clock_type;
	int ret = 0;
1234
	enum smu_clk_type clk_select = 0;
1235 1236
	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;

1237
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) ||
1238
		smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1239 1240
		switch (clk_type) {
		case amd_pp_dcef_clock:
1241
			clk_select = SMU_DCEFCLK;
1242 1243
			break;
		case amd_pp_disp_clock:
1244
			clk_select = SMU_DISPCLK;
1245 1246
			break;
		case amd_pp_pixel_clock:
1247
			clk_select = SMU_PIXCLK;
1248 1249
			break;
		case amd_pp_phy_clock:
1250
			clk_select = SMU_PHYCLK;
1251
			break;
1252 1253 1254
		case amd_pp_mem_clock:
			clk_select = SMU_UCLK;
			break;
1255
		default:
1256
			dev_info(smu->adev->dev, "[%s] Invalid Clock Type!", __func__);
1257 1258 1259 1260 1261 1262 1263
			ret = -EINVAL;
			break;
		}

		if (ret)
			goto failed;

1264 1265 1266
		if (clk_select == SMU_UCLK && smu->disable_uclk_switch)
			return 0;

1267
		ret = smu_set_hard_freq_range(smu, clk_select, clk_freq, 0);
1268 1269 1270

		if(clk_select == SMU_UCLK)
			smu->hard_min_uclk_req_from_dal = clk_freq;
1271 1272 1273 1274 1275 1276
	}

failed:
	return ret;
}

1277
int smu_v11_0_gfx_off_control(struct smu_context *smu, bool enable)
1278 1279
{
	int ret = 0;
1280
	struct amdgpu_device *adev = smu->adev;
1281

1282 1283
	switch (adev->asic_type) {
	case CHIP_NAVI10:
1284
	case CHIP_NAVI14:
1285
	case CHIP_NAVI12:
1286
	case CHIP_SIENNA_CICHLID:
1287 1288 1289
		if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
			return 0;
		if (enable)
1290
			ret = smu_send_smc_msg(smu, SMU_MSG_AllowGfxOff, NULL);
1291
		else
1292
			ret = smu_send_smc_msg(smu, SMU_MSG_DisallowGfxOff, NULL);
1293 1294 1295 1296
		break;
	default:
		break;
	}
1297 1298 1299 1300

	return ret;
}

1301
uint32_t
1302 1303
smu_v11_0_get_fan_control_mode(struct smu_context *smu)
{
1304
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1305 1306 1307 1308 1309 1310
		return AMD_FAN_CTRL_MANUAL;
	else
		return AMD_FAN_CTRL_AUTO;
}

static int
1311
smu_v11_0_auto_fan_control(struct smu_context *smu, bool auto_fan_control)
1312 1313 1314
{
	int ret = 0;

1315
	if (!smu_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1316 1317
		return 0;

1318
	ret = smu_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, auto_fan_control);
1319
	if (ret)
1320
		dev_err(smu->adev->dev, "[%s]%s smc FAN CONTROL feature failed!",
1321
		       __func__, (auto_fan_control ? "Start" : "Stop"));
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340

	return ret;
}

static int
smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode)
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, TMIN, 0));
	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, FDO_PWM_MODE, mode));

	return 0;
}

1341
int
1342 1343 1344
smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
1345
	uint32_t duty100, duty;
1346 1347 1348 1349 1350
	uint64_t tmp64;

	if (speed > 100)
		speed = 100;

1351
	if (smu_v11_0_auto_fan_control(smu, 0))
1352
		return -EINVAL;
1353

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1),
				CG_FDO_CTRL1, FMAX_DUTY100);
	if (!duty100)
		return -EINVAL;

	tmp64 = (uint64_t)speed * duty100;
	do_div(tmp64, 100);
	duty = (uint32_t)tmp64;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0),
				   CG_FDO_CTRL0, FDO_STATIC_DUTY, duty));

	return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC);
}

1370
int
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
smu_v11_0_set_fan_control_mode(struct smu_context *smu,
			       uint32_t mode)
{
	int ret = 0;

	switch (mode) {
	case AMD_FAN_CTRL_NONE:
		ret = smu_v11_0_set_fan_speed_percent(smu, 100);
		break;
	case AMD_FAN_CTRL_MANUAL:
1381
		ret = smu_v11_0_auto_fan_control(smu, 0);
1382 1383
		break;
	case AMD_FAN_CTRL_AUTO:
1384
		ret = smu_v11_0_auto_fan_control(smu, 1);
1385 1386 1387 1388 1389 1390
		break;
	default:
		break;
	}

	if (ret) {
1391
		dev_err(smu->adev->dev, "[%s]Set fan control mode failed!", __func__);
1392 1393 1394 1395 1396 1397
		return -EINVAL;
	}

	return ret;
}

1398
int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu,
1399 1400 1401 1402 1403 1404 1405 1406 1407
				       uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	int ret;
	uint32_t tach_period, crystal_clock_freq;

	if (!speed)
		return -EINVAL;

1408
	ret = smu_v11_0_auto_fan_control(smu, 0);
1409
	if (ret)
1410
		return ret;
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

	crystal_clock_freq = amdgpu_asic_get_xclk(adev);
	tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed);
	WREG32_SOC15(THM, 0, mmCG_TACH_CTRL,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL),
				   CG_TACH_CTRL, TARGET_PERIOD,
				   tach_period));

	ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM);

	return ret;
}

1424
int smu_v11_0_set_xgmi_pstate(struct smu_context *smu,
1425 1426
				     uint32_t pstate)
{
1427 1428 1429
	int ret = 0;
	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetXgmiMode,
1430 1431
					  pstate ? XGMI_MODE_PSTATE_D0 : XGMI_MODE_PSTATE_D3,
					  NULL);
1432
	return ret;
1433 1434
}

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
static int smu_v11_0_set_irq_state(struct amdgpu_device *adev,
				   struct amdgpu_irq_src *source,
				   unsigned tyep,
				   enum amdgpu_interrupt_state state)
{
	uint32_t val = 0;

	switch (state) {
	case AMDGPU_IRQ_STATE_DISABLE:
		/* For THM irqs */
		val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
		val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 1);
		val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 1);
		WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);

		WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, 0);

		/* For MP1 SW irqs */
		val = RREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT_CTRL);
		val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT_CTRL, INT_MASK, 1);
		WREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT_CTRL, val);

		break;
	case AMDGPU_IRQ_STATE_ENABLE:
		/* For THM irqs */
		val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
		val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 0);
		val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 0);
		WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);

		val = (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT);
		val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT);
		val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT);
		WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val);

		/* For MP1 SW irqs */
		val = RREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT);
		val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT, ID, 0xFE);
		val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT, VALID, 0);
		WREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT, val);

		val = RREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT_CTRL);
		val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT_CTRL, INT_MASK, 0);
		WREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT_CTRL, val);

		break;
	default:
		break;
	}

	return 0;
}

1488 1489 1490 1491 1492 1493 1494
static int smu_v11_0_ack_ac_dc_interrupt(struct smu_context *smu)
{
	return smu_send_smc_msg(smu,
				SMU_MSG_ReenableAcDcInterrupt,
				NULL);
}

1495 1496 1497
#define THM_11_0__SRCID__THM_DIG_THERM_L2H		0		/* ASIC_TEMP > CG_THERMAL_INT.DIG_THERM_INTH  */
#define THM_11_0__SRCID__THM_DIG_THERM_H2L		1		/* ASIC_TEMP < CG_THERMAL_INT.DIG_THERM_INTL  */

1498 1499
#define SMUIO_11_0__SRCID__SMUIO_GPIO19			83

1500 1501 1502 1503
static int smu_v11_0_irq_process(struct amdgpu_device *adev,
				 struct amdgpu_irq_src *source,
				 struct amdgpu_iv_entry *entry)
{
1504
	struct smu_context *smu = &adev->smu;
1505 1506
	uint32_t client_id = entry->client_id;
	uint32_t src_id = entry->src_id;
1507 1508 1509 1510 1511
	/*
	 * ctxid is used to distinguish different
	 * events for SMCToHost interrupt.
	 */
	uint32_t ctxid = entry->src_data[0];
1512
	uint32_t data;
1513 1514 1515 1516

	if (client_id == SOC15_IH_CLIENTID_THM) {
		switch (src_id) {
		case THM_11_0__SRCID__THM_DIG_THERM_L2H:
1517
			dev_emerg(adev->dev, "ERROR: GPU over temperature range(SW CTF) detected!\n");
1518 1519 1520 1521
			/*
			 * SW CTF just occurred.
			 * Try to do a graceful shutdown to prevent further damage.
			 */
1522
			dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU SW CTF!\n");
1523
			orderly_poweroff(true);
1524 1525
		break;
		case THM_11_0__SRCID__THM_DIG_THERM_H2L:
1526
			dev_emerg(adev->dev, "ERROR: GPU under temperature range detected\n");
1527 1528
		break;
		default:
1529 1530
			dev_emerg(adev->dev, "ERROR: GPU under temperature range unknown src id (%d)\n",
				src_id);
1531 1532
		break;
		}
1533
	} else if (client_id == SOC15_IH_CLIENTID_ROM_SMUIO) {
1534
		dev_emerg(adev->dev, "ERROR: GPU HW Critical Temperature Fault(aka CTF) detected!\n");
1535 1536 1537
		/*
		 * HW CTF just occurred. Shutdown to prevent further damage.
		 */
1538
		dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU HW CTF!\n");
1539
		orderly_poweroff(true);
1540
	} else if (client_id == SOC15_IH_CLIENTID_MP1) {
1541
		if (src_id == 0xfe) {
1542 1543 1544 1545 1546
			/* ACK SMUToHost interrupt */
			data = RREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT_CTRL);
			data = REG_SET_FIELD(data, MP1_SMN_IH_SW_INT_CTRL, INT_ACK, 1);
			WREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT_CTRL, data);

1547 1548 1549 1550 1551 1552 1553 1554 1555
			switch (ctxid) {
			case 0x3:
				dev_dbg(adev->dev, "Switched to AC mode!\n");
				smu_v11_0_ack_ac_dc_interrupt(&adev->smu);
				break;
			case 0x4:
				dev_dbg(adev->dev, "Switched to DC mode!\n");
				smu_v11_0_ack_ac_dc_interrupt(&adev->smu);
				break;
1556
			case 0x7:
1557 1558 1559 1560
				if (!atomic_read(&adev->throttling_logging_enabled))
					return 0;

				if (__ratelimit(&adev->throttling_logging_rs))
1561
					schedule_work(&smu->throttling_logging_work);
1562 1563

				break;
1564 1565
			}
		}
1566 1567 1568 1569 1570 1571 1572
	}

	return 0;
}

static const struct amdgpu_irq_src_funcs smu_v11_0_irq_funcs =
{
1573
	.set = smu_v11_0_set_irq_state,
1574 1575 1576
	.process = smu_v11_0_irq_process,
};

1577
int smu_v11_0_register_irq_handler(struct smu_context *smu)
1578 1579
{
	struct amdgpu_device *adev = smu->adev;
1580
	struct amdgpu_irq_src *irq_src = &smu->irq_source;
1581 1582
	int ret = 0;

1583
	irq_src->num_types = 1;
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
	irq_src->funcs = &smu_v11_0_irq_funcs;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_L2H,
				irq_src);
	if (ret)
		return ret;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_H2L,
				irq_src);
	if (ret)
		return ret;

1598 1599 1600 1601 1602 1603 1604
	/* Register CTF(GPIO_19) interrupt */
	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_ROM_SMUIO,
				SMUIO_11_0__SRCID__SMUIO_GPIO19,
				irq_src);
	if (ret)
		return ret;

1605 1606 1607 1608 1609 1610
	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_MP1,
				0xfe,
				irq_src);
	if (ret)
		return ret;

1611 1612 1613
	return ret;
}

1614
int smu_v11_0_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
		struct pp_smu_nv_clock_table *max_clocks)
{
	struct smu_table_context *table_context = &smu->smu_table;
	struct smu_11_0_max_sustainable_clocks *sustainable_clocks = NULL;

	if (!max_clocks || !table_context->max_sustainable_clocks)
		return -EINVAL;

	sustainable_clocks = table_context->max_sustainable_clocks;

	max_clocks->dcfClockInKhz =
			(unsigned int) sustainable_clocks->dcef_clock * 1000;
	max_clocks->displayClockInKhz =
			(unsigned int) sustainable_clocks->display_clock * 1000;
	max_clocks->phyClockInKhz =
			(unsigned int) sustainable_clocks->phy_clock * 1000;
	max_clocks->pixelClockInKhz =
			(unsigned int) sustainable_clocks->pixel_clock * 1000;
	max_clocks->uClockInKhz =
			(unsigned int) sustainable_clocks->uclock * 1000;
	max_clocks->socClockInKhz =
			(unsigned int) sustainable_clocks->soc_clock * 1000;
	max_clocks->dscClockInKhz = 0;
	max_clocks->dppClockInKhz = 0;
	max_clocks->fabricClockInKhz = 0;

	return 0;
}

1644
int smu_v11_0_set_azalia_d3_pme(struct smu_context *smu)
1645 1646 1647
{
	int ret = 0;

1648
	ret = smu_send_smc_msg(smu, SMU_MSG_BacoAudioD3PME, NULL);
1649 1650 1651 1652

	return ret;
}

1653 1654
static int smu_v11_0_baco_set_armd3_sequence(struct smu_context *smu, enum smu_v11_0_baco_seq baco_seq)
{
1655
	return smu_send_smc_msg_with_param(smu, SMU_MSG_ArmD3, baco_seq, NULL);
1656 1657
}

1658
bool smu_v11_0_baco_is_support(struct smu_context *smu)
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
{
	struct smu_baco_context *smu_baco = &smu->smu_baco;
	bool baco_support;

	mutex_lock(&smu_baco->mutex);
	baco_support = smu_baco->platform_support;
	mutex_unlock(&smu_baco->mutex);

	if (!baco_support)
		return false;

1670 1671 1672
	/* Arcturus does not support this bit mask */
	if (smu_feature_is_supported(smu, SMU_FEATURE_BACO_BIT) &&
	   !smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT))
1673 1674
		return false;

1675
	return true;
1676 1677
}

1678
enum smu_baco_state smu_v11_0_baco_get_state(struct smu_context *smu)
1679 1680
{
	struct smu_baco_context *smu_baco = &smu->smu_baco;
1681
	enum smu_baco_state baco_state;
1682 1683 1684 1685 1686 1687 1688 1689

	mutex_lock(&smu_baco->mutex);
	baco_state = smu_baco->state;
	mutex_unlock(&smu_baco->mutex);

	return baco_state;
}

1690
int smu_v11_0_baco_set_state(struct smu_context *smu, enum smu_baco_state state)
1691 1692
{
	struct smu_baco_context *smu_baco = &smu->smu_baco;
1693 1694 1695
	struct amdgpu_device *adev = smu->adev;
	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
	uint32_t data;
1696 1697 1698 1699 1700 1701 1702
	int ret = 0;

	if (smu_v11_0_baco_get_state(smu) == state)
		return 0;

	mutex_lock(&smu_baco->mutex);

1703 1704 1705 1706 1707 1708
	if (state == SMU_BACO_STATE_ENTER) {
		if (!ras || !ras->supported) {
			data = RREG32_SOC15(THM, 0, mmTHM_BACO_CNTL);
			data |= 0x80000000;
			WREG32_SOC15(THM, 0, mmTHM_BACO_CNTL, data);

1709
			ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, 0, NULL);
1710
		} else {
1711
			ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, 1, NULL);
1712 1713
		}
	} else {
1714
		ret = smu_send_smc_msg(smu, SMU_MSG_ExitBaco, NULL);
1715 1716 1717
		if (ret)
			goto out;

1718 1719 1720 1721 1722 1723
		if (ras && ras->supported) {
			ret = smu_send_smc_msg(smu, SMU_MSG_PrepareMp1ForUnload, NULL);
			if (ret)
				goto out;
		}

1724 1725 1726
		/* clear vbios scratch 6 and 7 for coming asic reinit */
		WREG32(adev->bios_scratch_reg_offset + 6, 0);
		WREG32(adev->bios_scratch_reg_offset + 7, 0);
1727
	}
1728 1729 1730 1731 1732 1733 1734 1735 1736
	if (ret)
		goto out;

	smu_baco->state = state;
out:
	mutex_unlock(&smu_baco->mutex);
	return ret;
}

1737
int smu_v11_0_baco_enter(struct smu_context *smu)
1738
{
1739
	struct amdgpu_device *adev = smu->adev;
1740 1741
	int ret = 0;

1742 1743 1744 1745 1746 1747
	/* Arcturus does not need this audio workaround */
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_v11_0_baco_set_armd3_sequence(smu, BACO_SEQ_BACO);
		if (ret)
			return ret;
	}
1748 1749 1750 1751 1752 1753 1754

	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_ENTER);
	if (ret)
		return ret;

	msleep(10);

1755 1756 1757 1758 1759 1760 1761
	return ret;
}

int smu_v11_0_baco_exit(struct smu_context *smu)
{
	int ret = 0;

1762 1763 1764 1765 1766 1767 1768
	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_EXIT);
	if (ret)
		return ret;

	return ret;
}

1769
int smu_v11_0_get_dpm_ultimate_freq(struct smu_context *smu, enum smu_clk_type clk_type,
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
						 uint32_t *min, uint32_t *max)
{
	int ret = 0, clk_id = 0;
	uint32_t param = 0;

	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0) {
		ret = -EINVAL;
		goto failed;
	}
	param = (clk_id & 0xffff) << 16;

	if (max) {
1783
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq, param, max);
1784 1785 1786 1787 1788
		if (ret)
			goto failed;
	}

	if (min) {
1789
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMinDpmFreq, param, min);
1790 1791 1792 1793 1794 1795 1796 1797
		if (ret)
			goto failed;
	}

failed:
	return ret;
}

1798
int smu_v11_0_set_soft_freq_limited_range(struct smu_context *smu, enum smu_clk_type clk_type,
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
			    uint32_t min, uint32_t max)
{
	int ret = 0, clk_id = 0;
	uint32_t param;

	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	if (max > 0) {
		param = (uint32_t)((clk_id << 16) | (max & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxByFreq,
1811
						  param, NULL);
1812 1813 1814 1815 1816 1817 1818
		if (ret)
			return ret;
	}

	if (min > 0) {
		param = (uint32_t)((clk_id << 16) | (min & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMinByFreq,
1819
						  param, NULL);
1820 1821 1822 1823 1824 1825 1826
		if (ret)
			return ret;
	}

	return ret;
}

1827
int smu_v11_0_override_pcie_parameters(struct smu_context *smu)
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t pcie_gen = 0, pcie_width = 0;
	int ret;

	if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4)
		pcie_gen = 3;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
		pcie_gen = 2;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2)
		pcie_gen = 1;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1)
		pcie_gen = 0;

	/* Bit 31:16: LCLK DPM level. 0 is DPM0, and 1 is DPM1
	 * Bit 15:8:  PCIE GEN, 0 to 3 corresponds to GEN1 to GEN4
	 * Bit 7:0:   PCIE lane width, 1 to 7 corresponds is x1 to x32
	 */
	if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
		pcie_width = 6;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
		pcie_width = 5;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
		pcie_width = 4;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
		pcie_width = 3;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
		pcie_width = 2;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
		pcie_width = 1;

	ret = smu_update_pcie_parameters(smu, pcie_gen, pcie_width);

	if (ret)
1862
		dev_err(adev->dev, "[%s] Attempt to override pcie params failed!\n", __func__);
1863 1864 1865 1866

	return ret;

}
1867

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
int smu_v11_0_set_performance_level(struct smu_context *smu,
				    enum amd_dpm_forced_level level)
{
	int ret = 0;
	uint32_t sclk_mask, mclk_mask, soc_mask;

	switch (level) {
	case AMD_DPM_FORCED_LEVEL_HIGH:
		ret = smu_force_dpm_limit_value(smu, true);
		break;
	case AMD_DPM_FORCED_LEVEL_LOW:
		ret = smu_force_dpm_limit_value(smu, false);
		break;
	case AMD_DPM_FORCED_LEVEL_AUTO:
	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
		ret = smu_unforce_dpm_levels(smu);
		break;
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
		ret = smu_get_profiling_clk_mask(smu, level,
						 &sclk_mask,
						 &mclk_mask,
						 &soc_mask);
		if (ret)
			return ret;
		smu_force_clk_levels(smu, SMU_SCLK, 1 << sclk_mask, false);
		smu_force_clk_levels(smu, SMU_MCLK, 1 << mclk_mask, false);
		smu_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask, false);
		break;
	case AMD_DPM_FORCED_LEVEL_MANUAL:
	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
	default:
		break;
	}
	return ret;
}

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
int smu_v11_0_set_power_source(struct smu_context *smu,
			       enum smu_power_src_type power_src)
{
	int pwr_source;

	pwr_source = smu_power_get_index(smu, (uint32_t)power_src);
	if (pwr_source < 0)
		return -EINVAL;

	return smu_send_smc_msg_with_param(smu,
					SMU_MSG_NotifyPowerSource,
					pwr_source,
					NULL);
}