i915_gem.c 133.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/oom.h>
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
						   bool force);
44
static __must_check int
45 46
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly);
47 48 49
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj);

50 51 52 53 54 55
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

56
static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57
					     struct shrink_control *sc);
58
static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59
					    struct shrink_control *sc);
60 61 62
static int i915_gem_shrinker_oom(struct notifier_block *nb,
				 unsigned long event,
				 void *ptr);
63 64
static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
65

66 67 68 69 70 71
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

72 73 74 75 76 77 78 79
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

80 81 82 83 84 85 86 87
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
88
	obj->fence_dirty = false;
89 90 91
	obj->fence_reg = I915_FENCE_REG_NONE;
}

92 93 94 95
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101 102 103 104
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
105
	spin_lock(&dev_priv->mm.object_stat_lock);
106 107
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
108
	spin_unlock(&dev_priv->mm.object_stat_lock);
109 110
}

111
static int
112
i915_gem_wait_for_error(struct i915_gpu_error *error)
113 114 115
{
	int ret;

116 117
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
118
	if (EXIT_COND)
119 120
		return 0;

121 122 123 124 125
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
126 127 128
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
129 130 131 132
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
133
		return ret;
134
	}
135
#undef EXIT_COND
136

137
	return 0;
138 139
}

140
int i915_mutex_lock_interruptible(struct drm_device *dev)
141
{
142
	struct drm_i915_private *dev_priv = dev->dev_private;
143 144
	int ret;

145
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
146 147 148 149 150 151 152
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

153
	WARN_ON(i915_verify_lists(dev));
154 155
	return 0;
}
156

157
static inline bool
158
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
159
{
160
	return i915_gem_obj_bound_any(obj) && !obj->active;
161 162
}

J
Jesse Barnes 已提交
163 164
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
165
		    struct drm_file *file)
J
Jesse Barnes 已提交
166
{
167
	struct drm_i915_private *dev_priv = dev->dev_private;
J
Jesse Barnes 已提交
168
	struct drm_i915_gem_init *args = data;
169

170 171 172
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return -ENODEV;

173 174 175
	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
176

177 178 179 180
	/* GEM with user mode setting was never supported on ilk and later. */
	if (INTEL_INFO(dev)->gen >= 5)
		return -ENODEV;

J
Jesse Barnes 已提交
181
	mutex_lock(&dev->struct_mutex);
182 183
	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
				  args->gtt_end);
184
	dev_priv->gtt.mappable_end = args->gtt_end;
185 186
	mutex_unlock(&dev->struct_mutex);

187
	return 0;
188 189
}

190 191
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
192
			    struct drm_file *file)
193
{
194
	struct drm_i915_private *dev_priv = dev->dev_private;
195
	struct drm_i915_gem_get_aperture *args = data;
196 197
	struct drm_i915_gem_object *obj;
	size_t pinned;
198

199
	pinned = 0;
200
	mutex_lock(&dev->struct_mutex);
201
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
202
		if (i915_gem_obj_is_pinned(obj))
203
			pinned += i915_gem_obj_ggtt_size(obj);
204
	mutex_unlock(&dev->struct_mutex);
205

206
	args->aper_size = dev_priv->gtt.base.total;
207
	args->aper_available_size = args->aper_size - pinned;
208

209 210 211
	return 0;
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
{
	drm_dma_handle_t *phys = obj->phys_handle;

	if (!phys)
		return;

	if (obj->madv == I915_MADV_WILLNEED) {
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
		char *vaddr = phys->vaddr;
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
			struct page *page = shmem_read_mapping_page(mapping, i);
			if (!IS_ERR(page)) {
				char *dst = kmap_atomic(page);
				memcpy(dst, vaddr, PAGE_SIZE);
				drm_clflush_virt_range(dst, PAGE_SIZE);
				kunmap_atomic(dst);

				set_page_dirty(page);
				mark_page_accessed(page);
				page_cache_release(page);
			}
			vaddr += PAGE_SIZE;
		}
		i915_gem_chipset_flush(obj->base.dev);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
#endif
	drm_pci_free(obj->base.dev, phys);
	obj->phys_handle = NULL;
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
	struct address_space *mapping;
	char *vaddr;
	int i;

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	vaddr = phys->vaddr;
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
#endif
	mapping = file_inode(obj->base.filp)->i_mapping;
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page)) {
#ifdef CONFIG_X86
			set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
#endif
			drm_pci_free(obj->base.dev, phys);
			return PTR_ERR(page);
		}

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		kunmap_atomic(src);

		mark_page_accessed(page);
		page_cache_release(page);

		vaddr += PAGE_SIZE;
	}

	obj->phys_handle = phys;
	return 0;
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);

	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}

	i915_gem_chipset_flush(dev);
	return 0;
}

334 335 336
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
337
	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
338 339 340 341 342 343 344 345
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	kmem_cache_free(dev_priv->slab, obj);
}

346 347 348 349 350
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
351
{
352
	struct drm_i915_gem_object *obj;
353 354
	int ret;
	u32 handle;
355

356
	size = roundup(size, PAGE_SIZE);
357 358
	if (size == 0)
		return -EINVAL;
359 360

	/* Allocate the new object */
361
	obj = i915_gem_alloc_object(dev, size);
362 363 364
	if (obj == NULL)
		return -ENOMEM;

365
	ret = drm_gem_handle_create(file, &obj->base, &handle);
366
	/* drop reference from allocate - handle holds it now */
367 368 369
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
370

371
	*handle_p = handle;
372 373 374
	return 0;
}

375 376 377 378 379 380
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
381
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
382 383 384 385 386 387 388 389 390 391 392 393 394
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
395

396 397 398 399
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

426
static inline int
427 428
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
477 478

		i915_gem_object_retire(obj);
479 480 481 482 483 484 485 486 487 488 489
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

490 491 492
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
493
static int
494 495 496 497 498 499 500
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

501
	if (unlikely(page_do_bit17_swizzling))
502 503 504 505 506 507 508 509 510 511 512
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

513
	return ret ? -EFAULT : 0;
514 515
}

516 517 518 519
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
520
	if (unlikely(swizzled)) {
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

538 539 540 541 542 543 544 545 546 547 548 549
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
550 551 552
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
553 554 555 556 557 558 559 560 561 562 563

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

564
	return ret ? - EFAULT : 0;
565 566
}

567
static int
568 569 570 571
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
572
{
573
	char __user *user_data;
574
	ssize_t remain;
575
	loff_t offset;
576
	int shmem_page_offset, page_length, ret = 0;
577
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
578
	int prefaulted = 0;
579
	int needs_clflush = 0;
580
	struct sg_page_iter sg_iter;
581

V
Ville Syrjälä 已提交
582
	user_data = to_user_ptr(args->data_ptr);
583 584
	remain = args->size;

585
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
586

587
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
588 589 590
	if (ret)
		return ret;

591
	offset = args->offset;
592

593 594
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
595
		struct page *page = sg_page_iter_page(&sg_iter);
596 597 598 599

		if (remain <= 0)
			break;

600 601 602 603 604
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
605
		shmem_page_offset = offset_in_page(offset);
606 607 608 609
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

610 611 612
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

613 614 615 616 617
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
618 619 620

		mutex_unlock(&dev->struct_mutex);

621
		if (likely(!i915.prefault_disable) && !prefaulted) {
622
			ret = fault_in_multipages_writeable(user_data, remain);
623 624 625 626 627 628 629
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
630

631 632 633
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
634

635
		mutex_lock(&dev->struct_mutex);
636 637

		if (ret)
638 639
			goto out;

640
next_page:
641
		remain -= page_length;
642
		user_data += page_length;
643 644 645
		offset += page_length;
	}

646
out:
647 648
	i915_gem_object_unpin_pages(obj);

649 650 651
	return ret;
}

652 653 654 655 656 657 658
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
659
		     struct drm_file *file)
660 661
{
	struct drm_i915_gem_pread *args = data;
662
	struct drm_i915_gem_object *obj;
663
	int ret = 0;
664

665 666 667 668
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
669
		       to_user_ptr(args->data_ptr),
670 671 672
		       args->size))
		return -EFAULT;

673
	ret = i915_mutex_lock_interruptible(dev);
674
	if (ret)
675
		return ret;
676

677
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
678
	if (&obj->base == NULL) {
679 680
		ret = -ENOENT;
		goto unlock;
681
	}
682

683
	/* Bounds check source.  */
684 685
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
686
		ret = -EINVAL;
687
		goto out;
C
Chris Wilson 已提交
688 689
	}

690 691 692 693 694 695 696 697
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
698 699
	trace_i915_gem_object_pread(obj, args->offset, args->size);

700
	ret = i915_gem_shmem_pread(dev, obj, args, file);
701

702
out:
703
	drm_gem_object_unreference(&obj->base);
704
unlock:
705
	mutex_unlock(&dev->struct_mutex);
706
	return ret;
707 708
}

709 710
/* This is the fast write path which cannot handle
 * page faults in the source data
711
 */
712 713 714 715 716 717

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
718
{
719 720
	void __iomem *vaddr_atomic;
	void *vaddr;
721
	unsigned long unwritten;
722

P
Peter Zijlstra 已提交
723
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
724 725 726
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
727
						      user_data, length);
P
Peter Zijlstra 已提交
728
	io_mapping_unmap_atomic(vaddr_atomic);
729
	return unwritten;
730 731
}

732 733 734 735
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
736
static int
737 738
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
739
			 struct drm_i915_gem_pwrite *args,
740
			 struct drm_file *file)
741
{
742
	struct drm_i915_private *dev_priv = dev->dev_private;
743
	ssize_t remain;
744
	loff_t offset, page_base;
745
	char __user *user_data;
D
Daniel Vetter 已提交
746 747
	int page_offset, page_length, ret;

748
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
749 750 751 752 753 754 755 756 757 758
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
759

V
Ville Syrjälä 已提交
760
	user_data = to_user_ptr(args->data_ptr);
761 762
	remain = args->size;

763
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
764 765 766 767

	while (remain > 0) {
		/* Operation in this page
		 *
768 769 770
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
771
		 */
772 773
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
774 775 776 777 778
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
779 780
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
781
		 */
B
Ben Widawsky 已提交
782
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
783 784 785 786
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
787

788 789 790
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
791 792
	}

D
Daniel Vetter 已提交
793
out_unpin:
B
Ben Widawsky 已提交
794
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
795
out:
796
	return ret;
797 798
}

799 800 801 802
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
803
static int
804 805 806 807 808
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
809
{
810
	char *vaddr;
811
	int ret;
812

813
	if (unlikely(page_do_bit17_swizzling))
814
		return -EINVAL;
815

816 817 818 819
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
820 821
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
822 823 824 825
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
826

827
	return ret ? -EFAULT : 0;
828 829
}

830 831
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
832
static int
833 834 835 836 837
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
838
{
839 840
	char *vaddr;
	int ret;
841

842
	vaddr = kmap(page);
843
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
844 845 846
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
847 848
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
849 850
						user_data,
						page_length);
851 852 853 854 855
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
856 857 858
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
859
	kunmap(page);
860

861
	return ret ? -EFAULT : 0;
862 863 864
}

static int
865 866 867 868
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
869 870
{
	ssize_t remain;
871 872
	loff_t offset;
	char __user *user_data;
873
	int shmem_page_offset, page_length, ret = 0;
874
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
875
	int hit_slowpath = 0;
876 877
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
878
	struct sg_page_iter sg_iter;
879

V
Ville Syrjälä 已提交
880
	user_data = to_user_ptr(args->data_ptr);
881 882
	remain = args->size;

883
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
884

885 886 887 888 889
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
890
		needs_clflush_after = cpu_write_needs_clflush(obj);
891 892 893
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
894 895

		i915_gem_object_retire(obj);
896
	}
897 898 899 900 901
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
902

903 904 905 906 907 908
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

909
	offset = args->offset;
910
	obj->dirty = 1;
911

912 913
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
914
		struct page *page = sg_page_iter_page(&sg_iter);
915
		int partial_cacheline_write;
916

917 918 919
		if (remain <= 0)
			break;

920 921 922 923 924
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
925
		shmem_page_offset = offset_in_page(offset);
926 927 928 929 930

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

931 932 933 934 935 936 937
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

938 939 940
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

941 942 943 944 945 946
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
947 948 949

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
950 951 952 953
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
954

955
		mutex_lock(&dev->struct_mutex);
956 957

		if (ret)
958 959
			goto out;

960
next_page:
961
		remain -= page_length;
962
		user_data += page_length;
963
		offset += page_length;
964 965
	}

966
out:
967 968
	i915_gem_object_unpin_pages(obj);

969
	if (hit_slowpath) {
970 971 972 973 974 975 976
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
977 978
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
979
		}
980
	}
981

982
	if (needs_clflush_after)
983
		i915_gem_chipset_flush(dev);
984

985
	return ret;
986 987 988 989 990 991 992 993 994
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
995
		      struct drm_file *file)
996 997
{
	struct drm_i915_gem_pwrite *args = data;
998
	struct drm_i915_gem_object *obj;
999 1000 1001 1002 1003 1004
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1005
		       to_user_ptr(args->data_ptr),
1006 1007 1008
		       args->size))
		return -EFAULT;

1009
	if (likely(!i915.prefault_disable)) {
1010 1011 1012 1013 1014
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1015

1016
	ret = i915_mutex_lock_interruptible(dev);
1017
	if (ret)
1018
		return ret;
1019

1020
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1021
	if (&obj->base == NULL) {
1022 1023
		ret = -ENOENT;
		goto unlock;
1024
	}
1025

1026
	/* Bounds check destination. */
1027 1028
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1029
		ret = -EINVAL;
1030
		goto out;
C
Chris Wilson 已提交
1031 1032
	}

1033 1034 1035 1036 1037 1038 1039 1040
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1041 1042
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1043
	ret = -EFAULT;
1044 1045 1046 1047 1048 1049
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1050 1051
	if (obj->phys_handle) {
		ret = i915_gem_phys_pwrite(obj, args, file);
1052 1053 1054
		goto out;
	}

1055 1056 1057
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1058
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1059 1060 1061
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1062
	}
1063

1064
	if (ret == -EFAULT || ret == -ENOSPC)
D
Daniel Vetter 已提交
1065
		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1066

1067
out:
1068
	drm_gem_object_unreference(&obj->base);
1069
unlock:
1070
	mutex_unlock(&dev->struct_mutex);
1071 1072 1073
	return ret;
}

1074
int
1075
i915_gem_check_wedge(struct i915_gpu_error *error,
1076 1077
		     bool interruptible)
{
1078
	if (i915_reset_in_progress(error)) {
1079 1080 1081 1082 1083
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1084 1085
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
			return -EIO;

		return -EAGAIN;
	}

	return 0;
}

/*
 * Compare seqno against outstanding lazy request. Emit a request if they are
 * equal.
 */
1098
int
1099
i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1100 1101 1102 1103 1104 1105
{
	int ret;

	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));

	ret = 0;
1106
	if (seqno == ring->outstanding_lazy_seqno)
1107
		ret = i915_add_request(ring, NULL);
1108 1109 1110 1111

	return ret;
}

1112 1113 1114 1115 1116 1117
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1118
		       struct intel_engine_cs *ring)
1119 1120 1121 1122
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1123 1124 1125 1126 1127 1128 1129 1130
static bool can_wait_boost(struct drm_i915_file_private *file_priv)
{
	if (file_priv == NULL)
		return true;

	return !atomic_xchg(&file_priv->rps_wait_boost, true);
}

1131 1132 1133 1134
/**
 * __wait_seqno - wait until execution of seqno has finished
 * @ring: the ring expected to report seqno
 * @seqno: duh!
1135
 * @reset_counter: reset sequence associated with the given seqno
1136 1137 1138
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1139 1140 1141 1142 1143 1144 1145
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1146 1147 1148
 * Returns 0 if the seqno was found within the alloted time. Else returns the
 * errno with remaining time filled in timeout argument.
 */
1149
static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1150
			unsigned reset_counter,
1151
			bool interruptible,
1152
			s64 *timeout,
1153
			struct drm_i915_file_private *file_priv)
1154
{
1155
	struct drm_device *dev = ring->dev;
1156
	struct drm_i915_private *dev_priv = dev->dev_private;
1157 1158
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1159
	DEFINE_WAIT(wait);
1160
	unsigned long timeout_expire;
1161
	s64 before, now;
1162 1163
	int ret;

1164
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1165

1166 1167 1168
	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
		return 0;

1169
	timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1170

1171
	if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1172 1173 1174 1175 1176 1177 1178
		gen6_rps_boost(dev_priv);
		if (file_priv)
			mod_delayed_work(dev_priv->wq,
					 &file_priv->mm.idle_work,
					 msecs_to_jiffies(100));
	}

1179
	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1180 1181
		return -ENODEV;

1182 1183
	/* Record current time in case interrupted by signal, or wedged */
	trace_i915_gem_request_wait_begin(ring, seqno);
1184
	before = ktime_get_raw_ns();
1185 1186
	for (;;) {
		struct timer_list timer;
1187

1188 1189
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1190

1191 1192
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1193 1194 1195 1196 1197 1198 1199 1200
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1201

1202 1203 1204 1205
		if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
			ret = 0;
			break;
		}
1206

1207 1208 1209 1210 1211
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1212
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1213 1214 1215 1216 1217 1218
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1219 1220
			unsigned long expire;

1221
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1222
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1223 1224 1225
			mod_timer(&timer, expire);
		}

1226
		io_schedule();
1227 1228 1229 1230 1231 1232

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1233
	now = ktime_get_raw_ns();
1234
	trace_i915_gem_request_wait_end(ring, seqno);
1235

1236 1237
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1238 1239

	finish_wait(&ring->irq_queue, &wait);
1240 1241

	if (timeout) {
1242 1243 1244
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1245 1246
	}

1247
	return ret;
1248 1249 1250 1251 1252 1253 1254
}

/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
int
1255
i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1256 1257 1258 1259 1260 1261 1262 1263 1264
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool interruptible = dev_priv->mm.interruptible;
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(seqno == 0);

1265
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1266 1267 1268 1269 1270 1271 1272
	if (ret)
		return ret;

	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;

1273 1274
	return __wait_seqno(ring, seqno,
			    atomic_read(&dev_priv->gpu_error.reset_counter),
1275
			    interruptible, NULL, NULL);
1276 1277
}

1278 1279
static int
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1280
				     struct intel_engine_cs *ring)
1281
{
1282 1283
	if (!obj->active)
		return 0;
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 *
	 * Note that the last_write_seqno is always the earlier of
	 * the two (read/write) seqno, so if we haved successfully waited,
	 * we know we have passed the last write.
	 */
	obj->last_write_seqno = 0;

	return 0;
}

1297 1298 1299 1300 1301 1302 1303 1304
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1305
	struct intel_engine_cs *ring = obj->ring;
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	u32 seqno;
	int ret;

	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
	if (seqno == 0)
		return 0;

	ret = i915_wait_seqno(ring, seqno);
	if (ret)
		return ret;

1317
	return i915_gem_object_wait_rendering__tail(obj, ring);
1318 1319
}

1320 1321 1322 1323 1324
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1325
					    struct drm_i915_file_private *file_priv,
1326 1327 1328 1329
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1330
	struct intel_engine_cs *ring = obj->ring;
1331
	unsigned reset_counter;
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	u32 seqno;
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
	if (seqno == 0)
		return 0;

1342
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1343 1344 1345 1346 1347 1348 1349
	if (ret)
		return ret;

	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;

1350
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1351
	mutex_unlock(&dev->struct_mutex);
1352
	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1353
	mutex_lock(&dev->struct_mutex);
1354 1355
	if (ret)
		return ret;
1356

1357
	return i915_gem_object_wait_rendering__tail(obj, ring);
1358 1359
}

1360
/**
1361 1362
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1363 1364 1365
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1366
			  struct drm_file *file)
1367 1368
{
	struct drm_i915_gem_set_domain *args = data;
1369
	struct drm_i915_gem_object *obj;
1370 1371
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1372 1373
	int ret;

1374
	/* Only handle setting domains to types used by the CPU. */
1375
	if (write_domain & I915_GEM_GPU_DOMAINS)
1376 1377
		return -EINVAL;

1378
	if (read_domains & I915_GEM_GPU_DOMAINS)
1379 1380 1381 1382 1383 1384 1385 1386
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1387
	ret = i915_mutex_lock_interruptible(dev);
1388
	if (ret)
1389
		return ret;
1390

1391
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1392
	if (&obj->base == NULL) {
1393 1394
		ret = -ENOENT;
		goto unlock;
1395
	}
1396

1397 1398 1399 1400
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1401 1402 1403
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
							  file->driver_priv,
							  !write_domain);
1404 1405 1406
	if (ret)
		goto unref;

1407 1408
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1409 1410 1411 1412 1413 1414 1415

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1416
	} else {
1417
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1418 1419
	}

1420
unref:
1421
	drm_gem_object_unreference(&obj->base);
1422
unlock:
1423 1424 1425 1426 1427 1428 1429 1430 1431
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1432
			 struct drm_file *file)
1433 1434
{
	struct drm_i915_gem_sw_finish *args = data;
1435
	struct drm_i915_gem_object *obj;
1436 1437
	int ret = 0;

1438
	ret = i915_mutex_lock_interruptible(dev);
1439
	if (ret)
1440
		return ret;
1441

1442
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1443
	if (&obj->base == NULL) {
1444 1445
		ret = -ENOENT;
		goto unlock;
1446 1447 1448
	}

	/* Pinned buffers may be scanout, so flush the cache */
1449 1450
	if (obj->pin_display)
		i915_gem_object_flush_cpu_write_domain(obj, true);
1451

1452
	drm_gem_object_unreference(&obj->base);
1453
unlock:
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1467
		    struct drm_file *file)
1468 1469 1470 1471 1472
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1473
	obj = drm_gem_object_lookup(dev, file, args->handle);
1474
	if (obj == NULL)
1475
		return -ENOENT;
1476

1477 1478 1479 1480 1481 1482 1483 1484
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1485
	addr = vm_mmap(obj->filp, 0, args->size,
1486 1487
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1488
	drm_gem_object_unreference_unlocked(obj);
1489 1490 1491 1492 1493 1494 1495 1496
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1515 1516
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1517
	struct drm_i915_private *dev_priv = dev->dev_private;
1518 1519 1520
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1521
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1522

1523 1524
	intel_runtime_pm_get(dev_priv);

1525 1526 1527 1528
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1529 1530 1531
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1532

C
Chris Wilson 已提交
1533 1534
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1535 1536 1537 1538 1539 1540 1541 1542 1543
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1544 1545
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1546
		ret = -EFAULT;
1547 1548 1549
		goto unlock;
	}

1550
	/* Now bind it into the GTT if needed */
1551
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1552 1553
	if (ret)
		goto unlock;
1554

1555 1556 1557
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1558

1559
	ret = i915_gem_object_get_fence(obj);
1560
	if (ret)
1561
		goto unpin;
1562

1563
	/* Finally, remap it using the new GTT offset */
1564 1565
	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
	pfn >>= PAGE_SHIFT;
1566

1567
	if (!obj->fault_mappable) {
1568 1569 1570
		unsigned long size = min_t(unsigned long,
					   vma->vm_end - vma->vm_start,
					   obj->base.size);
1571 1572
		int i;

1573
		for (i = 0; i < size >> PAGE_SHIFT; i++) {
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
			ret = vm_insert_pfn(vma,
					    (unsigned long)vma->vm_start + i * PAGE_SIZE,
					    pfn + i);
			if (ret)
				break;
		}

		obj->fault_mappable = true;
	} else
		ret = vm_insert_pfn(vma,
				    (unsigned long)vmf->virtual_address,
				    pfn + page_offset);
1586
unpin:
B
Ben Widawsky 已提交
1587
	i915_gem_object_ggtt_unpin(obj);
1588
unlock:
1589
	mutex_unlock(&dev->struct_mutex);
1590
out:
1591
	switch (ret) {
1592
	case -EIO:
1593 1594 1595
		/* If this -EIO is due to a gpu hang, give the reset code a
		 * chance to clean up the mess. Otherwise return the proper
		 * SIGBUS. */
1596 1597 1598 1599
		if (i915_terminally_wedged(&dev_priv->gpu_error)) {
			ret = VM_FAULT_SIGBUS;
			break;
		}
1600
	case -EAGAIN:
D
Daniel Vetter 已提交
1601 1602 1603 1604
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1605
		 */
1606 1607
	case 0:
	case -ERESTARTSYS:
1608
	case -EINTR:
1609 1610 1611 1612 1613
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1614 1615
		ret = VM_FAULT_NOPAGE;
		break;
1616
	case -ENOMEM:
1617 1618
		ret = VM_FAULT_OOM;
		break;
1619
	case -ENOSPC:
1620
	case -EFAULT:
1621 1622
		ret = VM_FAULT_SIGBUS;
		break;
1623
	default:
1624
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1625 1626
		ret = VM_FAULT_SIGBUS;
		break;
1627
	}
1628 1629 1630

	intel_runtime_pm_put(dev_priv);
	return ret;
1631 1632
}

1633 1634 1635 1636
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1637
 * Preserve the reservation of the mmapping with the DRM core code, but
1638 1639 1640 1641 1642 1643 1644 1645 1646
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1647
void
1648
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1649
{
1650 1651
	if (!obj->fault_mappable)
		return;
1652

1653 1654
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1655
	obj->fault_mappable = false;
1656 1657
}

1658 1659 1660 1661 1662 1663 1664 1665 1666
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1667
uint32_t
1668
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1669
{
1670
	uint32_t gtt_size;
1671 1672

	if (INTEL_INFO(dev)->gen >= 4 ||
1673 1674
	    tiling_mode == I915_TILING_NONE)
		return size;
1675 1676 1677

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1678
		gtt_size = 1024*1024;
1679
	else
1680
		gtt_size = 512*1024;
1681

1682 1683
	while (gtt_size < size)
		gtt_size <<= 1;
1684

1685
	return gtt_size;
1686 1687
}

1688 1689 1690 1691 1692
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1693
 * potential fence register mapping.
1694
 */
1695 1696 1697
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1698 1699 1700 1701 1702
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1703
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1704
	    tiling_mode == I915_TILING_NONE)
1705 1706
		return 4096;

1707 1708 1709 1710
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1711
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1712 1713
}

1714 1715 1716 1717 1718
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1719
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1720 1721
		return 0;

1722 1723
	dev_priv->mm.shrinker_no_lock_stealing = true;

1724 1725
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1726
		goto out;
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1738
		goto out;
1739 1740

	i915_gem_shrink_all(dev_priv);
1741 1742 1743 1744 1745
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1746 1747 1748 1749 1750 1751 1752
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1753
int
1754 1755 1756 1757
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1758
{
1759
	struct drm_i915_private *dev_priv = dev->dev_private;
1760
	struct drm_i915_gem_object *obj;
1761 1762
	int ret;

1763
	ret = i915_mutex_lock_interruptible(dev);
1764
	if (ret)
1765
		return ret;
1766

1767
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1768
	if (&obj->base == NULL) {
1769 1770 1771
		ret = -ENOENT;
		goto unlock;
	}
1772

B
Ben Widawsky 已提交
1773
	if (obj->base.size > dev_priv->gtt.mappable_end) {
1774
		ret = -E2BIG;
1775
		goto out;
1776 1777
	}

1778
	if (obj->madv != I915_MADV_WILLNEED) {
1779
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1780
		ret = -EFAULT;
1781
		goto out;
1782 1783
	}

1784 1785 1786
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1787

1788
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1789

1790
out:
1791
	drm_gem_object_unreference(&obj->base);
1792
unlock:
1793
	mutex_unlock(&dev->struct_mutex);
1794
	return ret;
1795 1796
}

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}

1821 1822 1823 1824 1825 1826
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
{
	return obj->madv == I915_MADV_DONTNEED;
}

D
Daniel Vetter 已提交
1827 1828 1829
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1830
{
1831
	i915_gem_object_free_mmap_offset(obj);
1832

1833 1834
	if (obj->base.filp == NULL)
		return;
1835

D
Daniel Vetter 已提交
1836 1837 1838 1839 1840
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1841
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
1842 1843
	obj->madv = __I915_MADV_PURGED;
}
1844

1845 1846 1847
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
1848
{
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1863 1864
}

1865
static void
1866
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1867
{
1868 1869
	struct sg_page_iter sg_iter;
	int ret;
1870

1871
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1872

C
Chris Wilson 已提交
1873 1874 1875 1876 1877 1878
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
1879
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
1880 1881 1882
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

1883
	if (i915_gem_object_needs_bit17_swizzle(obj))
1884 1885
		i915_gem_object_save_bit_17_swizzle(obj);

1886 1887
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1888

1889
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1890
		struct page *page = sg_page_iter_page(&sg_iter);
1891

1892
		if (obj->dirty)
1893
			set_page_dirty(page);
1894

1895
		if (obj->madv == I915_MADV_WILLNEED)
1896
			mark_page_accessed(page);
1897

1898
		page_cache_release(page);
1899
	}
1900
	obj->dirty = 0;
1901

1902 1903
	sg_free_table(obj->pages);
	kfree(obj->pages);
1904
}
C
Chris Wilson 已提交
1905

1906
int
1907 1908 1909 1910
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

1911
	if (obj->pages == NULL)
1912 1913
		return 0;

1914 1915 1916
	if (obj->pages_pin_count)
		return -EBUSY;

1917
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
1918

1919 1920 1921
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
1922
	list_del(&obj->global_list);
1923

1924
	ops->put_pages(obj);
1925
	obj->pages = NULL;
1926

1927
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
1928 1929 1930 1931

	return 0;
}

1932
static unsigned long
1933 1934
__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
		  bool purgeable_only)
C
Chris Wilson 已提交
1935
{
1936 1937
	struct list_head still_in_list;
	struct drm_i915_gem_object *obj;
1938
	unsigned long count = 0;
C
Chris Wilson 已提交
1939

1940
	/*
1941
	 * As we may completely rewrite the (un)bound list whilst unbinding
1942 1943 1944
	 * (due to retiring requests) we have to strictly process only
	 * one element of the list at the time, and recheck the list
	 * on every iteration.
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	 *
	 * In particular, we must hold a reference whilst removing the
	 * object as we may end up waiting for and/or retiring the objects.
	 * This might release the final reference (held by the active list)
	 * and result in the object being freed from under us. This is
	 * similar to the precautions the eviction code must take whilst
	 * removing objects.
	 *
	 * Also note that although these lists do not hold a reference to
	 * the object we can safely grab one here: The final object
	 * unreferencing and the bound_list are both protected by the
	 * dev->struct_mutex and so we won't ever be able to observe an
	 * object on the bound_list with a reference count equals 0.
1958
	 */
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	INIT_LIST_HEAD(&still_in_list);
	while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
		obj = list_first_entry(&dev_priv->mm.unbound_list,
				       typeof(*obj), global_list);
		list_move_tail(&obj->global_list, &still_in_list);

		if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
			continue;

		drm_gem_object_reference(&obj->base);

		if (i915_gem_object_put_pages(obj) == 0)
			count += obj->base.size >> PAGE_SHIFT;

		drm_gem_object_unreference(&obj->base);
	}
	list_splice(&still_in_list, &dev_priv->mm.unbound_list);

	INIT_LIST_HEAD(&still_in_list);
1978
	while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1979
		struct i915_vma *vma, *v;
1980

1981 1982
		obj = list_first_entry(&dev_priv->mm.bound_list,
				       typeof(*obj), global_list);
1983
		list_move_tail(&obj->global_list, &still_in_list);
1984

1985 1986 1987
		if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
			continue;

1988 1989
		drm_gem_object_reference(&obj->base);

1990 1991 1992
		list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
			if (i915_vma_unbind(vma))
				break;
1993

1994
		if (i915_gem_object_put_pages(obj) == 0)
C
Chris Wilson 已提交
1995
			count += obj->base.size >> PAGE_SHIFT;
1996 1997

		drm_gem_object_unreference(&obj->base);
C
Chris Wilson 已提交
1998
	}
1999
	list_splice(&still_in_list, &dev_priv->mm.bound_list);
C
Chris Wilson 已提交
2000 2001 2002 2003

	return count;
}

2004
static unsigned long
2005 2006 2007 2008 2009
i915_gem_purge(struct drm_i915_private *dev_priv, long target)
{
	return __i915_gem_shrink(dev_priv, target, true);
}

2010
static unsigned long
C
Chris Wilson 已提交
2011 2012 2013
i915_gem_shrink_all(struct drm_i915_private *dev_priv)
{
	i915_gem_evict_everything(dev_priv->dev);
2014
	return __i915_gem_shrink(dev_priv, LONG_MAX, false);
D
Daniel Vetter 已提交
2015 2016
}

2017
static int
C
Chris Wilson 已提交
2018
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2019
{
C
Chris Wilson 已提交
2020
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2021 2022
	int page_count, i;
	struct address_space *mapping;
2023 2024
	struct sg_table *st;
	struct scatterlist *sg;
2025
	struct sg_page_iter sg_iter;
2026
	struct page *page;
2027
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2028
	gfp_t gfp;
2029

C
Chris Wilson 已提交
2030 2031 2032 2033 2034 2035 2036
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2037 2038 2039 2040
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2041
	page_count = obj->base.size / PAGE_SIZE;
2042 2043
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2044
		return -ENOMEM;
2045
	}
2046

2047 2048 2049 2050 2051
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2052
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2053
	gfp = mapping_gfp_mask(mapping);
2054
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2055
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2056 2057 2058
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
			i915_gem_purge(dev_priv, page_count);
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2070
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2071 2072 2073
			if (IS_ERR(page))
				goto err_pages;
		}
2074 2075 2076 2077 2078 2079 2080 2081
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2082 2083 2084 2085 2086 2087 2088 2089 2090
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2091 2092 2093

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2094
	}
2095 2096 2097 2098
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2099 2100
	obj->pages = st;

2101
	if (i915_gem_object_needs_bit17_swizzle(obj))
2102 2103 2104 2105 2106
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
2107 2108
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2109
		page_cache_release(sg_page_iter_page(&sg_iter));
2110 2111
	sg_free_table(st);
	kfree(st);
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2125 2126
}

2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2141
	if (obj->pages)
2142 2143
		return 0;

2144
	if (obj->madv != I915_MADV_WILLNEED) {
2145
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2146
		return -EFAULT;
2147 2148
	}

2149 2150
	BUG_ON(obj->pages_pin_count);

2151 2152 2153 2154
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2155
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2156
	return 0;
2157 2158
}

B
Ben Widawsky 已提交
2159
static void
2160
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2161
			       struct intel_engine_cs *ring)
2162
{
2163
	u32 seqno = intel_ring_get_seqno(ring);
2164

2165
	BUG_ON(ring == NULL);
2166 2167 2168 2169
	if (obj->ring != ring && obj->last_write_seqno) {
		/* Keep the seqno relative to the current ring */
		obj->last_write_seqno = seqno;
	}
2170
	obj->ring = ring;
2171 2172

	/* Add a reference if we're newly entering the active list. */
2173 2174 2175
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
2176
	}
2177

2178
	list_move_tail(&obj->ring_list, &ring->active_list);
2179

2180
	obj->last_read_seqno = seqno;
2181 2182
}

B
Ben Widawsky 已提交
2183
void i915_vma_move_to_active(struct i915_vma *vma,
2184
			     struct intel_engine_cs *ring)
B
Ben Widawsky 已提交
2185 2186 2187 2188 2189
{
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
	return i915_gem_object_move_to_active(vma->obj, ring);
}

2190 2191
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2192
{
B
Ben Widawsky 已提交
2193
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2194 2195
	struct i915_address_space *vm;
	struct i915_vma *vma;
2196

2197
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2198
	BUG_ON(!obj->active);
2199

2200 2201 2202 2203 2204
	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
		vma = i915_gem_obj_to_vma(obj, vm);
		if (vma && !list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vm->inactive_list);
	}
2205

2206 2207
	intel_fb_obj_flush(obj, true);

2208
	list_del_init(&obj->ring_list);
2209 2210
	obj->ring = NULL;

2211 2212 2213 2214 2215
	obj->last_read_seqno = 0;
	obj->last_write_seqno = 0;
	obj->base.write_domain = 0;

	obj->last_fenced_seqno = 0;
2216 2217 2218 2219 2220

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
2221
}
2222

2223 2224 2225
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj)
{
2226
	struct intel_engine_cs *ring = obj->ring;
2227 2228 2229 2230 2231 2232 2233 2234 2235

	if (ring == NULL)
		return;

	if (i915_seqno_passed(ring->get_seqno(ring, true),
			      obj->last_read_seqno))
		i915_gem_object_move_to_inactive(obj);
}

2236
static int
2237
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2238
{
2239
	struct drm_i915_private *dev_priv = dev->dev_private;
2240
	struct intel_engine_cs *ring;
2241
	int ret, i, j;
2242

2243
	/* Carefully retire all requests without writing to the rings */
2244
	for_each_ring(ring, dev_priv, i) {
2245 2246 2247
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2248 2249
	}
	i915_gem_retire_requests(dev);
2250 2251

	/* Finally reset hw state */
2252
	for_each_ring(ring, dev_priv, i) {
2253
		intel_ring_init_seqno(ring, seqno);
2254

2255 2256
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2257
	}
2258

2259
	return 0;
2260 2261
}

2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2288 2289
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2290
{
2291 2292 2293 2294
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2295
		int ret = i915_gem_init_seqno(dev, 0);
2296 2297
		if (ret)
			return ret;
2298

2299 2300
		dev_priv->next_seqno = 1;
	}
2301

2302
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2303
	return 0;
2304 2305
}

2306
int __i915_add_request(struct intel_engine_cs *ring,
2307
		       struct drm_file *file,
2308
		       struct drm_i915_gem_object *obj,
2309
		       u32 *out_seqno)
2310
{
2311
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2312
	struct drm_i915_gem_request *request;
2313
	struct intel_ringbuffer *ringbuf;
2314
	u32 request_ring_position, request_start;
2315 2316
	int ret;

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
	request = ring->preallocated_lazy_request;
	if (WARN_ON(request == NULL))
		return -ENOMEM;

	if (i915.enable_execlists) {
		struct intel_context *ctx = request->ctx;
		ringbuf = ctx->engine[ring->id].ringbuf;
	} else
		ringbuf = ring->buffer;

	request_start = intel_ring_get_tail(ringbuf);
2328 2329 2330 2331 2332 2333 2334
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2335 2336 2337 2338 2339 2340 2341 2342 2343
	if (i915.enable_execlists) {
		ret = logical_ring_flush_all_caches(ringbuf);
		if (ret)
			return ret;
	} else {
		ret = intel_ring_flush_all_caches(ring);
		if (ret)
			return ret;
	}
2344

2345 2346 2347 2348 2349
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2350
	request_ring_position = intel_ring_get_tail(ringbuf);
2351

2352 2353 2354 2355 2356 2357 2358 2359 2360
	if (i915.enable_execlists) {
		ret = ring->emit_request(ringbuf);
		if (ret)
			return ret;
	} else {
		ret = ring->add_request(ring);
		if (ret)
			return ret;
	}
2361

2362
	request->seqno = intel_ring_get_seqno(ring);
2363
	request->ring = ring;
2364
	request->head = request_start;
2365
	request->tail = request_ring_position;
2366 2367 2368 2369 2370 2371 2372

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2373
	request->batch_obj = obj;
2374

2375 2376 2377 2378 2379 2380 2381 2382
	if (!i915.enable_execlists) {
		/* Hold a reference to the current context so that we can inspect
		 * it later in case a hangcheck error event fires.
		 */
		request->ctx = ring->last_context;
		if (request->ctx)
			i915_gem_context_reference(request->ctx);
	}
2383

2384
	request->emitted_jiffies = jiffies;
2385
	list_add_tail(&request->list, &ring->request_list);
2386
	request->file_priv = NULL;
2387

C
Chris Wilson 已提交
2388 2389 2390
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2391
		spin_lock(&file_priv->mm.lock);
2392
		request->file_priv = file_priv;
2393
		list_add_tail(&request->client_list,
2394
			      &file_priv->mm.request_list);
2395
		spin_unlock(&file_priv->mm.lock);
2396
	}
2397

2398
	trace_i915_gem_request_add(ring, request->seqno);
2399
	ring->outstanding_lazy_seqno = 0;
2400
	ring->preallocated_lazy_request = NULL;
C
Chris Wilson 已提交
2401

2402
	if (!dev_priv->ums.mm_suspended) {
2403 2404
		i915_queue_hangcheck(ring->dev);

2405 2406 2407 2408 2409
		cancel_delayed_work_sync(&dev_priv->mm.idle_work);
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
		intel_mark_busy(dev_priv->dev);
B
Ben Gamari 已提交
2410
	}
2411

2412
	if (out_seqno)
2413
		*out_seqno = request->seqno;
2414
	return 0;
2415 2416
}

2417 2418
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2419
{
2420
	struct drm_i915_file_private *file_priv = request->file_priv;
2421

2422 2423
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2424

2425
	spin_lock(&file_priv->mm.lock);
2426 2427
	list_del(&request->client_list);
	request->file_priv = NULL;
2428
	spin_unlock(&file_priv->mm.lock);
2429 2430
}

2431
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2432
				   const struct intel_context *ctx)
2433
{
2434
	unsigned long elapsed;
2435

2436 2437 2438
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2439 2440 2441
		return true;

	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2442
		if (!i915_gem_context_is_default(ctx)) {
2443
			DRM_DEBUG("context hanging too fast, banning!\n");
2444
			return true;
2445 2446 2447
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2448
			return true;
2449
		}
2450 2451 2452 2453 2454
	}

	return false;
}

2455
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2456
				  struct intel_context *ctx,
2457
				  const bool guilty)
2458
{
2459 2460 2461 2462
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2463

2464 2465 2466
	hs = &ctx->hang_stats;

	if (guilty) {
2467
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2468 2469 2470 2471
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2472 2473 2474
	}
}

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
static void i915_gem_free_request(struct drm_i915_gem_request *request)
{
	list_del(&request->list);
	i915_gem_request_remove_from_client(request);

	if (request->ctx)
		i915_gem_context_unreference(request->ctx);

	kfree(request);
}

2486
struct drm_i915_gem_request *
2487
i915_gem_find_active_request(struct intel_engine_cs *ring)
2488
{
2489
	struct drm_i915_gem_request *request;
2490 2491 2492
	u32 completed_seqno;

	completed_seqno = ring->get_seqno(ring, false);
2493 2494 2495 2496

	list_for_each_entry(request, &ring->request_list, list) {
		if (i915_seqno_passed(completed_seqno, request->seqno))
			continue;
2497

2498
		return request;
2499
	}
2500 2501 2502 2503 2504

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2505
				       struct intel_engine_cs *ring)
2506 2507 2508 2509
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2510
	request = i915_gem_find_active_request(ring);
2511 2512 2513 2514 2515 2516

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2517
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2518 2519

	list_for_each_entry_continue(request, &ring->request_list, list)
2520
		i915_set_reset_status(dev_priv, request->ctx, false);
2521
}
2522

2523
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2524
					struct intel_engine_cs *ring)
2525
{
2526
	while (!list_empty(&ring->active_list)) {
2527
		struct drm_i915_gem_object *obj;
2528

2529 2530 2531
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2532

2533
		i915_gem_object_move_to_inactive(obj);
2534
	}
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551

	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		i915_gem_free_request(request);
	}
2552

2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
	while (!list_empty(&ring->execlist_queue)) {
		struct intel_ctx_submit_request *submit_req;

		submit_req = list_first_entry(&ring->execlist_queue,
				struct intel_ctx_submit_request,
				execlist_link);
		list_del(&submit_req->execlist_link);
		intel_runtime_pm_put(dev_priv);
		i915_gem_context_unreference(submit_req->ctx);
		kfree(submit_req);
	}

2565 2566 2567 2568
	/* These may not have been flush before the reset, do so now */
	kfree(ring->preallocated_lazy_request);
	ring->preallocated_lazy_request = NULL;
	ring->outstanding_lazy_seqno = 0;
2569 2570
}

2571
void i915_gem_restore_fences(struct drm_device *dev)
2572 2573 2574 2575
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2576
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2577
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2578

2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2589 2590 2591
	}
}

2592
void i915_gem_reset(struct drm_device *dev)
2593
{
2594
	struct drm_i915_private *dev_priv = dev->dev_private;
2595
	struct intel_engine_cs *ring;
2596
	int i;
2597

2598 2599 2600 2601 2602 2603 2604 2605
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2606
	for_each_ring(ring, dev_priv, i)
2607
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2608

2609 2610
	i915_gem_context_reset(dev);

2611
	i915_gem_restore_fences(dev);
2612 2613 2614 2615 2616
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2617
void
2618
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2619 2620 2621
{
	uint32_t seqno;

C
Chris Wilson 已提交
2622
	if (list_empty(&ring->request_list))
2623 2624
		return;

C
Chris Wilson 已提交
2625
	WARN_ON(i915_verify_lists(ring->dev));
2626

2627
	seqno = ring->get_seqno(ring, true);
2628

2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);

		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
			break;

		i915_gem_object_move_to_inactive(obj);
	}


2647
	while (!list_empty(&ring->request_list)) {
2648
		struct drm_i915_gem_request *request;
2649
		struct intel_ringbuffer *ringbuf;
2650

2651
		request = list_first_entry(&ring->request_list,
2652 2653 2654
					   struct drm_i915_gem_request,
					   list);

2655
		if (!i915_seqno_passed(seqno, request->seqno))
2656 2657
			break;

C
Chris Wilson 已提交
2658
		trace_i915_gem_request_retire(ring, request->seqno);
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670

		/* This is one of the few common intersection points
		 * between legacy ringbuffer submission and execlists:
		 * we need to tell them apart in order to find the correct
		 * ringbuffer to which the request belongs to.
		 */
		if (i915.enable_execlists) {
			struct intel_context *ctx = request->ctx;
			ringbuf = ctx->engine[ring->id].ringbuf;
		} else
			ringbuf = ring->buffer;

2671 2672 2673 2674 2675
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
2676
		ringbuf->last_retired_head = request->tail;
2677

2678
		i915_gem_free_request(request);
2679
	}
2680

C
Chris Wilson 已提交
2681 2682
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2683
		ring->irq_put(ring);
C
Chris Wilson 已提交
2684
		ring->trace_irq_seqno = 0;
2685
	}
2686

C
Chris Wilson 已提交
2687
	WARN_ON(i915_verify_lists(ring->dev));
2688 2689
}

2690
bool
2691 2692
i915_gem_retire_requests(struct drm_device *dev)
{
2693
	struct drm_i915_private *dev_priv = dev->dev_private;
2694
	struct intel_engine_cs *ring;
2695
	bool idle = true;
2696
	int i;
2697

2698
	for_each_ring(ring, dev_priv, i) {
2699
		i915_gem_retire_requests_ring(ring);
2700 2701 2702 2703 2704 2705 2706 2707 2708
		idle &= list_empty(&ring->request_list);
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2709 2710
}

2711
static void
2712 2713
i915_gem_retire_work_handler(struct work_struct *work)
{
2714 2715 2716
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2717
	bool idle;
2718

2719
	/* Come back later if the device is busy... */
2720 2721 2722 2723
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2724
	}
2725
	if (!idle)
2726 2727
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2728
}
2729

2730 2731 2732 2733 2734 2735 2736
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);

	intel_mark_idle(dev_priv->dev);
2737 2738
}

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->active) {
2750
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2751 2752 2753 2754 2755 2756 2757 2758 2759
		if (ret)
			return ret;

		i915_gem_retire_requests_ring(obj->ring);
	}

	return 0;
}

2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2785
	struct drm_i915_private *dev_priv = dev->dev_private;
2786 2787
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2788
	struct intel_engine_cs *ring = NULL;
2789
	unsigned reset_counter;
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
	u32 seqno = 0;
	int ret = 0;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2803 2804
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2805 2806 2807 2808
	if (ret)
		goto out;

	if (obj->active) {
2809
		seqno = obj->last_read_seqno;
2810 2811 2812 2813 2814 2815 2816
		ring = obj->ring;
	}

	if (seqno == 0)
		 goto out;

	/* Do this after OLR check to make sure we make forward progress polling
2817
	 * on this IOCTL with a timeout <=0 (like busy ioctl)
2818
	 */
2819
	if (args->timeout_ns <= 0) {
2820 2821 2822 2823 2824
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2825
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2826 2827
	mutex_unlock(&dev->struct_mutex);

2828 2829
	return __wait_seqno(ring, seqno, reset_counter, true, &args->timeout_ns,
			    file->driver_priv);
2830 2831 2832 2833 2834 2835 2836

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2849 2850
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2851
		     struct intel_engine_cs *to)
2852
{
2853
	struct intel_engine_cs *from = obj->ring;
2854 2855 2856 2857 2858 2859
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

2860
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2861
		return i915_gem_object_wait_rendering(obj, false);
2862 2863 2864

	idx = intel_ring_sync_index(from, to);

2865
	seqno = obj->last_read_seqno;
R
Rodrigo Vivi 已提交
2866 2867
	/* Optimization: Avoid semaphore sync when we are sure we already
	 * waited for an object with higher seqno */
2868
	if (seqno <= from->semaphore.sync_seqno[idx])
2869 2870
		return 0;

2871 2872 2873
	ret = i915_gem_check_olr(obj->ring, seqno);
	if (ret)
		return ret;
2874

2875
	trace_i915_gem_ring_sync_to(from, to, seqno);
2876
	ret = to->semaphore.sync_to(to, from, seqno);
2877
	if (!ret)
2878 2879 2880 2881
		/* We use last_read_seqno because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
2882
		from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2883

2884
	return ret;
2885 2886
}

2887 2888 2889 2890 2891 2892 2893
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2894 2895 2896
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2897 2898 2899
	/* Wait for any direct GTT access to complete */
	mb();

2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2911
int i915_vma_unbind(struct i915_vma *vma)
2912
{
2913
	struct drm_i915_gem_object *obj = vma->obj;
2914
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2915
	int ret;
2916

2917
	if (list_empty(&vma->vma_link))
2918 2919
		return 0;

2920 2921 2922 2923
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
2924

B
Ben Widawsky 已提交
2925
	if (vma->pin_count)
2926
		return -EBUSY;
2927

2928 2929
	BUG_ON(obj->pages == NULL);

2930
	ret = i915_gem_object_finish_gpu(obj);
2931
	if (ret)
2932 2933 2934 2935 2936 2937
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2938 2939
	if (i915_is_ggtt(vma->vm)) {
		i915_gem_object_finish_gtt(obj);
2940

2941 2942 2943 2944 2945
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
2946

2947
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
2948

2949 2950
	vma->unbind_vma(vma);

2951
	list_del_init(&vma->mm_list);
2952
	if (i915_is_ggtt(vma->vm))
2953
		obj->map_and_fenceable = false;
2954

B
Ben Widawsky 已提交
2955 2956 2957 2958
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
2959
	 * no more VMAs exist. */
2960 2961
	if (list_empty(&obj->vma_list)) {
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
2962
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2963
	}
2964

2965 2966 2967 2968 2969 2970
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

2971
	return 0;
2972 2973
}

2974
int i915_gpu_idle(struct drm_device *dev)
2975
{
2976
	struct drm_i915_private *dev_priv = dev->dev_private;
2977
	struct intel_engine_cs *ring;
2978
	int ret, i;
2979 2980

	/* Flush everything onto the inactive list. */
2981
	for_each_ring(ring, dev_priv, i) {
2982
		ret = i915_switch_context(ring, ring->default_context);
2983 2984 2985
		if (ret)
			return ret;

2986
		ret = intel_ring_idle(ring);
2987 2988 2989
		if (ret)
			return ret;
	}
2990

2991
	return 0;
2992 2993
}

2994 2995
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2996
{
2997
	struct drm_i915_private *dev_priv = dev->dev_private;
2998 2999
	int fence_reg;
	int fence_pitch_shift;
3000

3001 3002 3003 3004 3005 3006 3007 3008
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3023
	if (obj) {
3024
		u32 size = i915_gem_obj_ggtt_size(obj);
3025
		uint64_t val;
3026

3027
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3028
				 0xfffff000) << 32;
3029
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3030
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3031 3032 3033
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3034

3035 3036 3037 3038 3039 3040 3041 3042 3043
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3044 3045
}

3046 3047
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3048
{
3049
	struct drm_i915_private *dev_priv = dev->dev_private;
3050
	u32 val;
3051

3052
	if (obj) {
3053
		u32 size = i915_gem_obj_ggtt_size(obj);
3054 3055
		int pitch_val;
		int tile_width;
3056

3057
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3058
		     (size & -size) != size ||
3059 3060 3061
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3062

3063 3064 3065 3066 3067 3068 3069 3070 3071
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3072
		val = i915_gem_obj_ggtt_offset(obj);
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3088 3089
}

3090 3091
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3092
{
3093
	struct drm_i915_private *dev_priv = dev->dev_private;
3094 3095
	uint32_t val;

3096
	if (obj) {
3097
		u32 size = i915_gem_obj_ggtt_size(obj);
3098
		uint32_t pitch_val;
3099

3100
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3101
		     (size & -size) != size ||
3102 3103 3104
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3105

3106 3107
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3108

3109
		val = i915_gem_obj_ggtt_offset(obj);
3110 3111 3112 3113 3114 3115 3116
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3117

3118 3119 3120 3121
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3122 3123 3124 3125 3126
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3127 3128 3129
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3130 3131 3132 3133 3134 3135 3136 3137
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3138 3139 3140 3141
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3142
	switch (INTEL_INFO(dev)->gen) {
3143
	case 8:
3144
	case 7:
3145
	case 6:
3146 3147 3148 3149
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
3150
	default: BUG();
3151
	}
3152 3153 3154 3155 3156 3157

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3158 3159
}

3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3170
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3171 3172 3173
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3174 3175

	if (enable) {
3176
		obj->fence_reg = reg;
3177 3178 3179 3180 3181 3182 3183
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3184
	obj->fence_dirty = false;
3185 3186
}

3187
static int
3188
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3189
{
3190
	if (obj->last_fenced_seqno) {
3191
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3192 3193
		if (ret)
			return ret;
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203

		obj->last_fenced_seqno = 0;
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3204
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3205
	struct drm_i915_fence_reg *fence;
3206 3207
	int ret;

3208
	ret = i915_gem_object_wait_fence(obj);
3209 3210 3211
	if (ret)
		return ret;

3212 3213
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3214

3215 3216
	fence = &dev_priv->fence_regs[obj->fence_reg];

3217 3218 3219
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3220
	i915_gem_object_fence_lost(obj);
3221
	i915_gem_object_update_fence(obj, fence, false);
3222 3223 3224 3225 3226

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3227
i915_find_fence_reg(struct drm_device *dev)
3228 3229
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3230
	struct drm_i915_fence_reg *reg, *avail;
3231
	int i;
3232 3233

	/* First try to find a free reg */
3234
	avail = NULL;
3235 3236 3237
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3238
			return reg;
3239

3240
		if (!reg->pin_count)
3241
			avail = reg;
3242 3243
	}

3244
	if (avail == NULL)
3245
		goto deadlock;
3246 3247

	/* None available, try to steal one or wait for a user to finish */
3248
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3249
		if (reg->pin_count)
3250 3251
			continue;

C
Chris Wilson 已提交
3252
		return reg;
3253 3254
	}

3255 3256 3257 3258 3259 3260
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3261 3262
}

3263
/**
3264
 * i915_gem_object_get_fence - set up fencing for an object
3265 3266 3267 3268 3269 3270 3271 3272 3273
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3274 3275
 *
 * For an untiled surface, this removes any existing fence.
3276
 */
3277
int
3278
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3279
{
3280
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3281
	struct drm_i915_private *dev_priv = dev->dev_private;
3282
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3283
	struct drm_i915_fence_reg *reg;
3284
	int ret;
3285

3286 3287 3288
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3289
	if (obj->fence_dirty) {
3290
		ret = i915_gem_object_wait_fence(obj);
3291 3292 3293
		if (ret)
			return ret;
	}
3294

3295
	/* Just update our place in the LRU if our fence is getting reused. */
3296 3297
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3298
		if (!obj->fence_dirty) {
3299 3300 3301 3302 3303
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3304 3305 3306
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3307
		reg = i915_find_fence_reg(dev);
3308 3309
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3310

3311 3312 3313
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3314
			ret = i915_gem_object_wait_fence(old);
3315 3316 3317
			if (ret)
				return ret;

3318
			i915_gem_object_fence_lost(old);
3319
		}
3320
	} else
3321 3322
		return 0;

3323 3324
	i915_gem_object_update_fence(obj, reg, enable);

3325
	return 0;
3326 3327
}

3328 3329 3330 3331 3332 3333 3334 3335
static bool i915_gem_valid_gtt_space(struct drm_device *dev,
				     struct drm_mm_node *gtt_space,
				     unsigned long cache_level)
{
	struct drm_mm_node *other;

	/* On non-LLC machines we have to be careful when putting differing
	 * types of snoopable memory together to avoid the prefetcher
3336
	 * crossing memory domains and dying.
3337 3338 3339 3340
	 */
	if (HAS_LLC(dev))
		return true;

3341
	if (!drm_mm_node_allocated(gtt_space))
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

static void i915_gem_verify_gtt(struct drm_device *dev)
{
#if WATCH_GTT
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj;
	int err = 0;

3365
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3366 3367 3368 3369 3370 3371 3372 3373
		if (obj->gtt_space == NULL) {
			printk(KERN_ERR "object found on GTT list with no space reserved\n");
			err++;
			continue;
		}

		if (obj->cache_level != obj->gtt_space->color) {
			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3374 3375
			       i915_gem_obj_ggtt_offset(obj),
			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
			       obj->cache_level,
			       obj->gtt_space->color);
			err++;
			continue;
		}

		if (!i915_gem_valid_gtt_space(dev,
					      obj->gtt_space,
					      obj->cache_level)) {
			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3386 3387
			       i915_gem_obj_ggtt_offset(obj),
			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
			       obj->cache_level);
			err++;
			continue;
		}
	}

	WARN_ON(err);
#endif
}

3398 3399 3400
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
3401
static struct i915_vma *
3402 3403 3404
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
			   unsigned alignment,
3405
			   uint64_t flags)
3406
{
3407
	struct drm_device *dev = obj->base.dev;
3408
	struct drm_i915_private *dev_priv = dev->dev_private;
3409
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3410 3411 3412
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3413
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3414
	struct i915_vma *vma;
3415
	int ret;
3416

3417 3418 3419 3420 3421
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
3422
						     obj->tiling_mode, true);
3423
	unfenced_alignment =
3424
		i915_gem_get_gtt_alignment(dev,
3425 3426
					   obj->base.size,
					   obj->tiling_mode, false);
3427

3428
	if (alignment == 0)
3429
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3430
						unfenced_alignment;
3431
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3432
		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3433
		return ERR_PTR(-EINVAL);
3434 3435
	}

3436
	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3437

3438 3439 3440
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
3441 3442
	if (obj->base.size > end) {
		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3443
			  obj->base.size,
3444
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3445
			  end);
3446
		return ERR_PTR(-E2BIG);
3447 3448
	}

3449
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3450
	if (ret)
3451
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3452

3453 3454
	i915_gem_object_pin_pages(obj);

3455
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3456
	if (IS_ERR(vma))
3457
		goto err_unpin;
B
Ben Widawsky 已提交
3458

3459
search_free:
3460
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3461
						  size, alignment,
3462 3463
						  obj->cache_level,
						  start, end,
3464 3465
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3466
	if (ret) {
3467
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3468 3469 3470
					       obj->cache_level,
					       start, end,
					       flags);
3471 3472
		if (ret == 0)
			goto search_free;
3473

3474
		goto err_free_vma;
3475
	}
B
Ben Widawsky 已提交
3476
	if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3477
					      obj->cache_level))) {
B
Ben Widawsky 已提交
3478
		ret = -EINVAL;
3479
		goto err_remove_node;
3480 3481
	}

3482
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3483
	if (ret)
3484
		goto err_remove_node;
3485

3486
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3487
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3488

3489 3490
	if (i915_is_ggtt(vm)) {
		bool mappable, fenceable;
3491

3492 3493
		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);
3494

3495 3496
		mappable = (vma->node.start + obj->base.size <=
			    dev_priv->gtt.mappable_end);
3497

3498
		obj->map_and_fenceable = mappable && fenceable;
3499
	}
3500

3501
	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3502

3503
	trace_i915_vma_bind(vma, flags);
3504 3505 3506
	vma->bind_vma(vma, obj->cache_level,
		      flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);

3507
	i915_gem_verify_gtt(dev);
3508
	return vma;
B
Ben Widawsky 已提交
3509

3510
err_remove_node:
3511
	drm_mm_remove_node(&vma->node);
3512
err_free_vma:
B
Ben Widawsky 已提交
3513
	i915_gem_vma_destroy(vma);
3514
	vma = ERR_PTR(ret);
3515
err_unpin:
B
Ben Widawsky 已提交
3516
	i915_gem_object_unpin_pages(obj);
3517
	return vma;
3518 3519
}

3520
bool
3521 3522
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3523 3524 3525 3526 3527
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3528
	if (obj->pages == NULL)
3529
		return false;
3530

3531 3532 3533 3534 3535
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
	if (obj->stolen)
3536
		return false;
3537

3538 3539 3540 3541 3542 3543 3544 3545
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3546
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3547
		return false;
3548

C
Chris Wilson 已提交
3549
	trace_i915_gem_object_clflush(obj);
3550
	drm_clflush_sg(obj->pages);
3551 3552

	return true;
3553 3554 3555 3556
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3557
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3558
{
C
Chris Wilson 已提交
3559 3560
	uint32_t old_write_domain;

3561
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3562 3563
		return;

3564
	/* No actual flushing is required for the GTT write domain.  Writes
3565 3566
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3567 3568 3569 3570
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3571
	 */
3572 3573
	wmb();

3574 3575
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3576

3577 3578
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3579
	trace_i915_gem_object_change_domain(obj,
3580
					    obj->base.read_domains,
C
Chris Wilson 已提交
3581
					    old_write_domain);
3582 3583 3584 3585
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3586 3587
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
				       bool force)
3588
{
C
Chris Wilson 已提交
3589
	uint32_t old_write_domain;
3590

3591
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3592 3593
		return;

3594 3595 3596
	if (i915_gem_clflush_object(obj, force))
		i915_gem_chipset_flush(obj->base.dev);

3597 3598
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3599

3600 3601
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3602
	trace_i915_gem_object_change_domain(obj,
3603
					    obj->base.read_domains,
C
Chris Wilson 已提交
3604
					    old_write_domain);
3605 3606
}

3607 3608 3609 3610 3611 3612
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3613
int
3614
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3615
{
3616
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3617
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
C
Chris Wilson 已提交
3618
	uint32_t old_write_domain, old_read_domains;
3619
	int ret;
3620

3621
	/* Not valid to be called on unbound objects. */
3622
	if (vma == NULL)
3623 3624
		return -EINVAL;

3625 3626 3627
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3628
	ret = i915_gem_object_wait_rendering(obj, !write);
3629 3630 3631
	if (ret)
		return ret;

3632
	i915_gem_object_retire(obj);
3633
	i915_gem_object_flush_cpu_write_domain(obj, false);
C
Chris Wilson 已提交
3634

3635 3636 3637 3638 3639 3640 3641
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3642 3643
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3644

3645 3646 3647
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3648 3649
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3650
	if (write) {
3651 3652 3653
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3654 3655
	}

3656 3657 3658
	if (write)
		intel_fb_obj_invalidate(obj, NULL);

C
Chris Wilson 已提交
3659 3660 3661 3662
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3663
	/* And bump the LRU for this access */
3664 3665 3666
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&vma->mm_list,
			       &dev_priv->gtt.base.inactive_list);
3667

3668 3669 3670
	return 0;
}

3671 3672 3673
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3674
	struct drm_device *dev = obj->base.dev;
3675
	struct i915_vma *vma, *next;
3676 3677 3678 3679 3680
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3681
	if (i915_gem_obj_is_pinned(obj)) {
3682 3683 3684 3685
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3686
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3687
		if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3688
			ret = i915_vma_unbind(vma);
3689 3690 3691
			if (ret)
				return ret;
		}
3692 3693
	}

3694
	if (i915_gem_obj_bound_any(obj)) {
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3705
		if (INTEL_INFO(dev)->gen < 6) {
3706 3707 3708 3709 3710
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3711
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3712 3713 3714
			if (drm_mm_node_allocated(&vma->node))
				vma->bind_vma(vma, cache_level,
					      obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3715 3716
	}

3717 3718 3719 3720 3721
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

	if (cpu_write_needs_clflush(obj)) {
3722 3723 3724 3725 3726 3727 3728 3729
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
3730
		i915_gem_object_retire(obj);
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

3744
	i915_gem_verify_gtt(dev);
3745 3746 3747
	return 0;
}

B
Ben Widawsky 已提交
3748 3749
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3750
{
B
Ben Widawsky 已提交
3751
	struct drm_i915_gem_caching *args = data;
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
	struct drm_i915_gem_object *obj;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

3765 3766 3767 3768 3769 3770
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3771 3772 3773 3774
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3775 3776 3777 3778
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3779 3780 3781 3782 3783 3784 3785

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

B
Ben Widawsky 已提交
3786 3787
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3788
{
B
Ben Widawsky 已提交
3789
	struct drm_i915_gem_caching *args = data;
3790 3791 3792 3793
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3794 3795
	switch (args->caching) {
	case I915_CACHING_NONE:
3796 3797
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3798
	case I915_CACHING_CACHED:
3799 3800
		level = I915_CACHE_LLC;
		break;
3801 3802 3803
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3804 3805 3806 3807
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3808 3809 3810 3811
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3826 3827
static bool is_pin_display(struct drm_i915_gem_object *obj)
{
3828 3829 3830 3831 3832 3833
	struct i915_vma *vma;

	vma = i915_gem_obj_to_ggtt(obj);
	if (!vma)
		return false;

3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
	/* There are 3 sources that pin objects:
	 *   1. The display engine (scanouts, sprites, cursors);
	 *   2. Reservations for execbuffer;
	 *   3. The user.
	 *
	 * We can ignore reservations as we hold the struct_mutex and
	 * are only called outside of the reservation path.  The user
	 * can only increment pin_count once, and so if after
	 * subtracting the potential reference by the user, any pin_count
	 * remains, it must be due to another use by the display engine.
	 */
3845
	return vma->pin_count - !!obj->user_pin_count;
3846 3847
}

3848
/*
3849 3850 3851
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3852 3853
 */
int
3854 3855
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3856
				     struct intel_engine_cs *pipelined)
3857
{
3858
	u32 old_read_domains, old_write_domain;
3859
	bool was_pin_display;
3860 3861
	int ret;

3862
	if (pipelined != obj->ring) {
3863 3864
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3865 3866 3867
			return ret;
	}

3868 3869 3870
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3871
	was_pin_display = obj->pin_display;
3872 3873
	obj->pin_display = true;

3874 3875 3876 3877 3878 3879 3880 3881 3882
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3883 3884
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3885
	if (ret)
3886
		goto err_unpin_display;
3887

3888 3889 3890 3891
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3892
	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3893
	if (ret)
3894
		goto err_unpin_display;
3895

3896
	i915_gem_object_flush_cpu_write_domain(obj, true);
3897

3898
	old_write_domain = obj->base.write_domain;
3899
	old_read_domains = obj->base.read_domains;
3900 3901 3902 3903

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3904
	obj->base.write_domain = 0;
3905
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3906 3907 3908

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3909
					    old_write_domain);
3910 3911

	return 0;
3912 3913

err_unpin_display:
3914 3915
	WARN_ON(was_pin_display != is_pin_display(obj));
	obj->pin_display = was_pin_display;
3916 3917 3918 3919 3920 3921
	return ret;
}

void
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
{
B
Ben Widawsky 已提交
3922
	i915_gem_object_ggtt_unpin(obj);
3923
	obj->pin_display = is_pin_display(obj);
3924 3925
}

3926
int
3927
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3928
{
3929 3930
	int ret;

3931
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3932 3933
		return 0;

3934
	ret = i915_gem_object_wait_rendering(obj, false);
3935 3936 3937
	if (ret)
		return ret;

3938 3939
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3940
	return 0;
3941 3942
}

3943 3944 3945 3946 3947 3948
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3949
int
3950
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3951
{
C
Chris Wilson 已提交
3952
	uint32_t old_write_domain, old_read_domains;
3953 3954
	int ret;

3955 3956 3957
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3958
	ret = i915_gem_object_wait_rendering(obj, !write);
3959 3960 3961
	if (ret)
		return ret;

3962
	i915_gem_object_retire(obj);
3963
	i915_gem_object_flush_gtt_write_domain(obj);
3964

3965 3966
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3967

3968
	/* Flush the CPU cache if it's still invalid. */
3969
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3970
		i915_gem_clflush_object(obj, false);
3971

3972
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3973 3974 3975 3976 3977
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3978
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3979 3980 3981 3982 3983

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3984 3985
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3986
	}
3987

3988 3989 3990
	if (write)
		intel_fb_obj_invalidate(obj, NULL);

C
Chris Wilson 已提交
3991 3992 3993 3994
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3995 3996 3997
	return 0;
}

3998 3999 4000
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4001 4002 4003 4004
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4005 4006 4007
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4008
static int
4009
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4010
{
4011 4012
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4013
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4014
	struct drm_i915_gem_request *request;
4015
	struct intel_engine_cs *ring = NULL;
4016
	unsigned reset_counter;
4017 4018
	u32 seqno = 0;
	int ret;
4019

4020 4021 4022 4023 4024 4025 4026
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4027

4028
	spin_lock(&file_priv->mm.lock);
4029
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4030 4031
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4032

4033 4034
		ring = request->ring;
		seqno = request->seqno;
4035
	}
4036
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4037
	spin_unlock(&file_priv->mm.lock);
4038

4039 4040
	if (seqno == 0)
		return 0;
4041

4042
	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4043 4044
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4045 4046 4047 4048

	return ret;
}

4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4068
int
4069
i915_gem_object_pin(struct drm_i915_gem_object *obj,
B
Ben Widawsky 已提交
4070
		    struct i915_address_space *vm,
4071
		    uint32_t alignment,
4072
		    uint64_t flags)
4073
{
4074
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4075
	struct i915_vma *vma;
4076 4077
	int ret;

4078 4079 4080
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4081
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4082
		return -EINVAL;
4083 4084 4085

	vma = i915_gem_obj_to_vma(obj, vm);
	if (vma) {
B
Ben Widawsky 已提交
4086 4087 4088
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4089
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4090
			WARN(vma->pin_count,
4091
			     "bo is already pinned with incorrect alignment:"
4092
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4093
			     " obj->map_and_fenceable=%d\n",
4094
			     i915_gem_obj_offset(obj, vm), alignment,
4095
			     !!(flags & PIN_MAPPABLE),
4096
			     obj->map_and_fenceable);
4097
			ret = i915_vma_unbind(vma);
4098 4099
			if (ret)
				return ret;
4100 4101

			vma = NULL;
4102 4103 4104
		}
	}

4105
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4106 4107 4108
		vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4109
	}
J
Jesse Barnes 已提交
4110

4111 4112
	if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
		vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4113

4114
	vma->pin_count++;
4115 4116
	if (flags & PIN_MAPPABLE)
		obj->pin_mappable |= true;
4117 4118 4119 4120 4121

	return 0;
}

void
B
Ben Widawsky 已提交
4122
i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4123
{
B
Ben Widawsky 已提交
4124
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4125

B
Ben Widawsky 已提交
4126 4127 4128 4129 4130
	BUG_ON(!vma);
	BUG_ON(vma->pin_count == 0);
	BUG_ON(!i915_gem_obj_ggtt_bound(obj));

	if (--vma->pin_count == 0)
4131
		obj->pin_mappable = false;
4132 4133
}

4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4160 4161
int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4162
		   struct drm_file *file)
4163 4164
{
	struct drm_i915_gem_pin *args = data;
4165
	struct drm_i915_gem_object *obj;
4166 4167
	int ret;

4168 4169 4170
	if (INTEL_INFO(dev)->gen >= 6)
		return -ENODEV;

4171 4172 4173
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
4174

4175
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4176
	if (&obj->base == NULL) {
4177 4178
		ret = -ENOENT;
		goto unlock;
4179 4180
	}

4181
	if (obj->madv != I915_MADV_WILLNEED) {
4182
		DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4183
		ret = -EFAULT;
4184
		goto out;
4185 4186
	}

4187
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
4188
		DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
J
Jesse Barnes 已提交
4189
			  args->handle);
4190 4191
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4192 4193
	}

4194 4195 4196 4197 4198
	if (obj->user_pin_count == ULONG_MAX) {
		ret = -EBUSY;
		goto out;
	}

4199
	if (obj->user_pin_count == 0) {
4200
		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4201 4202
		if (ret)
			goto out;
4203 4204
	}

4205 4206 4207
	obj->user_pin_count++;
	obj->pin_filp = file;

4208
	args->offset = i915_gem_obj_ggtt_offset(obj);
4209
out:
4210
	drm_gem_object_unreference(&obj->base);
4211
unlock:
4212
	mutex_unlock(&dev->struct_mutex);
4213
	return ret;
4214 4215 4216 4217
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4218
		     struct drm_file *file)
4219 4220
{
	struct drm_i915_gem_pin *args = data;
4221
	struct drm_i915_gem_object *obj;
4222
	int ret;
4223

4224 4225 4226
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
4227

4228
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4229
	if (&obj->base == NULL) {
4230 4231
		ret = -ENOENT;
		goto unlock;
4232
	}
4233

4234
	if (obj->pin_filp != file) {
4235
		DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
J
Jesse Barnes 已提交
4236
			  args->handle);
4237 4238
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4239
	}
4240 4241 4242
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
B
Ben Widawsky 已提交
4243
		i915_gem_object_ggtt_unpin(obj);
J
Jesse Barnes 已提交
4244
	}
4245

4246
out:
4247
	drm_gem_object_unreference(&obj->base);
4248
unlock:
4249
	mutex_unlock(&dev->struct_mutex);
4250
	return ret;
4251 4252 4253 4254
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4255
		    struct drm_file *file)
4256 4257
{
	struct drm_i915_gem_busy *args = data;
4258
	struct drm_i915_gem_object *obj;
4259 4260
	int ret;

4261
	ret = i915_mutex_lock_interruptible(dev);
4262
	if (ret)
4263
		return ret;
4264

4265
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4266
	if (&obj->base == NULL) {
4267 4268
		ret = -ENOENT;
		goto unlock;
4269
	}
4270

4271 4272 4273 4274
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4275
	 */
4276
	ret = i915_gem_object_flush_active(obj);
4277

4278
	args->busy = obj->active;
4279 4280 4281 4282
	if (obj->ring) {
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
		args->busy |= intel_ring_flag(obj->ring) << 16;
	}
4283

4284
	drm_gem_object_unreference(&obj->base);
4285
unlock:
4286
	mutex_unlock(&dev->struct_mutex);
4287
	return ret;
4288 4289 4290 4291 4292 4293
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4294
	return i915_gem_ring_throttle(dev, file_priv);
4295 4296
}

4297 4298 4299 4300 4301
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
4302
	struct drm_i915_gem_object *obj;
4303
	int ret;
4304 4305 4306 4307 4308 4309 4310 4311 4312

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4313 4314 4315 4316
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4317
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4318
	if (&obj->base == NULL) {
4319 4320
		ret = -ENOENT;
		goto unlock;
4321 4322
	}

B
Ben Widawsky 已提交
4323
	if (i915_gem_obj_is_pinned(obj)) {
4324 4325
		ret = -EINVAL;
		goto out;
4326 4327
	}

4328 4329
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4330

C
Chris Wilson 已提交
4331 4332
	/* if the object is no longer attached, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4333 4334
		i915_gem_object_truncate(obj);

4335
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4336

4337
out:
4338
	drm_gem_object_unreference(&obj->base);
4339
unlock:
4340
	mutex_unlock(&dev->struct_mutex);
4341
	return ret;
4342 4343
}

4344 4345
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4346
{
4347
	INIT_LIST_HEAD(&obj->global_list);
4348
	INIT_LIST_HEAD(&obj->ring_list);
4349
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4350
	INIT_LIST_HEAD(&obj->vma_list);
4351

4352 4353
	obj->ops = ops;

4354 4355 4356 4357 4358 4359
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4360 4361 4362 4363 4364
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4365 4366
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4367
{
4368
	struct drm_i915_gem_object *obj;
4369
	struct address_space *mapping;
D
Daniel Vetter 已提交
4370
	gfp_t mask;
4371

4372
	obj = i915_gem_object_alloc(dev);
4373 4374
	if (obj == NULL)
		return NULL;
4375

4376
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4377
		i915_gem_object_free(obj);
4378 4379
		return NULL;
	}
4380

4381 4382 4383 4384 4385 4386 4387
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4388
	mapping = file_inode(obj->base.filp)->i_mapping;
4389
	mapping_set_gfp_mask(mapping, mask);
4390

4391
	i915_gem_object_init(obj, &i915_gem_object_ops);
4392

4393 4394
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4395

4396 4397
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4413 4414
	trace_i915_gem_object_create(obj);

4415
	return obj;
4416 4417
}

4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4442
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4443
{
4444
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4445
	struct drm_device *dev = obj->base.dev;
4446
	struct drm_i915_private *dev_priv = dev->dev_private;
4447
	struct i915_vma *vma, *next;
4448

4449 4450
	intel_runtime_pm_get(dev_priv);

4451 4452
	trace_i915_gem_object_destroy(obj);

4453
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4454 4455 4456 4457
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4458 4459
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4460

4461 4462
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4463

4464
			WARN_ON(i915_vma_unbind(vma));
4465

4466 4467
			dev_priv->mm.interruptible = was_interruptible;
		}
4468 4469
	}

4470 4471
	i915_gem_object_detach_phys(obj);

B
Ben Widawsky 已提交
4472 4473 4474 4475 4476
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4477 4478
	WARN_ON(obj->frontbuffer_bits);

B
Ben Widawsky 已提交
4479 4480
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4481
	if (discard_backing_storage(obj))
4482
		obj->madv = I915_MADV_DONTNEED;
4483
	i915_gem_object_put_pages(obj);
4484
	i915_gem_object_free_mmap_offset(obj);
4485

4486 4487
	BUG_ON(obj->pages);

4488 4489
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4490

4491 4492 4493
	if (obj->ops->release)
		obj->ops->release(obj);

4494 4495
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4496

4497
	kfree(obj->bit_17);
4498
	i915_gem_object_free(obj);
4499 4500

	intel_runtime_pm_put(dev_priv);
4501 4502
}

4503
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
B
Ben Widawsky 已提交
4504
				     struct i915_address_space *vm)
4505 4506 4507 4508 4509 4510 4511 4512 4513
{
	struct i915_vma *vma;
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (vma->vm == vm)
			return vma;

	return NULL;
}

B
Ben Widawsky 已提交
4514 4515
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4516
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4517
	WARN_ON(vma->node.allocated);
4518 4519 4520 4521 4522

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4523 4524
	vm = vma->vm;

4525 4526
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4527

4528
	list_del(&vma->vma_link);
4529

B
Ben Widawsky 已提交
4530 4531 4532
	kfree(vma);
}

4533 4534 4535 4536
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4537
	struct intel_engine_cs *ring;
4538 4539 4540
	int i;

	for_each_ring(ring, dev_priv, i)
4541
		dev_priv->gt.stop_ring(ring);
4542 4543
}

4544
int
4545
i915_gem_suspend(struct drm_device *dev)
4546
{
4547
	struct drm_i915_private *dev_priv = dev->dev_private;
4548
	int ret = 0;
4549

4550
	mutex_lock(&dev->struct_mutex);
4551
	if (dev_priv->ums.mm_suspended)
4552
		goto err;
4553

4554
	ret = i915_gpu_idle(dev);
4555
	if (ret)
4556
		goto err;
4557

4558
	i915_gem_retire_requests(dev);
4559

4560
	/* Under UMS, be paranoid and evict. */
4561
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
C
Chris Wilson 已提交
4562
		i915_gem_evict_everything(dev);
4563 4564

	i915_kernel_lost_context(dev);
4565
	i915_gem_stop_ringbuffers(dev);
4566

4567 4568 4569 4570 4571 4572 4573 4574 4575
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound ums.mm_suspended!
	 */
	dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
							     DRIVER_MODESET);
	mutex_unlock(&dev->struct_mutex);

	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4576
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4577
	flush_delayed_work(&dev_priv->mm.idle_work);
4578

4579
	return 0;
4580 4581 4582 4583

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4584 4585
}

4586
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4587
{
4588
	struct drm_device *dev = ring->dev;
4589
	struct drm_i915_private *dev_priv = dev->dev_private;
4590 4591
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4592
	int i, ret;
B
Ben Widawsky 已提交
4593

4594
	if (!HAS_L3_DPF(dev) || !remap_info)
4595
		return 0;
B
Ben Widawsky 已提交
4596

4597 4598 4599
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4600

4601 4602 4603 4604 4605
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4606
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4607 4608 4609
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4610 4611
	}

4612
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4613

4614
	return ret;
B
Ben Widawsky 已提交
4615 4616
}

4617 4618
void i915_gem_init_swizzling(struct drm_device *dev)
{
4619
	struct drm_i915_private *dev_priv = dev->dev_private;
4620

4621
	if (INTEL_INFO(dev)->gen < 5 ||
4622 4623 4624 4625 4626 4627
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4628 4629 4630
	if (IS_GEN5(dev))
		return;

4631 4632
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4633
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4634
	else if (IS_GEN7(dev))
4635
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4636 4637
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4638 4639
	else
		BUG();
4640
}
D
Daniel Vetter 已提交
4641

4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4658
int i915_gem_init_rings(struct drm_device *dev)
4659
{
4660
	struct drm_i915_private *dev_priv = dev->dev_private;
4661
	int ret;
4662

4663
	ret = intel_init_render_ring_buffer(dev);
4664
	if (ret)
4665
		return ret;
4666 4667

	if (HAS_BSD(dev)) {
4668
		ret = intel_init_bsd_ring_buffer(dev);
4669 4670
		if (ret)
			goto cleanup_render_ring;
4671
	}
4672

4673
	if (intel_enable_blt(dev)) {
4674 4675 4676 4677 4678
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4679 4680 4681 4682 4683 4684
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4685 4686 4687 4688 4689
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4690

4691
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4692
	if (ret)
4693
		goto cleanup_bsd2_ring;
4694 4695 4696

	return 0;

4697 4698
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4699 4700
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4714
	struct drm_i915_private *dev_priv = dev->dev_private;
4715
	int ret, i;
4716 4717 4718 4719

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

B
Ben Widawsky 已提交
4720
	if (dev_priv->ellc_size)
4721
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4722

4723 4724 4725
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4726

4727
	if (HAS_PCH_NOP(dev)) {
4728 4729 4730 4731 4732 4733 4734 4735 4736
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4737 4738
	}

4739 4740
	i915_gem_init_swizzling(dev);

4741
	ret = dev_priv->gt.init_rings(dev);
4742 4743 4744
	if (ret)
		return ret;

4745 4746 4747
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

4748
	/*
4749 4750 4751 4752 4753
	 * XXX: Contexts should only be initialized once. Doing a switch to the
	 * default context switch however is something we'd like to do after
	 * reset or thaw (the latter may not actually be necessary for HW, but
	 * goes with our code better). Context switching requires rings (for
	 * the do_switch), but before enabling PPGTT. So don't move this.
4754
	 */
4755
	ret = i915_gem_context_enable(dev_priv);
4756
	if (ret && ret != -EIO) {
4757
		DRM_ERROR("Context enable failed %d\n", ret);
4758
		i915_gem_cleanup_ringbuffer(dev);
4759 4760 4761 4762 4763 4764 4765 4766

		return ret;
	}

	ret = i915_ppgtt_init_hw(dev);
	if (ret && ret != -EIO) {
		DRM_ERROR("PPGTT enable failed %d\n", ret);
		i915_gem_cleanup_ringbuffer(dev);
4767
	}
D
Daniel Vetter 已提交
4768

4769
	return ret;
4770 4771
}

4772 4773 4774 4775 4776
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4777 4778 4779
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4780
	mutex_lock(&dev->struct_mutex);
4781 4782 4783

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4784 4785 4786
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4787 4788 4789
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4790 4791 4792 4793 4794
	if (!i915.enable_execlists) {
		dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4795 4796 4797 4798 4799
	} else {
		dev_priv->gt.do_execbuf = intel_execlists_submission;
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4800 4801
	}

4802 4803 4804 4805 4806 4807
	ret = i915_gem_init_userptr(dev);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}

4808
	i915_gem_init_global_gtt(dev);
4809

4810
	ret = i915_gem_context_init(dev);
4811 4812
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4813
		return ret;
4814
	}
4815

4816
	ret = i915_gem_init_hw(dev);
4817 4818 4819 4820 4821 4822 4823 4824
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
4825
	}
4826
	mutex_unlock(&dev->struct_mutex);
4827

4828 4829 4830
	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->dri1.allow_batchbuffer = 1;
4831
	return ret;
4832 4833
}

4834 4835 4836
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4837
	struct drm_i915_private *dev_priv = dev->dev_private;
4838
	struct intel_engine_cs *ring;
4839
	int i;
4840

4841
	for_each_ring(ring, dev_priv, i)
4842
		dev_priv->gt.cleanup_ring(ring);
4843 4844
}

4845 4846 4847 4848
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4849
	struct drm_i915_private *dev_priv = dev->dev_private;
4850
	int ret;
4851

J
Jesse Barnes 已提交
4852 4853 4854
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4855
	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4856
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4857
		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4858 4859 4860
	}

	mutex_lock(&dev->struct_mutex);
4861
	dev_priv->ums.mm_suspended = 0;
4862

4863
	ret = i915_gem_init_hw(dev);
4864 4865
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4866
		return ret;
4867
	}
4868

4869
	BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4870

4871
	ret = drm_irq_install(dev, dev->pdev->irq);
4872 4873
	if (ret)
		goto cleanup_ringbuffer;
4874
	mutex_unlock(&dev->struct_mutex);
4875

4876
	return 0;
4877 4878 4879

cleanup_ringbuffer:
	i915_gem_cleanup_ringbuffer(dev);
4880
	dev_priv->ums.mm_suspended = 1;
4881 4882 4883
	mutex_unlock(&dev->struct_mutex);

	return ret;
4884 4885 4886 4887 4888 4889
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4890 4891 4892
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4893
	mutex_lock(&dev->struct_mutex);
4894
	drm_irq_uninstall(dev);
4895
	mutex_unlock(&dev->struct_mutex);
4896

4897
	return i915_gem_suspend(dev);
4898 4899 4900 4901 4902 4903 4904
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4905 4906 4907
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4908
	ret = i915_gem_suspend(dev);
4909 4910
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4911 4912
}

4913
static void
4914
init_ring_lists(struct intel_engine_cs *ring)
4915 4916 4917 4918 4919
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4920 4921
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
4922
{
4923 4924
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
4925 4926 4927 4928
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
4929
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
4930 4931
}

4932 4933 4934
void
i915_gem_load(struct drm_device *dev)
{
4935
	struct drm_i915_private *dev_priv = dev->dev_private;
4936 4937 4938 4939 4940 4941 4942
	int i;

	dev_priv->slab =
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4943

B
Ben Widawsky 已提交
4944 4945 4946
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

4947
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4948 4949
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4950
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4951 4952
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
4953
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4954
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4955 4956
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4957 4958
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
4959
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4960

4961
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4962
	if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4963 4964
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4965 4966
	}

4967 4968
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4969
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4970 4971
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4972

4973 4974 4975
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4976 4977 4978 4979
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4980
	/* Initialize fence registers to zero */
4981 4982
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
4983

4984
	i915_gem_detect_bit_6_swizzle(dev);
4985
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4986

4987 4988
	dev_priv->mm.interruptible = true;

4989 4990 4991 4992
	dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
	dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
	dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.shrinker);
4993 4994 4995

	dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
	register_oom_notifier(&dev_priv->mm.oom_notifier);
4996 4997

	mutex_init(&dev_priv->fb_tracking.lock);
4998
}
4999

5000
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5001
{
5002
	struct drm_i915_file_private *file_priv = file->driver_priv;
5003

5004 5005
	cancel_delayed_work_sync(&file_priv->mm.idle_work);

5006 5007 5008 5009
	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5010
	spin_lock(&file_priv->mm.lock);
5011 5012 5013 5014 5015 5016 5017 5018 5019
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5020
	spin_unlock(&file_priv->mm.lock);
5021
}
5022

5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034
static void
i915_gem_file_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_file_private *file_priv =
		container_of(work, typeof(*file_priv), mm.idle_work.work);

	atomic_set(&file_priv->rps_wait_boost, false);
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5035
	int ret;
5036 5037 5038 5039 5040 5041 5042 5043 5044

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5045
	file_priv->file = file;
5046 5047 5048 5049 5050 5051

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);
	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
			  i915_gem_file_idle_work_handler);

5052 5053 5054
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5055

5056
	return ret;
5057 5058
}

5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
{
	if (!mutex_is_locked(mutex))
		return false;

#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
	return mutex->owner == task;
#else
	/* Since UP may be pre-empted, we cannot assume that we own the lock */
	return false;
#endif
}

5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
{
	if (!mutex_trylock(&dev->struct_mutex)) {
		if (!mutex_is_locked_by(&dev->struct_mutex, current))
			return false;

		if (to_i915(dev)->mm.shrinker_no_lock_stealing)
			return false;

		*unlock = false;
	} else
		*unlock = true;

	return true;
}

5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
static int num_vma_bound(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	int count = 0;

	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
			count++;

	return count;
}

5117
static unsigned long
5118
i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5119
{
5120
	struct drm_i915_private *dev_priv =
5121
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5122
	struct drm_device *dev = dev_priv->dev;
C
Chris Wilson 已提交
5123
	struct drm_i915_gem_object *obj;
5124
	unsigned long count;
5125
	bool unlock;
5126

5127 5128
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return 0;
5129

5130
	count = 0;
5131
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5132
		if (obj->pages_pin_count == 0)
5133
			count += obj->base.size >> PAGE_SHIFT;
5134 5135

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5136 5137
		if (!i915_gem_obj_is_pinned(obj) &&
		    obj->pages_pin_count == num_vma_bound(obj))
5138
			count += obj->base.size >> PAGE_SHIFT;
5139
	}
5140

5141 5142
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5143

5144
	return count;
5145
}
5146 5147 5148 5149 5150 5151 5152 5153

/* All the new VM stuff */
unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
				  struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5154
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5155 5156 5157 5158 5159 5160

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (vma->vm == vm)
			return vma->node.start;

	}
5161 5162
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5163 5164 5165 5166 5167 5168 5169 5170 5171
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5172
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5173 5174 5175 5176 5177 5178 5179
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5180
	struct i915_vma *vma;
5181

5182 5183
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5195
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205

	BUG_ON(list_empty(&o->vma_list));

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == vm)
			return vma->node.size;

	return 0;
}

5206
static unsigned long
5207
i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5208 5209
{
	struct drm_i915_private *dev_priv =
5210
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5211 5212
	struct drm_device *dev = dev_priv->dev;
	unsigned long freed;
5213
	bool unlock;
5214

5215 5216
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return SHRINK_STOP;
5217

5218 5219 5220 5221 5222
	freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
	if (freed < sc->nr_to_scan)
		freed += __i915_gem_shrink(dev_priv,
					   sc->nr_to_scan - freed,
					   false);
5223 5224
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5225

5226 5227
	return freed;
}
5228

5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
static int
i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
{
	struct drm_i915_private *dev_priv =
		container_of(nb, struct drm_i915_private, mm.oom_notifier);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj;
	unsigned long timeout = msecs_to_jiffies(5000) + 1;
	unsigned long pinned, bound, unbound, freed;
	bool was_interruptible;
	bool unlock;

5241
	while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5242
		schedule_timeout_killable(1);
5243 5244 5245
		if (fatal_signal_pending(current))
			return NOTIFY_DONE;
	}
5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295
	if (timeout == 0) {
		pr_err("Unable to purge GPU memory due lock contention.\n");
		return NOTIFY_DONE;
	}

	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

	freed = i915_gem_shrink_all(dev_priv);

	dev_priv->mm.interruptible = was_interruptible;

	/* Because we may be allocating inside our own driver, we cannot
	 * assert that there are no objects with pinned pages that are not
	 * being pointed to by hardware.
	 */
	unbound = bound = pinned = 0;
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		if (!obj->base.filp) /* not backed by a freeable object */
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			unbound += obj->base.size;
	}
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		if (!obj->base.filp)
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			bound += obj->base.size;
	}

	if (unlock)
		mutex_unlock(&dev->struct_mutex);

	pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
		freed, pinned);
	if (unbound || bound)
		pr_err("%lu and %lu bytes still available in the "
		       "bound and unbound GPU page lists.\n",
		       bound, unbound);

	*(unsigned long *)ptr += freed;
	return NOTIFY_DONE;
}

5296 5297 5298 5299 5300
struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5301
	if (vma->vm != i915_obj_to_ggtt(obj))
5302 5303 5304 5305
		return NULL;

	return vma;
}