smu_v11_0.c 49.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/firmware.h>
24
#include <linux/module.h>
25
#include <linux/pci.h>
26
#include <linux/reboot.h>
27

28 29
#define SMU_11_0_PARTIAL_PPTABLE

30 31
#include "amdgpu.h"
#include "amdgpu_smu.h"
32
#include "smu_internal.h"
33
#include "atomfirmware.h"
34
#include "amdgpu_atomfirmware.h"
35
#include "smu_v11_0.h"
36
#include "soc15_common.h"
37
#include "atom.h"
38
#include "amd_pcie.h"
39
#include "amdgpu_ras.h"
40 41 42

#include "asic_reg/thm/thm_11_0_2_offset.h"
#include "asic_reg/thm/thm_11_0_2_sh_mask.h"
43 44 45 46
#include "asic_reg/mp/mp_11_0_offset.h"
#include "asic_reg/mp/mp_11_0_sh_mask.h"
#include "asic_reg/smuio/smuio_11_0_0_offset.h"
#include "asic_reg/smuio/smuio_11_0_0_sh_mask.h"
47

48
MODULE_FIRMWARE("amdgpu/arcturus_smc.bin");
49
MODULE_FIRMWARE("amdgpu/navi10_smc.bin");
50
MODULE_FIRMWARE("amdgpu/navi14_smc.bin");
51
MODULE_FIRMWARE("amdgpu/navi12_smc.bin");
52
MODULE_FIRMWARE("amdgpu/sienna_cichlid_smc.bin");
53

54
#define SMU11_VOLTAGE_SCALE 4
55

56 57 58 59
static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu,
					      uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
60
	WREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_66, msg);
61 62 63
	return 0;
}

64
static int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg)
65 66 67
{
	struct amdgpu_device *adev = smu->adev;

68
	*arg = RREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_82);
69 70 71
	return 0;
}

72 73 74
static int smu_v11_0_wait_for_response(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
75
	uint32_t cur_value, i, timeout = adev->usec_timeout * 10;
76

77
	for (i = 0; i < timeout; i++) {
78
		cur_value = RREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_90);
79
		if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0)
80 81
			return cur_value == 0x1 ? 0 : -EIO;

82 83 84 85
		udelay(1);
	}

	/* timeout means wrong logic */
86 87 88 89
	if (i == timeout)
		return -ETIME;

	return RREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_90) == 0x1 ? 0 : -EIO;
90 91
}

92
int
93 94
smu_v11_0_send_msg_with_param(struct smu_context *smu,
			      enum smu_message_type msg,
95 96
			      uint32_t param,
			      uint32_t *read_arg)
97 98
{
	struct amdgpu_device *adev = smu->adev;
99 100 101 102
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
103
		return index == -EACCES ? 0 : index;
104

105
	mutex_lock(&smu->message_lock);
106
	ret = smu_v11_0_wait_for_response(smu);
107
	if (ret) {
108
		dev_err(adev->dev, "Msg issuing pre-check failed and "
109
		       "SMU may be not in the right state!\n");
110
		goto out;
111
	}
112

113
	WREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);
114

115
	WREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_82, param);
116

117
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
118 119

	ret = smu_v11_0_wait_for_response(smu);
120
	if (ret) {
121
		dev_err(adev->dev, "failed send message: %10s (%d) \tparam: 0x%08x response %#x\n",
122
		       smu_get_message_name(smu, msg), index, param, ret);
123
		goto out;
124
	}
125

126 127 128
	if (read_arg) {
		ret = smu_v11_0_read_arg(smu, read_arg);
		if (ret) {
129
			dev_err(adev->dev, "failed to read message arg: %10s (%d) \tparam: 0x%08x response %#x\n",
130
			       smu_get_message_name(smu, msg), index, param, ret);
131
			goto out;
132 133
		}
	}
134 135 136
out:
	mutex_unlock(&smu->message_lock);
	return ret;
137 138
}

139
int smu_v11_0_init_microcode(struct smu_context *smu)
140 141
{
	struct amdgpu_device *adev = smu->adev;
142 143 144 145 146 147
	const char *chip_name;
	char fw_name[30];
	int err = 0;
	const struct smc_firmware_header_v1_0 *hdr;
	const struct common_firmware_header *header;
	struct amdgpu_firmware_info *ucode = NULL;
148

149
	switch (adev->asic_type) {
150 151 152
	case CHIP_ARCTURUS:
		chip_name = "arcturus";
		break;
153 154 155
	case CHIP_NAVI10:
		chip_name = "navi10";
		break;
156 157 158
	case CHIP_NAVI14:
		chip_name = "navi14";
		break;
159 160 161
	case CHIP_NAVI12:
		chip_name = "navi12";
		break;
162 163 164
	case CHIP_SIENNA_CICHLID:
		chip_name = "sienna_cichlid";
		break;
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	default:
		BUG();
	}

	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name);

	err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
	if (err)
		goto out;
	err = amdgpu_ucode_validate(adev->pm.fw);
	if (err)
		goto out;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	amdgpu_ucode_print_smc_hdr(&hdr->header);
	adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
		ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC];
		ucode->ucode_id = AMDGPU_UCODE_ID_SMC;
		ucode->fw = adev->pm.fw;
		header = (const struct common_firmware_header *)ucode->fw->data;
		adev->firmware.fw_size +=
			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
	}

out:
	if (err) {
		DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n",
			  fw_name);
		release_firmware(adev->pm.fw);
		adev->pm.fw = NULL;
	}
	return err;
199 200
}

201 202 203 204 205 206 207 208 209
void smu_v11_0_fini_microcode(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;

	release_firmware(adev->pm.fw);
	adev->pm.fw = NULL;
	adev->pm.fw_version = 0;
}

210
int smu_v11_0_load_microcode(struct smu_context *smu)
211
{
212 213 214 215 216
	struct amdgpu_device *adev = smu->adev;
	const uint32_t *src;
	const struct smc_firmware_header_v1_0 *hdr;
	uint32_t addr_start = MP1_SRAM;
	uint32_t i;
217
	uint32_t smc_fw_size;
218 219
	uint32_t mp1_fw_flags;

220
	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
221 222
	src = (const uint32_t *)(adev->pm.fw->data +
		le32_to_cpu(hdr->header.ucode_array_offset_bytes));
223
	smc_fw_size = hdr->header.ucode_size_bytes;
224

225
	for (i = 1; i < smc_fw_size/4 - 1; i++) {
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
		WREG32_PCIE(addr_start, src[i]);
		addr_start += 4;
	}

	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & MP1_SMN_PUB_CTRL__RESET_MASK);
	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & ~MP1_SMN_PUB_CTRL__RESET_MASK);

	for (i = 0; i < adev->usec_timeout; i++) {
		mp1_fw_flags = RREG32_PCIE(MP1_Public |
			(smnMP1_FIRMWARE_FLAGS & 0xffffffff));
		if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
			MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
			break;
		udelay(1);
	}

	if (i == adev->usec_timeout)
		return -ETIME;

247 248 249
	return 0;
}

250
int smu_v11_0_check_fw_status(struct smu_context *smu)
251
{
252 253 254
	struct amdgpu_device *adev = smu->adev;
	uint32_t mp1_fw_flags;

255 256
	mp1_fw_flags = RREG32_PCIE(MP1_Public |
				   (smnMP1_FIRMWARE_FLAGS & 0xffffffff));
257 258 259 260

	if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
	    MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
		return 0;
261

262
	return -EIO;
263 264
}

265
int smu_v11_0_check_fw_version(struct smu_context *smu)
266
{
267 268 269
	uint32_t if_version = 0xff, smu_version = 0xff;
	uint16_t smu_major;
	uint8_t smu_minor, smu_debug;
270 271
	int ret = 0;

272
	ret = smu_get_smc_version(smu, &if_version, &smu_version);
273
	if (ret)
274
		return ret;
275

276 277 278 279
	smu_major = (smu_version >> 16) & 0xffff;
	smu_minor = (smu_version >> 8) & 0xff;
	smu_debug = (smu_version >> 0) & 0xff;

280
	switch (smu->adev->asic_type) {
281
	case CHIP_ARCTURUS:
282
		smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_ARCT;
283
		break;
284
	case CHIP_NAVI10:
285
		smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_NV10;
286
		break;
287
	case CHIP_NAVI12:
288
		smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_NV12;
289
		break;
290
	case CHIP_NAVI14:
291
		smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_NV14;
292
		break;
293 294 295
	case CHIP_SIENNA_CICHLID:
		smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_Sienna_Cichlid;
		break;
296
	default:
297
		dev_err(smu->adev->dev, "smu unsupported asic type:%d.\n", smu->adev->asic_type);
298
		smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_INV;
299 300 301
		break;
	}

302 303 304 305 306 307 308 309
	/*
	 * 1. if_version mismatch is not critical as our fw is designed
	 * to be backward compatible.
	 * 2. New fw usually brings some optimizations. But that's visible
	 * only on the paired driver.
	 * Considering above, we just leave user a warning message instead
	 * of halt driver loading.
	 */
310
	if (if_version != smu->smc_driver_if_version) {
311
		dev_info(smu->adev->dev, "smu driver if version = 0x%08x, smu fw if version = 0x%08x, "
312
			"smu fw version = 0x%08x (%d.%d.%d)\n",
313
			smu->smc_driver_if_version, if_version,
314
			smu_version, smu_major, smu_minor, smu_debug);
315
		dev_warn(smu->adev->dev, "SMU driver if version not matched\n");
316 317
	}

318 319 320
	return ret;
}

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
static int smu_v11_0_set_pptable_v2_0(struct smu_context *smu, void **table, uint32_t *size)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t ppt_offset_bytes;
	const struct smc_firmware_header_v2_0 *v2;

	v2 = (const struct smc_firmware_header_v2_0 *) adev->pm.fw->data;

	ppt_offset_bytes = le32_to_cpu(v2->ppt_offset_bytes);
	*size = le32_to_cpu(v2->ppt_size_bytes);
	*table = (uint8_t *)v2 + ppt_offset_bytes;

	return 0;
}

336 337
static int smu_v11_0_set_pptable_v2_1(struct smu_context *smu, void **table,
				      uint32_t *size, uint32_t pptable_id)
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
{
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v2_1 *v2_1;
	struct smc_soft_pptable_entry *entries;
	uint32_t pptable_count = 0;
	int i = 0;

	v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data;
	entries = (struct smc_soft_pptable_entry *)
		((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset));
	pptable_count = le32_to_cpu(v2_1->pptable_count);
	for (i = 0; i < pptable_count; i++) {
		if (le32_to_cpu(entries[i].id) == pptable_id) {
			*table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes));
			*size = le32_to_cpu(entries[i].ppt_size_bytes);
			break;
		}
	}

	if (i == pptable_count)
		return -EINVAL;

	return 0;
}

363
int smu_v11_0_setup_pptable(struct smu_context *smu)
364
{
365 366
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v1_0 *hdr;
367
	int ret, index;
368
	uint32_t size = 0;
369
	uint16_t atom_table_size;
370
	uint8_t frev, crev;
371
	void *table;
372 373 374 375 376
	uint16_t version_major, version_minor;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	version_major = le16_to_cpu(hdr->header.header_version_major);
	version_minor = le16_to_cpu(hdr->header.header_version_minor);
377
	if (version_major == 2 && smu->smu_table.boot_values.pp_table_id > 0) {
378
		dev_info(adev->dev, "use driver provided pptable %d\n", smu->smu_table.boot_values.pp_table_id);
379 380 381 382 383 384 385 386 387 388 389 390 391 392
		switch (version_minor) {
		case 0:
			ret = smu_v11_0_set_pptable_v2_0(smu, &table, &size);
			break;
		case 1:
			ret = smu_v11_0_set_pptable_v2_1(smu, &table, &size,
							 smu->smu_table.boot_values.pp_table_id);
			break;
		default:
			ret = -EINVAL;
			break;
		}
		if (ret)
			return ret;
393

394
	} else {
395
		dev_info(adev->dev, "use vbios provided pptable\n");
396 397
		index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
						    powerplayinfo);
398

399
		ret = smu_get_atom_data_table(smu, index, &atom_table_size, &frev, &crev,
400 401 402
					      (uint8_t **)&table);
		if (ret)
			return ret;
403
		size = atom_table_size;
404
	}
405

406 407 408 409
	if (!smu->smu_table.power_play_table)
		smu->smu_table.power_play_table = table;
	if (!smu->smu_table.power_play_table_size)
		smu->smu_table.power_play_table_size = size;
410 411 412 413

	return 0;
}

414 415 416 417 418 419 420
static int smu_v11_0_init_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0)
		return -EINVAL;

421
	return smu_alloc_dpm_context(smu);
422 423 424 425 426 427 428 429 430 431
}

static int smu_v11_0_fini_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0)
		return -EINVAL;

	kfree(smu_dpm->dpm_context);
432
	kfree(smu_dpm->golden_dpm_context);
433 434
	kfree(smu_dpm->dpm_current_power_state);
	kfree(smu_dpm->dpm_request_power_state);
435
	smu_dpm->dpm_context = NULL;
436
	smu_dpm->golden_dpm_context = NULL;
437
	smu_dpm->dpm_context_size = 0;
438 439
	smu_dpm->dpm_current_power_state = NULL;
	smu_dpm->dpm_request_power_state = NULL;
440 441 442 443

	return 0;
}

444
int smu_v11_0_init_smc_tables(struct smu_context *smu)
445 446 447
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = NULL;
448
	int ret = 0;
449

450 451
	tables = kcalloc(SMU_TABLE_COUNT, sizeof(struct smu_table),
			 GFP_KERNEL);
452 453 454 455
	if (!tables) {
		ret = -ENOMEM;
		goto err0_out;
	}
456 457
	smu_table->tables = tables;

458 459
	ret = smu_tables_init(smu, tables);
	if (ret)
460
		goto err1_out;
461

462 463
	ret = smu_v11_0_init_dpm_context(smu);
	if (ret)
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
		goto err1_out;

	smu_table->driver_pptable =
		kzalloc(tables[SMU_TABLE_PPTABLE].size, GFP_KERNEL);
	if (!smu_table->driver_pptable) {
		ret = -ENOMEM;
		goto err2_out;
	}

	smu_table->max_sustainable_clocks =
		kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks), GFP_KERNEL);
	if (!smu_table->max_sustainable_clocks) {
		ret = -ENOMEM;
		goto err3_out;
	}

	/* Arcturus does not support OVERDRIVE */
	if (tables[SMU_TABLE_OVERDRIVE].size) {
		smu_table->overdrive_table =
			kzalloc(tables[SMU_TABLE_OVERDRIVE].size, GFP_KERNEL);
		if (!smu_table->overdrive_table) {
			ret = -ENOMEM;
			goto err4_out;
		}

		smu_table->boot_overdrive_table =
			kzalloc(tables[SMU_TABLE_OVERDRIVE].size, GFP_KERNEL);
		if (!smu_table->boot_overdrive_table) {
			ret = -ENOMEM;
			goto err5_out;
		}
	}
496

497
	return 0;
498 499 500 501 502 503 504 505 506 507 508 509 510

err5_out:
	kfree(smu_table->overdrive_table);
err4_out:
	kfree(smu_table->max_sustainable_clocks);
err3_out:
	kfree(smu_table->driver_pptable);
err2_out:
	smu_v11_0_fini_dpm_context(smu);
err1_out:
	kfree(tables);
err0_out:
	return ret;
511 512
}

513
int smu_v11_0_fini_smc_tables(struct smu_context *smu)
514 515
{
	struct smu_table_context *smu_table = &smu->smu_table;
516
	int ret = 0;
517

518
	if (!smu_table->tables)
519 520
		return -EINVAL;

521 522 523 524 525 526 527 528 529 530 531
	kfree(smu_table->boot_overdrive_table);
	kfree(smu_table->overdrive_table);
	kfree(smu_table->max_sustainable_clocks);
	kfree(smu_table->driver_pptable);
	smu_table->boot_overdrive_table = NULL;
	smu_table->overdrive_table = NULL;
	smu_table->max_sustainable_clocks = NULL;
	smu_table->driver_pptable = NULL;
	kfree(smu_table->hardcode_pptable);
	smu_table->hardcode_pptable = NULL;

532
	kfree(smu_table->tables);
533
	kfree(smu_table->metrics_table);
534
	kfree(smu_table->watermarks_table);
535
	smu_table->tables = NULL;
536
	smu_table->metrics_table = NULL;
537
	smu_table->watermarks_table = NULL;
538
	smu_table->metrics_time = 0;
539

540 541 542
	ret = smu_v11_0_fini_dpm_context(smu);
	if (ret)
		return ret;
543 544
	return 0;
}
545

546
int smu_v11_0_init_power(struct smu_context *smu)
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
{
	struct smu_power_context *smu_power = &smu->smu_power;

	if (smu_power->power_context || smu_power->power_context_size != 0)
		return -EINVAL;

	smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
					   GFP_KERNEL);
	if (!smu_power->power_context)
		return -ENOMEM;
	smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context);

	return 0;
}

562
int smu_v11_0_fini_power(struct smu_context *smu)
563 564 565 566 567 568 569 570 571 572 573 574 575
{
	struct smu_power_context *smu_power = &smu->smu_power;

	if (!smu_power->power_context || smu_power->power_context_size == 0)
		return -EINVAL;

	kfree(smu_power->power_context);
	smu_power->power_context = NULL;
	smu_power->power_context_size = 0;

	return 0;
}

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
static int smu_v11_0_atom_get_smu_clockinfo(struct amdgpu_device *adev,
					    uint8_t clk_id,
					    uint8_t syspll_id,
					    uint32_t *clk_freq)
{
	struct atom_get_smu_clock_info_parameters_v3_1 input = {0};
	struct atom_get_smu_clock_info_output_parameters_v3_1 *output;
	int ret, index;

	input.clk_id = clk_id;
	input.syspll_id = syspll_id;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	*clk_freq = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	return 0;
}

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu)
{
	int ret, index;
	uint16_t size;
	uint8_t frev, crev;
	struct atom_common_table_header *header;
	struct atom_firmware_info_v3_3 *v_3_3;
	struct atom_firmware_info_v3_1 *v_3_1;

	index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
					    firmwareinfo);

	ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev,
				      (uint8_t **)&header);
	if (ret)
		return ret;

	if (header->format_revision != 3) {
620
		dev_err(smu->adev->dev, "unknown atom_firmware_info version! for smu11\n");
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
		return -EINVAL;
	}

	switch (header->content_revision) {
	case 0:
	case 1:
	case 2:
		v_3_1 = (struct atom_firmware_info_v3_1 *)header;
		smu->smu_table.boot_values.revision = v_3_1->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = 0;
		break;
	case 3:
	default:
		v_3_3 = (struct atom_firmware_info_v3_3 *)header;
		smu->smu_table.boot_values.revision = v_3_3->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id;
	}

657 658 659
	smu->smu_table.boot_values.format_revision = header->format_revision;
	smu->smu_table.boot_values.content_revision = header->content_revision;

660 661 662 663
	smu_v11_0_atom_get_smu_clockinfo(smu->adev,
					 (uint8_t)SMU11_SYSPLL0_SOCCLK_ID,
					 (uint8_t)0,
					 &smu->smu_table.boot_values.socclk);
664

665 666 667 668
	smu_v11_0_atom_get_smu_clockinfo(smu->adev,
					 (uint8_t)SMU11_SYSPLL0_DCEFCLK_ID,
					 (uint8_t)0,
					 &smu->smu_table.boot_values.dcefclk);
669

670 671 672 673
	smu_v11_0_atom_get_smu_clockinfo(smu->adev,
					 (uint8_t)SMU11_SYSPLL0_ECLK_ID,
					 (uint8_t)0,
					 &smu->smu_table.boot_values.eclk);
674

675 676 677 678
	smu_v11_0_atom_get_smu_clockinfo(smu->adev,
					 (uint8_t)SMU11_SYSPLL0_VCLK_ID,
					 (uint8_t)0,
					 &smu->smu_table.boot_values.vclk);
679

680 681 682 683
	smu_v11_0_atom_get_smu_clockinfo(smu->adev,
					 (uint8_t)SMU11_SYSPLL0_DCLK_ID,
					 (uint8_t)0,
					 &smu->smu_table.boot_values.dclk);
684

685
	if ((smu->smu_table.boot_values.format_revision == 3) &&
686 687 688 689 690
	    (smu->smu_table.boot_values.content_revision >= 2))
		smu_v11_0_atom_get_smu_clockinfo(smu->adev,
						 (uint8_t)SMU11_SYSPLL1_0_FCLK_ID,
						 (uint8_t)SMU11_SYSPLL1_2_ID,
						 &smu->smu_table.boot_values.fclk);
691

692 693 694
	return 0;
}

695
int smu_v11_0_notify_memory_pool_location(struct smu_context *smu)
696 697 698 699 700 701 702 703 704 705
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	int ret = 0;
	uint64_t address;
	uint32_t address_low, address_high;

	if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL)
		return ret;

706
	address = (uintptr_t)memory_pool->cpu_addr;
707 708 709 710
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

	ret = smu_send_smc_msg_with_param(smu,
711
					  SMU_MSG_SetSystemVirtualDramAddrHigh,
712 713
					  address_high,
					  NULL);
714 715 716
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu,
717
					  SMU_MSG_SetSystemVirtualDramAddrLow,
718 719
					  address_low,
					  NULL);
720 721 722 723 724 725 726
	if (ret)
		return ret;

	address = memory_pool->mc_address;
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

727
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh,
728
					  address_high, NULL);
729 730
	if (ret)
		return ret;
731
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow,
732
					  address_low, NULL);
733 734
	if (ret)
		return ret;
735
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize,
736
					  (uint32_t)memory_pool->size, NULL);
737 738 739 740 741 742
	if (ret)
		return ret;

	return ret;
}

743
int smu_v11_0_populate_smc_pptable(struct smu_context *smu)
744
{
745
	int ret;
746

747
	ret = smu_set_default_dpm_table(smu);
748

749
	return ret;
750 751
}

752
int smu_v11_0_write_pptable(struct smu_context *smu)
753
{
754
	struct smu_table_context *table_context = &smu->smu_table;
755 756
	int ret = 0;

757
	ret = smu_update_table(smu, SMU_TABLE_PPTABLE, 0,
758
			       table_context->driver_pptable, true);
759 760 761 762

	return ret;
}

763
int smu_v11_0_set_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk)
764 765 766 767
{
	int ret;

	ret = smu_send_smc_msg_with_param(smu,
768
					  SMU_MSG_SetMinDeepSleepDcefclk, clk, NULL);
769
	if (ret)
770
		dev_err(smu->adev->dev, "SMU11 attempt to set divider for DCEFCLK Failed!");
771 772 773 774

	return ret;
}

775
int smu_v11_0_set_min_dcef_deep_sleep(struct smu_context *smu)
776 777 778 779 780 781
{
	struct smu_table_context *table_context = &smu->smu_table;

	if (!table_context)
		return -EINVAL;

782
	return smu_v11_0_set_deep_sleep_dcefclk(smu, table_context->boot_values.dcefclk / 100);
783 784
}

785 786 787 788 789 790 791 792
int smu_v11_0_set_driver_table_location(struct smu_context *smu)
{
	struct smu_table *driver_table = &smu->smu_table.driver_table;
	int ret = 0;

	if (driver_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
				SMU_MSG_SetDriverDramAddrHigh,
793 794
				upper_32_bits(driver_table->mc_address),
				NULL);
795 796 797
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
				SMU_MSG_SetDriverDramAddrLow,
798 799
				lower_32_bits(driver_table->mc_address),
				NULL);
800 801 802 803 804
	}

	return ret;
}

805
int smu_v11_0_set_tool_table_location(struct smu_context *smu)
806 807
{
	int ret = 0;
808
	struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG];
809 810 811

	if (tool_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
812
				SMU_MSG_SetToolsDramAddrHigh,
813 814
				upper_32_bits(tool_table->mc_address),
				NULL);
815 816
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
817
				SMU_MSG_SetToolsDramAddrLow,
818 819
				lower_32_bits(tool_table->mc_address),
				NULL);
820 821 822 823 824
	}

	return ret;
}

825
int smu_v11_0_init_display_count(struct smu_context *smu, uint32_t count)
826 827
{
	int ret = 0;
828

829 830 831
	if (!smu->pm_enabled)
		return ret;

832
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, count, NULL);
833 834 835
	return ret;
}

836

837
int smu_v11_0_set_allowed_mask(struct smu_context *smu)
838 839 840 841 842
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
	uint32_t feature_mask[2];

843
	mutex_lock(&feature->mutex);
844
	if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64)
845
		goto failed;
846 847 848 849

	bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64);

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh,
850
					  feature_mask[1], NULL);
851
	if (ret)
852
		goto failed;
853 854

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow,
855
					  feature_mask[0], NULL);
856
	if (ret)
857
		goto failed;
858

859 860
failed:
	mutex_unlock(&feature->mutex);
861 862 863
	return ret;
}

864
int smu_v11_0_get_enabled_mask(struct smu_context *smu,
865 866 867
				      uint32_t *feature_mask, uint32_t num)
{
	uint32_t feature_mask_high = 0, feature_mask_low = 0;
868
	struct smu_feature *feature = &smu->smu_feature;
869 870 871 872 873
	int ret = 0;

	if (!feature_mask || num < 2)
		return -EINVAL;

874
	if (bitmap_empty(feature->enabled, feature->feature_num)) {
875
		ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh, &feature_mask_high);
876 877
		if (ret)
			return ret;
878

879
		ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow, &feature_mask_low);
880 881
		if (ret)
			return ret;
882

883 884 885 886 887 888
		feature_mask[0] = feature_mask_low;
		feature_mask[1] = feature_mask_high;
	} else {
		bitmap_copy((unsigned long *)feature_mask, feature->enabled,
			     feature->feature_num);
	}
889 890 891 892

	return ret;
}

893
int smu_v11_0_system_features_control(struct smu_context *smu,
894
					     bool en)
895 896 897 898 899
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_mask[2];
	int ret = 0;

900
	ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures :
901
				     SMU_MSG_DisableAllSmuFeatures), NULL);
902 903 904
	if (ret)
		return ret;

905 906 907
	bitmap_zero(feature->enabled, feature->feature_num);
	bitmap_zero(feature->supported, feature->feature_num);

908 909 910 911 912 913 914 915 916 917
	if (en) {
		ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
		if (ret)
			return ret;

		bitmap_copy(feature->enabled, (unsigned long *)&feature_mask,
			    feature->feature_num);
		bitmap_copy(feature->supported, (unsigned long *)&feature_mask,
			    feature->feature_num);
	}
918 919 920 921

	return ret;
}

922
int smu_v11_0_notify_display_change(struct smu_context *smu)
923 924 925
{
	int ret = 0;

926 927 928
	if (!smu->pm_enabled)
		return ret;

929 930
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
	    smu->adev->gmc.vram_type == AMDGPU_VRAM_TYPE_HBM)
931
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1, NULL);
932 933 934 935

	return ret;
}

936 937
static int
smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock,
938
				    enum smu_clk_type clock_select)
939 940
{
	int ret = 0;
941
	int clk_id;
942

943 944 945 946
	if ((smu_msg_get_index(smu, SMU_MSG_GetDcModeMaxDpmFreq) < 0) ||
	    (smu_msg_get_index(smu, SMU_MSG_GetMaxDpmFreq) < 0))
		return 0;

947 948 949 950
	clk_id = smu_clk_get_index(smu, clock_select);
	if (clk_id < 0)
		return -EINVAL;

951
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq,
952
					  clk_id << 16, clock);
953
	if (ret) {
954
		dev_err(smu->adev->dev, "[GetMaxSustainableClock] Failed to get max DC clock from SMC!");
955 956 957 958 959 960 961 962
		return ret;
	}

	if (*clock != 0)
		return 0;

	/* if DC limit is zero, return AC limit */
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
963
					  clk_id << 16, clock);
964
	if (ret) {
965
		dev_err(smu->adev->dev, "[GetMaxSustainableClock] failed to get max AC clock from SMC!");
966 967 968
		return ret;
	}

969
	return 0;
970 971
}

972
int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu)
973
{
974 975
	struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks =
			smu->smu_table.max_sustainable_clocks;
976 977 978 979 980 981 982 983 984
	int ret = 0;

	max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100;
	max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100;
	max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100;
	max_sustainable_clocks->display_clock = 0xFFFFFFFF;
	max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
	max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;

985
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
986 987
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->uclock),
988
							  SMU_UCLK);
989
		if (ret) {
990
			dev_err(smu->adev->dev, "[%s] failed to get max UCLK from SMC!",
991 992 993 994 995
			       __func__);
			return ret;
		}
	}

996
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
997 998
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->soc_clock),
999
							  SMU_SOCCLK);
1000
		if (ret) {
1001
			dev_err(smu->adev->dev, "[%s] failed to get max SOCCLK from SMC!",
1002 1003 1004 1005 1006
			       __func__);
			return ret;
		}
	}

1007
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
1008 1009
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->dcef_clock),
1010
							  SMU_DCEFCLK);
1011
		if (ret) {
1012
			dev_err(smu->adev->dev, "[%s] failed to get max DCEFCLK from SMC!",
1013 1014 1015 1016 1017 1018
			       __func__);
			return ret;
		}

		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->display_clock),
1019
							  SMU_DISPCLK);
1020
		if (ret) {
1021
			dev_err(smu->adev->dev, "[%s] failed to get max DISPCLK from SMC!",
1022 1023 1024 1025 1026
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->phy_clock),
1027
							  SMU_PHYCLK);
1028
		if (ret) {
1029
			dev_err(smu->adev->dev, "[%s] failed to get max PHYCLK from SMC!",
1030 1031 1032 1033 1034
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->pixel_clock),
1035
							  SMU_PIXCLK);
1036
		if (ret) {
1037
			dev_err(smu->adev->dev, "[%s] failed to get max PIXCLK from SMC!",
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
			       __func__);
			return ret;
		}
	}

	if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
		max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;

	return 0;
}

1049
int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n)
1050
{
1051
	int ret = 0;
1052 1053
	uint32_t max_power_limit;

1054
	max_power_limit = smu_get_max_power_limit(smu);
1055

1056
	if (n > max_power_limit) {
1057
		dev_err(smu->adev->dev, "New power limit (%d) is over the max allowed %d\n",
1058 1059
				n,
				max_power_limit);
1060
		return -EINVAL;
1061 1062
	}

1063 1064 1065
	if (n == 0)
		n = smu->default_power_limit;

1066
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) {
1067
		dev_err(smu->adev->dev, "Setting new power limit is not supported!\n");
1068
		return -EOPNOTSUPP;
1069 1070
	}

1071
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n, NULL);
1072
	if (ret) {
1073
		dev_err(smu->adev->dev, "[%s] Set power limit Failed!\n", __func__);
1074 1075
		return ret;
	}
1076
	smu->power_limit = n;
1077

1078
	return 0;
1079 1080
}

1081
int smu_v11_0_get_current_clk_freq(struct smu_context *smu,
1082 1083
					  enum smu_clk_type clk_id,
					  uint32_t *value)
1084 1085
{
	int ret = 0;
1086
	uint32_t freq = 0;
1087
	int asic_clk_id;
1088

1089
	if (clk_id >= SMU_CLK_COUNT || !value)
1090 1091
		return -EINVAL;

1092 1093 1094 1095
	asic_clk_id = smu_clk_get_index(smu, clk_id);
	if (asic_clk_id < 0)
		return -EINVAL;

1096
	/* if don't has GetDpmClockFreq Message, try get current clock by SmuMetrics_t */
1097
	if (smu_msg_get_index(smu, SMU_MSG_GetDpmClockFreq) < 0)
1098 1099 1100
		ret =  smu_get_current_clk_freq_by_table(smu, clk_id, &freq);
	else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmClockFreq,
1101
						  (asic_clk_id << 16), &freq);
1102 1103 1104
		if (ret)
			return ret;
	}
1105 1106 1107 1108 1109 1110 1111

	freq *= 100;
	*value = freq;

	return ret;
}

1112
int smu_v11_0_enable_thermal_alert(struct smu_context *smu)
1113 1114
{
	int ret = 0;
1115
	struct smu_temperature_range range;
1116 1117
	struct amdgpu_device *adev = smu->adev;

1118 1119
	memcpy(&range, &smu11_thermal_policy[0], sizeof(struct smu_temperature_range));

1120
	ret = smu_get_thermal_temperature_range(smu, &range);
1121 1122
	if (ret)
		return ret;
1123 1124

	if (smu->smu_table.thermal_controller_type) {
1125
		ret = smu_set_thermal_range(smu, range);
1126 1127 1128
		if (ret)
			return ret;

1129
		ret = amdgpu_irq_get(adev, &smu->irq_source, 0);
1130 1131
		if (ret)
			return ret;
1132

1133
		ret = smu_set_thermal_fan_table(smu);
1134 1135 1136 1137
		if (ret)
			return ret;
	}

1138 1139 1140 1141 1142 1143 1144 1145 1146
	adev->pm.dpm.thermal.min_temp = range.min;
	adev->pm.dpm.thermal.max_temp = range.max;
	adev->pm.dpm.thermal.max_edge_emergency_temp = range.edge_emergency_max;
	adev->pm.dpm.thermal.min_hotspot_temp = range.hotspot_min;
	adev->pm.dpm.thermal.max_hotspot_crit_temp = range.hotspot_crit_max;
	adev->pm.dpm.thermal.max_hotspot_emergency_temp = range.hotspot_emergency_max;
	adev->pm.dpm.thermal.min_mem_temp = range.mem_min;
	adev->pm.dpm.thermal.max_mem_crit_temp = range.mem_crit_max;
	adev->pm.dpm.thermal.max_mem_emergency_temp = range.mem_emergency_max;
1147 1148 1149 1150

	return ret;
}

1151
int smu_v11_0_disable_thermal_alert(struct smu_context *smu)
1152
{
1153
	return amdgpu_irq_put(smu->adev, &smu->irq_source, 0);
1154 1155
}

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
static uint16_t convert_to_vddc(uint8_t vid)
{
	return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE);
}

static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t vdd = 0, val_vid = 0;

	if (!value)
		return -EINVAL;
	val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) &
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >>
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT;

	vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid);

	*value = vdd;

	return 0;

}

1180
int smu_v11_0_read_sensor(struct smu_context *smu,
1181 1182 1183 1184
				 enum amd_pp_sensors sensor,
				 void *data, uint32_t *size)
{
	int ret = 0;
1185 1186 1187 1188

	if(!data || !size)
		return -EINVAL;

1189
	switch (sensor) {
1190
	case AMDGPU_PP_SENSOR_GFX_MCLK:
1191
		ret = smu_get_current_clk_freq(smu, SMU_UCLK, (uint32_t *)data);
1192 1193 1194
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_SCLK:
1195
		ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, (uint32_t *)data);
1196
		*size = 4;
1197
		break;
1198 1199 1200
	case AMDGPU_PP_SENSOR_VDDGFX:
		ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
		*size = 4;
1201
		break;
1202 1203 1204 1205
	case AMDGPU_PP_SENSOR_MIN_FAN_RPM:
		*(uint32_t *)data = 0;
		*size = 4;
		break;
1206
	default:
1207
		ret = smu_common_read_sensor(smu, sensor, data, size);
1208 1209 1210 1211 1212 1213 1214 1215 1216
		break;
	}

	if (ret)
		*size = 0;

	return ret;
}

1217
int
1218 1219 1220 1221 1222 1223
smu_v11_0_display_clock_voltage_request(struct smu_context *smu,
					struct pp_display_clock_request
					*clock_req)
{
	enum amd_pp_clock_type clk_type = clock_req->clock_type;
	int ret = 0;
1224
	enum smu_clk_type clk_select = 0;
1225 1226
	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;

1227
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) ||
1228
		smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1229 1230
		switch (clk_type) {
		case amd_pp_dcef_clock:
1231
			clk_select = SMU_DCEFCLK;
1232 1233
			break;
		case amd_pp_disp_clock:
1234
			clk_select = SMU_DISPCLK;
1235 1236
			break;
		case amd_pp_pixel_clock:
1237
			clk_select = SMU_PIXCLK;
1238 1239
			break;
		case amd_pp_phy_clock:
1240
			clk_select = SMU_PHYCLK;
1241
			break;
1242 1243 1244
		case amd_pp_mem_clock:
			clk_select = SMU_UCLK;
			break;
1245
		default:
1246
			dev_info(smu->adev->dev, "[%s] Invalid Clock Type!", __func__);
1247 1248 1249 1250 1251 1252 1253
			ret = -EINVAL;
			break;
		}

		if (ret)
			goto failed;

1254 1255 1256
		if (clk_select == SMU_UCLK && smu->disable_uclk_switch)
			return 0;

1257
		ret = smu_set_hard_freq_range(smu, clk_select, clk_freq, 0);
1258 1259 1260

		if(clk_select == SMU_UCLK)
			smu->hard_min_uclk_req_from_dal = clk_freq;
1261 1262 1263 1264 1265 1266
	}

failed:
	return ret;
}

1267
int smu_v11_0_gfx_off_control(struct smu_context *smu, bool enable)
1268 1269
{
	int ret = 0;
1270
	struct amdgpu_device *adev = smu->adev;
1271

1272 1273
	switch (adev->asic_type) {
	case CHIP_NAVI10:
1274
	case CHIP_NAVI14:
1275
	case CHIP_NAVI12:
1276
	case CHIP_SIENNA_CICHLID:
1277 1278 1279
		if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
			return 0;
		if (enable)
1280
			ret = smu_send_smc_msg(smu, SMU_MSG_AllowGfxOff, NULL);
1281
		else
1282
			ret = smu_send_smc_msg(smu, SMU_MSG_DisallowGfxOff, NULL);
1283 1284 1285 1286
		break;
	default:
		break;
	}
1287 1288 1289 1290

	return ret;
}

1291
uint32_t
1292 1293
smu_v11_0_get_fan_control_mode(struct smu_context *smu)
{
1294
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1295 1296 1297 1298 1299 1300
		return AMD_FAN_CTRL_MANUAL;
	else
		return AMD_FAN_CTRL_AUTO;
}

static int
1301
smu_v11_0_auto_fan_control(struct smu_context *smu, bool auto_fan_control)
1302 1303 1304
{
	int ret = 0;

1305
	if (!smu_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1306 1307
		return 0;

1308
	ret = smu_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, auto_fan_control);
1309
	if (ret)
1310
		dev_err(smu->adev->dev, "[%s]%s smc FAN CONTROL feature failed!",
1311
		       __func__, (auto_fan_control ? "Start" : "Stop"));
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330

	return ret;
}

static int
smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode)
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, TMIN, 0));
	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, FDO_PWM_MODE, mode));

	return 0;
}

1331
int
1332 1333 1334
smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
1335
	uint32_t duty100, duty;
1336 1337 1338 1339 1340
	uint64_t tmp64;

	if (speed > 100)
		speed = 100;

1341
	if (smu_v11_0_auto_fan_control(smu, 0))
1342
		return -EINVAL;
1343

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1),
				CG_FDO_CTRL1, FMAX_DUTY100);
	if (!duty100)
		return -EINVAL;

	tmp64 = (uint64_t)speed * duty100;
	do_div(tmp64, 100);
	duty = (uint32_t)tmp64;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0),
				   CG_FDO_CTRL0, FDO_STATIC_DUTY, duty));

	return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC);
}

1360
int
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
smu_v11_0_set_fan_control_mode(struct smu_context *smu,
			       uint32_t mode)
{
	int ret = 0;

	switch (mode) {
	case AMD_FAN_CTRL_NONE:
		ret = smu_v11_0_set_fan_speed_percent(smu, 100);
		break;
	case AMD_FAN_CTRL_MANUAL:
1371
		ret = smu_v11_0_auto_fan_control(smu, 0);
1372 1373
		break;
	case AMD_FAN_CTRL_AUTO:
1374
		ret = smu_v11_0_auto_fan_control(smu, 1);
1375 1376 1377 1378 1379 1380
		break;
	default:
		break;
	}

	if (ret) {
1381
		dev_err(smu->adev->dev, "[%s]Set fan control mode failed!", __func__);
1382 1383 1384 1385 1386 1387
		return -EINVAL;
	}

	return ret;
}

1388
int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu,
1389 1390 1391 1392 1393 1394 1395 1396 1397
				       uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	int ret;
	uint32_t tach_period, crystal_clock_freq;

	if (!speed)
		return -EINVAL;

1398
	ret = smu_v11_0_auto_fan_control(smu, 0);
1399
	if (ret)
1400
		return ret;
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

	crystal_clock_freq = amdgpu_asic_get_xclk(adev);
	tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed);
	WREG32_SOC15(THM, 0, mmCG_TACH_CTRL,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL),
				   CG_TACH_CTRL, TARGET_PERIOD,
				   tach_period));

	ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM);

	return ret;
}

1414
int smu_v11_0_set_xgmi_pstate(struct smu_context *smu,
1415 1416
				     uint32_t pstate)
{
1417 1418 1419
	int ret = 0;
	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetXgmiMode,
1420 1421
					  pstate ? XGMI_MODE_PSTATE_D0 : XGMI_MODE_PSTATE_D3,
					  NULL);
1422
	return ret;
1423 1424
}

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
static int smu_v11_0_set_irq_state(struct amdgpu_device *adev,
				   struct amdgpu_irq_src *source,
				   unsigned tyep,
				   enum amdgpu_interrupt_state state)
{
	uint32_t val = 0;

	switch (state) {
	case AMDGPU_IRQ_STATE_DISABLE:
		/* For THM irqs */
		val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
		val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 1);
		val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 1);
		WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);

		WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, 0);

		/* For MP1 SW irqs */
		val = RREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT_CTRL);
		val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT_CTRL, INT_MASK, 1);
		WREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT_CTRL, val);

		break;
	case AMDGPU_IRQ_STATE_ENABLE:
		/* For THM irqs */
		val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
		val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 0);
		val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 0);
		WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);

		val = (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT);
		val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT);
		val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT);
		WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val);

		/* For MP1 SW irqs */
		val = RREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT);
		val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT, ID, 0xFE);
		val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT, VALID, 0);
		WREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT, val);

		val = RREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT_CTRL);
		val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT_CTRL, INT_MASK, 0);
		WREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT_CTRL, val);

		break;
	default:
		break;
	}

	return 0;
}

1478 1479 1480 1481 1482 1483 1484
static int smu_v11_0_ack_ac_dc_interrupt(struct smu_context *smu)
{
	return smu_send_smc_msg(smu,
				SMU_MSG_ReenableAcDcInterrupt,
				NULL);
}

1485 1486 1487
#define THM_11_0__SRCID__THM_DIG_THERM_L2H		0		/* ASIC_TEMP > CG_THERMAL_INT.DIG_THERM_INTH  */
#define THM_11_0__SRCID__THM_DIG_THERM_H2L		1		/* ASIC_TEMP < CG_THERMAL_INT.DIG_THERM_INTL  */

1488 1489
#define SMUIO_11_0__SRCID__SMUIO_GPIO19			83

1490 1491 1492 1493
static int smu_v11_0_irq_process(struct amdgpu_device *adev,
				 struct amdgpu_irq_src *source,
				 struct amdgpu_iv_entry *entry)
{
1494
	struct smu_context *smu = &adev->smu;
1495 1496
	uint32_t client_id = entry->client_id;
	uint32_t src_id = entry->src_id;
1497 1498 1499 1500 1501
	/*
	 * ctxid is used to distinguish different
	 * events for SMCToHost interrupt.
	 */
	uint32_t ctxid = entry->src_data[0];
1502
	uint32_t data;
1503 1504 1505 1506

	if (client_id == SOC15_IH_CLIENTID_THM) {
		switch (src_id) {
		case THM_11_0__SRCID__THM_DIG_THERM_L2H:
1507
			dev_emerg(adev->dev, "ERROR: GPU over temperature range(SW CTF) detected!\n");
1508 1509 1510 1511
			/*
			 * SW CTF just occurred.
			 * Try to do a graceful shutdown to prevent further damage.
			 */
1512
			dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU SW CTF!\n");
1513
			orderly_poweroff(true);
1514 1515
		break;
		case THM_11_0__SRCID__THM_DIG_THERM_H2L:
1516
			dev_emerg(adev->dev, "ERROR: GPU under temperature range detected\n");
1517 1518
		break;
		default:
1519 1520
			dev_emerg(adev->dev, "ERROR: GPU under temperature range unknown src id (%d)\n",
				src_id);
1521 1522
		break;
		}
1523
	} else if (client_id == SOC15_IH_CLIENTID_ROM_SMUIO) {
1524
		dev_emerg(adev->dev, "ERROR: GPU HW Critical Temperature Fault(aka CTF) detected!\n");
1525 1526 1527
		/*
		 * HW CTF just occurred. Shutdown to prevent further damage.
		 */
1528
		dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU HW CTF!\n");
1529
		orderly_poweroff(true);
1530
	} else if (client_id == SOC15_IH_CLIENTID_MP1) {
1531
		if (src_id == 0xfe) {
1532 1533 1534 1535 1536
			/* ACK SMUToHost interrupt */
			data = RREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT_CTRL);
			data = REG_SET_FIELD(data, MP1_SMN_IH_SW_INT_CTRL, INT_ACK, 1);
			WREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT_CTRL, data);

1537 1538 1539 1540 1541 1542 1543 1544 1545
			switch (ctxid) {
			case 0x3:
				dev_dbg(adev->dev, "Switched to AC mode!\n");
				smu_v11_0_ack_ac_dc_interrupt(&adev->smu);
				break;
			case 0x4:
				dev_dbg(adev->dev, "Switched to DC mode!\n");
				smu_v11_0_ack_ac_dc_interrupt(&adev->smu);
				break;
1546
			case 0x7:
1547 1548 1549 1550
				if (!atomic_read(&adev->throttling_logging_enabled))
					return 0;

				if (__ratelimit(&adev->throttling_logging_rs))
1551
					schedule_work(&smu->throttling_logging_work);
1552 1553

				break;
1554 1555
			}
		}
1556 1557 1558 1559 1560 1561 1562
	}

	return 0;
}

static const struct amdgpu_irq_src_funcs smu_v11_0_irq_funcs =
{
1563
	.set = smu_v11_0_set_irq_state,
1564 1565 1566
	.process = smu_v11_0_irq_process,
};

1567
int smu_v11_0_register_irq_handler(struct smu_context *smu)
1568 1569
{
	struct amdgpu_device *adev = smu->adev;
1570
	struct amdgpu_irq_src *irq_src = &smu->irq_source;
1571 1572
	int ret = 0;

1573
	irq_src->num_types = 1;
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
	irq_src->funcs = &smu_v11_0_irq_funcs;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_L2H,
				irq_src);
	if (ret)
		return ret;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_H2L,
				irq_src);
	if (ret)
		return ret;

1588 1589 1590 1591 1592 1593 1594
	/* Register CTF(GPIO_19) interrupt */
	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_ROM_SMUIO,
				SMUIO_11_0__SRCID__SMUIO_GPIO19,
				irq_src);
	if (ret)
		return ret;

1595 1596 1597 1598 1599 1600
	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_MP1,
				0xfe,
				irq_src);
	if (ret)
		return ret;

1601 1602 1603
	return ret;
}

1604
int smu_v11_0_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
		struct pp_smu_nv_clock_table *max_clocks)
{
	struct smu_table_context *table_context = &smu->smu_table;
	struct smu_11_0_max_sustainable_clocks *sustainable_clocks = NULL;

	if (!max_clocks || !table_context->max_sustainable_clocks)
		return -EINVAL;

	sustainable_clocks = table_context->max_sustainable_clocks;

	max_clocks->dcfClockInKhz =
			(unsigned int) sustainable_clocks->dcef_clock * 1000;
	max_clocks->displayClockInKhz =
			(unsigned int) sustainable_clocks->display_clock * 1000;
	max_clocks->phyClockInKhz =
			(unsigned int) sustainable_clocks->phy_clock * 1000;
	max_clocks->pixelClockInKhz =
			(unsigned int) sustainable_clocks->pixel_clock * 1000;
	max_clocks->uClockInKhz =
			(unsigned int) sustainable_clocks->uclock * 1000;
	max_clocks->socClockInKhz =
			(unsigned int) sustainable_clocks->soc_clock * 1000;
	max_clocks->dscClockInKhz = 0;
	max_clocks->dppClockInKhz = 0;
	max_clocks->fabricClockInKhz = 0;

	return 0;
}

1634
int smu_v11_0_set_azalia_d3_pme(struct smu_context *smu)
1635 1636 1637
{
	int ret = 0;

1638
	ret = smu_send_smc_msg(smu, SMU_MSG_BacoAudioD3PME, NULL);
1639 1640 1641 1642

	return ret;
}

1643 1644
static int smu_v11_0_baco_set_armd3_sequence(struct smu_context *smu, enum smu_v11_0_baco_seq baco_seq)
{
1645
	return smu_send_smc_msg_with_param(smu, SMU_MSG_ArmD3, baco_seq, NULL);
1646 1647
}

1648
bool smu_v11_0_baco_is_support(struct smu_context *smu)
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
{
	struct smu_baco_context *smu_baco = &smu->smu_baco;
	bool baco_support;

	mutex_lock(&smu_baco->mutex);
	baco_support = smu_baco->platform_support;
	mutex_unlock(&smu_baco->mutex);

	if (!baco_support)
		return false;

1660 1661 1662
	/* Arcturus does not support this bit mask */
	if (smu_feature_is_supported(smu, SMU_FEATURE_BACO_BIT) &&
	   !smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT))
1663 1664
		return false;

1665
	return true;
1666 1667
}

1668
enum smu_baco_state smu_v11_0_baco_get_state(struct smu_context *smu)
1669 1670
{
	struct smu_baco_context *smu_baco = &smu->smu_baco;
1671
	enum smu_baco_state baco_state;
1672 1673 1674 1675 1676 1677 1678 1679

	mutex_lock(&smu_baco->mutex);
	baco_state = smu_baco->state;
	mutex_unlock(&smu_baco->mutex);

	return baco_state;
}

1680
int smu_v11_0_baco_set_state(struct smu_context *smu, enum smu_baco_state state)
1681 1682
{
	struct smu_baco_context *smu_baco = &smu->smu_baco;
1683 1684 1685
	struct amdgpu_device *adev = smu->adev;
	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
	uint32_t data;
1686 1687 1688 1689 1690 1691 1692
	int ret = 0;

	if (smu_v11_0_baco_get_state(smu) == state)
		return 0;

	mutex_lock(&smu_baco->mutex);

1693 1694 1695 1696 1697 1698
	if (state == SMU_BACO_STATE_ENTER) {
		if (!ras || !ras->supported) {
			data = RREG32_SOC15(THM, 0, mmTHM_BACO_CNTL);
			data |= 0x80000000;
			WREG32_SOC15(THM, 0, mmTHM_BACO_CNTL, data);

1699
			ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, 0, NULL);
1700
		} else {
1701
			ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, 1, NULL);
1702 1703
		}
	} else {
1704
		ret = smu_send_smc_msg(smu, SMU_MSG_ExitBaco, NULL);
1705 1706 1707
		if (ret)
			goto out;

1708 1709 1710 1711 1712 1713
		if (ras && ras->supported) {
			ret = smu_send_smc_msg(smu, SMU_MSG_PrepareMp1ForUnload, NULL);
			if (ret)
				goto out;
		}

1714 1715 1716
		/* clear vbios scratch 6 and 7 for coming asic reinit */
		WREG32(adev->bios_scratch_reg_offset + 6, 0);
		WREG32(adev->bios_scratch_reg_offset + 7, 0);
1717
	}
1718 1719 1720 1721 1722 1723 1724 1725 1726
	if (ret)
		goto out;

	smu_baco->state = state;
out:
	mutex_unlock(&smu_baco->mutex);
	return ret;
}

1727
int smu_v11_0_baco_enter(struct smu_context *smu)
1728
{
1729
	struct amdgpu_device *adev = smu->adev;
1730 1731
	int ret = 0;

1732 1733 1734 1735 1736 1737
	/* Arcturus does not need this audio workaround */
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_v11_0_baco_set_armd3_sequence(smu, BACO_SEQ_BACO);
		if (ret)
			return ret;
	}
1738 1739 1740 1741 1742 1743 1744

	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_ENTER);
	if (ret)
		return ret;

	msleep(10);

1745 1746 1747 1748 1749 1750 1751
	return ret;
}

int smu_v11_0_baco_exit(struct smu_context *smu)
{
	int ret = 0;

1752 1753 1754 1755 1756 1757 1758
	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_EXIT);
	if (ret)
		return ret;

	return ret;
}

1759
int smu_v11_0_get_dpm_ultimate_freq(struct smu_context *smu, enum smu_clk_type clk_type,
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
						 uint32_t *min, uint32_t *max)
{
	int ret = 0, clk_id = 0;
	uint32_t param = 0;

	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0) {
		ret = -EINVAL;
		goto failed;
	}
	param = (clk_id & 0xffff) << 16;

	if (max) {
1773
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq, param, max);
1774 1775 1776 1777 1778
		if (ret)
			goto failed;
	}

	if (min) {
1779
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMinDpmFreq, param, min);
1780 1781 1782 1783 1784 1785 1786 1787
		if (ret)
			goto failed;
	}

failed:
	return ret;
}

1788
int smu_v11_0_set_soft_freq_limited_range(struct smu_context *smu, enum smu_clk_type clk_type,
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
			    uint32_t min, uint32_t max)
{
	int ret = 0, clk_id = 0;
	uint32_t param;

	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	if (max > 0) {
		param = (uint32_t)((clk_id << 16) | (max & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxByFreq,
1801
						  param, NULL);
1802 1803 1804 1805 1806 1807 1808
		if (ret)
			return ret;
	}

	if (min > 0) {
		param = (uint32_t)((clk_id << 16) | (min & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMinByFreq,
1809
						  param, NULL);
1810 1811 1812 1813 1814 1815 1816
		if (ret)
			return ret;
	}

	return ret;
}

1817
int smu_v11_0_override_pcie_parameters(struct smu_context *smu)
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t pcie_gen = 0, pcie_width = 0;
	int ret;

	if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4)
		pcie_gen = 3;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
		pcie_gen = 2;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2)
		pcie_gen = 1;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1)
		pcie_gen = 0;

	/* Bit 31:16: LCLK DPM level. 0 is DPM0, and 1 is DPM1
	 * Bit 15:8:  PCIE GEN, 0 to 3 corresponds to GEN1 to GEN4
	 * Bit 7:0:   PCIE lane width, 1 to 7 corresponds is x1 to x32
	 */
	if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
		pcie_width = 6;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
		pcie_width = 5;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
		pcie_width = 4;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
		pcie_width = 3;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
		pcie_width = 2;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
		pcie_width = 1;

	ret = smu_update_pcie_parameters(smu, pcie_gen, pcie_width);

	if (ret)
1852
		dev_err(adev->dev, "[%s] Attempt to override pcie params failed!\n", __func__);
1853 1854 1855 1856

	return ret;

}
1857

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
int smu_v11_0_set_performance_level(struct smu_context *smu,
				    enum amd_dpm_forced_level level)
{
	int ret = 0;
	uint32_t sclk_mask, mclk_mask, soc_mask;

	switch (level) {
	case AMD_DPM_FORCED_LEVEL_HIGH:
		ret = smu_force_dpm_limit_value(smu, true);
		break;
	case AMD_DPM_FORCED_LEVEL_LOW:
		ret = smu_force_dpm_limit_value(smu, false);
		break;
	case AMD_DPM_FORCED_LEVEL_AUTO:
	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
		ret = smu_unforce_dpm_levels(smu);
		break;
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
		ret = smu_get_profiling_clk_mask(smu, level,
						 &sclk_mask,
						 &mclk_mask,
						 &soc_mask);
		if (ret)
			return ret;
		smu_force_clk_levels(smu, SMU_SCLK, 1 << sclk_mask, false);
		smu_force_clk_levels(smu, SMU_MCLK, 1 << mclk_mask, false);
		smu_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask, false);
		break;
	case AMD_DPM_FORCED_LEVEL_MANUAL:
	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
	default:
		break;
	}
	return ret;
}

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
int smu_v11_0_set_power_source(struct smu_context *smu,
			       enum smu_power_src_type power_src)
{
	int pwr_source;

	pwr_source = smu_power_get_index(smu, (uint32_t)power_src);
	if (pwr_source < 0)
		return -EINVAL;

	return smu_send_smc_msg_with_param(smu,
					SMU_MSG_NotifyPowerSource,
					pwr_source,
					NULL);
}