i915_gem.c 138.9 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41 42
#define RQ_BUG_ON(expr)

43
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45
static void
46 47 48
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 50 51 52 53 54
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

55 56 57 58 59 60
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

61 62 63 64 65 66 67 68
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

69 70 71 72 73 74 75 76
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
77
	obj->fence_dirty = false;
78 79 80
	obj->fence_reg = I915_FENCE_REG_NONE;
}

81 82 83 84
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
85
	spin_lock(&dev_priv->mm.object_stat_lock);
86 87
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
88
	spin_unlock(&dev_priv->mm.object_stat_lock);
89 90 91 92 93
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
94
	spin_lock(&dev_priv->mm.object_stat_lock);
95 96
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
97
	spin_unlock(&dev_priv->mm.object_stat_lock);
98 99
}

100
static int
101
i915_gem_wait_for_error(struct i915_gpu_error *error)
102 103 104
{
	int ret;

105 106
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
107
	if (EXIT_COND)
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115 116 117
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123
	}
124
#undef EXIT_COND
125

126
	return 0;
127 128
}

129
int i915_mutex_lock_interruptible(struct drm_device *dev)
130
{
131
	struct drm_i915_private *dev_priv = dev->dev_private;
132 133
	int ret;

134
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

142
	WARN_ON(i915_verify_lists(dev));
143 144
	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = dev->dev_private;
151
	struct drm_i915_gem_get_aperture *args = data;
152 153
	struct i915_gtt *ggtt = &dev_priv->gtt;
	struct i915_vma *vma;
154
	size_t pinned;
155

156
	pinned = 0;
157
	mutex_lock(&dev->struct_mutex);
158 159 160 161 162 163
	list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
		if (vma->pin_count)
			pinned += vma->node.size;
	list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
		if (vma->pin_count)
			pinned += vma->node.size;
164
	mutex_unlock(&dev->struct_mutex);
165

166
	args->aper_size = dev_priv->gtt.base.total;
167
	args->aper_available_size = args->aper_size - pinned;
168

169 170 171
	return 0;
}

172 173
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174
{
175 176 177 178 179
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
215

216 217 218 219 220 221 222 223 224 225 226 227 228 229
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
230

231 232 233 234 235 236 237 238 239 240 241 242 243
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
244
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
245
		char *vaddr = obj->phys_handle->vaddr;
246 247 248
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
249 250 251 252 253 254 255 256 257 258 259 260 261 262
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
263
				mark_page_accessed(page);
264
			page_cache_release(page);
265 266
			vaddr += PAGE_SIZE;
		}
267
		obj->dirty = 0;
268 269
	}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
303 304 305 306 307 308 309
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
310
	int ret;
311 312 313 314 315 316 317 318 319 320 321 322 323 324

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

325 326 327 328
	ret = drop_pages(obj);
	if (ret)
		return ret;

329 330 331 332 333 334
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
335 336 337
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
338 339 340 341 342 343 344 345 346 347
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
348
	int ret = 0;
349 350 351 352 353 354 355

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
356

357
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
358 359 360 361 362 363 364 365 366 367
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
368 369 370 371
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
372 373
	}

374
	drm_clflush_virt_range(vaddr, args->size);
375
	i915_gem_chipset_flush(dev);
376 377 378 379

out:
	intel_fb_obj_flush(obj, false);
	return ret;
380 381
}

382 383 384
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
385
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
386 387 388 389 390
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
391
	kmem_cache_free(dev_priv->objects, obj);
392 393
}

394 395 396 397 398
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
399
{
400
	struct drm_i915_gem_object *obj;
401 402
	int ret;
	u32 handle;
403

404
	size = roundup(size, PAGE_SIZE);
405 406
	if (size == 0)
		return -EINVAL;
407 408

	/* Allocate the new object */
409
	obj = i915_gem_alloc_object(dev, size);
410 411 412
	if (obj == NULL)
		return -ENOMEM;

413
	ret = drm_gem_handle_create(file, &obj->base, &handle);
414
	/* drop reference from allocate - handle holds it now */
415 416 417
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
418

419
	*handle_p = handle;
420 421 422
	return 0;
}

423 424 425 426 427 428
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
429
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
430 431
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
432
			       args->size, &args->handle);
433 434 435 436 437 438 439 440 441 442
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
443

444
	return i915_gem_create(file, dev,
445
			       args->size, &args->handle);
446 447
}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

474
static inline int
475 476
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

536 537 538
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
539
static int
540 541 542 543 544 545 546
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

547
	if (unlikely(page_do_bit17_swizzling))
548 549 550 551 552 553 554 555 556 557 558
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

559
	return ret ? -EFAULT : 0;
560 561
}

562 563 564 565
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
566
	if (unlikely(swizzled)) {
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

584 585 586 587 588 589 590 591 592 593 594 595
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
596 597 598
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
599 600 601 602 603 604 605 606 607 608 609

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

610
	return ret ? - EFAULT : 0;
611 612
}

613
static int
614 615 616 617
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
618
{
619
	char __user *user_data;
620
	ssize_t remain;
621
	loff_t offset;
622
	int shmem_page_offset, page_length, ret = 0;
623
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
624
	int prefaulted = 0;
625
	int needs_clflush = 0;
626
	struct sg_page_iter sg_iter;
627

V
Ville Syrjälä 已提交
628
	user_data = to_user_ptr(args->data_ptr);
629 630
	remain = args->size;

631
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
632

633
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
634 635 636
	if (ret)
		return ret;

637
	offset = args->offset;
638

639 640
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
641
		struct page *page = sg_page_iter_page(&sg_iter);
642 643 644 645

		if (remain <= 0)
			break;

646 647 648 649 650
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
651
		shmem_page_offset = offset_in_page(offset);
652 653 654 655
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

656 657 658
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

659 660 661 662 663
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
664 665 666

		mutex_unlock(&dev->struct_mutex);

667
		if (likely(!i915.prefault_disable) && !prefaulted) {
668
			ret = fault_in_multipages_writeable(user_data, remain);
669 670 671 672 673 674 675
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
676

677 678 679
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
680

681
		mutex_lock(&dev->struct_mutex);
682 683

		if (ret)
684 685
			goto out;

686
next_page:
687
		remain -= page_length;
688
		user_data += page_length;
689 690 691
		offset += page_length;
	}

692
out:
693 694
	i915_gem_object_unpin_pages(obj);

695 696 697
	return ret;
}

698 699 700 701 702 703 704
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
705
		     struct drm_file *file)
706 707
{
	struct drm_i915_gem_pread *args = data;
708
	struct drm_i915_gem_object *obj;
709
	int ret = 0;
710

711 712 713 714
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
715
		       to_user_ptr(args->data_ptr),
716 717 718
		       args->size))
		return -EFAULT;

719
	ret = i915_mutex_lock_interruptible(dev);
720
	if (ret)
721
		return ret;
722

723
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
724
	if (&obj->base == NULL) {
725 726
		ret = -ENOENT;
		goto unlock;
727
	}
728

729
	/* Bounds check source.  */
730 731
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
732
		ret = -EINVAL;
733
		goto out;
C
Chris Wilson 已提交
734 735
	}

736 737 738 739 740 741 742 743
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
744 745
	trace_i915_gem_object_pread(obj, args->offset, args->size);

746
	ret = i915_gem_shmem_pread(dev, obj, args, file);
747

748
out:
749
	drm_gem_object_unreference(&obj->base);
750
unlock:
751
	mutex_unlock(&dev->struct_mutex);
752
	return ret;
753 754
}

755 756
/* This is the fast write path which cannot handle
 * page faults in the source data
757
 */
758 759 760 761 762 763

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
764
{
765 766
	void __iomem *vaddr_atomic;
	void *vaddr;
767
	unsigned long unwritten;
768

P
Peter Zijlstra 已提交
769
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
770 771 772
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
773
						      user_data, length);
P
Peter Zijlstra 已提交
774
	io_mapping_unmap_atomic(vaddr_atomic);
775
	return unwritten;
776 777
}

778 779 780 781
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
782
static int
783 784
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
785
			 struct drm_i915_gem_pwrite *args,
786
			 struct drm_file *file)
787
{
788
	struct drm_i915_private *dev_priv = dev->dev_private;
789
	ssize_t remain;
790
	loff_t offset, page_base;
791
	char __user *user_data;
D
Daniel Vetter 已提交
792 793
	int page_offset, page_length, ret;

794
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
795 796 797 798 799 800 801 802 803 804
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
805

V
Ville Syrjälä 已提交
806
	user_data = to_user_ptr(args->data_ptr);
807 808
	remain = args->size;

809
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
810

811
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
812

813 814 815
	while (remain > 0) {
		/* Operation in this page
		 *
816 817 818
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
819
		 */
820 821
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
822 823 824 825 826
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
827 828
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
829
		 */
B
Ben Widawsky 已提交
830
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
831 832
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
833
			goto out_flush;
D
Daniel Vetter 已提交
834
		}
835

836 837 838
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
839 840
	}

841 842
out_flush:
	intel_fb_obj_flush(obj, false);
D
Daniel Vetter 已提交
843
out_unpin:
B
Ben Widawsky 已提交
844
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
845
out:
846
	return ret;
847 848
}

849 850 851 852
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
853
static int
854 855 856 857 858
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
859
{
860
	char *vaddr;
861
	int ret;
862

863
	if (unlikely(page_do_bit17_swizzling))
864
		return -EINVAL;
865

866 867 868 869
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
870 871
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
872 873 874 875
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
876

877
	return ret ? -EFAULT : 0;
878 879
}

880 881
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
882
static int
883 884 885 886 887
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
888
{
889 890
	char *vaddr;
	int ret;
891

892
	vaddr = kmap(page);
893
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
894 895 896
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
897 898
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
899 900
						user_data,
						page_length);
901 902 903 904 905
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
906 907 908
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
909
	kunmap(page);
910

911
	return ret ? -EFAULT : 0;
912 913 914
}

static int
915 916 917 918
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
919 920
{
	ssize_t remain;
921 922
	loff_t offset;
	char __user *user_data;
923
	int shmem_page_offset, page_length, ret = 0;
924
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
925
	int hit_slowpath = 0;
926 927
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
928
	struct sg_page_iter sg_iter;
929

V
Ville Syrjälä 已提交
930
	user_data = to_user_ptr(args->data_ptr);
931 932
	remain = args->size;

933
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
934

935 936 937 938 939
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
940
		needs_clflush_after = cpu_write_needs_clflush(obj);
941 942 943
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
944
	}
945 946 947 948 949
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
950

951 952 953 954
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

955
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
956

957 958
	i915_gem_object_pin_pages(obj);

959
	offset = args->offset;
960
	obj->dirty = 1;
961

962 963
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
964
		struct page *page = sg_page_iter_page(&sg_iter);
965
		int partial_cacheline_write;
966

967 968 969
		if (remain <= 0)
			break;

970 971 972 973 974
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
975
		shmem_page_offset = offset_in_page(offset);
976 977 978 979 980

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

981 982 983 984 985 986 987
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

988 989 990
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

991 992 993 994 995 996
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
997 998 999

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1000 1001 1002 1003
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1004

1005
		mutex_lock(&dev->struct_mutex);
1006 1007

		if (ret)
1008 1009
			goto out;

1010
next_page:
1011
		remain -= page_length;
1012
		user_data += page_length;
1013
		offset += page_length;
1014 1015
	}

1016
out:
1017 1018
	i915_gem_object_unpin_pages(obj);

1019
	if (hit_slowpath) {
1020 1021 1022 1023 1024 1025 1026
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1027 1028
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1029
		}
1030
	}
1031

1032
	if (needs_clflush_after)
1033
		i915_gem_chipset_flush(dev);
1034

1035
	intel_fb_obj_flush(obj, false);
1036
	return ret;
1037 1038 1039 1040 1041 1042 1043 1044 1045
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1046
		      struct drm_file *file)
1047
{
1048
	struct drm_i915_private *dev_priv = dev->dev_private;
1049
	struct drm_i915_gem_pwrite *args = data;
1050
	struct drm_i915_gem_object *obj;
1051 1052 1053 1054 1055 1056
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1057
		       to_user_ptr(args->data_ptr),
1058 1059 1060
		       args->size))
		return -EFAULT;

1061
	if (likely(!i915.prefault_disable)) {
1062 1063 1064 1065 1066
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1067

1068 1069
	intel_runtime_pm_get(dev_priv);

1070
	ret = i915_mutex_lock_interruptible(dev);
1071
	if (ret)
1072
		goto put_rpm;
1073

1074
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075
	if (&obj->base == NULL) {
1076 1077
		ret = -ENOENT;
		goto unlock;
1078
	}
1079

1080
	/* Bounds check destination. */
1081 1082
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1083
		ret = -EINVAL;
1084
		goto out;
C
Chris Wilson 已提交
1085 1086
	}

1087 1088 1089 1090 1091 1092 1093 1094
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1095 1096
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1097
	ret = -EFAULT;
1098 1099 1100 1101 1102 1103
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1104 1105 1106
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1107
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1108 1109 1110
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1111
	}
1112

1113 1114 1115 1116 1117 1118
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1119

1120
out:
1121
	drm_gem_object_unreference(&obj->base);
1122
unlock:
1123
	mutex_unlock(&dev->struct_mutex);
1124 1125 1126
put_rpm:
	intel_runtime_pm_put(dev_priv);

1127 1128 1129
	return ret;
}

1130
int
1131
i915_gem_check_wedge(struct i915_gpu_error *error,
1132 1133
		     bool interruptible)
{
1134
	if (i915_reset_in_progress(error)) {
1135 1136 1137 1138 1139
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1140 1141
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1142 1143
			return -EIO;

1144 1145 1146 1147 1148 1149 1150
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1151 1152 1153 1154 1155
	}

	return 0;
}

1156 1157 1158 1159 1160 1161
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1162
		       struct intel_engine_cs *ring)
1163 1164 1165 1166
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

D
Daniel Vetter 已提交
1167
static int __i915_spin_request(struct drm_i915_gem_request *req)
1168
{
1169 1170
	unsigned long timeout;

D
Daniel Vetter 已提交
1171
	if (i915_gem_request_get_ring(req)->irq_refcount)
1172 1173 1174 1175
		return -EBUSY;

	timeout = jiffies + 1;
	while (!need_resched()) {
D
Daniel Vetter 已提交
1176
		if (i915_gem_request_completed(req, true))
1177 1178 1179 1180
			return 0;

		if (time_after_eq(jiffies, timeout))
			break;
1181

1182 1183
		cpu_relax_lowlatency();
	}
D
Daniel Vetter 已提交
1184
	if (i915_gem_request_completed(req, false))
1185 1186 1187
		return 0;

	return -EAGAIN;
1188 1189
}

1190
/**
1191 1192 1193
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1194 1195 1196
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1197 1198 1199 1200 1201 1202 1203
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1204
 * Returns 0 if the request was found within the alloted time. Else returns the
1205 1206
 * errno with remaining time filled in timeout argument.
 */
1207
int __i915_wait_request(struct drm_i915_gem_request *req,
1208
			unsigned reset_counter,
1209
			bool interruptible,
1210
			s64 *timeout,
1211
			struct intel_rps_client *rps)
1212
{
1213
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1214
	struct drm_device *dev = ring->dev;
1215
	struct drm_i915_private *dev_priv = dev->dev_private;
1216 1217
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1218
	DEFINE_WAIT(wait);
1219
	unsigned long timeout_expire;
1220
	s64 before, now;
1221 1222
	int ret;

1223
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1224

1225 1226 1227
	if (list_empty(&req->list))
		return 0;

1228
	if (i915_gem_request_completed(req, true))
1229 1230
		return 0;

1231 1232
	timeout_expire = timeout ?
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1233

1234
	if (INTEL_INFO(dev_priv)->gen >= 6)
1235
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1236

1237
	/* Record current time in case interrupted by signal, or wedged */
1238
	trace_i915_gem_request_wait_begin(req);
1239
	before = ktime_get_raw_ns();
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250

	/* Optimistic spin for the next jiffie before touching IRQs */
	ret = __i915_spin_request(req);
	if (ret == 0)
		goto out;

	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
		ret = -ENODEV;
		goto out;
	}

1251 1252
	for (;;) {
		struct timer_list timer;
1253

1254 1255
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1256

1257 1258
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1259 1260 1261 1262 1263 1264 1265 1266
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1267

1268
		if (i915_gem_request_completed(req, false)) {
1269 1270 1271
			ret = 0;
			break;
		}
1272

1273 1274 1275 1276 1277
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1278
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1279 1280 1281 1282 1283 1284
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1285 1286
			unsigned long expire;

1287
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1288
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1289 1290 1291
			mod_timer(&timer, expire);
		}

1292
		io_schedule();
1293 1294 1295 1296 1297 1298

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1299 1300
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1301 1302

	finish_wait(&ring->irq_queue, &wait);
1303

1304 1305 1306 1307
out:
	now = ktime_get_raw_ns();
	trace_i915_gem_request_wait_end(req);

1308
	if (timeout) {
1309 1310 1311
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1322 1323
	}

1324
	return ret;
1325 1326
}

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_private *dev_private;
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	dev_private = req->ring->dev->dev_private;
	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1366 1367 1368

	put_pid(request->pid);
	request->pid = NULL;
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->ring;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&engine->dev->struct_mutex);

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1412
/**
1413
 * Waits for a request to be signaled, and cleans up the
1414 1415 1416
 * request and object lists appropriately for that event.
 */
int
1417
i915_wait_request(struct drm_i915_gem_request *req)
1418
{
1419 1420 1421
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1422 1423
	int ret;

1424 1425 1426 1427 1428 1429
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1430 1431
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1432
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1433 1434 1435
	if (ret)
		return ret;

1436 1437
	ret = __i915_wait_request(req,
				  atomic_read(&dev_priv->gpu_error.reset_counter),
1438
				  interruptible, NULL, NULL);
1439 1440
	if (ret)
		return ret;
1441

1442
	__i915_gem_request_retire__upto(req);
1443 1444 1445
	return 0;
}

1446 1447 1448 1449
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1450
int
1451 1452 1453
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1454
	int ret, i;
1455

1456
	if (!obj->active)
1457 1458
		return 0;

1459 1460 1461 1462 1463
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1464

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
			i = obj->last_write_req->ring->id;
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
		RQ_BUG_ON(obj->active);
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
	int ring = req->ring->id;

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

	__i915_gem_request_retire__upto(req);
1500 1501
}

1502 1503 1504 1505 1506
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1507
					    struct intel_rps_client *rps,
1508 1509 1510 1511
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1512
	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1513
	unsigned reset_counter;
1514
	int ret, i, n = 0;
1515 1516 1517 1518

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1519
	if (!obj->active)
1520 1521
		return 0;

1522
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1523 1524 1525
	if (ret)
		return ret;

1526
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547

	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1548
	mutex_unlock(&dev->struct_mutex);
1549 1550
	for (i = 0; ret == 0 && i < n; i++)
		ret = __i915_wait_request(requests[i], reset_counter, true,
1551
					  NULL, rps);
1552 1553
	mutex_lock(&dev->struct_mutex);

1554 1555 1556 1557 1558 1559 1560
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1561 1562
}

1563 1564 1565 1566 1567 1568
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1569
/**
1570 1571
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1572 1573 1574
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1575
			  struct drm_file *file)
1576 1577
{
	struct drm_i915_gem_set_domain *args = data;
1578
	struct drm_i915_gem_object *obj;
1579 1580
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1581 1582
	int ret;

1583
	/* Only handle setting domains to types used by the CPU. */
1584
	if (write_domain & I915_GEM_GPU_DOMAINS)
1585 1586
		return -EINVAL;

1587
	if (read_domains & I915_GEM_GPU_DOMAINS)
1588 1589 1590 1591 1592 1593 1594 1595
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1596
	ret = i915_mutex_lock_interruptible(dev);
1597
	if (ret)
1598
		return ret;
1599

1600
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1601
	if (&obj->base == NULL) {
1602 1603
		ret = -ENOENT;
		goto unlock;
1604
	}
1605

1606 1607 1608 1609
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1610
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1611
							  to_rps_client(file),
1612
							  !write_domain);
1613 1614 1615
	if (ret)
		goto unref;

1616
	if (read_domains & I915_GEM_DOMAIN_GTT)
1617
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1618
	else
1619
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1620

1621 1622 1623 1624 1625
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj,
					write_domain == I915_GEM_DOMAIN_GTT ?
					ORIGIN_GTT : ORIGIN_CPU);

1626
unref:
1627
	drm_gem_object_unreference(&obj->base);
1628
unlock:
1629 1630 1631 1632 1633 1634 1635 1636 1637
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1638
			 struct drm_file *file)
1639 1640
{
	struct drm_i915_gem_sw_finish *args = data;
1641
	struct drm_i915_gem_object *obj;
1642 1643
	int ret = 0;

1644
	ret = i915_mutex_lock_interruptible(dev);
1645
	if (ret)
1646
		return ret;
1647

1648
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1649
	if (&obj->base == NULL) {
1650 1651
		ret = -ENOENT;
		goto unlock;
1652 1653 1654
	}

	/* Pinned buffers may be scanout, so flush the cache */
1655
	if (obj->pin_display)
1656
		i915_gem_object_flush_cpu_write_domain(obj);
1657

1658
	drm_gem_object_unreference(&obj->base);
1659
unlock:
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1680 1681 1682
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1683
		    struct drm_file *file)
1684 1685 1686 1687 1688
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1689 1690 1691 1692 1693 1694
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1695
	obj = drm_gem_object_lookup(dev, file, args->handle);
1696
	if (obj == NULL)
1697
		return -ENOENT;
1698

1699 1700 1701 1702 1703 1704 1705 1706
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1707
	addr = vm_mmap(obj->filp, 0, args->size,
1708 1709
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1723
	drm_gem_object_unreference_unlocked(obj);
1724 1725 1726 1727 1728 1729 1730 1731
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1750 1751
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1752
	struct drm_i915_private *dev_priv = dev->dev_private;
1753
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1754 1755 1756
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1757
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1758

1759 1760
	intel_runtime_pm_get(dev_priv);

1761 1762 1763 1764
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1765 1766 1767
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1768

C
Chris Wilson 已提交
1769 1770
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1771 1772 1773 1774 1775 1776 1777 1778 1779
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1780 1781
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1782
		ret = -EFAULT;
1783 1784 1785
		goto unlock;
	}

1786
	/* Use a partial view if the object is bigger than the aperture. */
1787 1788
	if (obj->base.size >= dev_priv->gtt.mappable_end &&
	    obj->tiling_mode == I915_TILING_NONE) {
1789
		static const unsigned int chunk_size = 256; // 1 MiB
1790

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1803 1804
	if (ret)
		goto unlock;
1805

1806 1807 1808
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1809

1810
	ret = i915_gem_object_get_fence(obj);
1811
	if (ret)
1812
		goto unpin;
1813

1814
	/* Finally, remap it using the new GTT offset */
1815 1816
	pfn = dev_priv->gtt.mappable_base +
		i915_gem_obj_ggtt_offset_view(obj, &view);
1817
	pfn >>= PAGE_SHIFT;
1818

1819 1820 1821 1822 1823 1824 1825 1826 1827
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1828

1829 1830
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1831 1832 1833 1834 1835
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1857
unpin:
1858
	i915_gem_object_ggtt_unpin_view(obj, &view);
1859
unlock:
1860
	mutex_unlock(&dev->struct_mutex);
1861
out:
1862
	switch (ret) {
1863
	case -EIO:
1864 1865 1866 1867 1868 1869 1870
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1871 1872 1873
			ret = VM_FAULT_SIGBUS;
			break;
		}
1874
	case -EAGAIN:
D
Daniel Vetter 已提交
1875 1876 1877 1878
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1879
		 */
1880 1881
	case 0:
	case -ERESTARTSYS:
1882
	case -EINTR:
1883 1884 1885 1886 1887
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1888 1889
		ret = VM_FAULT_NOPAGE;
		break;
1890
	case -ENOMEM:
1891 1892
		ret = VM_FAULT_OOM;
		break;
1893
	case -ENOSPC:
1894
	case -EFAULT:
1895 1896
		ret = VM_FAULT_SIGBUS;
		break;
1897
	default:
1898
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1899 1900
		ret = VM_FAULT_SIGBUS;
		break;
1901
	}
1902 1903 1904

	intel_runtime_pm_put(dev_priv);
	return ret;
1905 1906
}

1907 1908 1909 1910
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1911
 * Preserve the reservation of the mmapping with the DRM core code, but
1912 1913 1914 1915 1916 1917 1918 1919 1920
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1921
void
1922
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1923
{
1924 1925
	if (!obj->fault_mappable)
		return;
1926

1927 1928
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1929
	obj->fault_mappable = false;
1930 1931
}

1932 1933 1934 1935 1936 1937 1938 1939 1940
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1941
uint32_t
1942
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1943
{
1944
	uint32_t gtt_size;
1945 1946

	if (INTEL_INFO(dev)->gen >= 4 ||
1947 1948
	    tiling_mode == I915_TILING_NONE)
		return size;
1949 1950 1951

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1952
		gtt_size = 1024*1024;
1953
	else
1954
		gtt_size = 512*1024;
1955

1956 1957
	while (gtt_size < size)
		gtt_size <<= 1;
1958

1959
	return gtt_size;
1960 1961
}

1962 1963 1964 1965 1966
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1967
 * potential fence register mapping.
1968
 */
1969 1970 1971
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1972 1973 1974 1975 1976
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1977
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1978
	    tiling_mode == I915_TILING_NONE)
1979 1980
		return 4096;

1981 1982 1983 1984
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1985
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1986 1987
}

1988 1989 1990 1991 1992
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1993
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1994 1995
		return 0;

1996 1997
	dev_priv->mm.shrinker_no_lock_stealing = true;

1998 1999
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2000
		goto out;
2001 2002 2003 2004 2005 2006 2007 2008

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2009 2010 2011 2012 2013
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2014 2015
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2016
		goto out;
2017 2018

	i915_gem_shrink_all(dev_priv);
2019 2020 2021 2022 2023
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2024 2025 2026 2027 2028 2029 2030
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2031
int
2032 2033
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2034
		  uint32_t handle,
2035
		  uint64_t *offset)
2036
{
2037
	struct drm_i915_gem_object *obj;
2038 2039
	int ret;

2040
	ret = i915_mutex_lock_interruptible(dev);
2041
	if (ret)
2042
		return ret;
2043

2044
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2045
	if (&obj->base == NULL) {
2046 2047 2048
		ret = -ENOENT;
		goto unlock;
	}
2049

2050
	if (obj->madv != I915_MADV_WILLNEED) {
2051
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2052
		ret = -EFAULT;
2053
		goto out;
2054 2055
	}

2056 2057 2058
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2059

2060
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2061

2062
out:
2063
	drm_gem_object_unreference(&obj->base);
2064
unlock:
2065
	mutex_unlock(&dev->struct_mutex);
2066
	return ret;
2067 2068
}

2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2090
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2091 2092
}

D
Daniel Vetter 已提交
2093 2094 2095
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2096
{
2097
	i915_gem_object_free_mmap_offset(obj);
2098

2099 2100
	if (obj->base.filp == NULL)
		return;
2101

D
Daniel Vetter 已提交
2102 2103 2104 2105 2106
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2107
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2108 2109
	obj->madv = __I915_MADV_PURGED;
}
2110

2111 2112 2113
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2114
{
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2129 2130
}

2131
static void
2132
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2133
{
2134 2135
	struct sg_page_iter sg_iter;
	int ret;
2136

2137
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2138

C
Chris Wilson 已提交
2139 2140 2141 2142 2143 2144
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
2145
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2146 2147 2148
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

2149
	if (i915_gem_object_needs_bit17_swizzle(obj))
2150 2151
		i915_gem_object_save_bit_17_swizzle(obj);

2152 2153
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2154

2155
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2156
		struct page *page = sg_page_iter_page(&sg_iter);
2157

2158
		if (obj->dirty)
2159
			set_page_dirty(page);
2160

2161
		if (obj->madv == I915_MADV_WILLNEED)
2162
			mark_page_accessed(page);
2163

2164
		page_cache_release(page);
2165
	}
2166
	obj->dirty = 0;
2167

2168 2169
	sg_free_table(obj->pages);
	kfree(obj->pages);
2170
}
C
Chris Wilson 已提交
2171

2172
int
2173 2174 2175 2176
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2177
	if (obj->pages == NULL)
2178 2179
		return 0;

2180 2181 2182
	if (obj->pages_pin_count)
		return -EBUSY;

2183
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2184

2185 2186 2187
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2188
	list_del(&obj->global_list);
2189

2190
	ops->put_pages(obj);
2191
	obj->pages = NULL;
2192

2193
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2194 2195 2196 2197

	return 0;
}

2198
static int
C
Chris Wilson 已提交
2199
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2200
{
C
Chris Wilson 已提交
2201
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2202 2203
	int page_count, i;
	struct address_space *mapping;
2204 2205
	struct sg_table *st;
	struct scatterlist *sg;
2206
	struct sg_page_iter sg_iter;
2207
	struct page *page;
2208
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2209
	gfp_t gfp;
2210

C
Chris Wilson 已提交
2211 2212 2213 2214 2215 2216 2217
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2218 2219 2220 2221
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2222
	page_count = obj->base.size / PAGE_SIZE;
2223 2224
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2225
		return -ENOMEM;
2226
	}
2227

2228 2229 2230 2231 2232
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2233
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2234
	gfp = mapping_gfp_mask(mapping);
2235
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2236
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2237 2238 2239
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2240 2241
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2242 2243 2244 2245 2246
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2247 2248 2249 2250 2251 2252 2253 2254
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2255
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2256 2257 2258
			if (IS_ERR(page))
				goto err_pages;
		}
2259 2260 2261 2262 2263 2264 2265 2266
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2267 2268 2269 2270 2271 2272 2273 2274 2275
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2276 2277 2278

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2279
	}
2280 2281 2282 2283
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2284 2285
	obj->pages = st;

2286
	if (i915_gem_object_needs_bit17_swizzle(obj))
2287 2288
		i915_gem_object_do_bit_17_swizzle(obj);

2289 2290 2291 2292
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2293 2294 2295
	return 0;

err_pages:
2296 2297
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2298
		page_cache_release(sg_page_iter_page(&sg_iter));
2299 2300
	sg_free_table(st);
	kfree(st);
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2314 2315
}

2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2330
	if (obj->pages)
2331 2332
		return 0;

2333
	if (obj->madv != I915_MADV_WILLNEED) {
2334
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2335
		return -EFAULT;
2336 2337
	}

2338 2339
	BUG_ON(obj->pages_pin_count);

2340 2341 2342 2343
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2344
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2345 2346 2347 2348

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2349
	return 0;
2350 2351
}

2352
void i915_vma_move_to_active(struct i915_vma *vma,
2353
			     struct drm_i915_gem_request *req)
2354
{
2355
	struct drm_i915_gem_object *obj = vma->obj;
2356 2357 2358
	struct intel_engine_cs *ring;

	ring = i915_gem_request_get_ring(req);
2359 2360

	/* Add a reference if we're newly entering the active list. */
2361
	if (obj->active == 0)
2362
		drm_gem_object_reference(&obj->base);
2363
	obj->active |= intel_ring_flag(ring);
2364

2365
	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2366
	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2367

2368
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2369 2370
}

2371 2372
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2373
{
2374 2375 2376 2377 2378
	RQ_BUG_ON(obj->last_write_req == NULL);
	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));

	i915_gem_request_assign(&obj->last_write_req, NULL);
	intel_fb_obj_flush(obj, true);
B
Ben Widawsky 已提交
2379 2380
}

2381
static void
2382
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2383
{
2384
	struct i915_vma *vma;
2385

2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
	RQ_BUG_ON(!(obj->active & (1 << ring)));

	list_del_init(&obj->ring_list[ring]);
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2398

2399 2400 2401
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2402
	}
2403

2404
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2405
	drm_gem_object_unreference(&obj->base);
2406 2407
}

2408
static int
2409
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2410
{
2411
	struct drm_i915_private *dev_priv = dev->dev_private;
2412
	struct intel_engine_cs *ring;
2413
	int ret, i, j;
2414

2415
	/* Carefully retire all requests without writing to the rings */
2416
	for_each_ring(ring, dev_priv, i) {
2417 2418 2419
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2420 2421
	}
	i915_gem_retire_requests(dev);
2422 2423

	/* Finally reset hw state */
2424
	for_each_ring(ring, dev_priv, i) {
2425
		intel_ring_init_seqno(ring, seqno);
2426

2427 2428
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2429
	}
2430

2431
	return 0;
2432 2433
}

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2460 2461
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2462
{
2463 2464 2465 2466
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2467
		int ret = i915_gem_init_seqno(dev, 0);
2468 2469
		if (ret)
			return ret;
2470

2471 2472
		dev_priv->next_seqno = 1;
	}
2473

2474
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2475
	return 0;
2476 2477
}

2478 2479 2480 2481 2482
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2483
void __i915_add_request(struct drm_i915_gem_request *request,
2484 2485
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2486
{
2487 2488
	struct intel_engine_cs *ring;
	struct drm_i915_private *dev_priv;
2489
	struct intel_ringbuffer *ringbuf;
2490
	u32 request_start;
2491 2492
	int ret;

2493
	if (WARN_ON(request == NULL))
2494
		return;
2495

2496 2497 2498 2499
	ring = request->ring;
	dev_priv = ring->dev->dev_private;
	ringbuf = request->ringbuf;

2500 2501 2502 2503 2504 2505 2506
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	intel_ring_reserved_space_use(ringbuf);

2507
	request_start = intel_ring_get_tail(ringbuf);
2508 2509 2510 2511 2512 2513 2514
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2515 2516
	if (flush_caches) {
		if (i915.enable_execlists)
2517
			ret = logical_ring_flush_all_caches(request);
2518
		else
2519
			ret = intel_ring_flush_all_caches(request);
2520 2521 2522
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2523

2524 2525 2526 2527 2528
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2529
	request->postfix = intel_ring_get_tail(ringbuf);
2530

2531
	if (i915.enable_execlists)
2532
		ret = ring->emit_request(request);
2533
	else {
2534
		ret = ring->add_request(request);
2535 2536

		request->tail = intel_ring_get_tail(ringbuf);
2537
	}
2538 2539
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2540

2541 2542 2543 2544 2545 2546 2547 2548
	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2549
	request->batch_obj = obj;
2550

2551
	request->emitted_jiffies = jiffies;
2552
	list_add_tail(&request->list, &ring->request_list);
2553

2554
	trace_i915_gem_request_add(request);
C
Chris Wilson 已提交
2555

2556
	i915_queue_hangcheck(ring->dev);
2557

2558 2559 2560 2561
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2562

2563 2564
	/* Sanity check that the reserved size was large enough. */
	intel_ring_reserved_space_end(ringbuf);
2565 2566
}

2567
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2568
				   const struct intel_context *ctx)
2569
{
2570
	unsigned long elapsed;
2571

2572 2573 2574
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2575 2576
		return true;

2577 2578
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2579
		if (!i915_gem_context_is_default(ctx)) {
2580
			DRM_DEBUG("context hanging too fast, banning!\n");
2581
			return true;
2582 2583 2584
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2585
			return true;
2586
		}
2587 2588 2589 2590 2591
	}

	return false;
}

2592
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2593
				  struct intel_context *ctx,
2594
				  const bool guilty)
2595
{
2596 2597 2598 2599
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2600

2601 2602 2603
	hs = &ctx->hang_stats;

	if (guilty) {
2604
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2605 2606 2607 2608
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2609 2610 2611
	}
}

2612 2613 2614 2615 2616 2617
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2618 2619 2620
	if (req->file_priv)
		i915_gem_request_remove_from_client(req);

2621 2622
	if (ctx) {
		if (i915.enable_execlists) {
2623 2624
			if (ctx != req->ring->default_context)
				intel_lr_context_unpin(req);
2625
		}
2626

2627 2628
		i915_gem_context_unreference(ctx);
	}
2629

2630
	kmem_cache_free(req->i915->requests, req);
2631 2632
}

2633
int i915_gem_request_alloc(struct intel_engine_cs *ring,
2634 2635
			   struct intel_context *ctx,
			   struct drm_i915_gem_request **req_out)
2636
{
2637
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
D
Daniel Vetter 已提交
2638
	struct drm_i915_gem_request *req;
2639 2640
	int ret;

2641 2642 2643
	if (!req_out)
		return -EINVAL;

2644
	*req_out = NULL;
2645

D
Daniel Vetter 已提交
2646 2647
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2648 2649
		return -ENOMEM;

D
Daniel Vetter 已提交
2650
	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2651 2652
	if (ret)
		goto err;
2653

2654 2655
	kref_init(&req->ref);
	req->i915 = dev_priv;
D
Daniel Vetter 已提交
2656
	req->ring = ring;
2657 2658
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
2659 2660

	if (i915.enable_execlists)
2661
		ret = intel_logical_ring_alloc_request_extras(req);
2662
	else
D
Daniel Vetter 已提交
2663
		ret = intel_ring_alloc_request_extras(req);
2664 2665
	if (ret) {
		i915_gem_context_unreference(req->ctx);
2666
		goto err;
2667
	}
2668

2669 2670 2671 2672 2673 2674 2675
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
	if (i915.enable_execlists)
		ret = intel_logical_ring_reserve_space(req);
	else
		ret = intel_ring_reserve_space(req);
	if (ret) {
		/*
		 * At this point, the request is fully allocated even if not
		 * fully prepared. Thus it can be cleaned up using the proper
		 * free code.
		 */
		i915_gem_request_cancel(req);
		return ret;
	}
2689

2690
	*req_out = req;
2691
	return 0;
2692 2693 2694 2695

err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2696 2697
}

2698 2699 2700 2701 2702 2703 2704
void i915_gem_request_cancel(struct drm_i915_gem_request *req)
{
	intel_ring_reserved_space_cancel(req->ringbuf);

	i915_gem_request_unreference(req);
}

2705
struct drm_i915_gem_request *
2706
i915_gem_find_active_request(struct intel_engine_cs *ring)
2707
{
2708 2709 2710
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2711
		if (i915_gem_request_completed(request, false))
2712
			continue;
2713

2714
		return request;
2715
	}
2716 2717 2718 2719 2720

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2721
				       struct intel_engine_cs *ring)
2722 2723 2724 2725
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2726
	request = i915_gem_find_active_request(ring);
2727 2728 2729 2730 2731 2732

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2733
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2734 2735

	list_for_each_entry_continue(request, &ring->request_list, list)
2736
		i915_set_reset_status(dev_priv, request->ctx, false);
2737
}
2738

2739
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2740
					struct intel_engine_cs *ring)
2741
{
2742
	while (!list_empty(&ring->active_list)) {
2743
		struct drm_i915_gem_object *obj;
2744

2745 2746
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
2747
				       ring_list[ring->id]);
2748

2749
		i915_gem_object_retire__read(obj, ring->id);
2750
	}
2751

2752 2753 2754 2755 2756 2757
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
2758
		struct drm_i915_gem_request *submit_req;
2759 2760

		submit_req = list_first_entry(&ring->execlist_queue,
2761
				struct drm_i915_gem_request,
2762 2763
				execlist_link);
		list_del(&submit_req->execlist_link);
2764 2765

		if (submit_req->ctx != ring->default_context)
2766
			intel_lr_context_unpin(submit_req);
2767

2768
		i915_gem_request_unreference(submit_req);
2769 2770
	}

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

2785
		i915_gem_request_retire(request);
2786
	}
2787 2788
}

2789
void i915_gem_restore_fences(struct drm_device *dev)
2790 2791 2792 2793
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2794
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2795
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2796

2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2807 2808 2809
	}
}

2810
void i915_gem_reset(struct drm_device *dev)
2811
{
2812
	struct drm_i915_private *dev_priv = dev->dev_private;
2813
	struct intel_engine_cs *ring;
2814
	int i;
2815

2816 2817 2818 2819 2820 2821 2822 2823
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2824
	for_each_ring(ring, dev_priv, i)
2825
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2826

2827 2828
	i915_gem_context_reset(dev);

2829
	i915_gem_restore_fences(dev);
2830 2831

	WARN_ON(i915_verify_lists(dev));
2832 2833 2834 2835 2836
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2837
void
2838
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2839
{
C
Chris Wilson 已提交
2840
	WARN_ON(i915_verify_lists(ring->dev));
2841

2842 2843 2844 2845
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2846
	 */
2847
	while (!list_empty(&ring->request_list)) {
2848 2849
		struct drm_i915_gem_request *request;

2850
		request = list_first_entry(&ring->request_list,
2851 2852 2853
					   struct drm_i915_gem_request,
					   list);

2854
		if (!i915_gem_request_completed(request, true))
2855 2856
			break;

2857
		i915_gem_request_retire(request);
2858
	}
2859

2860 2861 2862 2863 2864 2865 2866 2867 2868
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
2869
				      ring_list[ring->id]);
2870

2871
		if (!list_empty(&obj->last_read_req[ring->id]->list))
2872 2873
			break;

2874
		i915_gem_object_retire__read(obj, ring->id);
2875 2876
	}

2877 2878
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2879
		ring->irq_put(ring);
2880
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2881
	}
2882

C
Chris Wilson 已提交
2883
	WARN_ON(i915_verify_lists(ring->dev));
2884 2885
}

2886
bool
2887 2888
i915_gem_retire_requests(struct drm_device *dev)
{
2889
	struct drm_i915_private *dev_priv = dev->dev_private;
2890
	struct intel_engine_cs *ring;
2891
	bool idle = true;
2892
	int i;
2893

2894
	for_each_ring(ring, dev_priv, i) {
2895
		i915_gem_retire_requests_ring(ring);
2896
		idle &= list_empty(&ring->request_list);
2897 2898 2899 2900 2901 2902 2903 2904 2905
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2906 2907 2908 2909 2910 2911 2912 2913
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2914 2915
}

2916
static void
2917 2918
i915_gem_retire_work_handler(struct work_struct *work)
{
2919 2920 2921
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2922
	bool idle;
2923

2924
	/* Come back later if the device is busy... */
2925 2926 2927 2928
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2929
	}
2930
	if (!idle)
2931 2932
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2933
}
2934

2935 2936 2937 2938 2939
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2940
	struct drm_device *dev = dev_priv->dev;
2941 2942
	struct intel_engine_cs *ring;
	int i;
2943

2944 2945 2946
	for_each_ring(ring, dev_priv, i)
		if (!list_empty(&ring->request_list))
			return;
2947 2948 2949 2950 2951 2952 2953 2954 2955

	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
		struct intel_engine_cs *ring;
		int i;

		for_each_ring(ring, dev_priv, i)
			i915_gem_batch_pool_fini(&ring->batch_pool);
2956

2957 2958
		mutex_unlock(&dev->struct_mutex);
	}
2959 2960
}

2961 2962 2963 2964 2965 2966 2967 2968
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2969
	int i;
2970 2971 2972

	if (!obj->active)
		return 0;
2973

2974 2975
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct drm_i915_gem_request *req;
2976

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

		if (list_empty(&req->list))
			goto retire;

		if (i915_gem_request_completed(req, true)) {
			__i915_gem_request_retire__upto(req);
retire:
			i915_gem_object_retire__read(obj, i);
		}
2989 2990 2991 2992 2993
	}

	return 0;
}

2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
3019
	struct drm_i915_private *dev_priv = dev->dev_private;
3020 3021
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3022
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3023
	unsigned reset_counter;
3024 3025
	int i, n = 0;
	int ret;
3026

3027 3028 3029
	if (args->flags != 0)
		return -EINVAL;

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3040 3041
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3042 3043 3044
	if (ret)
		goto out;

3045
	if (!obj->active)
3046
		goto out;
3047 3048

	/* Do this after OLR check to make sure we make forward progress polling
3049
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3050
	 */
3051
	if (args->timeout_ns == 0) {
3052 3053 3054 3055 3056
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3057
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3058 3059 3060 3061 3062 3063 3064 3065

	for (i = 0; i < I915_NUM_RINGS; i++) {
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3066 3067
	mutex_unlock(&dev->struct_mutex);

3068 3069 3070 3071 3072 3073 3074
	for (i = 0; i < n; i++) {
		if (ret == 0)
			ret = __i915_wait_request(req[i], reset_counter, true,
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
						  file->driver_priv);
		i915_gem_request_unreference__unlocked(req[i]);
	}
3075
	return ret;
3076 3077 3078 3079 3080 3081 3082

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3083 3084 3085
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3086 3087
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3088 3089 3090 3091
{
	struct intel_engine_cs *from;
	int ret;

3092
	from = i915_gem_request_get_ring(from_req);
3093 3094 3095
	if (to == from)
		return 0;

3096
	if (i915_gem_request_completed(from_req, true))
3097 3098 3099
		return 0;

	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3100
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3101
		ret = __i915_wait_request(from_req,
3102 3103 3104 3105
					  atomic_read(&i915->gpu_error.reset_counter),
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3106 3107 3108
		if (ret)
			return ret;

3109
		i915_gem_object_retire_request(obj, from_req);
3110 3111
	} else {
		int idx = intel_ring_sync_index(from, to);
3112 3113 3114
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3115 3116 3117 3118

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3119 3120 3121 3122 3123 3124
		if (*to_req == NULL) {
			ret = i915_gem_request_alloc(to, to->default_context, to_req);
			if (ret)
				return ret;
		}

3125 3126
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3141 3142 3143 3144 3145
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3146 3147 3148
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3149 3150 3151
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3152
 * rather than a particular GPU ring. Conceptually we serialise writes
3153
 * between engines inside the GPU. We only allow one engine to write
3154 3155 3156 3157 3158 3159 3160 3161 3162
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3163
 *
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3174 3175
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3176 3177
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3178 3179
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3180
{
3181 3182 3183
	const bool readonly = obj->base.pending_write_domain == 0;
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
	int ret, i, n;
3184

3185
	if (!obj->active)
3186 3187
		return 0;

3188 3189
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3190

3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++)
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3201
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3202 3203 3204
		if (ret)
			return ret;
	}
3205

3206
	return 0;
3207 3208
}

3209 3210 3211 3212 3213 3214 3215
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3216 3217 3218
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3219 3220 3221
	/* Wait for any direct GTT access to complete */
	mb();

3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3233
int i915_vma_unbind(struct i915_vma *vma)
3234
{
3235
	struct drm_i915_gem_object *obj = vma->obj;
3236
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3237
	int ret;
3238

3239
	if (list_empty(&vma->vma_link))
3240 3241
		return 0;

3242 3243 3244 3245
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3246

B
Ben Widawsky 已提交
3247
	if (vma->pin_count)
3248
		return -EBUSY;
3249

3250 3251
	BUG_ON(obj->pages == NULL);

3252
	ret = i915_gem_object_wait_rendering(obj, false);
3253
	if (ret)
3254 3255 3256 3257 3258 3259
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3260 3261
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3262
		i915_gem_object_finish_gtt(obj);
3263

3264 3265 3266 3267 3268
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3269

3270
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3271

3272
	vma->vm->unbind_vma(vma);
3273
	vma->bound = 0;
3274

3275
	list_del_init(&vma->mm_list);
3276 3277 3278 3279 3280 3281 3282 3283 3284
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
			vma->ggtt_view.pages = NULL;
		}
	}
3285

B
Ben Widawsky 已提交
3286 3287 3288 3289
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3290
	 * no more VMAs exist. */
3291 3292
	if (list_empty(&obj->vma_list)) {
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3293
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3294
	}
3295

3296 3297 3298 3299 3300 3301
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3302
	return 0;
3303 3304
}

3305
int i915_gpu_idle(struct drm_device *dev)
3306
{
3307
	struct drm_i915_private *dev_priv = dev->dev_private;
3308
	struct intel_engine_cs *ring;
3309
	int ret, i;
3310 3311

	/* Flush everything onto the inactive list. */
3312
	for_each_ring(ring, dev_priv, i) {
3313
		if (!i915.enable_execlists) {
3314 3315 3316
			struct drm_i915_gem_request *req;

			ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3317 3318
			if (ret)
				return ret;
3319

3320
			ret = i915_switch_context(req);
3321 3322 3323 3324 3325
			if (ret) {
				i915_gem_request_cancel(req);
				return ret;
			}

3326
			i915_add_request_no_flush(req);
3327
		}
3328

3329
		ret = intel_ring_idle(ring);
3330 3331 3332
		if (ret)
			return ret;
	}
3333

3334
	WARN_ON(i915_verify_lists(dev));
3335
	return 0;
3336 3337
}

3338 3339
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3340
{
3341
	struct drm_i915_private *dev_priv = dev->dev_private;
3342 3343
	int fence_reg;
	int fence_pitch_shift;
3344

3345 3346 3347 3348 3349 3350 3351 3352
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3367
	if (obj) {
3368
		u32 size = i915_gem_obj_ggtt_size(obj);
3369
		uint64_t val;
3370

3371 3372 3373 3374 3375 3376 3377
		/* Adjust fence size to match tiled area */
		if (obj->tiling_mode != I915_TILING_NONE) {
			uint32_t row_size = obj->stride *
				(obj->tiling_mode == I915_TILING_Y ? 32 : 8);
			size = (size / row_size) * row_size;
		}

3378
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3379
				 0xfffff000) << 32;
3380
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3381
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3382 3383 3384
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3385

3386 3387 3388 3389 3390 3391 3392 3393 3394
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3395 3396
}

3397 3398
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3399
{
3400
	struct drm_i915_private *dev_priv = dev->dev_private;
3401
	u32 val;
3402

3403
	if (obj) {
3404
		u32 size = i915_gem_obj_ggtt_size(obj);
3405 3406
		int pitch_val;
		int tile_width;
3407

3408
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3409
		     (size & -size) != size ||
3410 3411 3412
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3413

3414 3415 3416 3417 3418 3419 3420 3421 3422
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3423
		val = i915_gem_obj_ggtt_offset(obj);
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3439 3440
}

3441 3442
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3443
{
3444
	struct drm_i915_private *dev_priv = dev->dev_private;
3445 3446
	uint32_t val;

3447
	if (obj) {
3448
		u32 size = i915_gem_obj_ggtt_size(obj);
3449
		uint32_t pitch_val;
3450

3451
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3452
		     (size & -size) != size ||
3453 3454 3455
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3456

3457 3458
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3459

3460
		val = i915_gem_obj_ggtt_offset(obj);
3461 3462 3463 3464 3465 3466 3467
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3468

3469 3470 3471 3472
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3473 3474 3475 3476 3477
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3478 3479 3480
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3481 3482 3483 3484 3485 3486 3487 3488
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3489 3490 3491 3492
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3493 3494 3495 3496 3497 3498
	if (IS_GEN2(dev))
		i830_write_fence_reg(dev, reg, obj);
	else if (IS_GEN3(dev))
		i915_write_fence_reg(dev, reg, obj);
	else if (INTEL_INFO(dev)->gen >= 4)
		i965_write_fence_reg(dev, reg, obj);
3499 3500 3501 3502 3503 3504

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3505 3506
}

3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3517
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3518 3519 3520
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3521 3522

	if (enable) {
3523
		obj->fence_reg = reg;
3524 3525 3526 3527 3528 3529 3530
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3531
	obj->fence_dirty = false;
3532 3533
}

3534
static int
3535
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3536
{
3537
	if (obj->last_fenced_req) {
3538
		int ret = i915_wait_request(obj->last_fenced_req);
3539 3540
		if (ret)
			return ret;
3541

3542
		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3543 3544 3545 3546 3547 3548 3549 3550
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3551
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3552
	struct drm_i915_fence_reg *fence;
3553 3554
	int ret;

3555
	ret = i915_gem_object_wait_fence(obj);
3556 3557 3558
	if (ret)
		return ret;

3559 3560
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3561

3562 3563
	fence = &dev_priv->fence_regs[obj->fence_reg];

3564 3565 3566
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3567
	i915_gem_object_fence_lost(obj);
3568
	i915_gem_object_update_fence(obj, fence, false);
3569 3570 3571 3572 3573

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3574
i915_find_fence_reg(struct drm_device *dev)
3575 3576
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3577
	struct drm_i915_fence_reg *reg, *avail;
3578
	int i;
3579 3580

	/* First try to find a free reg */
3581
	avail = NULL;
3582 3583 3584
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3585
			return reg;
3586

3587
		if (!reg->pin_count)
3588
			avail = reg;
3589 3590
	}

3591
	if (avail == NULL)
3592
		goto deadlock;
3593 3594

	/* None available, try to steal one or wait for a user to finish */
3595
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3596
		if (reg->pin_count)
3597 3598
			continue;

C
Chris Wilson 已提交
3599
		return reg;
3600 3601
	}

3602 3603 3604 3605 3606 3607
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3608 3609
}

3610
/**
3611
 * i915_gem_object_get_fence - set up fencing for an object
3612 3613 3614 3615 3616 3617 3618 3619 3620
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3621 3622
 *
 * For an untiled surface, this removes any existing fence.
3623
 */
3624
int
3625
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3626
{
3627
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3628
	struct drm_i915_private *dev_priv = dev->dev_private;
3629
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3630
	struct drm_i915_fence_reg *reg;
3631
	int ret;
3632

3633 3634 3635
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3636
	if (obj->fence_dirty) {
3637
		ret = i915_gem_object_wait_fence(obj);
3638 3639 3640
		if (ret)
			return ret;
	}
3641

3642
	/* Just update our place in the LRU if our fence is getting reused. */
3643 3644
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3645
		if (!obj->fence_dirty) {
3646 3647 3648 3649 3650
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3651 3652 3653
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3654
		reg = i915_find_fence_reg(dev);
3655 3656
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3657

3658 3659 3660
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3661
			ret = i915_gem_object_wait_fence(old);
3662 3663 3664
			if (ret)
				return ret;

3665
			i915_gem_object_fence_lost(old);
3666
		}
3667
	} else
3668 3669
		return 0;

3670 3671
	i915_gem_object_update_fence(obj, reg, enable);

3672
	return 0;
3673 3674
}

3675
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3676 3677
				     unsigned long cache_level)
{
3678
	struct drm_mm_node *gtt_space = &vma->node;
3679 3680
	struct drm_mm_node *other;

3681 3682 3683 3684 3685 3686
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3687
	 */
3688
	if (vma->vm->mm.color_adjust == NULL)
3689 3690
		return true;

3691
	if (!drm_mm_node_allocated(gtt_space))
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3708
/**
3709 3710
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3711
 */
3712
static struct i915_vma *
3713 3714
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3715
			   const struct i915_ggtt_view *ggtt_view,
3716
			   unsigned alignment,
3717
			   uint64_t flags)
3718
{
3719
	struct drm_device *dev = obj->base.dev;
3720
	struct drm_i915_private *dev_priv = dev->dev_private;
3721
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3722
	u64 start =
3723
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3724
	u64 end =
3725
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3726
	struct i915_vma *vma;
3727
	int ret;
3728

3729 3730 3731 3732 3733
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3734

3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3764

3765
	if (alignment == 0)
3766
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3767
						unfenced_alignment;
3768
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3769 3770 3771
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3772
		return ERR_PTR(-EINVAL);
3773 3774
	}

3775 3776 3777
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3778
	 */
3779
	if (size > end) {
3780
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%llu\n",
3781 3782
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3783
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3784
			  end);
3785
		return ERR_PTR(-E2BIG);
3786 3787
	}

3788
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3789
	if (ret)
3790
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3791

3792 3793
	i915_gem_object_pin_pages(obj);

3794 3795 3796
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3797
	if (IS_ERR(vma))
3798
		goto err_unpin;
B
Ben Widawsky 已提交
3799

3800
search_free:
3801
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3802
						  size, alignment,
3803 3804
						  obj->cache_level,
						  start, end,
3805 3806
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3807
	if (ret) {
3808
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3809 3810 3811
					       obj->cache_level,
					       start, end,
					       flags);
3812 3813
		if (ret == 0)
			goto search_free;
3814

3815
		goto err_free_vma;
3816
	}
3817
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3818
		ret = -EINVAL;
3819
		goto err_remove_node;
3820 3821
	}

3822
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3823
	if (ret)
3824
		goto err_remove_node;
3825

3826
	trace_i915_vma_bind(vma, flags);
3827
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3828 3829 3830
	if (ret)
		goto err_finish_gtt;

3831
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3832
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3833

3834
	return vma;
B
Ben Widawsky 已提交
3835

3836 3837
err_finish_gtt:
	i915_gem_gtt_finish_object(obj);
3838
err_remove_node:
3839
	drm_mm_remove_node(&vma->node);
3840
err_free_vma:
B
Ben Widawsky 已提交
3841
	i915_gem_vma_destroy(vma);
3842
	vma = ERR_PTR(ret);
3843
err_unpin:
B
Ben Widawsky 已提交
3844
	i915_gem_object_unpin_pages(obj);
3845
	return vma;
3846 3847
}

3848
bool
3849 3850
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3851 3852 3853 3854 3855
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3856
	if (obj->pages == NULL)
3857
		return false;
3858

3859 3860 3861 3862
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3863
	if (obj->stolen || obj->phys_handle)
3864
		return false;
3865

3866 3867 3868 3869 3870 3871 3872 3873
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3874 3875
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3876
		return false;
3877
	}
3878

C
Chris Wilson 已提交
3879
	trace_i915_gem_object_clflush(obj);
3880
	drm_clflush_sg(obj->pages);
3881
	obj->cache_dirty = false;
3882 3883

	return true;
3884 3885 3886 3887
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3888
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3889
{
C
Chris Wilson 已提交
3890 3891
	uint32_t old_write_domain;

3892
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3893 3894
		return;

3895
	/* No actual flushing is required for the GTT write domain.  Writes
3896 3897
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3898 3899 3900 3901
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3902
	 */
3903 3904
	wmb();

3905 3906
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3907

3908 3909
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3910
	trace_i915_gem_object_change_domain(obj,
3911
					    obj->base.read_domains,
C
Chris Wilson 已提交
3912
					    old_write_domain);
3913 3914 3915 3916
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3917
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3918
{
C
Chris Wilson 已提交
3919
	uint32_t old_write_domain;
3920

3921
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3922 3923
		return;

3924
	if (i915_gem_clflush_object(obj, obj->pin_display))
3925 3926
		i915_gem_chipset_flush(obj->base.dev);

3927 3928
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3929

3930 3931
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3932
	trace_i915_gem_object_change_domain(obj,
3933
					    obj->base.read_domains,
C
Chris Wilson 已提交
3934
					    old_write_domain);
3935 3936
}

3937 3938 3939 3940 3941 3942
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3943
int
3944
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3945
{
C
Chris Wilson 已提交
3946
	uint32_t old_write_domain, old_read_domains;
3947
	struct i915_vma *vma;
3948
	int ret;
3949

3950 3951 3952
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3953
	ret = i915_gem_object_wait_rendering(obj, !write);
3954 3955 3956
	if (ret)
		return ret;

3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3969
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3970

3971 3972 3973 3974 3975 3976 3977
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3978 3979
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3980

3981 3982 3983
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3984 3985
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3986
	if (write) {
3987 3988 3989
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3990 3991
	}

C
Chris Wilson 已提交
3992 3993 3994 3995
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3996
	/* And bump the LRU for this access */
3997 3998
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3999
		list_move_tail(&vma->mm_list,
4000
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
4001

4002 4003 4004
	return 0;
}

4005 4006 4007
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
4008
	struct drm_device *dev = obj->base.dev;
4009
	struct i915_vma *vma, *next;
4010 4011 4012 4013 4014
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
4015
	if (i915_gem_obj_is_pinned(obj)) {
4016 4017 4018 4019
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

4020
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4021
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4022
			ret = i915_vma_unbind(vma);
4023 4024 4025
			if (ret)
				return ret;
		}
4026 4027
	}

4028
	if (i915_gem_obj_bound_any(obj)) {
4029
		ret = i915_gem_object_wait_rendering(obj, false);
4030 4031 4032 4033 4034 4035 4036 4037 4038
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
4039
		if (INTEL_INFO(dev)->gen < 6) {
4040 4041 4042 4043 4044
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

4045
		list_for_each_entry(vma, &obj->vma_list, vma_link)
4046 4047
			if (drm_mm_node_allocated(&vma->node)) {
				ret = i915_vma_bind(vma, cache_level,
4048
						    PIN_UPDATE);
4049 4050 4051
				if (ret)
					return ret;
			}
4052 4053
	}

4054 4055 4056 4057
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

4058 4059 4060 4061 4062
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
4063 4064 4065 4066 4067
	}

	return 0;
}

B
Ben Widawsky 已提交
4068 4069
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4070
{
B
Ben Widawsky 已提交
4071
	struct drm_i915_gem_caching *args = data;
4072 4073 4074
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4075 4076
	if (&obj->base == NULL)
		return -ENOENT;
4077

4078 4079 4080 4081 4082 4083
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4084 4085 4086 4087
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4088 4089 4090 4091
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4092

4093 4094
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
4095 4096
}

B
Ben Widawsky 已提交
4097 4098
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4099
{
B
Ben Widawsky 已提交
4100
	struct drm_i915_gem_caching *args = data;
4101 4102 4103 4104
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
4105 4106
	switch (args->caching) {
	case I915_CACHING_NONE:
4107 4108
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4109
	case I915_CACHING_CACHED:
4110 4111
		level = I915_CACHE_LLC;
		break;
4112 4113 4114
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
4115 4116 4117 4118
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
4119 4120 4121 4122
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

4137
/*
4138 4139 4140
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4141 4142
 */
int
4143 4144
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4145
				     struct intel_engine_cs *pipelined,
4146
				     struct drm_i915_gem_request **pipelined_request,
4147
				     const struct i915_ggtt_view *view)
4148
{
4149
	u32 old_read_domains, old_write_domain;
4150 4151
	int ret;

4152
	ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
4153 4154
	if (ret)
		return ret;
4155

4156 4157 4158
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4159
	obj->pin_display++;
4160

4161 4162 4163 4164 4165 4166 4167 4168 4169
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4170 4171
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4172
	if (ret)
4173
		goto err_unpin_display;
4174

4175 4176 4177 4178
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4179 4180 4181
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4182
	if (ret)
4183
		goto err_unpin_display;
4184

4185
	i915_gem_object_flush_cpu_write_domain(obj);
4186

4187
	old_write_domain = obj->base.write_domain;
4188
	old_read_domains = obj->base.read_domains;
4189 4190 4191 4192

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4193
	obj->base.write_domain = 0;
4194
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4195 4196 4197

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4198
					    old_write_domain);
4199 4200

	return 0;
4201 4202

err_unpin_display:
4203
	obj->pin_display--;
4204 4205 4206 4207
	return ret;
}

void
4208 4209
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4210
{
4211 4212 4213
	if (WARN_ON(obj->pin_display == 0))
		return;

4214 4215
	i915_gem_object_ggtt_unpin_view(obj, view);

4216
	obj->pin_display--;
4217 4218
}

4219 4220 4221 4222 4223 4224
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4225
int
4226
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4227
{
C
Chris Wilson 已提交
4228
	uint32_t old_write_domain, old_read_domains;
4229 4230
	int ret;

4231 4232 4233
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4234
	ret = i915_gem_object_wait_rendering(obj, !write);
4235 4236 4237
	if (ret)
		return ret;

4238
	i915_gem_object_flush_gtt_write_domain(obj);
4239

4240 4241
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4242

4243
	/* Flush the CPU cache if it's still invalid. */
4244
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4245
		i915_gem_clflush_object(obj, false);
4246

4247
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4248 4249 4250 4251 4252
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4253
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4254 4255 4256 4257 4258

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4259 4260
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4261
	}
4262

C
Chris Wilson 已提交
4263 4264 4265 4266
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4267 4268 4269
	return 0;
}

4270 4271 4272
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4273 4274 4275 4276
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4277 4278 4279
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4280
static int
4281
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4282
{
4283 4284
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4285
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4286
	struct drm_i915_gem_request *request, *target = NULL;
4287
	unsigned reset_counter;
4288
	int ret;
4289

4290 4291 4292 4293 4294 4295 4296
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4297

4298
	spin_lock(&file_priv->mm.lock);
4299
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4300 4301
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4302

4303 4304 4305 4306 4307 4308 4309
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4310
		target = request;
4311
	}
4312
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4313 4314
	if (target)
		i915_gem_request_reference(target);
4315
	spin_unlock(&file_priv->mm.lock);
4316

4317
	if (target == NULL)
4318
		return 0;
4319

4320
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4321 4322
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4323

4324
	i915_gem_request_unreference__unlocked(target);
4325

4326 4327 4328
	return ret;
}

4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4348 4349 4350 4351 4352 4353
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4354
{
4355
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4356
	struct i915_vma *vma;
4357
	unsigned bound;
4358 4359
	int ret;

4360 4361 4362
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4363
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4364
		return -EINVAL;
4365

4366 4367 4368
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4369 4370 4371 4372 4373 4374 4375 4376 4377
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

	if (IS_ERR(vma))
		return PTR_ERR(vma);

4378
	if (vma) {
B
Ben Widawsky 已提交
4379 4380 4381
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4382
		if (i915_vma_misplaced(vma, alignment, flags)) {
4383
			unsigned long offset;
4384
			offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4385
					     i915_gem_obj_offset(obj, vm);
B
Ben Widawsky 已提交
4386
			WARN(vma->pin_count,
4387
			     "bo is already pinned in %s with incorrect alignment:"
4388
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4389
			     " obj->map_and_fenceable=%d\n",
4390 4391
			     ggtt_view ? "ggtt" : "ppgtt",
			     offset,
4392
			     alignment,
4393
			     !!(flags & PIN_MAPPABLE),
4394
			     obj->map_and_fenceable);
4395
			ret = i915_vma_unbind(vma);
4396 4397
			if (ret)
				return ret;
4398 4399

			vma = NULL;
4400 4401 4402
		}
	}

4403
	bound = vma ? vma->bound : 0;
4404
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4405 4406
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4407 4408
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4409 4410
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4411 4412 4413
		if (ret)
			return ret;
	}
4414

4415 4416
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

4431
		mappable = (vma->node.start + fence_size <=
4432 4433 4434 4435
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;

4436 4437
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4438

4439
	vma->pin_count++;
4440 4441 4442
	return 0;
}

4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
	if (WARN_ONCE(!view, "no view specified"))
		return -EINVAL;

	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4464
				      alignment, flags | PIN_GLOBAL);
4465 4466
}

4467
void
4468 4469
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4470
{
4471
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4472

B
Ben Widawsky 已提交
4473
	BUG_ON(!vma);
4474
	WARN_ON(vma->pin_count == 0);
4475
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4476

4477
	--vma->pin_count;
4478 4479
}

4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4506 4507
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4508
		    struct drm_file *file)
4509 4510
{
	struct drm_i915_gem_busy *args = data;
4511
	struct drm_i915_gem_object *obj;
4512 4513
	int ret;

4514
	ret = i915_mutex_lock_interruptible(dev);
4515
	if (ret)
4516
		return ret;
4517

4518
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4519
	if (&obj->base == NULL) {
4520 4521
		ret = -ENOENT;
		goto unlock;
4522
	}
4523

4524 4525 4526 4527
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4528
	 */
4529
	ret = i915_gem_object_flush_active(obj);
4530 4531
	if (ret)
		goto unref;
4532

4533 4534 4535 4536
	BUILD_BUG_ON(I915_NUM_RINGS > 16);
	args->busy = obj->active << 16;
	if (obj->last_write_req)
		args->busy |= obj->last_write_req->ring->id;
4537

4538
unref:
4539
	drm_gem_object_unreference(&obj->base);
4540
unlock:
4541
	mutex_unlock(&dev->struct_mutex);
4542
	return ret;
4543 4544 4545 4546 4547 4548
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4549
	return i915_gem_ring_throttle(dev, file_priv);
4550 4551
}

4552 4553 4554 4555
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4556
	struct drm_i915_private *dev_priv = dev->dev_private;
4557
	struct drm_i915_gem_madvise *args = data;
4558
	struct drm_i915_gem_object *obj;
4559
	int ret;
4560 4561 4562 4563 4564 4565 4566 4567 4568

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4569 4570 4571 4572
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4573
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4574
	if (&obj->base == NULL) {
4575 4576
		ret = -ENOENT;
		goto unlock;
4577 4578
	}

B
Ben Widawsky 已提交
4579
	if (i915_gem_obj_is_pinned(obj)) {
4580 4581
		ret = -EINVAL;
		goto out;
4582 4583
	}

4584 4585 4586 4587 4588 4589 4590 4591 4592
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4593 4594
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4595

C
Chris Wilson 已提交
4596
	/* if the object is no longer attached, discard its backing storage */
4597
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4598 4599
		i915_gem_object_truncate(obj);

4600
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4601

4602
out:
4603
	drm_gem_object_unreference(&obj->base);
4604
unlock:
4605
	mutex_unlock(&dev->struct_mutex);
4606
	return ret;
4607 4608
}

4609 4610
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4611
{
4612 4613
	int i;

4614
	INIT_LIST_HEAD(&obj->global_list);
4615 4616
	for (i = 0; i < I915_NUM_RINGS; i++)
		INIT_LIST_HEAD(&obj->ring_list[i]);
4617
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4618
	INIT_LIST_HEAD(&obj->vma_list);
4619
	INIT_LIST_HEAD(&obj->batch_pool_link);
4620

4621 4622
	obj->ops = ops;

4623 4624 4625 4626 4627 4628
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4629 4630 4631 4632 4633
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4634 4635
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4636
{
4637
	struct drm_i915_gem_object *obj;
4638
	struct address_space *mapping;
D
Daniel Vetter 已提交
4639
	gfp_t mask;
4640

4641
	obj = i915_gem_object_alloc(dev);
4642 4643
	if (obj == NULL)
		return NULL;
4644

4645
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4646
		i915_gem_object_free(obj);
4647 4648
		return NULL;
	}
4649

4650 4651 4652 4653 4654 4655 4656
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4657
	mapping = file_inode(obj->base.filp)->i_mapping;
4658
	mapping_set_gfp_mask(mapping, mask);
4659

4660
	i915_gem_object_init(obj, &i915_gem_object_ops);
4661

4662 4663
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4664

4665 4666
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4682 4683
	trace_i915_gem_object_create(obj);

4684
	return obj;
4685 4686
}

4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4711
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4712
{
4713
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4714
	struct drm_device *dev = obj->base.dev;
4715
	struct drm_i915_private *dev_priv = dev->dev_private;
4716
	struct i915_vma *vma, *next;
4717

4718 4719
	intel_runtime_pm_get(dev_priv);

4720 4721
	trace_i915_gem_object_destroy(obj);

4722
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4723 4724 4725 4726
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4727 4728
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4729

4730 4731
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4732

4733
			WARN_ON(i915_vma_unbind(vma));
4734

4735 4736
			dev_priv->mm.interruptible = was_interruptible;
		}
4737 4738
	}

B
Ben Widawsky 已提交
4739 4740 4741 4742 4743
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4744 4745
	WARN_ON(obj->frontbuffer_bits);

4746 4747 4748 4749 4750
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4751 4752
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4753
	if (discard_backing_storage(obj))
4754
		obj->madv = I915_MADV_DONTNEED;
4755
	i915_gem_object_put_pages(obj);
4756
	i915_gem_object_free_mmap_offset(obj);
4757

4758 4759
	BUG_ON(obj->pages);

4760 4761
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4762

4763 4764 4765
	if (obj->ops->release)
		obj->ops->release(obj);

4766 4767
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4768

4769
	kfree(obj->bit_17);
4770
	i915_gem_object_free(obj);
4771 4772

	intel_runtime_pm_put(dev_priv);
4773 4774
}

4775 4776
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4777 4778
{
	struct i915_vma *vma;
4779 4780 4781 4782 4783
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4784
			return vma;
4785 4786 4787 4788 4789 4790 4791 4792 4793
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
	struct i915_vma *vma;
4794

4795 4796 4797 4798
	if (WARN_ONCE(!view, "no view specified"))
		return ERR_PTR(-EINVAL);

	list_for_each_entry(vma, &obj->vma_list, vma_link)
4799 4800
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4801
			return vma;
4802 4803 4804
	return NULL;
}

B
Ben Widawsky 已提交
4805 4806
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4807
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4808
	WARN_ON(vma->node.allocated);
4809 4810 4811 4812 4813

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4814 4815
	vm = vma->vm;

4816 4817
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4818

4819
	list_del(&vma->vma_link);
4820

4821
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4822 4823
}

4824 4825 4826 4827
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4828
	struct intel_engine_cs *ring;
4829 4830 4831
	int i;

	for_each_ring(ring, dev_priv, i)
4832
		dev_priv->gt.stop_ring(ring);
4833 4834
}

4835
int
4836
i915_gem_suspend(struct drm_device *dev)
4837
{
4838
	struct drm_i915_private *dev_priv = dev->dev_private;
4839
	int ret = 0;
4840

4841
	mutex_lock(&dev->struct_mutex);
4842
	ret = i915_gpu_idle(dev);
4843
	if (ret)
4844
		goto err;
4845

4846
	i915_gem_retire_requests(dev);
4847

4848
	i915_gem_stop_ringbuffers(dev);
4849 4850
	mutex_unlock(&dev->struct_mutex);

4851
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4852
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4853
	flush_delayed_work(&dev_priv->mm.idle_work);
4854

4855 4856 4857 4858 4859
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4860
	return 0;
4861 4862 4863 4864

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4865 4866
}

4867
int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
B
Ben Widawsky 已提交
4868
{
4869
	struct intel_engine_cs *ring = req->ring;
4870
	struct drm_device *dev = ring->dev;
4871
	struct drm_i915_private *dev_priv = dev->dev_private;
4872 4873
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4874
	int i, ret;
B
Ben Widawsky 已提交
4875

4876
	if (!HAS_L3_DPF(dev) || !remap_info)
4877
		return 0;
B
Ben Widawsky 已提交
4878

4879
	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4880 4881
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4882

4883 4884 4885 4886 4887
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4888
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4889 4890 4891
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4892 4893
	}

4894
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4895

4896
	return ret;
B
Ben Widawsky 已提交
4897 4898
}

4899 4900
void i915_gem_init_swizzling(struct drm_device *dev)
{
4901
	struct drm_i915_private *dev_priv = dev->dev_private;
4902

4903
	if (INTEL_INFO(dev)->gen < 5 ||
4904 4905 4906 4907 4908 4909
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4910 4911 4912
	if (IS_GEN5(dev))
		return;

4913 4914
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4915
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4916
	else if (IS_GEN7(dev))
4917
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4918 4919
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4920 4921
	else
		BUG();
4922
}
D
Daniel Vetter 已提交
4923

4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4967
int i915_gem_init_rings(struct drm_device *dev)
4968
{
4969
	struct drm_i915_private *dev_priv = dev->dev_private;
4970
	int ret;
4971

4972
	ret = intel_init_render_ring_buffer(dev);
4973
	if (ret)
4974
		return ret;
4975 4976

	if (HAS_BSD(dev)) {
4977
		ret = intel_init_bsd_ring_buffer(dev);
4978 4979
		if (ret)
			goto cleanup_render_ring;
4980
	}
4981

4982
	if (intel_enable_blt(dev)) {
4983 4984 4985 4986 4987
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4988 4989 4990 4991 4992 4993
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4994 4995 4996 4997 4998
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4999

5000
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
5001
	if (ret)
5002
		goto cleanup_bsd2_ring;
5003 5004 5005

	return 0;

5006 5007
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
5008 5009
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
5023
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
5024
	struct intel_engine_cs *ring;
5025
	int ret, i, j;
5026 5027 5028 5029

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

5030 5031 5032
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

B
Ben Widawsky 已提交
5033
	if (dev_priv->ellc_size)
5034
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5035

5036 5037 5038
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5039

5040
	if (HAS_PCH_NOP(dev)) {
5041 5042 5043 5044 5045 5046 5047 5048 5049
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5050 5051
	}

5052 5053
	i915_gem_init_swizzling(dev);

5054 5055 5056 5057 5058 5059 5060 5061
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

5062 5063
	BUG_ON(!dev_priv->ring[RCS].default_context);

5064 5065 5066 5067 5068 5069 5070
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
D
Daniel Vetter 已提交
5071 5072 5073
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
5074
			goto out;
D
Daniel Vetter 已提交
5075
	}
5076

5077 5078
	/* Now it is safe to go back round and do everything else: */
	for_each_ring(ring, dev_priv, i) {
5079 5080
		struct drm_i915_gem_request *req;

5081 5082
		WARN_ON(!ring->default_context);

5083 5084 5085 5086 5087 5088
		ret = i915_gem_request_alloc(ring, ring->default_context, &req);
		if (ret) {
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}

5089 5090
		if (ring->id == RCS) {
			for (j = 0; j < NUM_L3_SLICES(dev); j++)
5091
				i915_gem_l3_remap(req, j);
5092
		}
5093

5094
		ret = i915_ppgtt_init_ring(req);
5095 5096
		if (ret && ret != -EIO) {
			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
5097
			i915_gem_request_cancel(req);
5098 5099 5100
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}
5101

5102
		ret = i915_gem_context_enable(req);
5103 5104
		if (ret && ret != -EIO) {
			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
5105
			i915_gem_request_cancel(req);
5106 5107 5108
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}
5109

5110
		i915_add_request_no_flush(req);
5111
	}
D
Daniel Vetter 已提交
5112

5113 5114
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5115
	return ret;
5116 5117
}

5118 5119 5120 5121 5122
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

5123 5124 5125
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

5126
	mutex_lock(&dev->struct_mutex);
5127 5128 5129

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
5130 5131 5132
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
5133 5134 5135
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

5136
	if (!i915.enable_execlists) {
5137
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5138 5139 5140
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5141
	} else {
5142
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5143 5144 5145
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
5146 5147
	}

5148 5149 5150 5151 5152 5153 5154 5155
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5156
	ret = i915_gem_init_userptr(dev);
5157 5158
	if (ret)
		goto out_unlock;
5159

5160
	i915_gem_init_global_gtt(dev);
5161

5162
	ret = i915_gem_context_init(dev);
5163 5164
	if (ret)
		goto out_unlock;
5165

D
Daniel Vetter 已提交
5166 5167
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
5168
		goto out_unlock;
5169

5170
	ret = i915_gem_init_hw(dev);
5171 5172 5173 5174 5175 5176 5177 5178
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
5179
	}
5180 5181

out_unlock:
5182
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5183
	mutex_unlock(&dev->struct_mutex);
5184

5185
	return ret;
5186 5187
}

5188 5189 5190
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
5191
	struct drm_i915_private *dev_priv = dev->dev_private;
5192
	struct intel_engine_cs *ring;
5193
	int i;
5194

5195
	for_each_ring(ring, dev_priv, i)
5196
		dev_priv->gt.cleanup_ring(ring);
5197 5198 5199 5200 5201 5202 5203 5204

    if (i915.enable_execlists)
            /*
             * Neither the BIOS, ourselves or any other kernel
             * expects the system to be in execlists mode on startup,
             * so we need to reset the GPU back to legacy mode.
             */
            intel_gpu_reset(dev);
5205 5206
}

5207
static void
5208
init_ring_lists(struct intel_engine_cs *ring)
5209 5210 5211 5212 5213
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

5214 5215
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
5216
{
5217 5218
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
5219 5220 5221 5222
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
5223
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
5224 5225
}

5226 5227 5228
void
i915_gem_load(struct drm_device *dev)
{
5229
	struct drm_i915_private *dev_priv = dev->dev_private;
5230 5231
	int i;

5232
	dev_priv->objects =
5233 5234 5235 5236
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5237 5238 5239 5240 5241
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5242 5243 5244 5245 5246
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5247

B
Ben Widawsky 已提交
5248 5249 5250
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

5251
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5252 5253
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5254
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5255 5256
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
5257
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5258
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5259 5260
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5261 5262
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5263
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5264

5265 5266
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5267 5268 5269
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5270 5271 5272 5273
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5274 5275 5276 5277
	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

5278
	/* Initialize fence registers to zero */
5279 5280
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
5281

5282
	i915_gem_detect_bit_6_swizzle(dev);
5283
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5284

5285 5286
	dev_priv->mm.interruptible = true;

5287
	i915_gem_shrinker_init(dev_priv);
5288 5289

	mutex_init(&dev_priv->fb_tracking.lock);
5290
}
5291

5292
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5293
{
5294
	struct drm_i915_file_private *file_priv = file->driver_priv;
5295 5296 5297 5298 5299

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5300
	spin_lock(&file_priv->mm.lock);
5301 5302 5303 5304 5305 5306 5307 5308 5309
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5310
	spin_unlock(&file_priv->mm.lock);
5311

5312
	if (!list_empty(&file_priv->rps.link)) {
5313
		spin_lock(&to_i915(dev)->rps.client_lock);
5314
		list_del(&file_priv->rps.link);
5315
		spin_unlock(&to_i915(dev)->rps.client_lock);
5316
	}
5317 5318 5319 5320 5321
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5322
	int ret;
5323 5324 5325 5326 5327 5328 5329 5330 5331

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5332
	file_priv->file = file;
5333
	INIT_LIST_HEAD(&file_priv->rps.link);
5334 5335 5336 5337

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5338 5339 5340
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5341

5342
	return ret;
5343 5344
}

5345 5346 5347 5348 5349 5350 5351 5352 5353
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5371
/* All the new VM stuff */
5372 5373 5374
unsigned long
i915_gem_obj_offset(struct drm_i915_gem_object *o,
		    struct i915_address_space *vm)
5375 5376 5377 5378
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5379
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5380 5381

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5382 5383 5384 5385
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5386 5387
			return vma->node.start;
	}
5388

5389 5390
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5391 5392 5393
	return -1;
}

5394 5395
unsigned long
i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5396
			      const struct i915_ggtt_view *view)
5397
{
5398
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5399 5400 5401
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5402 5403
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5404 5405
			return vma->node.start;

5406
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5427
				  const struct i915_ggtt_view *view)
5428 5429 5430 5431 5432 5433
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == ggtt &&
5434
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5435
		    drm_mm_node_allocated(&vma->node))
5436 5437 5438 5439 5440 5441 5442
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5443
	struct i915_vma *vma;
5444

5445 5446
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5458
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5459 5460 5461

	BUG_ON(list_empty(&o->vma_list));

5462 5463 5464 5465
	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5466 5467
		if (vma->vm == vm)
			return vma->node.size;
5468
	}
5469 5470 5471
	return 0;
}

5472
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5473 5474
{
	struct i915_vma *vma;
5475
	list_for_each_entry(vma, &obj->vma_list, vma_link)
5476 5477
		if (vma->pin_count > 0)
			return true;
5478

5479
	return false;
5480
}