smu_v11_0.c 45.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/firmware.h>
24
#include <linux/module.h>
25
#include <linux/pci.h>
26 27

#include "pp_debug.h"
28 29
#include "amdgpu.h"
#include "amdgpu_smu.h"
30
#include "smu_internal.h"
31
#include "atomfirmware.h"
32
#include "amdgpu_atomfirmware.h"
33
#include "smu_v11_0.h"
34
#include "soc15_common.h"
35
#include "atom.h"
36
#include "amd_pcie.h"
37 38 39

#include "asic_reg/thm/thm_11_0_2_offset.h"
#include "asic_reg/thm/thm_11_0_2_sh_mask.h"
40 41
#include "asic_reg/mp/mp_11_0_offset.h"
#include "asic_reg/mp/mp_11_0_sh_mask.h"
42
#include "asic_reg/nbio/nbio_7_4_offset.h"
43
#include "asic_reg/nbio/nbio_7_4_sh_mask.h"
44 45
#include "asic_reg/smuio/smuio_11_0_0_offset.h"
#include "asic_reg/smuio/smuio_11_0_0_sh_mask.h"
46

47
MODULE_FIRMWARE("amdgpu/vega20_smc.bin");
48
MODULE_FIRMWARE("amdgpu/arcturus_smc.bin");
49
MODULE_FIRMWARE("amdgpu/navi10_smc.bin");
50
MODULE_FIRMWARE("amdgpu/navi14_smc.bin");
51
MODULE_FIRMWARE("amdgpu/navi12_smc.bin");
52

53
#define SMU11_VOLTAGE_SCALE 4
54

55 56 57 58 59 60 61 62
static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu,
					      uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_66, msg);
	return 0;
}

63
int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg)
64 65 66 67 68 69 70
{
	struct amdgpu_device *adev = smu->adev;

	*arg = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82);
	return 0;
}

71 72 73
static int smu_v11_0_wait_for_response(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
74
	uint32_t cur_value, i, timeout = adev->usec_timeout * 10;
75

76
	for (i = 0; i < timeout; i++) {
77 78 79 80 81 82 83
		cur_value = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90);
		if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0)
			break;
		udelay(1);
	}

	/* timeout means wrong logic */
84
	if (i == timeout)
85 86
		return -ETIME;

87
	return RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90) == 0x1 ? 0 : -EIO;
88 89
}

90
int smu_v11_0_send_msg(struct smu_context *smu, uint16_t msg)
91 92
{
	struct amdgpu_device *adev = smu->adev;
93 94 95 96 97
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
98 99 100 101 102

	smu_v11_0_wait_for_response(smu);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

103
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
104 105 106 107

	ret = smu_v11_0_wait_for_response(smu);

	if (ret)
108 109
		pr_err("failed send message: %10s (%d) response %#x\n",
		       smu_get_message_name(smu, msg), index, ret);
110 111 112 113 114

	return ret;

}

115
int
116 117 118 119 120
smu_v11_0_send_msg_with_param(struct smu_context *smu, uint16_t msg,
			      uint32_t param)
{

	struct amdgpu_device *adev = smu->adev;
121 122 123 124 125
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
126 127 128

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
129 130
		pr_err("failed send message: %10s (%d) \tparam: 0x%08x response %#x\n",
		       smu_get_message_name(smu, msg), index, param, ret);
131 132 133 134 135

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82, param);

136
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
137 138 139

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
140 141
		pr_err("failed send message: %10s (%d) \tparam: 0x%08x response %#x\n",
		       smu_get_message_name(smu, msg), index, param, ret);
142 143 144 145

	return ret;
}

146
int smu_v11_0_init_microcode(struct smu_context *smu)
147 148
{
	struct amdgpu_device *adev = smu->adev;
149 150 151 152 153 154
	const char *chip_name;
	char fw_name[30];
	int err = 0;
	const struct smc_firmware_header_v1_0 *hdr;
	const struct common_firmware_header *header;
	struct amdgpu_firmware_info *ucode = NULL;
155

156 157 158 159
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		chip_name = "vega20";
		break;
160 161 162
	case CHIP_ARCTURUS:
		chip_name = "arcturus";
		break;
163 164 165
	case CHIP_NAVI10:
		chip_name = "navi10";
		break;
166 167 168
	case CHIP_NAVI14:
		chip_name = "navi14";
		break;
169 170 171
	case CHIP_NAVI12:
		chip_name = "navi12";
		break;
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
	default:
		BUG();
	}

	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name);

	err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
	if (err)
		goto out;
	err = amdgpu_ucode_validate(adev->pm.fw);
	if (err)
		goto out;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	amdgpu_ucode_print_smc_hdr(&hdr->header);
	adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
		ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC];
		ucode->ucode_id = AMDGPU_UCODE_ID_SMC;
		ucode->fw = adev->pm.fw;
		header = (const struct common_firmware_header *)ucode->fw->data;
		adev->firmware.fw_size +=
			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
	}

out:
	if (err) {
		DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n",
			  fw_name);
		release_firmware(adev->pm.fw);
		adev->pm.fw = NULL;
	}
	return err;
206 207
}

208
int smu_v11_0_load_microcode(struct smu_context *smu)
209
{
210 211 212 213 214 215 216
	struct amdgpu_device *adev = smu->adev;
	const uint32_t *src;
	const struct smc_firmware_header_v1_0 *hdr;
	uint32_t addr_start = MP1_SRAM;
	uint32_t i;
	uint32_t mp1_fw_flags;

217
	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
	src = (const uint32_t *)(adev->pm.fw->data +
		le32_to_cpu(hdr->header.ucode_array_offset_bytes));

	for (i = 1; i < MP1_SMC_SIZE/4 - 1; i++) {
		WREG32_PCIE(addr_start, src[i]);
		addr_start += 4;
	}

	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & MP1_SMN_PUB_CTRL__RESET_MASK);
	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & ~MP1_SMN_PUB_CTRL__RESET_MASK);

	for (i = 0; i < adev->usec_timeout; i++) {
		mp1_fw_flags = RREG32_PCIE(MP1_Public |
			(smnMP1_FIRMWARE_FLAGS & 0xffffffff));
		if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
			MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
			break;
		udelay(1);
	}

	if (i == adev->usec_timeout)
		return -ETIME;

243 244 245
	return 0;
}

246
int smu_v11_0_check_fw_status(struct smu_context *smu)
247
{
248 249 250
	struct amdgpu_device *adev = smu->adev;
	uint32_t mp1_fw_flags;

251 252
	mp1_fw_flags = RREG32_PCIE(MP1_Public |
				   (smnMP1_FIRMWARE_FLAGS & 0xffffffff));
253 254 255 256

	if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
	    MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
		return 0;
257

258
	return -EIO;
259 260
}

261
int smu_v11_0_check_fw_version(struct smu_context *smu)
262
{
263 264 265
	uint32_t if_version = 0xff, smu_version = 0xff;
	uint16_t smu_major;
	uint8_t smu_minor, smu_debug;
266 267
	int ret = 0;

268
	ret = smu_get_smc_version(smu, &if_version, &smu_version);
269
	if (ret)
270
		return ret;
271

272 273 274 275
	smu_major = (smu_version >> 16) & 0xffff;
	smu_minor = (smu_version >> 8) & 0xff;
	smu_debug = (smu_version >> 0) & 0xff;

276 277 278 279
	switch (smu->adev->asic_type) {
	case CHIP_VEGA20:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_VG20;
		break;
280 281 282
	case CHIP_ARCTURUS:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_ARCT;
		break;
283 284 285 286 287 288 289
	case CHIP_NAVI10:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_NV10;
		break;
	case CHIP_NAVI14:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_NV14;
		break;
	default:
290
		pr_err("smu unsupported asic type:%d.\n", smu->adev->asic_type);
291 292 293 294
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_INV;
		break;
	}

295 296 297 298 299 300 301 302
	/*
	 * 1. if_version mismatch is not critical as our fw is designed
	 * to be backward compatible.
	 * 2. New fw usually brings some optimizations. But that's visible
	 * only on the paired driver.
	 * Considering above, we just leave user a warning message instead
	 * of halt driver loading.
	 */
303
	if (if_version != smu->smc_if_version) {
304 305 306 307
		pr_info("smu driver if version = 0x%08x, smu fw if version = 0x%08x, "
			"smu fw version = 0x%08x (%d.%d.%d)\n",
			smu->smc_if_version, if_version,
			smu_version, smu_major, smu_minor, smu_debug);
308
		pr_warn("SMU driver if version not matched\n");
309 310
	}

311 312 313
	return ret;
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
static int smu_v11_0_set_pptable_v2_0(struct smu_context *smu, void **table, uint32_t *size)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t ppt_offset_bytes;
	const struct smc_firmware_header_v2_0 *v2;

	v2 = (const struct smc_firmware_header_v2_0 *) adev->pm.fw->data;

	ppt_offset_bytes = le32_to_cpu(v2->ppt_offset_bytes);
	*size = le32_to_cpu(v2->ppt_size_bytes);
	*table = (uint8_t *)v2 + ppt_offset_bytes;

	return 0;
}

329 330
static int smu_v11_0_set_pptable_v2_1(struct smu_context *smu, void **table,
				      uint32_t *size, uint32_t pptable_id)
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
{
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v2_1 *v2_1;
	struct smc_soft_pptable_entry *entries;
	uint32_t pptable_count = 0;
	int i = 0;

	v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data;
	entries = (struct smc_soft_pptable_entry *)
		((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset));
	pptable_count = le32_to_cpu(v2_1->pptable_count);
	for (i = 0; i < pptable_count; i++) {
		if (le32_to_cpu(entries[i].id) == pptable_id) {
			*table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes));
			*size = le32_to_cpu(entries[i].ppt_size_bytes);
			break;
		}
	}

	if (i == pptable_count)
		return -EINVAL;

	return 0;
}

356
int smu_v11_0_setup_pptable(struct smu_context *smu)
357
{
358 359
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v1_0 *hdr;
360
	int ret, index;
361
	uint32_t size = 0;
362
	uint16_t atom_table_size;
363
	uint8_t frev, crev;
364
	void *table;
365 366 367 368 369 370
	uint16_t version_major, version_minor;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	version_major = le16_to_cpu(hdr->header.header_version_major);
	version_minor = le16_to_cpu(hdr->header.header_version_minor);
	if (version_major == 2 && smu->smu_table.boot_values.pp_table_id > 0) {
371
		pr_info("use driver provided pptable %d\n", smu->smu_table.boot_values.pp_table_id);
372 373 374 375 376 377 378 379 380 381 382 383 384 385
		switch (version_minor) {
		case 0:
			ret = smu_v11_0_set_pptable_v2_0(smu, &table, &size);
			break;
		case 1:
			ret = smu_v11_0_set_pptable_v2_1(smu, &table, &size,
							 smu->smu_table.boot_values.pp_table_id);
			break;
		default:
			ret = -EINVAL;
			break;
		}
		if (ret)
			return ret;
386

387
	} else {
388
		pr_info("use vbios provided pptable\n");
389 390
		index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
						    powerplayinfo);
391

392
		ret = smu_get_atom_data_table(smu, index, &atom_table_size, &frev, &crev,
393 394 395
					      (uint8_t **)&table);
		if (ret)
			return ret;
396
		size = atom_table_size;
397
	}
398

399 400 401 402
	if (!smu->smu_table.power_play_table)
		smu->smu_table.power_play_table = table;
	if (!smu->smu_table.power_play_table_size)
		smu->smu_table.power_play_table_size = size;
403 404 405 406

	return 0;
}

407 408 409 410 411 412 413
static int smu_v11_0_init_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0)
		return -EINVAL;

414
	return smu_alloc_dpm_context(smu);
415 416 417 418 419 420 421 422 423 424
}

static int smu_v11_0_fini_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0)
		return -EINVAL;

	kfree(smu_dpm->dpm_context);
425
	kfree(smu_dpm->golden_dpm_context);
426 427
	kfree(smu_dpm->dpm_current_power_state);
	kfree(smu_dpm->dpm_request_power_state);
428
	smu_dpm->dpm_context = NULL;
429
	smu_dpm->golden_dpm_context = NULL;
430
	smu_dpm->dpm_context_size = 0;
431 432
	smu_dpm->dpm_current_power_state = NULL;
	smu_dpm->dpm_request_power_state = NULL;
433 434 435 436

	return 0;
}

437
int smu_v11_0_init_smc_tables(struct smu_context *smu)
438 439 440
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = NULL;
441
	int ret = 0;
442

443
	if (smu_table->tables)
444 445
		return -EINVAL;

446 447
	tables = kcalloc(SMU_TABLE_COUNT, sizeof(struct smu_table),
			 GFP_KERNEL);
448 449 450 451 452
	if (!tables)
		return -ENOMEM;

	smu_table->tables = tables;

453 454 455
	ret = smu_tables_init(smu, tables);
	if (ret)
		return ret;
456

457 458 459 460
	ret = smu_v11_0_init_dpm_context(smu);
	if (ret)
		return ret;

461 462 463
	return 0;
}

464
int smu_v11_0_fini_smc_tables(struct smu_context *smu)
465 466
{
	struct smu_table_context *smu_table = &smu->smu_table;
467
	int ret = 0;
468

469
	if (!smu_table->tables)
470 471 472
		return -EINVAL;

	kfree(smu_table->tables);
473
	kfree(smu_table->metrics_table);
474
	smu_table->tables = NULL;
475 476
	smu_table->metrics_table = NULL;
	smu_table->metrics_time = 0;
477

478 479 480
	ret = smu_v11_0_fini_dpm_context(smu);
	if (ret)
		return ret;
481 482
	return 0;
}
483

484
int smu_v11_0_init_power(struct smu_context *smu)
485 486 487
{
	struct smu_power_context *smu_power = &smu->smu_power;

488 489
	if (!smu->pm_enabled)
		return 0;
490 491 492 493 494 495 496 497 498 499 500 501
	if (smu_power->power_context || smu_power->power_context_size != 0)
		return -EINVAL;

	smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
					   GFP_KERNEL);
	if (!smu_power->power_context)
		return -ENOMEM;
	smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context);

	return 0;
}

502
int smu_v11_0_fini_power(struct smu_context *smu)
503 504 505
{
	struct smu_power_context *smu_power = &smu->smu_power;

506 507
	if (!smu->pm_enabled)
		return 0;
508 509 510 511 512 513 514 515 516 517
	if (!smu_power->power_context || smu_power->power_context_size == 0)
		return -EINVAL;

	kfree(smu_power->power_context);
	smu_power->power_context = NULL;
	smu_power->power_context_size = 0;

	return 0;
}

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu)
{
	int ret, index;
	uint16_t size;
	uint8_t frev, crev;
	struct atom_common_table_header *header;
	struct atom_firmware_info_v3_3 *v_3_3;
	struct atom_firmware_info_v3_1 *v_3_1;

	index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
					    firmwareinfo);

	ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev,
				      (uint8_t **)&header);
	if (ret)
		return ret;

	if (header->format_revision != 3) {
		pr_err("unknown atom_firmware_info version! for smu11\n");
		return -EINVAL;
	}

	switch (header->content_revision) {
	case 0:
	case 1:
	case 2:
		v_3_1 = (struct atom_firmware_info_v3_1 *)header;
		smu->smu_table.boot_values.revision = v_3_1->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = 0;
		break;
	case 3:
	default:
		v_3_3 = (struct atom_firmware_info_v3_3 *)header;
		smu->smu_table.boot_values.revision = v_3_3->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id;
	}

573 574 575
	smu->smu_table.boot_values.format_revision = header->format_revision;
	smu->smu_table.boot_values.content_revision = header->content_revision;

576 577 578
	return 0;
}

579
int smu_v11_0_get_clk_info_from_vbios(struct smu_context *smu)
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
{
	int ret, index;
	struct amdgpu_device *adev = smu->adev;
	struct atom_get_smu_clock_info_parameters_v3_1 input = {0};
	struct atom_get_smu_clock_info_output_parameters_v3_1 *output;

	input.clk_id = SMU11_SYSPLL0_SOCCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.socclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCEFCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dcefclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_ECLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.eclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_VCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.vclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
	if ((smu->smu_table.boot_values.format_revision == 3) &&
	    (smu->smu_table.boot_values.content_revision >= 2)) {
		memset(&input, 0, sizeof(input));
		input.clk_id = SMU11_SYSPLL1_0_FCLK_ID;
		input.syspll_id = SMU11_SYSPLL1_2_ID;
		input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
		index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
						    getsmuclockinfo);

		ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
						(uint32_t *)&input);
		if (ret)
			return -EINVAL;

		output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
		smu->smu_table.boot_values.fclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;
	}

673 674 675
	return 0;
}

676
int smu_v11_0_notify_memory_pool_location(struct smu_context *smu)
677 678 679 680 681 682 683 684 685 686
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	int ret = 0;
	uint64_t address;
	uint32_t address_low, address_high;

	if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL)
		return ret;

687
	address = (uintptr_t)memory_pool->cpu_addr;
688 689 690 691
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

	ret = smu_send_smc_msg_with_param(smu,
692
					  SMU_MSG_SetSystemVirtualDramAddrHigh,
693 694 695 696
					  address_high);
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu,
697
					  SMU_MSG_SetSystemVirtualDramAddrLow,
698 699 700 701 702 703 704 705
					  address_low);
	if (ret)
		return ret;

	address = memory_pool->mc_address;
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

706
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh,
707 708 709
					  address_high);
	if (ret)
		return ret;
710
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow,
711 712 713
					  address_low);
	if (ret)
		return ret;
714
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize,
715 716 717 718 719 720 721
					  (uint32_t)memory_pool->size);
	if (ret)
		return ret;

	return ret;
}

722
int smu_v11_0_check_pptable(struct smu_context *smu)
723 724 725 726 727 728 729
{
	int ret;

	ret = smu_check_powerplay_table(smu);
	return ret;
}

730
int smu_v11_0_parse_pptable(struct smu_context *smu)
731 732 733 734
{
	int ret;

	struct smu_table_context *table_context = &smu->smu_table;
735
	struct smu_table *table = &table_context->tables[SMU_TABLE_PPTABLE];
736 737 738 739

	if (table_context->driver_pptable)
		return -EINVAL;

740
	table_context->driver_pptable = kzalloc(table->size, GFP_KERNEL);
741 742 743 744 745

	if (!table_context->driver_pptable)
		return -ENOMEM;

	ret = smu_store_powerplay_table(smu);
746 747 748 749
	if (ret)
		return -EINVAL;

	ret = smu_append_powerplay_table(smu);
750 751 752 753

	return ret;
}

754
int smu_v11_0_populate_smc_pptable(struct smu_context *smu)
755
{
756
	int ret;
757

758
	ret = smu_set_default_dpm_table(smu);
759

760
	return ret;
761 762
}

763
int smu_v11_0_write_pptable(struct smu_context *smu)
764
{
765
	struct smu_table_context *table_context = &smu->smu_table;
766 767
	int ret = 0;

768
	ret = smu_update_table(smu, SMU_TABLE_PPTABLE, 0,
769
			       table_context->driver_pptable, true);
770 771 772 773

	return ret;
}

774
int smu_v11_0_set_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk)
775 776 777 778 779 780 781 782 783 784 785
{
	int ret;

	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetMinDeepSleepDcefclk, clk);
	if (ret)
		pr_err("SMU11 attempt to set divider for DCEFCLK Failed!");

	return ret;
}

786
int smu_v11_0_set_min_dcef_deep_sleep(struct smu_context *smu)
787 788 789
{
	struct smu_table_context *table_context = &smu->smu_table;

790 791
	if (!smu->pm_enabled)
		return 0;
792 793 794
	if (!table_context)
		return -EINVAL;

795
	return smu_v11_0_set_deep_sleep_dcefclk(smu, table_context->boot_values.dcefclk / 100);
796 797
}

798
int smu_v11_0_set_tool_table_location(struct smu_context *smu)
799 800
{
	int ret = 0;
801
	struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG];
802 803 804

	if (tool_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
805
				SMU_MSG_SetToolsDramAddrHigh,
806 807 808
				upper_32_bits(tool_table->mc_address));
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
809
				SMU_MSG_SetToolsDramAddrLow,
810 811 812 813 814 815
				lower_32_bits(tool_table->mc_address));
	}

	return ret;
}

816
int smu_v11_0_init_display_count(struct smu_context *smu, uint32_t count)
817 818
{
	int ret = 0;
819 820 821

	if (!smu->pm_enabled)
		return ret;
822

823
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, count);
824 825 826
	return ret;
}

827

828
int smu_v11_0_set_allowed_mask(struct smu_context *smu)
829 830 831 832 833
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
	uint32_t feature_mask[2];

834
	mutex_lock(&feature->mutex);
835
	if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64)
836
		goto failed;
837 838 839 840 841 842

	bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64);

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh,
					  feature_mask[1]);
	if (ret)
843
		goto failed;
844 845 846 847

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow,
					  feature_mask[0]);
	if (ret)
848
		goto failed;
849

850 851
failed:
	mutex_unlock(&feature->mutex);
852 853 854
	return ret;
}

855
int smu_v11_0_get_enabled_mask(struct smu_context *smu,
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
				      uint32_t *feature_mask, uint32_t num)
{
	uint32_t feature_mask_high = 0, feature_mask_low = 0;
	int ret = 0;

	if (!feature_mask || num < 2)
		return -EINVAL;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_high);
	if (ret)
		return ret;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_low);
	if (ret)
		return ret;

	feature_mask[0] = feature_mask_low;
	feature_mask[1] = feature_mask_high;

	return ret;
}

884
int smu_v11_0_system_features_control(struct smu_context *smu,
885
					     bool en)
886 887 888 889 890
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_mask[2];
	int ret = 0;

891 892 893 894 895 896 897
	if (smu->pm_enabled) {
		ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures :
					     SMU_MSG_DisableAllSmuFeatures));
		if (ret)
			return ret;
	}

898 899 900 901 902 903 904 905 906 907 908 909
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
		return ret;

	bitmap_copy(feature->enabled, (unsigned long *)&feature_mask,
		    feature->feature_num);
	bitmap_copy(feature->supported, (unsigned long *)&feature_mask,
		    feature->feature_num);

	return ret;
}

910
int smu_v11_0_notify_display_change(struct smu_context *smu)
911 912 913
{
	int ret = 0;

914 915
	if (!smu->pm_enabled)
		return ret;
916 917 918
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
	    smu->adev->gmc.vram_type == AMDGPU_VRAM_TYPE_HBM)
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1);
919 920 921 922

	return ret;
}

923 924
static int
smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock,
925
				    enum smu_clk_type clock_select)
926 927
{
	int ret = 0;
928
	int clk_id;
929

930 931
	if (!smu->pm_enabled)
		return ret;
932

933 934 935 936
	if ((smu_msg_get_index(smu, SMU_MSG_GetDcModeMaxDpmFreq) < 0) ||
	    (smu_msg_get_index(smu, SMU_MSG_GetMaxDpmFreq) < 0))
		return 0;

937 938 939 940
	clk_id = smu_clk_get_index(smu, clock_select);
	if (clk_id < 0)
		return -EINVAL;

941
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq,
942
					  clk_id << 16);
943 944 945 946 947 948 949 950 951 952 953 954 955 956
	if (ret) {
		pr_err("[GetMaxSustainableClock] Failed to get max DC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);
	if (ret)
		return ret;

	if (*clock != 0)
		return 0;

	/* if DC limit is zero, return AC limit */
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
957
					  clk_id << 16);
958 959 960 961 962 963 964 965 966 967
	if (ret) {
		pr_err("[GetMaxSustainableClock] failed to get max AC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);

	return ret;
}

968
int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu)
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
{
	struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks;
	int ret = 0;

	max_sustainable_clocks = kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks),
					 GFP_KERNEL);
	smu->smu_table.max_sustainable_clocks = (void *)max_sustainable_clocks;

	max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100;
	max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100;
	max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100;
	max_sustainable_clocks->display_clock = 0xFFFFFFFF;
	max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
	max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;

984
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
985 986
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->uclock),
987
							  SMU_UCLK);
988 989 990 991 992 993 994
		if (ret) {
			pr_err("[%s] failed to get max UCLK from SMC!",
			       __func__);
			return ret;
		}
	}

995
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
996 997
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->soc_clock),
998
							  SMU_SOCCLK);
999 1000 1001 1002 1003 1004 1005
		if (ret) {
			pr_err("[%s] failed to get max SOCCLK from SMC!",
			       __func__);
			return ret;
		}
	}

1006
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
1007 1008
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->dcef_clock),
1009
							  SMU_DCEFCLK);
1010 1011 1012 1013 1014 1015 1016 1017
		if (ret) {
			pr_err("[%s] failed to get max DCEFCLK from SMC!",
			       __func__);
			return ret;
		}

		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->display_clock),
1018
							  SMU_DISPCLK);
1019 1020 1021 1022 1023 1024 1025
		if (ret) {
			pr_err("[%s] failed to get max DISPCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->phy_clock),
1026
							  SMU_PHYCLK);
1027 1028 1029 1030 1031 1032 1033
		if (ret) {
			pr_err("[%s] failed to get max PHYCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->pixel_clock),
1034
							  SMU_PIXCLK);
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		if (ret) {
			pr_err("[%s] failed to get max PIXCLK from SMC!",
			       __func__);
			return ret;
		}
	}

	if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
		max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;

	return 0;
}

1048
int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n)
1049
{
1050
	int ret = 0;
1051

1052 1053 1054
	if (n > smu->default_power_limit) {
		pr_err("New power limit is over the max allowed %d\n",
				smu->default_power_limit);
1055
		return -EINVAL;
1056 1057
	}

1058 1059 1060
	if (n == 0)
		n = smu->default_power_limit;

1061 1062 1063
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) {
		pr_err("Setting new power limit is not supported!\n");
		return -EOPNOTSUPP;
1064 1065
	}

1066
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n);
1067
	if (ret) {
1068
		pr_err("[%s] Set power limit Failed!\n", __func__);
1069 1070
		return ret;
	}
1071
	smu->power_limit = n;
1072

1073
	return 0;
1074 1075
}

1076
int smu_v11_0_get_current_clk_freq(struct smu_context *smu,
1077 1078
					  enum smu_clk_type clk_id,
					  uint32_t *value)
1079 1080
{
	int ret = 0;
1081
	uint32_t freq = 0;
1082
	int asic_clk_id;
1083

1084
	if (clk_id >= SMU_CLK_COUNT || !value)
1085 1086
		return -EINVAL;

1087 1088 1089 1090
	asic_clk_id = smu_clk_get_index(smu, clk_id);
	if (asic_clk_id < 0)
		return -EINVAL;

1091
	/* if don't has GetDpmClockFreq Message, try get current clock by SmuMetrics_t */
1092
	if (smu_msg_get_index(smu, SMU_MSG_GetDpmClockFreq) < 0)
1093 1094 1095
		ret =  smu_get_current_clk_freq_by_table(smu, clk_id, &freq);
	else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmClockFreq,
1096
						  (asic_clk_id << 16));
1097 1098
		if (ret)
			return ret;
1099

1100 1101 1102 1103
		ret = smu_read_smc_arg(smu, &freq);
		if (ret)
			return ret;
	}
1104 1105 1106 1107 1108 1109 1110

	freq *= 100;
	*value = freq;

	return ret;
}

1111
static int smu_v11_0_set_thermal_range(struct smu_context *smu,
1112
				       struct smu_temperature_range range)
1113 1114
{
	struct amdgpu_device *adev = smu->adev;
1115 1116
	int low = SMU_THERMAL_MINIMUM_ALERT_TEMP;
	int high = SMU_THERMAL_MAXIMUM_ALERT_TEMP;
1117 1118
	uint32_t val;

1119 1120 1121 1122
	low = max(SMU_THERMAL_MINIMUM_ALERT_TEMP,
			range.min / SMU_TEMPERATURE_UNITS_PER_CENTIGRADES);
	high = min(SMU_THERMAL_MAXIMUM_ALERT_TEMP,
			range.max / SMU_TEMPERATURE_UNITS_PER_CENTIGRADES);
1123

1124 1125 1126 1127 1128 1129
	if (low > high)
		return -EINVAL;

	val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1);
1130 1131
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 0);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 0);
1132 1133
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high & 0xff));
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low & 0xff));
1134 1135 1136 1137 1138 1139 1140
	val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);

	return 0;
}

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
static int smu_v11_0_enable_thermal_alert(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t val = 0;

	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val);

	return 0;
}

1155
int smu_v11_0_start_thermal_control(struct smu_context *smu)
1156 1157
{
	int ret = 0;
1158
	struct smu_temperature_range range;
1159 1160
	struct amdgpu_device *adev = smu->adev;

1161 1162
	if (!smu->pm_enabled)
		return ret;
1163

1164 1165
	memcpy(&range, &smu11_thermal_policy[0], sizeof(struct smu_temperature_range));

1166
	ret = smu_get_thermal_temperature_range(smu, &range);
1167 1168
	if (ret)
		return ret;
1169 1170

	if (smu->smu_table.thermal_controller_type) {
1171
		ret = smu_v11_0_set_thermal_range(smu, range);
1172 1173 1174 1175 1176 1177
		if (ret)
			return ret;

		ret = smu_v11_0_enable_thermal_alert(smu);
		if (ret)
			return ret;
1178

1179
		ret = smu_set_thermal_fan_table(smu);
1180 1181 1182 1183
		if (ret)
			return ret;
	}

1184 1185 1186 1187 1188 1189 1190 1191 1192
	adev->pm.dpm.thermal.min_temp = range.min;
	adev->pm.dpm.thermal.max_temp = range.max;
	adev->pm.dpm.thermal.max_edge_emergency_temp = range.edge_emergency_max;
	adev->pm.dpm.thermal.min_hotspot_temp = range.hotspot_min;
	adev->pm.dpm.thermal.max_hotspot_crit_temp = range.hotspot_crit_max;
	adev->pm.dpm.thermal.max_hotspot_emergency_temp = range.hotspot_emergency_max;
	adev->pm.dpm.thermal.min_mem_temp = range.mem_min;
	adev->pm.dpm.thermal.max_mem_crit_temp = range.mem_crit_max;
	adev->pm.dpm.thermal.max_mem_emergency_temp = range.mem_emergency_max;
1193 1194 1195 1196

	return ret;
}

1197
int smu_v11_0_stop_thermal_control(struct smu_context *smu)
1198 1199 1200 1201 1202 1203 1204 1205
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, 0);

	return 0;
}

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
static uint16_t convert_to_vddc(uint8_t vid)
{
	return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE);
}

static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t vdd = 0, val_vid = 0;

	if (!value)
		return -EINVAL;
	val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) &
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >>
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT;

	vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid);

	*value = vdd;

	return 0;

}

1230
int smu_v11_0_read_sensor(struct smu_context *smu,
1231 1232 1233 1234
				 enum amd_pp_sensors sensor,
				 void *data, uint32_t *size)
{
	int ret = 0;
1235 1236 1237 1238

	if(!data || !size)
		return -EINVAL;

1239
	switch (sensor) {
1240
	case AMDGPU_PP_SENSOR_GFX_MCLK:
1241
		ret = smu_get_current_clk_freq(smu, SMU_UCLK, (uint32_t *)data);
1242 1243 1244
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_SCLK:
1245
		ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, (uint32_t *)data);
1246
		*size = 4;
1247
		break;
1248 1249 1250
	case AMDGPU_PP_SENSOR_VDDGFX:
		ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
		*size = 4;
1251
		break;
1252 1253 1254 1255
	case AMDGPU_PP_SENSOR_MIN_FAN_RPM:
		*(uint32_t *)data = 0;
		*size = 4;
		break;
1256
	default:
1257
		ret = smu_common_read_sensor(smu, sensor, data, size);
1258 1259 1260 1261 1262 1263 1264 1265 1266
		break;
	}

	if (ret)
		*size = 0;

	return ret;
}

1267
int
1268 1269 1270 1271 1272 1273
smu_v11_0_display_clock_voltage_request(struct smu_context *smu,
					struct pp_display_clock_request
					*clock_req)
{
	enum amd_pp_clock_type clk_type = clock_req->clock_type;
	int ret = 0;
1274
	enum smu_clk_type clk_select = 0;
1275 1276
	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;

1277 1278
	if (!smu->pm_enabled)
		return -EINVAL;
1279

1280
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) ||
1281
		smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1282 1283
		switch (clk_type) {
		case amd_pp_dcef_clock:
1284
			clk_select = SMU_DCEFCLK;
1285 1286
			break;
		case amd_pp_disp_clock:
1287
			clk_select = SMU_DISPCLK;
1288 1289
			break;
		case amd_pp_pixel_clock:
1290
			clk_select = SMU_PIXCLK;
1291 1292
			break;
		case amd_pp_phy_clock:
1293
			clk_select = SMU_PHYCLK;
1294
			break;
1295 1296 1297
		case amd_pp_mem_clock:
			clk_select = SMU_UCLK;
			break;
1298 1299 1300 1301 1302 1303 1304 1305 1306
		default:
			pr_info("[%s] Invalid Clock Type!", __func__);
			ret = -EINVAL;
			break;
		}

		if (ret)
			goto failed;

1307 1308 1309
		if (clk_select == SMU_UCLK && smu->disable_uclk_switch)
			return 0;

1310
		ret = smu_set_hard_freq_range(smu, clk_select, clk_freq, 0);
1311 1312 1313

		if(clk_select == SMU_UCLK)
			smu->hard_min_uclk_req_from_dal = clk_freq;
1314 1315 1316 1317 1318 1319
	}

failed:
	return ret;
}

1320
int smu_v11_0_gfx_off_control(struct smu_context *smu, bool enable)
1321 1322
{
	int ret = 0;
1323
	struct amdgpu_device *adev = smu->adev;
1324

1325 1326 1327 1328
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		break;
	case CHIP_NAVI10:
1329
	case CHIP_NAVI14:
1330
	case CHIP_NAVI12:
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
		if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
			return 0;
		if (enable)
			ret = smu_send_smc_msg(smu, SMU_MSG_AllowGfxOff);
		else
			ret = smu_send_smc_msg(smu, SMU_MSG_DisallowGfxOff);
		break;
	default:
		break;
	}
1341 1342 1343 1344

	return ret;
}

1345
uint32_t
1346 1347
smu_v11_0_get_fan_control_mode(struct smu_context *smu)
{
1348
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1349 1350 1351 1352 1353 1354
		return AMD_FAN_CTRL_MANUAL;
	else
		return AMD_FAN_CTRL_AUTO;
}

static int
1355
smu_v11_0_auto_fan_control(struct smu_context *smu, bool auto_fan_control)
1356 1357 1358
{
	int ret = 0;

1359
	if (!smu_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1360 1361
		return 0;

1362
	ret = smu_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, auto_fan_control);
1363 1364
	if (ret)
		pr_err("[%s]%s smc FAN CONTROL feature failed!",
1365
		       __func__, (auto_fan_control ? "Start" : "Stop"));
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384

	return ret;
}

static int
smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode)
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, TMIN, 0));
	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, FDO_PWM_MODE, mode));

	return 0;
}

1385
int
1386 1387 1388
smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
1389
	uint32_t duty100, duty;
1390 1391 1392 1393 1394
	uint64_t tmp64;

	if (speed > 100)
		speed = 100;

1395
	if (smu_v11_0_auto_fan_control(smu, 0))
1396
		return -EINVAL;
1397

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1),
				CG_FDO_CTRL1, FMAX_DUTY100);
	if (!duty100)
		return -EINVAL;

	tmp64 = (uint64_t)speed * duty100;
	do_div(tmp64, 100);
	duty = (uint32_t)tmp64;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0),
				   CG_FDO_CTRL0, FDO_STATIC_DUTY, duty));

	return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC);
}

1414
int
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
smu_v11_0_set_fan_control_mode(struct smu_context *smu,
			       uint32_t mode)
{
	int ret = 0;

	switch (mode) {
	case AMD_FAN_CTRL_NONE:
		ret = smu_v11_0_set_fan_speed_percent(smu, 100);
		break;
	case AMD_FAN_CTRL_MANUAL:
1425
		ret = smu_v11_0_auto_fan_control(smu, 0);
1426 1427
		break;
	case AMD_FAN_CTRL_AUTO:
1428
		ret = smu_v11_0_auto_fan_control(smu, 1);
1429 1430 1431 1432 1433 1434
		break;
	default:
		break;
	}

	if (ret) {
1435
		pr_err("[%s]Set fan control mode failed!", __func__);
1436 1437 1438 1439 1440 1441
		return -EINVAL;
	}

	return ret;
}

1442
int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu,
1443 1444 1445 1446 1447 1448 1449 1450 1451
				       uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	int ret;
	uint32_t tach_period, crystal_clock_freq;

	if (!speed)
		return -EINVAL;

1452
	ret = smu_v11_0_auto_fan_control(smu, 0);
1453
	if (ret)
1454
		return ret;
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467

	crystal_clock_freq = amdgpu_asic_get_xclk(adev);
	tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed);
	WREG32_SOC15(THM, 0, mmCG_TACH_CTRL,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL),
				   CG_TACH_CTRL, TARGET_PERIOD,
				   tach_period));

	ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM);

	return ret;
}

1468
int smu_v11_0_set_xgmi_pstate(struct smu_context *smu,
1469 1470
				     uint32_t pstate)
{
1471 1472 1473
	int ret = 0;
	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetXgmiMode,
1474
					  pstate ? XGMI_MODE_PSTATE_D0 : XGMI_MODE_PSTATE_D3);
1475
	return ret;
1476 1477
}

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
#define THM_11_0__SRCID__THM_DIG_THERM_L2H		0		/* ASIC_TEMP > CG_THERMAL_INT.DIG_THERM_INTH  */
#define THM_11_0__SRCID__THM_DIG_THERM_H2L		1		/* ASIC_TEMP < CG_THERMAL_INT.DIG_THERM_INTL  */

static int smu_v11_0_irq_process(struct amdgpu_device *adev,
				 struct amdgpu_irq_src *source,
				 struct amdgpu_iv_entry *entry)
{
	uint32_t client_id = entry->client_id;
	uint32_t src_id = entry->src_id;

	if (client_id == SOC15_IH_CLIENTID_THM) {
		switch (src_id) {
		case THM_11_0__SRCID__THM_DIG_THERM_L2H:
			pr_warn("GPU over temperature range detected on PCIe %d:%d.%d!\n",
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;
		case THM_11_0__SRCID__THM_DIG_THERM_H2L:
			pr_warn("GPU under temperature range detected on PCIe %d:%d.%d!\n",
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;
		default:
			pr_warn("GPU under temperature range unknown src id (%d), detected on PCIe %d:%d.%d!\n",
				src_id,
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;

		}
	}

	return 0;
}

static const struct amdgpu_irq_src_funcs smu_v11_0_irq_funcs =
{
	.process = smu_v11_0_irq_process,
};

1521
int smu_v11_0_register_irq_handler(struct smu_context *smu)
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
{
	struct amdgpu_device *adev = smu->adev;
	struct amdgpu_irq_src *irq_src = smu->irq_source;
	int ret = 0;

	/* already register */
	if (irq_src)
		return 0;

	irq_src = kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
	if (!irq_src)
		return -ENOMEM;
	smu->irq_source = irq_src;

	irq_src->funcs = &smu_v11_0_irq_funcs;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_L2H,
				irq_src);
	if (ret)
		return ret;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_H2L,
				irq_src);
	if (ret)
		return ret;

	return ret;
}

1553
int smu_v11_0_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
		struct pp_smu_nv_clock_table *max_clocks)
{
	struct smu_table_context *table_context = &smu->smu_table;
	struct smu_11_0_max_sustainable_clocks *sustainable_clocks = NULL;

	if (!max_clocks || !table_context->max_sustainable_clocks)
		return -EINVAL;

	sustainable_clocks = table_context->max_sustainable_clocks;

	max_clocks->dcfClockInKhz =
			(unsigned int) sustainable_clocks->dcef_clock * 1000;
	max_clocks->displayClockInKhz =
			(unsigned int) sustainable_clocks->display_clock * 1000;
	max_clocks->phyClockInKhz =
			(unsigned int) sustainable_clocks->phy_clock * 1000;
	max_clocks->pixelClockInKhz =
			(unsigned int) sustainable_clocks->pixel_clock * 1000;
	max_clocks->uClockInKhz =
			(unsigned int) sustainable_clocks->uclock * 1000;
	max_clocks->socClockInKhz =
			(unsigned int) sustainable_clocks->soc_clock * 1000;
	max_clocks->dscClockInKhz = 0;
	max_clocks->dppClockInKhz = 0;
	max_clocks->fabricClockInKhz = 0;

	return 0;
}

1583
int smu_v11_0_set_azalia_d3_pme(struct smu_context *smu)
1584 1585 1586 1587 1588 1589 1590 1591
{
	int ret = 0;

	ret = smu_send_smc_msg(smu, SMU_MSG_BacoAudioD3PME);

	return ret;
}

1592 1593 1594 1595 1596
static int smu_v11_0_baco_set_armd3_sequence(struct smu_context *smu, enum smu_v11_0_baco_seq baco_seq)
{
	return smu_send_smc_msg_with_param(smu, SMU_MSG_ArmD3, baco_seq);
}

1597
bool smu_v11_0_baco_is_support(struct smu_context *smu)
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
{
	struct amdgpu_device *adev = smu->adev;
	struct smu_baco_context *smu_baco = &smu->smu_baco;
	uint32_t val;
	bool baco_support;

	mutex_lock(&smu_baco->mutex);
	baco_support = smu_baco->platform_support;
	mutex_unlock(&smu_baco->mutex);

	if (!baco_support)
		return false;

	if (!smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT))
		return false;

	val = RREG32_SOC15(NBIO, 0, mmRCC_BIF_STRAP0);
	if (val & RCC_BIF_STRAP0__STRAP_PX_CAPABLE_MASK)
		return true;

	return false;
}

1621
enum smu_baco_state smu_v11_0_baco_get_state(struct smu_context *smu)
1622 1623
{
	struct smu_baco_context *smu_baco = &smu->smu_baco;
1624
	enum smu_baco_state baco_state;
1625 1626 1627 1628 1629 1630 1631 1632

	mutex_lock(&smu_baco->mutex);
	baco_state = smu_baco->state;
	mutex_unlock(&smu_baco->mutex);

	return baco_state;
}

1633
int smu_v11_0_baco_set_state(struct smu_context *smu, enum smu_baco_state state)
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
{

	struct smu_baco_context *smu_baco = &smu->smu_baco;
	int ret = 0;

	if (smu_v11_0_baco_get_state(smu) == state)
		return 0;

	mutex_lock(&smu_baco->mutex);

	if (state == SMU_BACO_STATE_ENTER)
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, BACO_SEQ_BACO);
	else
		ret = smu_send_smc_msg(smu, SMU_MSG_ExitBaco);
	if (ret)
		goto out;

	smu_baco->state = state;
out:
	mutex_unlock(&smu_baco->mutex);
	return ret;
}

1657
int smu_v11_0_baco_reset(struct smu_context *smu)
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
{
	int ret = 0;

	ret = smu_v11_0_baco_set_armd3_sequence(smu, BACO_SEQ_BACO);
	if (ret)
		return ret;

	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_ENTER);
	if (ret)
		return ret;

	msleep(10);

	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_EXIT);
	if (ret)
		return ret;

	return ret;
}

1678
int smu_v11_0_get_dpm_ultimate_freq(struct smu_context *smu, enum smu_clk_type clk_type,
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
						 uint32_t *min, uint32_t *max)
{
	int ret = 0, clk_id = 0;
	uint32_t param = 0;

	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0) {
		ret = -EINVAL;
		goto failed;
	}
	param = (clk_id & 0xffff) << 16;

	if (max) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq, param);
		if (ret)
			goto failed;
		ret = smu_read_smc_arg(smu, max);
		if (ret)
			goto failed;
	}

	if (min) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMinDpmFreq, param);
		if (ret)
			goto failed;
		ret = smu_read_smc_arg(smu, min);
		if (ret)
			goto failed;
	}

failed:
	return ret;
}

1713
int smu_v11_0_set_soft_freq_limited_range(struct smu_context *smu, enum smu_clk_type clk_type,
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
			    uint32_t min, uint32_t max)
{
	int ret = 0, clk_id = 0;
	uint32_t param;

	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	if (max > 0) {
		param = (uint32_t)((clk_id << 16) | (max & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxByFreq,
						  param);
		if (ret)
			return ret;
	}

	if (min > 0) {
		param = (uint32_t)((clk_id << 16) | (min & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMinByFreq,
						  param);
		if (ret)
			return ret;
	}

	return ret;
}

1742
int smu_v11_0_override_pcie_parameters(struct smu_context *smu)
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t pcie_gen = 0, pcie_width = 0;
	int ret;

	if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4)
		pcie_gen = 3;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
		pcie_gen = 2;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2)
		pcie_gen = 1;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1)
		pcie_gen = 0;

	/* Bit 31:16: LCLK DPM level. 0 is DPM0, and 1 is DPM1
	 * Bit 15:8:  PCIE GEN, 0 to 3 corresponds to GEN1 to GEN4
	 * Bit 7:0:   PCIE lane width, 1 to 7 corresponds is x1 to x32
	 */
	if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
		pcie_width = 6;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
		pcie_width = 5;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
		pcie_width = 4;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
		pcie_width = 3;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
		pcie_width = 2;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
		pcie_width = 1;

	ret = smu_update_pcie_parameters(smu, pcie_gen, pcie_width);

	if (ret)
		pr_err("[%s] Attempt to override pcie params failed!\n", __func__);

	return ret;

}