extent_io.c 200.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2

3 4 5 6 7 8
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/bio.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/page-flags.h>
9
#include <linux/sched/mm.h>
10 11 12 13 14
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
15
#include <linux/prefetch.h>
B
Boris Burkov 已提交
16
#include <linux/fsverity.h>
17
#include "misc.h"
18
#include "extent_io.h"
19
#include "extent-io-tree.h"
20
#include "extent_map.h"
21 22
#include "ctree.h"
#include "btrfs_inode.h"
23
#include "volumes.h"
24
#include "check-integrity.h"
25
#include "locking.h"
26
#include "rcu-string.h"
27
#include "backref.h"
28
#include "disk-io.h"
29
#include "subpage.h"
30
#include "zoned.h"
31
#include "block-group.h"
32
#include "compression.h"
33 34 35

static struct kmem_cache *extent_buffer_cache;

36
#ifdef CONFIG_BTRFS_DEBUG
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	unsigned long flags;

	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
	list_add(&eb->leak_list, &fs_info->allocated_ebs);
	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
}

static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	unsigned long flags;

	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
	list_del(&eb->leak_list);
	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
55 56
}

57
void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
58 59
{
	struct extent_buffer *eb;
60
	unsigned long flags;
61

62 63 64 65 66 67 68
	/*
	 * If we didn't get into open_ctree our allocated_ebs will not be
	 * initialized, so just skip this.
	 */
	if (!fs_info->allocated_ebs.next)
		return;

69
	WARN_ON(!list_empty(&fs_info->allocated_ebs));
70 71 72 73
	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
	while (!list_empty(&fs_info->allocated_ebs)) {
		eb = list_first_entry(&fs_info->allocated_ebs,
				      struct extent_buffer, leak_list);
74 75 76 77
		pr_err(
	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
		       btrfs_header_owner(eb));
78 79 80
		list_del(&eb->leak_list);
		kmem_cache_free(extent_buffer_cache, eb);
	}
81
	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
82 83
}

84 85
#define btrfs_debug_check_extent_io_range(tree, start, end)		\
	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
86
static inline void __btrfs_debug_check_extent_io_range(const char *caller,
87
		struct extent_io_tree *tree, u64 start, u64 end)
88
{
89 90 91 92 93 94 95 96 97 98 99 100
	struct inode *inode = tree->private_data;
	u64 isize;

	if (!inode || !is_data_inode(inode))
		return;

	isize = i_size_read(inode);
	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
	}
101
}
102
#else
103 104
#define btrfs_leak_debug_add_eb(eb)			do {} while (0)
#define btrfs_leak_debug_del_eb(eb)			do {} while (0)
105
#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
C
Chris Mason 已提交
106
#endif
107 108 109 110 111 112 113

struct tree_entry {
	u64 start;
	u64 end;
	struct rb_node rb_node;
};

114 115 116 117 118 119
/*
 * Structure to record info about the bio being assembled, and other info like
 * how many bytes are there before stripe/ordered extent boundary.
 */
struct btrfs_bio_ctrl {
	struct bio *bio;
120
	int mirror_num;
121
	enum btrfs_compression_type compress_type;
122 123 124 125
	u32 len_to_stripe_boundary;
	u32 len_to_oe_boundary;
};

126
struct extent_page_data {
127
	struct btrfs_bio_ctrl bio_ctrl;
128 129 130
	/* tells writepage not to lock the state bits for this range
	 * it still does the unlocking
	 */
131 132
	unsigned int extent_locked:1;

133
	/* tells the submit_bio code to use REQ_SYNC */
134
	unsigned int sync_io:1;
135 136
};

137
static int add_extent_changeset(struct extent_state *state, u32 bits,
138 139 140 141 142 143
				 struct extent_changeset *changeset,
				 int set)
{
	int ret;

	if (!changeset)
144
		return 0;
145
	if (set && (state->state & bits) == bits)
146
		return 0;
147
	if (!set && (state->state & bits) == 0)
148
		return 0;
149
	changeset->bytes_changed += state->end - state->start + 1;
150
	ret = ulist_add(&changeset->range_changed, state->start, state->end,
151
			GFP_ATOMIC);
152
	return ret;
153 154
}

155
static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
156
{
157
	struct bio *bio;
158
	struct bio_vec *bv;
159 160 161 162 163
	struct inode *inode;
	int mirror_num;

	if (!bio_ctrl->bio)
		return;
164

165
	bio = bio_ctrl->bio;
166 167
	bv = bio_first_bvec_all(bio);
	inode = bv->bv_page->mapping->host;
168
	mirror_num = bio_ctrl->mirror_num;
169

170 171
	/* Caller should ensure the bio has at least some range added */
	ASSERT(bio->bi_iter.bi_size);
172

173
	btrfs_bio(bio)->file_offset = page_offset(bv->bv_page) + bv->bv_offset;
174

175 176 177 178
	if (!is_data_inode(inode))
		btrfs_submit_metadata_bio(inode, bio, mirror_num);
	else if (btrfs_op(bio) == BTRFS_MAP_WRITE)
		btrfs_submit_data_write_bio(inode, bio, mirror_num);
179
	else
180 181
		btrfs_submit_data_read_bio(inode, bio, mirror_num,
					   bio_ctrl->compress_type);
182

183
	/* The bio is owned by the end_io handler now */
184
	bio_ctrl->bio = NULL;
185 186
}

187
/*
188
 * Submit or fail the current bio in an extent_page_data structure.
189
 */
190
static void submit_write_bio(struct extent_page_data *epd, int ret)
191
{
192
	struct bio *bio = epd->bio_ctrl.bio;
193

194 195 196 197 198
	if (!bio)
		return;

	if (ret) {
		ASSERT(ret < 0);
199 200
		btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
		/* The bio is owned by the end_io handler now */
201
		epd->bio_ctrl.bio = NULL;
202
	} else {
203
		submit_one_bio(&epd->bio_ctrl);
204 205
	}
}
206

207 208
int __init extent_buffer_init_cachep(void)
{
D
David Sterba 已提交
209
	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
210
			sizeof(struct extent_buffer), 0,
211
			SLAB_MEM_SPREAD, NULL);
212
	if (!extent_buffer_cache)
213
		return -ENOMEM;
214

215 216 217
	return 0;
}

218
void __cold extent_buffer_free_cachep(void)
219
{
220 221 222 223 224
	/*
	 * Make sure all delayed rcu free are flushed before we
	 * destroy caches.
	 */
	rcu_barrier();
225
	kmem_cache_destroy(extent_buffer_cache);
226 227
}

N
Nikolay Borisov 已提交
228
/**
229 230
 * Search @tree for an entry that contains @offset. Such entry would have
 * entry->start <= offset && entry->end >= offset.
N
Nikolay Borisov 已提交
231
 *
232 233
 * @tree:       the tree to search
 * @offset:     offset that should fall within an entry in @tree
234
 * @node_ret:   pointer where new node should be anchored (used when inserting an
235 236
 *	        entry in the tree)
 * @parent_ret: points to entry which would have been the parent of the entry,
N
Nikolay Borisov 已提交
237 238
 *               containing @offset
 *
239 240 241 242 243
 * Return a pointer to the entry that contains @offset byte address and don't change
 * @node_ret and @parent_ret.
 *
 * If no such entry exists, return pointer to entry that ends before @offset
 * and fill parameters @node_ret and @parent_ret, ie. does not return NULL.
N
Nikolay Borisov 已提交
244
 */
245 246 247 248
static inline struct rb_node *tree_search_for_insert(struct extent_io_tree *tree,
					             u64 offset,
						     struct rb_node ***node_ret,
						     struct rb_node **parent_ret)
249
{
250
	struct rb_root *root = &tree->state;
251
	struct rb_node **node = &root->rb_node;
252 253 254
	struct rb_node *prev = NULL;
	struct tree_entry *entry;

255 256
	while (*node) {
		prev = *node;
257
		entry = rb_entry(prev, struct tree_entry, rb_node);
258 259

		if (offset < entry->start)
260
			node = &(*node)->rb_left;
261
		else if (offset > entry->end)
262
			node = &(*node)->rb_right;
C
Chris Mason 已提交
263
		else
264
			return *node;
265 266
	}

267 268
	if (node_ret)
		*node_ret = node;
269 270 271
	if (parent_ret)
		*parent_ret = prev;

272 273 274 275
	/* Search neighbors until we find the first one past the end */
	while (prev && offset > entry->end) {
		prev = rb_next(prev);
		entry = rb_entry(prev, struct tree_entry, rb_node);
276 277
	}

278
	return prev;
279 280
}

281 282 283 284
/*
 * Inexact rb-tree search, return the next entry if @offset is not found
 */
static inline struct rb_node *tree_search(struct extent_io_tree *tree, u64 offset)
285
{
286
	return tree_search_for_insert(tree, offset, NULL, NULL);
287 288
}

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
/**
 * Search offset in the tree or fill neighbor rbtree node pointers.
 *
 * @tree:      the tree to search
 * @offset:    offset that should fall within an entry in @tree
 * @next_ret:  pointer to the first entry whose range ends after @offset
 * @prev_ret:  pointer to the first entry whose range begins before @offset
 *
 * Return a pointer to the entry that contains @offset byte address. If no
 * such entry exists, then return NULL and fill @prev_ret and @next_ret.
 * Otherwise return the found entry and other pointers are left untouched.
 */
static struct rb_node *tree_search_prev_next(struct extent_io_tree *tree,
					     u64 offset,
					     struct rb_node **prev_ret,
					     struct rb_node **next_ret)
305
{
306 307 308
	struct rb_root *root = &tree->state;
	struct rb_node **node = &root->rb_node;
	struct rb_node *prev = NULL;
309
	struct rb_node *orig_prev = NULL;
310 311
	struct tree_entry *entry;

312 313 314
	ASSERT(prev_ret);
	ASSERT(next_ret);

315 316 317 318 319 320 321 322 323 324 325 326
	while (*node) {
		prev = *node;
		entry = rb_entry(prev, struct tree_entry, rb_node);

		if (offset < entry->start)
			node = &(*node)->rb_left;
		else if (offset > entry->end)
			node = &(*node)->rb_right;
		else
			return *node;
	}

327
	orig_prev = prev;
328 329 330 331
	while (prev && offset > entry->end) {
		prev = rb_next(prev);
		entry = rb_entry(prev, struct tree_entry, rb_node);
	}
332 333
	*next_ret = prev;
	prev = orig_prev;
334

335 336 337 338 339 340
	entry = rb_entry(prev, struct tree_entry, rb_node);
	while (prev && offset < entry->start) {
		prev = rb_prev(prev);
		entry = rb_entry(prev, struct tree_entry, rb_node);
	}
	*prev_ret = prev;
341

342
	return NULL;
343 344
}

345 346 347 348 349 350 351 352 353
/*
 * utility function to look for merge candidates inside a given range.
 * Any extents with matching state are merged together into a single
 * extent in the tree.  Extents with EXTENT_IO in their state field
 * are not merged because the end_io handlers need to be able to do
 * operations on them without sleeping (or doing allocations/splits).
 *
 * This should be called with the tree lock held.
 */
354 355
static void merge_state(struct extent_io_tree *tree,
		        struct extent_state *state)
356 357 358 359
{
	struct extent_state *other;
	struct rb_node *other_node;

N
Nikolay Borisov 已提交
360
	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
361
		return;
362 363 364 365 366 367

	other_node = rb_prev(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->end == state->start - 1 &&
		    other->state == state->state) {
368 369 370 371
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
372 373
			state->start = other->start;
			rb_erase(&other->rb_node, &tree->state);
374
			RB_CLEAR_NODE(&other->rb_node);
375 376 377 378 379 380 381 382
			free_extent_state(other);
		}
	}
	other_node = rb_next(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->start == state->end + 1 &&
		    other->state == state->state) {
383 384 385 386
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
387 388
			state->end = other->end;
			rb_erase(&other->rb_node, &tree->state);
389
			RB_CLEAR_NODE(&other->rb_node);
390
			free_extent_state(other);
391 392 393 394
		}
	}
}

395
static void set_state_bits(struct extent_io_tree *tree,
396
			   struct extent_state *state, u32 bits,
397
			   struct extent_changeset *changeset);
398

399 400 401 402 403 404 405 406 407 408 409
/*
 * insert an extent_state struct into the tree.  'bits' are set on the
 * struct before it is inserted.
 *
 * This may return -EEXIST if the extent is already there, in which case the
 * state struct is freed.
 *
 * The tree lock is not taken internally.  This is a utility function and
 * probably isn't what you want to call (see set/clear_extent_bit).
 */
static int insert_state(struct extent_io_tree *tree,
410
			struct extent_state *state,
411
			u32 bits, struct extent_changeset *changeset)
412
{
413 414
	struct rb_node **node;
	struct rb_node *parent;
415
	const u64 end = state->end;
J
Josef Bacik 已提交
416

417
	set_state_bits(tree, state, bits, changeset);
418

419 420 421 422 423 424 425 426 427 428 429 430 431 432
	node = &tree->state.rb_node;
	while (*node) {
		struct tree_entry *entry;

		parent = *node;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (end < entry->start) {
			node = &(*node)->rb_left;
		} else if (end > entry->end) {
			node = &(*node)->rb_right;
		} else {
			btrfs_err(tree->fs_info,
			       "found node %llu %llu on insert of %llu %llu",
433
			       entry->start, entry->end, state->start, end);
434 435
			return -EEXIST;
		}
436
	}
437 438 439 440

	rb_link_node(&state->rb_node, parent, node);
	rb_insert_color(&state->rb_node, &tree->state);

441 442 443 444
	merge_state(tree, state);
	return 0;
}

445 446 447 448 449 450 451 452 453 454 455 456 457 458
/*
 * Insert state to @tree to the location given by @node and @parent.
 */
static void insert_state_fast(struct extent_io_tree *tree,
			      struct extent_state *state, struct rb_node **node,
			      struct rb_node *parent, unsigned bits,
			      struct extent_changeset *changeset)
{
	set_state_bits(tree, state, bits, changeset);
	rb_link_node(&state->rb_node, parent, node);
	rb_insert_color(&state->rb_node, &tree->state);
	merge_state(tree, state);
}

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
/*
 * split a given extent state struct in two, inserting the preallocated
 * struct 'prealloc' as the newly created second half.  'split' indicates an
 * offset inside 'orig' where it should be split.
 *
 * Before calling,
 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 * are two extent state structs in the tree:
 * prealloc: [orig->start, split - 1]
 * orig: [ split, orig->end ]
 *
 * The tree locks are not taken by this function. They need to be held
 * by the caller.
 */
static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
		       struct extent_state *prealloc, u64 split)
{
476 477
	struct rb_node *parent = NULL;
	struct rb_node **node;
J
Josef Bacik 已提交
478

479 480
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_split_delalloc_extent(tree->private_data, orig, split);
J
Josef Bacik 已提交
481

482 483 484 485 486
	prealloc->start = orig->start;
	prealloc->end = split - 1;
	prealloc->state = orig->state;
	orig->start = split;

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	parent = &orig->rb_node;
	node = &parent;
	while (*node) {
		struct tree_entry *entry;

		parent = *node;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (prealloc->end < entry->start) {
			node = &(*node)->rb_left;
		} else if (prealloc->end > entry->end) {
			node = &(*node)->rb_right;
		} else {
			free_extent_state(prealloc);
			return -EEXIST;
		}
503
	}
504 505 506 507

	rb_link_node(&prealloc->rb_node, parent, node);
	rb_insert_color(&prealloc->rb_node, &tree->state);

508 509 510
	return 0;
}

511 512 513 514 515 516 517 518 519
static struct extent_state *next_state(struct extent_state *state)
{
	struct rb_node *next = rb_next(&state->rb_node);
	if (next)
		return rb_entry(next, struct extent_state, rb_node);
	else
		return NULL;
}

520 521
/*
 * utility function to clear some bits in an extent state struct.
522
 * it will optionally wake up anyone waiting on this state (wake == 1).
523 524 525 526
 *
 * If no bits are set on the state struct after clearing things, the
 * struct is freed and removed from the tree
 */
527 528
static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
					    struct extent_state *state,
529
					    u32 bits, int wake,
530
					    struct extent_changeset *changeset)
531
{
532
	struct extent_state *next;
533
	u32 bits_to_clear = bits & ~EXTENT_CTLBITS;
534
	int ret;
535

536
	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
537 538 539 540
		u64 range = state->end - state->start + 1;
		WARN_ON(range > tree->dirty_bytes);
		tree->dirty_bytes -= range;
	}
541 542 543 544

	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_clear_delalloc_extent(tree->private_data, state, bits);

545 546
	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
	BUG_ON(ret < 0);
547
	state->state &= ~bits_to_clear;
548 549
	if (wake)
		wake_up(&state->wq);
550
	if (state->state == 0) {
551
		next = next_state(state);
552
		if (extent_state_in_tree(state)) {
553
			rb_erase(&state->rb_node, &tree->state);
554
			RB_CLEAR_NODE(&state->rb_node);
555 556 557 558 559 560
			free_extent_state(state);
		} else {
			WARN_ON(1);
		}
	} else {
		merge_state(tree, state);
561
		next = next_state(state);
562
	}
563
	return next;
564 565
}

566
static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
567
{
568
	btrfs_panic(tree->fs_info, err,
569
	"locking error: extent tree was modified by another thread while locked");
570 571
}

572 573 574 575 576 577 578 579 580 581
/*
 * clear some bits on a range in the tree.  This may require splitting
 * or inserting elements in the tree, so the gfp mask is used to
 * indicate which allocations or sleeping are allowed.
 *
 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 * the given range from the tree regardless of state (ie for truncate).
 *
 * the range [start, end] is inclusive.
 *
582
 * This takes the tree lock, and returns 0 on success and < 0 on error.
583
 */
584
int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
585 586 587
		       u32 bits, int wake, int delete,
		       struct extent_state **cached_state,
		       gfp_t mask, struct extent_changeset *changeset)
588 589
{
	struct extent_state *state;
590
	struct extent_state *cached;
591 592
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
593
	u64 last_end;
594
	int err;
595
	int clear = 0;
596

597
	btrfs_debug_check_extent_io_range(tree, start, end);
598
	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
599

600 601 602
	if (bits & EXTENT_DELALLOC)
		bits |= EXTENT_NORESERVE;

603 604 605
	if (delete)
		bits |= ~EXTENT_CTLBITS;

N
Nikolay Borisov 已提交
606
	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
607
		clear = 1;
608
again:
609
	if (!prealloc && gfpflags_allow_blocking(mask)) {
610 611 612 613 614 615 616
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
617 618 619
		prealloc = alloc_extent_state(mask);
	}

620
	spin_lock(&tree->lock);
621 622
	if (cached_state) {
		cached = *cached_state;
623 624 625 626 627 628

		if (clear) {
			*cached_state = NULL;
			cached_state = NULL;
		}

629 630
		if (cached && extent_state_in_tree(cached) &&
		    cached->start <= start && cached->end > start) {
631
			if (clear)
632
				refcount_dec(&cached->refs);
633
			state = cached;
634
			goto hit_next;
635
		}
636 637
		if (clear)
			free_extent_state(cached);
638
	}
639 640 641 642
	/*
	 * this search will find the extents that end after
	 * our range starts
	 */
643
	node = tree_search(tree, start);
644 645 646
	if (!node)
		goto out;
	state = rb_entry(node, struct extent_state, rb_node);
647
hit_next:
648 649 650
	if (state->start > end)
		goto out;
	WARN_ON(state->end < start);
651
	last_end = state->end;
652

653
	/* the state doesn't have the wanted bits, go ahead */
654 655
	if (!(state->state & bits)) {
		state = next_state(state);
656
		goto next;
657
	}
658

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
	/*
	 *     | ---- desired range ---- |
	 *  | state | or
	 *  | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip
	 * bits on second half.
	 *
	 * If the extent we found extends past our range, we
	 * just split and search again.  It'll get split again
	 * the next time though.
	 *
	 * If the extent we found is inside our range, we clear
	 * the desired bit on it.
	 */

	if (state->start < start) {
676 677
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
678
		err = split_state(tree, state, prealloc, start);
679 680 681
		if (err)
			extent_io_tree_panic(tree, err);

682 683 684 685
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
686
			state = clear_state_bit(tree, state, bits, wake, changeset);
687
			goto next;
688 689 690 691 692 693 694 695 696 697
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and clear the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
698 699
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
700
		err = split_state(tree, state, prealloc, end + 1);
701 702 703
		if (err)
			extent_io_tree_panic(tree, err);

704 705
		if (wake)
			wake_up(&state->wq);
706

707
		clear_state_bit(tree, prealloc, bits, wake, changeset);
J
Josef Bacik 已提交
708

709 710 711
		prealloc = NULL;
		goto out;
	}
712

713
	state = clear_state_bit(tree, state, bits, wake, changeset);
714
next:
715 716 717
	if (last_end == (u64)-1)
		goto out;
	start = last_end + 1;
718
	if (start <= end && state && !need_resched())
719
		goto hit_next;
720 721 722 723

search_again:
	if (start > end)
		goto out;
724
	spin_unlock(&tree->lock);
725
	if (gfpflags_allow_blocking(mask))
726 727
		cond_resched();
	goto again;
728 729 730 731 732 733 734 735

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return 0;

736 737
}

738 739
static void wait_on_state(struct extent_io_tree *tree,
			  struct extent_state *state)
740 741
		__releases(tree->lock)
		__acquires(tree->lock)
742 743 744
{
	DEFINE_WAIT(wait);
	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
745
	spin_unlock(&tree->lock);
746
	schedule();
747
	spin_lock(&tree->lock);
748 749 750 751 752 753 754 755
	finish_wait(&state->wq, &wait);
}

/*
 * waits for one or more bits to clear on a range in the state tree.
 * The range [start, end] is inclusive.
 * The tree lock is taken by this function
 */
756
static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
757
			    u32 bits)
758 759 760 761
{
	struct extent_state *state;
	struct rb_node *node;

762
	btrfs_debug_check_extent_io_range(tree, start, end);
763

764
	spin_lock(&tree->lock);
765 766 767 768 769 770
again:
	while (1) {
		/*
		 * this search will find all the extents that end after
		 * our range starts
		 */
771
		node = tree_search(tree, start);
772
process_node:
773 774 775 776 777 778 779 780 781 782
		if (!node)
			break;

		state = rb_entry(node, struct extent_state, rb_node);

		if (state->start > end)
			goto out;

		if (state->state & bits) {
			start = state->start;
783
			refcount_inc(&state->refs);
784 785 786 787 788 789 790 791 792
			wait_on_state(tree, state);
			free_extent_state(state);
			goto again;
		}
		start = state->end + 1;

		if (start > end)
			break;

793 794 795 796
		if (!cond_resched_lock(&tree->lock)) {
			node = rb_next(node);
			goto process_node;
		}
797 798
	}
out:
799
	spin_unlock(&tree->lock);
800 801
}

802
static void set_state_bits(struct extent_io_tree *tree,
803
			   struct extent_state *state,
804
			   u32 bits, struct extent_changeset *changeset)
805
{
806
	u32 bits_to_set = bits & ~EXTENT_CTLBITS;
807
	int ret;
J
Josef Bacik 已提交
808

809 810 811
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_set_delalloc_extent(tree->private_data, state, bits);

812
	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
813 814 815
		u64 range = state->end - state->start + 1;
		tree->dirty_bytes += range;
	}
816 817
	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
	BUG_ON(ret < 0);
818
	state->state |= bits_to_set;
819 820
}

821 822
static void cache_state_if_flags(struct extent_state *state,
				 struct extent_state **cached_ptr,
823
				 unsigned flags)
824 825
{
	if (cached_ptr && !(*cached_ptr)) {
826
		if (!flags || (state->state & flags)) {
827
			*cached_ptr = state;
828
			refcount_inc(&state->refs);
829 830 831 832
		}
	}
}

833 834 835 836
static void cache_state(struct extent_state *state,
			struct extent_state **cached_ptr)
{
	return cache_state_if_flags(state, cached_ptr,
N
Nikolay Borisov 已提交
837
				    EXTENT_LOCKED | EXTENT_BOUNDARY);
838 839
}

840
/*
841 842
 * set some bits on a range in the tree.  This may require allocations or
 * sleeping, so the gfp mask is used to indicate what is allowed.
843
 *
844 845 846
 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 * part of the range already has the desired bits set.  The start of the
 * existing range is returned in failed_start in this case.
847
 *
848
 * [start, end] is inclusive This takes the tree lock.
849
 */
850 851
int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
		   u32 exclusive_bits, u64 *failed_start,
852 853
		   struct extent_state **cached_state, gfp_t mask,
		   struct extent_changeset *changeset)
854 855 856 857
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
858 859
	struct rb_node **p;
	struct rb_node *parent;
860 861 862
	int err = 0;
	u64 last_start;
	u64 last_end;
863

864
	btrfs_debug_check_extent_io_range(tree, start, end);
865
	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
866

867 868 869 870
	if (exclusive_bits)
		ASSERT(failed_start);
	else
		ASSERT(failed_start == NULL);
871
again:
872
	if (!prealloc && gfpflags_allow_blocking(mask)) {
873 874 875 876 877 878 879
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
880 881 882
		prealloc = alloc_extent_state(mask);
	}

883
	spin_lock(&tree->lock);
884 885
	if (cached_state && *cached_state) {
		state = *cached_state;
886
		if (state->start <= start && state->end > start &&
887
		    extent_state_in_tree(state)) {
888 889 890 891
			node = &state->rb_node;
			goto hit_next;
		}
	}
892 893 894 895
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
896
	node = tree_search_for_insert(tree, start, &p, &parent);
897
	if (!node) {
898 899
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
900 901
		prealloc->start = start;
		prealloc->end = end;
902
		insert_state_fast(tree, prealloc, p, parent, bits, changeset);
903
		cache_state(prealloc, cached_state);
904 905 906 907
		prealloc = NULL;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
908
hit_next:
909 910 911 912 913 914 915 916 917 918
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
919
		if (state->state & exclusive_bits) {
920 921 922 923
			*failed_start = state->start;
			err = -EEXIST;
			goto out;
		}
924

925
		set_state_bits(tree, state, bits, changeset);
926
		cache_state(state, cached_state);
927
		merge_state(tree, state);
928 929 930
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
931 932 933 934
		state = next_state(state);
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
955
		if (state->state & exclusive_bits) {
956 957 958 959
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
960

961 962 963 964 965 966 967 968 969 970
		/*
		 * If this extent already has all the bits we want set, then
		 * skip it, not necessary to split it or do anything with it.
		 */
		if ((state->state & bits) == bits) {
			start = state->end + 1;
			cache_state(state, cached_state);
			goto search_again;
		}

971 972
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
973
		err = split_state(tree, state, prealloc, start);
974 975 976
		if (err)
			extent_io_tree_panic(tree, err);

977 978 979 980
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
981
			set_state_bits(tree, state, bits, changeset);
982
			cache_state(state, cached_state);
983
			merge_state(tree, state);
984 985 986
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
987 988 989 990
			state = next_state(state);
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
C
Chris Mason 已提交
1006
			this_end = last_start - 1;
1007 1008 1009

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1010 1011 1012 1013 1014

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
1015 1016
		prealloc->start = start;
		prealloc->end = this_end;
1017
		err = insert_state(tree, prealloc, bits, changeset);
1018 1019 1020
		if (err)
			extent_io_tree_panic(tree, err);

J
Josef Bacik 已提交
1021 1022
		cache_state(prealloc, cached_state);
		prealloc = NULL;
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
1033
		if (state->state & exclusive_bits) {
1034 1035 1036 1037
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1038 1039 1040

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1041
		err = split_state(tree, state, prealloc, end + 1);
1042 1043
		if (err)
			extent_io_tree_panic(tree, err);
1044

1045
		set_state_bits(tree, prealloc, bits, changeset);
1046
		cache_state(prealloc, cached_state);
1047 1048 1049 1050 1051
		merge_state(tree, prealloc);
		prealloc = NULL;
		goto out;
	}

1052 1053 1054 1055 1056 1057 1058
search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
	if (gfpflags_allow_blocking(mask))
		cond_resched();
	goto again;
1059 1060

out:
1061
	spin_unlock(&tree->lock);
1062 1063 1064 1065 1066 1067 1068
	if (prealloc)
		free_extent_state(prealloc);

	return err;

}

J
Josef Bacik 已提交
1069
/**
L
Liu Bo 已提交
1070 1071
 * convert_extent_bit - convert all bits in a given range from one bit to
 * 			another
J
Josef Bacik 已提交
1072 1073 1074 1075 1076
 * @tree:	the io tree to search
 * @start:	the start offset in bytes
 * @end:	the end offset in bytes (inclusive)
 * @bits:	the bits to set in this range
 * @clear_bits:	the bits to clear in this range
1077
 * @cached_state:	state that we're going to cache
J
Josef Bacik 已提交
1078 1079 1080 1081 1082 1083
 *
 * This will go through and set bits for the given range.  If any states exist
 * already in this range they are set with the given bit and cleared of the
 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 * boundary bits like LOCK.
1084 1085
 *
 * All allocations are done with GFP_NOFS.
J
Josef Bacik 已提交
1086 1087
 */
int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1088
		       u32 bits, u32 clear_bits,
1089
		       struct extent_state **cached_state)
J
Josef Bacik 已提交
1090 1091 1092 1093
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
1094 1095
	struct rb_node **p;
	struct rb_node *parent;
J
Josef Bacik 已提交
1096 1097 1098
	int err = 0;
	u64 last_start;
	u64 last_end;
1099
	bool first_iteration = true;
J
Josef Bacik 已提交
1100

1101
	btrfs_debug_check_extent_io_range(tree, start, end);
1102 1103
	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
				       clear_bits);
1104

J
Josef Bacik 已提交
1105
again:
1106
	if (!prealloc) {
1107 1108 1109 1110 1111 1112 1113
		/*
		 * Best effort, don't worry if extent state allocation fails
		 * here for the first iteration. We might have a cached state
		 * that matches exactly the target range, in which case no
		 * extent state allocations are needed. We'll only know this
		 * after locking the tree.
		 */
1114
		prealloc = alloc_extent_state(GFP_NOFS);
1115
		if (!prealloc && !first_iteration)
J
Josef Bacik 已提交
1116 1117 1118 1119
			return -ENOMEM;
	}

	spin_lock(&tree->lock);
1120 1121 1122
	if (cached_state && *cached_state) {
		state = *cached_state;
		if (state->start <= start && state->end > start &&
1123
		    extent_state_in_tree(state)) {
1124 1125 1126 1127 1128
			node = &state->rb_node;
			goto hit_next;
		}
	}

J
Josef Bacik 已提交
1129 1130 1131 1132
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1133
	node = tree_search_for_insert(tree, start, &p, &parent);
J
Josef Bacik 已提交
1134 1135
	if (!node) {
		prealloc = alloc_extent_state_atomic(prealloc);
1136 1137 1138 1139
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
1140 1141
		prealloc->start = start;
		prealloc->end = end;
1142
		insert_state_fast(tree, prealloc, p, parent, bits, NULL);
1143 1144
		cache_state(prealloc, cached_state);
		prealloc = NULL;
J
Josef Bacik 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
hit_next:
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1159
		set_state_bits(tree, state, bits, NULL);
1160
		cache_state(state, cached_state);
1161
		state = clear_state_bit(tree, state, clear_bits, 0, NULL);
J
Josef Bacik 已提交
1162 1163 1164
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1165 1166 1167
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
J
Josef Bacik 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
		prealloc = alloc_extent_state_atomic(prealloc);
1189 1190 1191 1192
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1193
		err = split_state(tree, state, prealloc, start);
1194 1195
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1196 1197 1198 1199
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1200
			set_state_bits(tree, state, bits, NULL);
1201
			cache_state(state, cached_state);
1202
			state = clear_state_bit(tree, state, clear_bits, 0, NULL);
J
Josef Bacik 已提交
1203 1204 1205
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1206 1207 1208
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
J
Josef Bacik 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
			this_end = last_start - 1;

		prealloc = alloc_extent_state_atomic(prealloc);
1227 1228 1229 1230
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1231 1232 1233 1234 1235

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
1236 1237
		prealloc->start = start;
		prealloc->end = this_end;
1238
		err = insert_state(tree, prealloc, bits, NULL);
1239 1240
		if (err)
			extent_io_tree_panic(tree, err);
1241
		cache_state(prealloc, cached_state);
J
Josef Bacik 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
		prealloc = NULL;
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
		prealloc = alloc_extent_state_atomic(prealloc);
1254 1255 1256 1257
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1258 1259

		err = split_state(tree, state, prealloc, end + 1);
1260 1261
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1262

1263
		set_state_bits(tree, prealloc, bits, NULL);
1264
		cache_state(prealloc, cached_state);
1265
		clear_state_bit(tree, prealloc, clear_bits, 0, NULL);
J
Josef Bacik 已提交
1266 1267 1268 1269 1270 1271 1272 1273
		prealloc = NULL;
		goto out;
	}

search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
1274
	cond_resched();
1275
	first_iteration = false;
J
Josef Bacik 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	goto again;

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return err;
}

1286
/* wrappers around set/clear extent bit */
1287
int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1288
			   u32 bits, struct extent_changeset *changeset)
1289 1290 1291 1292 1293 1294 1295 1296 1297
{
	/*
	 * We don't support EXTENT_LOCKED yet, as current changeset will
	 * record any bits changed, so for EXTENT_LOCKED case, it will
	 * either fail with -EEXIST or changeset will record the whole
	 * range.
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1298 1299
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
			      changeset);
1300 1301
}

1302
int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1303
			   u32 bits)
1304
{
1305 1306
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
			      GFP_NOWAIT, NULL);
1307 1308
}

1309
int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1310
		     u32 bits, int wake, int delete,
1311
		     struct extent_state **cached)
1312 1313
{
	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1314
				  cached, GFP_NOFS, NULL);
1315 1316 1317
}

int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1318
		u32 bits, struct extent_changeset *changeset)
1319 1320 1321 1322 1323 1324 1325
{
	/*
	 * Don't support EXTENT_LOCKED case, same reason as
	 * set_record_extent_bits().
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1326
	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1327 1328 1329
				  changeset);
}

C
Chris Mason 已提交
1330 1331 1332 1333
/*
 * either insert or lock state struct between start and end use mask to tell
 * us if waiting is desired.
 */
1334
int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1335
		     struct extent_state **cached_state)
1336 1337 1338
{
	int err;
	u64 failed_start;
1339

1340
	while (1) {
1341 1342 1343
		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
				     EXTENT_LOCKED, &failed_start,
				     cached_state, GFP_NOFS, NULL);
1344
		if (err == -EEXIST) {
1345 1346
			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
			start = failed_start;
1347
		} else
1348 1349 1350 1351 1352 1353
			break;
		WARN_ON(start > end);
	}
	return err;
}

1354
int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1355 1356 1357 1358
{
	int err;
	u64 failed_start;

1359 1360
	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
			     &failed_start, NULL, GFP_NOFS, NULL);
Y
Yan Zheng 已提交
1361 1362 1363
	if (err == -EEXIST) {
		if (failed_start > start)
			clear_extent_bit(tree, start, failed_start - 1,
1364
					 EXTENT_LOCKED, 1, 0, NULL);
1365
		return 0;
Y
Yan Zheng 已提交
1366
	}
1367 1368 1369
	return 1;
}

1370
void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1371
{
1372 1373
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1374 1375 1376 1377 1378 1379
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		clear_page_dirty_for_io(page);
1380
		put_page(page);
1381 1382 1383 1384
		index++;
	}
}

1385
void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1386
{
1387
	struct address_space *mapping = inode->i_mapping;
1388 1389
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1390
	struct folio *folio;
1391 1392

	while (index <= end_index) {
1393 1394 1395 1396 1397
		folio = filemap_get_folio(mapping, index);
		filemap_dirty_folio(mapping, folio);
		folio_account_redirty(folio);
		index += folio_nr_pages(folio);
		folio_put(folio);
1398 1399 1400
	}
}

C
Chris Mason 已提交
1401 1402 1403 1404
/* find the first state struct with 'bits' set after 'start', and
 * return it.  tree->lock must be held.  NULL will returned if
 * nothing was found after 'start'
 */
1405
static struct extent_state *
1406
find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
C
Chris Mason 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415
{
	struct rb_node *node;
	struct extent_state *state;

	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
	node = tree_search(tree, start);
C
Chris Mason 已提交
1416
	if (!node)
C
Chris Mason 已提交
1417 1418
		goto out;

C
Chris Mason 已提交
1419
	while (1) {
C
Chris Mason 已提交
1420
		state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1421
		if (state->end >= start && (state->state & bits))
C
Chris Mason 已提交
1422
			return state;
C
Chris Mason 已提交
1423

C
Chris Mason 已提交
1424 1425 1426 1427 1428 1429 1430 1431
		node = rb_next(node);
		if (!node)
			break;
	}
out:
	return NULL;
}

1432
/*
1433
 * Find the first offset in the io tree with one or more @bits set.
1434
 *
1435 1436 1437 1438
 * Note: If there are multiple bits set in @bits, any of them will match.
 *
 * Return 0 if we find something, and update @start_ret and @end_ret.
 * Return 1 if we found nothing.
1439 1440
 */
int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1441
			  u64 *start_ret, u64 *end_ret, u32 bits,
1442
			  struct extent_state **cached_state)
1443 1444 1445 1446 1447
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
1448 1449
	if (cached_state && *cached_state) {
		state = *cached_state;
1450
		if (state->end == start - 1 && extent_state_in_tree(state)) {
1451
			while ((state = next_state(state)) != NULL) {
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
				if (state->state & bits)
					goto got_it;
			}
			free_extent_state(*cached_state);
			*cached_state = NULL;
			goto out;
		}
		free_extent_state(*cached_state);
		*cached_state = NULL;
	}

1463
	state = find_first_extent_bit_state(tree, start, bits);
1464
got_it:
1465
	if (state) {
1466
		cache_state_if_flags(state, cached_state, 0);
1467 1468 1469 1470
		*start_ret = state->start;
		*end_ret = state->end;
		ret = 0;
	}
1471
out:
1472 1473 1474 1475
	spin_unlock(&tree->lock);
	return ret;
}

1476
/**
1477 1478 1479 1480 1481 1482 1483
 * Find a contiguous area of bits
 *
 * @tree:      io tree to check
 * @start:     offset to start the search from
 * @start_ret: the first offset we found with the bits set
 * @end_ret:   the final contiguous range of the bits that were set
 * @bits:      bits to look for
1484 1485 1486 1487 1488 1489 1490 1491 1492
 *
 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
 * to set bits appropriately, and then merge them again.  During this time it
 * will drop the tree->lock, so use this helper if you want to find the actual
 * contiguous area for given bits.  We will search to the first bit we find, and
 * then walk down the tree until we find a non-contiguous area.  The area
 * returned will be the full contiguous area with the bits set.
 */
int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1493
			       u64 *start_ret, u64 *end_ret, u32 bits)
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
	state = find_first_extent_bit_state(tree, start, bits);
	if (state) {
		*start_ret = state->start;
		*end_ret = state->end;
		while ((state = next_state(state)) != NULL) {
			if (state->start > (*end_ret + 1))
				break;
			*end_ret = state->end;
		}
		ret = 0;
	}
	spin_unlock(&tree->lock);
	return ret;
}

1514
/**
1515 1516
 * Find the first range that has @bits not set. This range could start before
 * @start.
1517
 *
1518 1519 1520 1521 1522
 * @tree:      the tree to search
 * @start:     offset at/after which the found extent should start
 * @start_ret: records the beginning of the range
 * @end_ret:   records the end of the range (inclusive)
 * @bits:      the set of bits which must be unset
1523 1524 1525 1526 1527 1528 1529
 *
 * Since unallocated range is also considered one which doesn't have the bits
 * set it's possible that @end_ret contains -1, this happens in case the range
 * spans (last_range_end, end of device]. In this case it's up to the caller to
 * trim @end_ret to the appropriate size.
 */
void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1530
				 u64 *start_ret, u64 *end_ret, u32 bits)
1531 1532 1533 1534 1535 1536 1537 1538
{
	struct extent_state *state;
	struct rb_node *node, *prev = NULL, *next;

	spin_lock(&tree->lock);

	/* Find first extent with bits cleared */
	while (1) {
1539
		node = tree_search_prev_next(tree, start, &prev, &next);
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
		if (!node && !next && !prev) {
			/*
			 * Tree is completely empty, send full range and let
			 * caller deal with it
			 */
			*start_ret = 0;
			*end_ret = -1;
			goto out;
		} else if (!node && !next) {
			/*
			 * We are past the last allocated chunk, set start at
			 * the end of the last extent.
			 */
			state = rb_entry(prev, struct extent_state, rb_node);
			*start_ret = state->end + 1;
			*end_ret = -1;
			goto out;
		} else if (!node) {
1558 1559
			node = next;
		}
1560 1561 1562 1563
		/*
		 * At this point 'node' either contains 'start' or start is
		 * before 'node'
		 */
1564
		state = rb_entry(node, struct extent_state, rb_node);
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586

		if (in_range(start, state->start, state->end - state->start + 1)) {
			if (state->state & bits) {
				/*
				 * |--range with bits sets--|
				 *    |
				 *    start
				 */
				start = state->end + 1;
			} else {
				/*
				 * 'start' falls within a range that doesn't
				 * have the bits set, so take its start as
				 * the beginning of the desired range
				 *
				 * |--range with bits cleared----|
				 *      |
				 *      start
				 */
				*start_ret = state->start;
				break;
			}
1587
		} else {
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
			/*
			 * |---prev range---|---hole/unset---|---node range---|
			 *                          |
			 *                        start
			 *
			 *                        or
			 *
			 * |---hole/unset--||--first node--|
			 * 0   |
			 *    start
			 */
			if (prev) {
				state = rb_entry(prev, struct extent_state,
						 rb_node);
				*start_ret = state->end + 1;
			} else {
				*start_ret = 0;
			}
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
			break;
		}
	}

	/*
	 * Find the longest stretch from start until an entry which has the
	 * bits set
	 */
	while (1) {
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->end >= start && !(state->state & bits)) {
			*end_ret = state->end;
		} else {
			*end_ret = state->start - 1;
			break;
		}

		node = rb_next(node);
		if (!node)
			break;
	}
out:
	spin_unlock(&tree->lock);
}

C
Chris Mason 已提交
1631 1632 1633 1634
/*
 * find a contiguous range of bytes in the file marked as delalloc, not
 * more than 'max_bytes'.  start and end are used to return the range,
 *
1635
 * true is returned if we find something, false if nothing was in the tree
C
Chris Mason 已提交
1636
 */
J
Josef Bacik 已提交
1637 1638 1639
bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
			       u64 *end, u64 max_bytes,
			       struct extent_state **cached_state)
1640 1641 1642 1643
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
1644
	bool found = false;
1645 1646
	u64 total_bytes = 0;

1647
	spin_lock(&tree->lock);
C
Chris Mason 已提交
1648

1649 1650 1651 1652
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1653
	node = tree_search(tree, cur_start);
1654
	if (!node) {
1655
		*end = (u64)-1;
1656 1657 1658
		goto out;
	}

C
Chris Mason 已提交
1659
	while (1) {
1660
		state = rb_entry(node, struct extent_state, rb_node);
1661 1662
		if (found && (state->start != cur_start ||
			      (state->state & EXTENT_BOUNDARY))) {
1663 1664 1665 1666 1667 1668 1669
			goto out;
		}
		if (!(state->state & EXTENT_DELALLOC)) {
			if (!found)
				*end = state->end;
			goto out;
		}
1670
		if (!found) {
1671
			*start = state->start;
1672
			*cached_state = state;
1673
			refcount_inc(&state->refs);
1674
		}
1675
		found = true;
1676 1677 1678 1679
		*end = state->end;
		cur_start = state->end + 1;
		node = rb_next(node);
		total_bytes += state->end - state->start + 1;
1680
		if (total_bytes >= max_bytes)
1681 1682
			break;
		if (!node)
1683 1684 1685
			break;
	}
out:
1686
	spin_unlock(&tree->lock);
1687 1688 1689
	return found;
}

1690 1691 1692 1693 1694 1695 1696 1697
/*
 * Process one page for __process_pages_contig().
 *
 * Return >0 if we hit @page == @locked_page.
 * Return 0 if we updated the page status.
 * Return -EGAIN if the we need to try again.
 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
 */
1698 1699
static int process_one_page(struct btrfs_fs_info *fs_info,
			    struct address_space *mapping,
1700
			    struct page *page, struct page *locked_page,
1701
			    unsigned long page_ops, u64 start, u64 end)
1702
{
1703 1704 1705 1706 1707
	u32 len;

	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
	len = end + 1 - start;

1708
	if (page_ops & PAGE_SET_ORDERED)
1709
		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1710
	if (page_ops & PAGE_SET_ERROR)
1711
		btrfs_page_clamp_set_error(fs_info, page, start, len);
1712
	if (page_ops & PAGE_START_WRITEBACK) {
1713 1714
		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1715 1716
	}
	if (page_ops & PAGE_END_WRITEBACK)
1717
		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1718 1719 1720 1721

	if (page == locked_page)
		return 1;

1722
	if (page_ops & PAGE_LOCK) {
1723 1724 1725 1726 1727
		int ret;

		ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
		if (ret)
			return ret;
1728
		if (!PageDirty(page) || page->mapping != mapping) {
1729
			btrfs_page_end_writer_lock(fs_info, page, start, len);
1730 1731 1732 1733
			return -EAGAIN;
		}
	}
	if (page_ops & PAGE_UNLOCK)
1734
		btrfs_page_end_writer_lock(fs_info, page, start, len);
1735 1736 1737
	return 0;
}

1738 1739
static int __process_pages_contig(struct address_space *mapping,
				  struct page *locked_page,
1740
				  u64 start, u64 end, unsigned long page_ops,
1741 1742
				  u64 *processed_end)
{
1743
	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
	pgoff_t start_index = start >> PAGE_SHIFT;
	pgoff_t end_index = end >> PAGE_SHIFT;
	pgoff_t index = start_index;
	unsigned long nr_pages = end_index - start_index + 1;
	unsigned long pages_processed = 0;
	struct page *pages[16];
	int err = 0;
	int i;

	if (page_ops & PAGE_LOCK) {
		ASSERT(page_ops == PAGE_LOCK);
		ASSERT(processed_end && *processed_end == start);
	}

	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
		mapping_set_error(mapping, -EIO);

	while (nr_pages > 0) {
		int found_pages;

		found_pages = find_get_pages_contig(mapping, index,
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
		if (found_pages == 0) {
			/*
			 * Only if we're going to lock these pages, we can find
			 * nothing at @index.
			 */
			ASSERT(page_ops & PAGE_LOCK);
			err = -EAGAIN;
			goto out;
		}

		for (i = 0; i < found_pages; i++) {
			int process_ret;

1780 1781 1782
			process_ret = process_one_page(fs_info, mapping,
					pages[i], locked_page, page_ops,
					start, end);
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
			if (process_ret < 0) {
				for (; i < found_pages; i++)
					put_page(pages[i]);
				err = -EAGAIN;
				goto out;
			}
			put_page(pages[i]);
			pages_processed++;
		}
		nr_pages -= found_pages;
		index += found_pages;
		cond_resched();
	}
out:
	if (err && processed_end) {
		/*
		 * Update @processed_end. I know this is awful since it has
		 * two different return value patterns (inclusive vs exclusive).
		 *
		 * But the exclusive pattern is necessary if @start is 0, or we
		 * underflow and check against processed_end won't work as
		 * expected.
		 */
		if (pages_processed)
			*processed_end = min(end,
			((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
		else
			*processed_end = start;
	}
	return err;
}
1814

1815 1816 1817
static noinline void __unlock_for_delalloc(struct inode *inode,
					   struct page *locked_page,
					   u64 start, u64 end)
C
Chris Mason 已提交
1818
{
1819 1820
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
C
Chris Mason 已提交
1821

1822
	ASSERT(locked_page);
C
Chris Mason 已提交
1823
	if (index == locked_page->index && end_index == index)
1824
		return;
C
Chris Mason 已提交
1825

1826
	__process_pages_contig(inode->i_mapping, locked_page, start, end,
1827
			       PAGE_UNLOCK, NULL);
C
Chris Mason 已提交
1828 1829 1830 1831 1832 1833 1834
}

static noinline int lock_delalloc_pages(struct inode *inode,
					struct page *locked_page,
					u64 delalloc_start,
					u64 delalloc_end)
{
1835 1836
	unsigned long index = delalloc_start >> PAGE_SHIFT;
	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1837
	u64 processed_end = delalloc_start;
C
Chris Mason 已提交
1838 1839
	int ret;

1840
	ASSERT(locked_page);
C
Chris Mason 已提交
1841 1842 1843
	if (index == locked_page->index && index == end_index)
		return 0;

1844 1845 1846
	ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
				     delalloc_end, PAGE_LOCK, &processed_end);
	if (ret == -EAGAIN && processed_end > delalloc_start)
1847
		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1848
				      processed_end);
C
Chris Mason 已提交
1849 1850 1851 1852
	return ret;
}

/*
1853
 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1854
 * more than @max_bytes.
C
Chris Mason 已提交
1855
 *
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
 * @start:	The original start bytenr to search.
 *		Will store the extent range start bytenr.
 * @end:	The original end bytenr of the search range
 *		Will store the extent range end bytenr.
 *
 * Return true if we find a delalloc range which starts inside the original
 * range, and @start/@end will store the delalloc range start/end.
 *
 * Return false if we can't find any delalloc range which starts inside the
 * original range, and @start/@end will be the non-delalloc range start/end.
C
Chris Mason 已提交
1866
 */
1867
EXPORT_FOR_TESTS
1868
noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1869
				    struct page *locked_page, u64 *start,
1870
				    u64 *end)
C
Chris Mason 已提交
1871
{
1872
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1873
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1874 1875
	const u64 orig_start = *start;
	const u64 orig_end = *end;
1876 1877
	/* The sanity tests may not set a valid fs_info. */
	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
C
Chris Mason 已提交
1878 1879
	u64 delalloc_start;
	u64 delalloc_end;
1880
	bool found;
1881
	struct extent_state *cached_state = NULL;
C
Chris Mason 已提交
1882 1883 1884
	int ret;
	int loops = 0;

1885 1886 1887 1888 1889 1890
	/* Caller should pass a valid @end to indicate the search range end */
	ASSERT(orig_end > orig_start);

	/* The range should at least cover part of the page */
	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
		 orig_end <= page_offset(locked_page)));
C
Chris Mason 已提交
1891 1892 1893 1894
again:
	/* step one, find a bunch of delalloc bytes starting at start */
	delalloc_start = *start;
	delalloc_end = 0;
J
Josef Bacik 已提交
1895 1896
	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
					  max_bytes, &cached_state);
1897
	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
C
Chris Mason 已提交
1898
		*start = delalloc_start;
1899 1900 1901

		/* @delalloc_end can be -1, never go beyond @orig_end */
		*end = min(delalloc_end, orig_end);
1902
		free_extent_state(cached_state);
1903
		return false;
C
Chris Mason 已提交
1904 1905
	}

C
Chris Mason 已提交
1906 1907 1908 1909 1910
	/*
	 * start comes from the offset of locked_page.  We have to lock
	 * pages in order, so we can't process delalloc bytes before
	 * locked_page
	 */
C
Chris Mason 已提交
1911
	if (delalloc_start < *start)
C
Chris Mason 已提交
1912 1913
		delalloc_start = *start;

C
Chris Mason 已提交
1914 1915 1916
	/*
	 * make sure to limit the number of pages we try to lock down
	 */
1917 1918
	if (delalloc_end + 1 - delalloc_start > max_bytes)
		delalloc_end = delalloc_start + max_bytes - 1;
C
Chris Mason 已提交
1919

C
Chris Mason 已提交
1920 1921 1922
	/* step two, lock all the pages after the page that has start */
	ret = lock_delalloc_pages(inode, locked_page,
				  delalloc_start, delalloc_end);
1923
	ASSERT(!ret || ret == -EAGAIN);
C
Chris Mason 已提交
1924 1925 1926 1927
	if (ret == -EAGAIN) {
		/* some of the pages are gone, lets avoid looping by
		 * shortening the size of the delalloc range we're searching
		 */
1928
		free_extent_state(cached_state);
1929
		cached_state = NULL;
C
Chris Mason 已提交
1930
		if (!loops) {
1931
			max_bytes = PAGE_SIZE;
C
Chris Mason 已提交
1932 1933 1934
			loops = 1;
			goto again;
		} else {
1935
			found = false;
C
Chris Mason 已提交
1936 1937 1938 1939 1940
			goto out_failed;
		}
	}

	/* step three, lock the state bits for the whole range */
1941
	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
C
Chris Mason 已提交
1942 1943 1944

	/* then test to make sure it is all still delalloc */
	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1945
			     EXTENT_DELALLOC, 1, cached_state);
C
Chris Mason 已提交
1946
	if (!ret) {
1947
		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1948
				     &cached_state);
C
Chris Mason 已提交
1949 1950 1951 1952 1953
		__unlock_for_delalloc(inode, locked_page,
			      delalloc_start, delalloc_end);
		cond_resched();
		goto again;
	}
1954
	free_extent_state(cached_state);
C
Chris Mason 已提交
1955 1956 1957 1958 1959 1960
	*start = delalloc_start;
	*end = delalloc_end;
out_failed:
	return found;
}

1961
void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
1962
				  struct page *locked_page,
1963
				  u32 clear_bits, unsigned long page_ops)
1964
{
1965
	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
1966

1967
	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
1968
			       start, end, page_ops, NULL);
1969 1970
}

C
Chris Mason 已提交
1971 1972 1973 1974 1975
/*
 * count the number of bytes in the tree that have a given bit(s)
 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
 * cached.  The total number found is returned.
 */
1976 1977
u64 count_range_bits(struct extent_io_tree *tree,
		     u64 *start, u64 search_end, u64 max_bytes,
1978
		     u32 bits, int contig)
1979 1980 1981 1982 1983
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
	u64 total_bytes = 0;
1984
	u64 last = 0;
1985 1986
	int found = 0;

1987
	if (WARN_ON(search_end <= cur_start))
1988 1989
		return 0;

1990
	spin_lock(&tree->lock);
1991 1992 1993 1994 1995 1996 1997 1998
	if (cur_start == 0 && bits == EXTENT_DIRTY) {
		total_bytes = tree->dirty_bytes;
		goto out;
	}
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1999
	node = tree_search(tree, cur_start);
C
Chris Mason 已提交
2000
	if (!node)
2001 2002
		goto out;

C
Chris Mason 已提交
2003
	while (1) {
2004 2005 2006
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->start > search_end)
			break;
2007 2008 2009
		if (contig && found && state->start > last + 1)
			break;
		if (state->end >= cur_start && (state->state & bits) == bits) {
2010 2011 2012 2013 2014
			total_bytes += min(search_end, state->end) + 1 -
				       max(cur_start, state->start);
			if (total_bytes >= max_bytes)
				break;
			if (!found) {
2015
				*start = max(cur_start, state->start);
2016 2017
				found = 1;
			}
2018 2019 2020
			last = state->end;
		} else if (contig && found) {
			break;
2021 2022 2023 2024 2025 2026
		}
		node = rb_next(node);
		if (!node)
			break;
	}
out:
2027
	spin_unlock(&tree->lock);
2028 2029
	return total_bytes;
}
2030

2031 2032
static int insert_failrec(struct btrfs_inode *inode,
			  struct io_failure_record *failrec)
2033
{
2034
	struct rb_node *exist;
2035

2036 2037 2038 2039 2040 2041
	spin_lock(&inode->io_failure_lock);
	exist = rb_simple_insert(&inode->io_failure_tree, failrec->bytenr,
				 &failrec->rb_node);
	spin_unlock(&inode->io_failure_lock);

	return (exist == NULL) ? 0 : -EEXIST;
2042 2043
}

2044
static struct io_failure_record *get_failrec(struct btrfs_inode *inode, u64 start)
2045 2046
{
	struct rb_node *node;
2047
	struct io_failure_record *failrec = ERR_PTR(-ENOENT);
2048

2049 2050 2051 2052 2053
	spin_lock(&inode->io_failure_lock);
	node = rb_simple_search(&inode->io_failure_tree, start);
	if (node)
		failrec = rb_entry(node, struct io_failure_record, rb_node);
	spin_unlock(&inode->io_failure_lock);
2054
	return failrec;
2055 2056 2057 2058
}

/*
 * searches a range in the state tree for a given mask.
2059
 * If 'filled' == 1, this returns 1 only if every extent in the tree
2060 2061 2062 2063
 * has the bits set.  Otherwise, 1 is returned if any bit in the
 * range is found set.
 */
int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2064
		   u32 bits, int filled, struct extent_state *cached)
2065 2066 2067 2068 2069
{
	struct extent_state *state = NULL;
	struct rb_node *node;
	int bitset = 0;

2070
	spin_lock(&tree->lock);
2071
	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2072
	    cached->end > start)
2073 2074 2075
		node = &cached->rb_node;
	else
		node = tree_search(tree, start);
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
	while (node && start <= end) {
		state = rb_entry(node, struct extent_state, rb_node);

		if (filled && state->start > start) {
			bitset = 0;
			break;
		}

		if (state->start > end)
			break;

		if (state->state & bits) {
			bitset = 1;
			if (!filled)
				break;
		} else if (filled) {
			bitset = 0;
			break;
		}
2095 2096 2097 2098

		if (state->end == (u64)-1)
			break;

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
		start = state->end + 1;
		if (start > end)
			break;
		node = rb_next(node);
		if (!node) {
			if (filled)
				bitset = 0;
			break;
		}
	}
2109
	spin_unlock(&tree->lock);
2110 2111 2112
	return bitset;
}

2113
static int free_io_failure(struct btrfs_inode *inode,
2114
			   struct io_failure_record *rec)
2115 2116 2117
{
	int ret;

2118 2119 2120
	spin_lock(&inode->io_failure_lock);
	rb_erase(&rec->rb_node, &inode->io_failure_tree);
	spin_unlock(&inode->io_failure_lock);
2121

2122 2123
	ret = clear_extent_bits(&inode->io_tree, rec->bytenr,
				rec->bytenr + rec->len - 1,
2124
				EXTENT_DAMAGED);
2125
	kfree(rec);
2126
	return ret;
2127 2128 2129 2130 2131 2132 2133
}

/*
 * this bypasses the standard btrfs submit functions deliberately, as
 * the standard behavior is to write all copies in a raid setup. here we only
 * want to write the one bad copy. so we do the mapping for ourselves and issue
 * submit_bio directly.
2134
 * to avoid any synchronization issues, wait for the data after writing, which
2135 2136 2137 2138
 * actually prevents the read that triggered the error from finishing.
 * currently, there can be no more than two copies of every data bit. thus,
 * exactly one rewrite is required.
 */
Q
Qu Wenruo 已提交
2139 2140 2141
static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
			     u64 length, u64 logical, struct page *page,
			     unsigned int pg_offset, int mirror_num)
2142 2143
{
	struct btrfs_device *dev;
2144 2145
	struct bio_vec bvec;
	struct bio bio;
2146 2147
	u64 map_length = 0;
	u64 sector;
2148
	struct btrfs_io_context *bioc = NULL;
2149
	int ret = 0;
2150

2151
	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2152 2153
	BUG_ON(!mirror_num);

2154 2155
	if (btrfs_repair_one_zone(fs_info, logical))
		return 0;
2156

2157 2158
	map_length = length;

2159
	/*
2160
	 * Avoid races with device replace and make sure our bioc has devices
2161 2162 2163 2164
	 * associated to its stripes that don't go away while we are doing the
	 * read repair operation.
	 */
	btrfs_bio_counter_inc_blocked(fs_info);
2165
	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2166 2167 2168 2169 2170 2171 2172
		/*
		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
		 * to update all raid stripes, but here we just want to correct
		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
		 * stripe's dev and sector.
		 */
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2173
				      &map_length, &bioc, 0);
2174 2175
		if (ret)
			goto out_counter_dec;
2176
		ASSERT(bioc->mirror_num == 1);
2177 2178
	} else {
		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2179
				      &map_length, &bioc, mirror_num);
2180 2181
		if (ret)
			goto out_counter_dec;
2182
		BUG_ON(mirror_num != bioc->mirror_num);
2183
	}
2184

2185 2186 2187
	sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
	dev = bioc->stripes[bioc->mirror_num - 1].dev;
	btrfs_put_bioc(bioc);
2188

2189 2190
	if (!dev || !dev->bdev ||
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2191 2192
		ret = -EIO;
		goto out_counter_dec;
2193 2194
	}

2195 2196 2197 2198 2199 2200 2201
	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
	bio.bi_iter.bi_sector = sector;
	__bio_add_page(&bio, page, length, pg_offset);

	btrfsic_check_bio(&bio);
	ret = submit_bio_wait(&bio);
	if (ret) {
2202
		/* try to remap that extent elsewhere? */
2203
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2204
		goto out_bio_uninit;
2205 2206
	}

2207 2208
	btrfs_info_rl_in_rcu(fs_info,
		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2209
				  ino, start,
2210
				  rcu_str_deref(dev->name), sector);
2211 2212 2213 2214 2215
	ret = 0;

out_bio_uninit:
	bio_uninit(&bio);
out_counter_dec:
2216
	btrfs_bio_counter_dec(fs_info);
2217
	return ret;
2218 2219
}

2220
int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2221
{
2222
	struct btrfs_fs_info *fs_info = eb->fs_info;
2223
	u64 start = eb->start;
2224
	int i, num_pages = num_extent_pages(eb);
2225
	int ret = 0;
2226

2227
	if (sb_rdonly(fs_info->sb))
2228 2229
		return -EROFS;

2230
	for (i = 0; i < num_pages; i++) {
2231
		struct page *p = eb->pages[i];
2232

2233
		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2234
					start - page_offset(p), mirror_num);
2235 2236
		if (ret)
			break;
2237
		start += PAGE_SIZE;
2238 2239 2240 2241 2242
	}

	return ret;
}

2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
static int next_mirror(const struct io_failure_record *failrec, int cur_mirror)
{
	if (cur_mirror == failrec->num_copies)
		return cur_mirror + 1 - failrec->num_copies;
	return cur_mirror + 1;
}

static int prev_mirror(const struct io_failure_record *failrec, int cur_mirror)
{
	if (cur_mirror == 1)
		return failrec->num_copies;
	return cur_mirror - 1;
}

2257 2258 2259 2260
/*
 * each time an IO finishes, we do a fast check in the IO failure tree
 * to see if we need to process or clean up an io_failure_record
 */
2261 2262
int btrfs_clean_io_failure(struct btrfs_inode *inode, u64 start,
			   struct page *page, unsigned int pg_offset)
2263
{
2264 2265 2266
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct extent_io_tree *io_tree = &inode->io_tree;
	u64 ino = btrfs_ino(inode);
2267
	u64 locked_start, locked_end;
2268
	struct io_failure_record *failrec;
2269
	int mirror;
2270
	int ret;
2271

2272
	failrec = get_failrec(inode, start);
2273
	if (IS_ERR(failrec))
2274 2275 2276 2277
		return 0;

	BUG_ON(!failrec->this_mirror);

2278
	if (sb_rdonly(fs_info->sb))
2279
		goto out;
2280

2281 2282 2283 2284
	ret = find_first_extent_bit(io_tree, failrec->bytenr, &locked_start,
				    &locked_end, EXTENT_LOCKED, NULL);
	if (ret || locked_start > failrec->bytenr ||
	    locked_end < failrec->bytenr + failrec->len - 1)
2285 2286 2287 2288 2289 2290 2291 2292
		goto out;

	mirror = failrec->this_mirror;
	do {
		mirror = prev_mirror(failrec, mirror);
		repair_io_failure(fs_info, ino, start, failrec->len,
				  failrec->logical, page, pg_offset, mirror);
	} while (mirror != failrec->failed_mirror);
2293 2294

out:
2295
	free_io_failure(inode, failrec);
2296
	return 0;
2297 2298
}

2299 2300 2301 2302 2303 2304
/*
 * Can be called when
 * - hold extent lock
 * - under ordered extent
 * - the inode is freeing
 */
2305
void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2306 2307
{
	struct io_failure_record *failrec;
2308
	struct rb_node *node, *next;
2309

2310
	if (RB_EMPTY_ROOT(&inode->io_failure_tree))
2311 2312
		return;

2313 2314 2315 2316 2317
	spin_lock(&inode->io_failure_lock);
	node = rb_simple_search_first(&inode->io_failure_tree, start);
	while (node) {
		failrec = rb_entry(node, struct io_failure_record, rb_node);
		if (failrec->bytenr > end)
2318 2319
			break;

2320 2321
		next = rb_next(node);
		rb_erase(&failrec->rb_node, &inode->io_failure_tree);
2322 2323
		kfree(failrec);

2324
		node = next;
2325
	}
2326
	spin_unlock(&inode->io_failure_lock);
2327 2328
}

2329
static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2330 2331
							     struct btrfs_bio *bbio,
							     unsigned int bio_offset)
2332
{
2333
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2334
	u64 start = bbio->file_offset + bio_offset;
2335
	struct io_failure_record *failrec;
2336
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2337
	const u32 sectorsize = fs_info->sectorsize;
2338 2339
	int ret;

2340
	failrec = get_failrec(BTRFS_I(inode), start);
2341
	if (!IS_ERR(failrec)) {
2342
		btrfs_debug(fs_info,
2343
	"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
2344
			failrec->logical, failrec->bytenr, failrec->len);
2345 2346 2347 2348 2349
		/*
		 * when data can be on disk more than twice, add to failrec here
		 * (e.g. with a list for failed_mirror) to make
		 * clean_io_failure() clean all those errors at once.
		 */
2350
		ASSERT(failrec->this_mirror == bbio->mirror_num);
2351
		ASSERT(failrec->len == fs_info->sectorsize);
2352
		return failrec;
2353
	}
2354

2355 2356 2357
	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
	if (!failrec)
		return ERR_PTR(-ENOMEM);
2358

2359 2360
	RB_CLEAR_NODE(&failrec->rb_node);
	failrec->bytenr = start;
2361
	failrec->len = sectorsize;
2362 2363
	failrec->failed_mirror = bbio->mirror_num;
	failrec->this_mirror = bbio->mirror_num;
2364
	failrec->logical = (bbio->iter.bi_sector << SECTOR_SHIFT) + bio_offset;
2365 2366

	btrfs_debug(fs_info,
2367 2368
		    "new io failure record logical %llu start %llu",
		    failrec->logical, start);
2369

2370
	failrec->num_copies = btrfs_num_copies(fs_info, failrec->logical, sectorsize);
2371 2372 2373 2374 2375 2376 2377 2378 2379
	if (failrec->num_copies == 1) {
		/*
		 * We only have a single copy of the data, so don't bother with
		 * all the retry and error correction code that follows. No
		 * matter what the error is, it is very likely to persist.
		 */
		btrfs_debug(fs_info,
			"cannot repair logical %llu num_copies %d",
			failrec->logical, failrec->num_copies);
2380 2381 2382 2383 2384
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	/* Set the bits in the private failure tree */
2385 2386
	ret = insert_failrec(BTRFS_I(inode), failrec);
	if (ret) {
2387 2388 2389
		kfree(failrec);
		return ERR_PTR(ret);
	}
2390 2391 2392 2393 2394 2395
	ret = set_extent_bits(tree, start, start + sectorsize - 1,
			      EXTENT_DAMAGED);
	if (ret) {
		free_io_failure(BTRFS_I(inode), failrec);
		return ERR_PTR(ret);
	}
2396 2397

	return failrec;
2398 2399
}

2400 2401
int btrfs_repair_one_sector(struct inode *inode, struct btrfs_bio *failed_bbio,
			    u32 bio_offset, struct page *page, unsigned int pgoff,
2402
			    submit_bio_hook_t *submit_bio_hook)
2403
{
2404
	u64 start = failed_bbio->file_offset + bio_offset;
2405
	struct io_failure_record *failrec;
2406
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2407
	struct bio *failed_bio = &failed_bbio->bio;
2408
	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2409
	struct bio *repair_bio;
2410
	struct btrfs_bio *repair_bbio;
2411

2412 2413
	btrfs_debug(fs_info,
		   "repair read error: read error at %llu", start);
2414

2415
	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2416

2417
	failrec = btrfs_get_io_failure_record(inode, failed_bbio, bio_offset);
2418
	if (IS_ERR(failrec))
2419
		return PTR_ERR(failrec);
2420

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
	/*
	 * There are two premises:
	 * a) deliver good data to the caller
	 * b) correct the bad sectors on disk
	 *
	 * Since we're only doing repair for one sector, we only need to get
	 * a good copy of the failed sector and if we succeed, we have setup
	 * everything for repair_io_failure to do the rest for us.
	 */
	failrec->this_mirror = next_mirror(failrec, failrec->this_mirror);
	if (failrec->this_mirror == failrec->failed_mirror) {
		btrfs_debug(fs_info,
			"failed to repair num_copies %d this_mirror %d failed_mirror %d",
			failrec->num_copies, failrec->this_mirror, failrec->failed_mirror);
2435
		free_io_failure(BTRFS_I(inode), failrec);
2436
		return -EIO;
2437 2438
	}

2439 2440
	repair_bio = btrfs_bio_alloc(1, REQ_OP_READ, failed_bbio->end_io,
				     failed_bbio->private);
2441
	repair_bbio = btrfs_bio(repair_bio);
2442
	repair_bbio->file_offset = start;
2443
	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2444

2445
	if (failed_bbio->csum) {
2446
		const u32 csum_size = fs_info->csum_size;
2447

2448 2449 2450
		repair_bbio->csum = repair_bbio->csum_inline;
		memcpy(repair_bbio->csum,
		       failed_bbio->csum + csum_size * icsum, csum_size);
2451
	}
2452

2453
	bio_add_page(repair_bio, page, failrec->len, pgoff);
2454
	repair_bbio->iter = repair_bio->bi_iter;
2455

2456
	btrfs_debug(btrfs_sb(inode->i_sb),
2457 2458
		    "repair read error: submitting new read to mirror %d",
		    failrec->this_mirror);
2459

2460 2461 2462 2463 2464
	/*
	 * At this point we have a bio, so any errors from submit_bio_hook()
	 * will be handled by the endio on the repair_bio, so we can't return an
	 * error here.
	 */
2465
	submit_bio_hook(inode, repair_bio, failrec->this_mirror, 0);
2466
	return BLK_STS_OK;
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
}

static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);

	ASSERT(page_offset(page) <= start &&
	       start + len <= page_offset(page) + PAGE_SIZE);

	if (uptodate) {
B
Boris Burkov 已提交
2477 2478 2479 2480 2481 2482 2483 2484 2485
		if (fsverity_active(page->mapping->host) &&
		    !PageError(page) &&
		    !PageUptodate(page) &&
		    start < i_size_read(page->mapping->host) &&
		    !fsverity_verify_page(page)) {
			btrfs_page_set_error(fs_info, page, start, len);
		} else {
			btrfs_page_set_uptodate(fs_info, page, start, len);
		}
2486 2487 2488 2489 2490
	} else {
		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
	}

2491
	if (!btrfs_is_subpage(fs_info, page))
2492
		unlock_page(page);
2493
	else
2494 2495 2496
		btrfs_subpage_end_reader(fs_info, page, start, len);
}

2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
static void end_sector_io(struct page *page, u64 offset, bool uptodate)
{
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
	const u32 sectorsize = inode->root->fs_info->sectorsize;
	struct extent_state *cached = NULL;

	end_page_read(page, uptodate, offset, sectorsize);
	if (uptodate)
		set_extent_uptodate(&inode->io_tree, offset,
				    offset + sectorsize - 1, &cached, GFP_ATOMIC);
	unlock_extent_cached_atomic(&inode->io_tree, offset,
				    offset + sectorsize - 1, &cached);
}

2511 2512
static void submit_data_read_repair(struct inode *inode,
				    struct btrfs_bio *failed_bbio,
2513
				    u32 bio_offset, const struct bio_vec *bvec,
2514
				    unsigned int error_bitmap)
2515
{
2516
	const unsigned int pgoff = bvec->bv_offset;
2517
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2518 2519 2520
	struct page *page = bvec->bv_page;
	const u64 start = page_offset(bvec->bv_page) + bvec->bv_offset;
	const u64 end = start + bvec->bv_len - 1;
2521 2522 2523 2524
	const u32 sectorsize = fs_info->sectorsize;
	const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
	int i;

2525
	BUG_ON(bio_op(&failed_bbio->bio) == REQ_OP_WRITE);
2526

2527 2528 2529
	/* This repair is only for data */
	ASSERT(is_data_inode(inode));

2530 2531 2532 2533 2534 2535 2536
	/* We're here because we had some read errors or csum mismatch */
	ASSERT(error_bitmap);

	/*
	 * We only get called on buffered IO, thus page must be mapped and bio
	 * must not be cloned.
	 */
2537
	ASSERT(page->mapping && !bio_flagged(&failed_bbio->bio, BIO_CLONED));
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553

	/* Iterate through all the sectors in the range */
	for (i = 0; i < nr_bits; i++) {
		const unsigned int offset = i * sectorsize;
		bool uptodate = false;
		int ret;

		if (!(error_bitmap & (1U << i))) {
			/*
			 * This sector has no error, just end the page read
			 * and unlock the range.
			 */
			uptodate = true;
			goto next;
		}

2554 2555 2556
		ret = btrfs_repair_one_sector(inode, failed_bbio,
				bio_offset + offset, page, pgoff + offset,
				btrfs_submit_data_read_bio);
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
		if (!ret) {
			/*
			 * We have submitted the read repair, the page release
			 * will be handled by the endio function of the
			 * submitted repair bio.
			 * Thus we don't need to do any thing here.
			 */
			continue;
		}
		/*
2567 2568
		 * Continue on failed repair, otherwise the remaining sectors
		 * will not be properly unlocked.
2569 2570
		 */
next:
2571
		end_sector_io(page, start + offset, uptodate);
2572
	}
2573 2574
}

2575 2576
/* lots and lots of room for performance fixes in the end_bio funcs */

2577
void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2578
{
2579
	struct btrfs_inode *inode;
2580
	const bool uptodate = (err == 0);
2581
	int ret = 0;
2582

2583 2584 2585
	ASSERT(page && page->mapping);
	inode = BTRFS_I(page->mapping->host);
	btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2586 2587

	if (!uptodate) {
2588 2589 2590 2591 2592 2593 2594 2595
		const struct btrfs_fs_info *fs_info = inode->root->fs_info;
		u32 len;

		ASSERT(end + 1 - start <= U32_MAX);
		len = end + 1 - start;

		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
2596
		ret = err < 0 ? err : -EIO;
2597
		mapping_set_error(page->mapping, ret);
2598 2599 2600
	}
}

2601 2602 2603 2604 2605 2606 2607 2608 2609
/*
 * after a writepage IO is done, we need to:
 * clear the uptodate bits on error
 * clear the writeback bits in the extent tree for this IO
 * end_page_writeback if the page has no more pending IO
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2610
static void end_bio_extent_writepage(struct btrfs_bio *bbio)
2611
{
2612
	struct bio *bio = &bbio->bio;
2613
	int error = blk_status_to_errno(bio->bi_status);
2614
	struct bio_vec *bvec;
2615 2616
	u64 start;
	u64 end;
2617
	struct bvec_iter_all iter_all;
2618
	bool first_bvec = true;
2619

2620
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2621
	bio_for_each_segment_all(bvec, bio, iter_all) {
2622
		struct page *page = bvec->bv_page;
2623 2624
		struct inode *inode = page->mapping->host;
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
		const u32 sectorsize = fs_info->sectorsize;

		/* Our read/write should always be sector aligned. */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page write in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
			btrfs_info(fs_info,
		"incomplete page write with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
2639

2640 2641 2642 2643 2644
		if (first_bvec) {
			btrfs_record_physical_zoned(inode, start, bio);
			first_bvec = false;
		}

2645
		end_extent_writepage(page, error, start, end);
2646 2647

		btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2648
	}
2649

2650 2651 2652
	bio_put(bio);
}

2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
/*
 * Record previously processed extent range
 *
 * For endio_readpage_release_extent() to handle a full extent range, reducing
 * the extent io operations.
 */
struct processed_extent {
	struct btrfs_inode *inode;
	/* Start of the range in @inode */
	u64 start;
2663
	/* End of the range in @inode */
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
	u64 end;
	bool uptodate;
};

/*
 * Try to release processed extent range
 *
 * May not release the extent range right now if the current range is
 * contiguous to processed extent.
 *
 * Will release processed extent when any of @inode, @uptodate, the range is
 * no longer contiguous to the processed range.
 *
 * Passing @inode == NULL will force processed extent to be released.
 */
static void endio_readpage_release_extent(struct processed_extent *processed,
			      struct btrfs_inode *inode, u64 start, u64 end,
			      bool uptodate)
2682 2683
{
	struct extent_state *cached = NULL;
2684 2685 2686 2687 2688
	struct extent_io_tree *tree;

	/* The first extent, initialize @processed */
	if (!processed->inode)
		goto update;
2689

2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
	/*
	 * Contiguous to processed extent, just uptodate the end.
	 *
	 * Several things to notice:
	 *
	 * - bio can be merged as long as on-disk bytenr is contiguous
	 *   This means we can have page belonging to other inodes, thus need to
	 *   check if the inode still matches.
	 * - bvec can contain range beyond current page for multi-page bvec
	 *   Thus we need to do processed->end + 1 >= start check
	 */
	if (processed->inode == inode && processed->uptodate == uptodate &&
	    processed->end + 1 >= start && end >= processed->end) {
		processed->end = end;
		return;
	}

	tree = &processed->inode->io_tree;
	/*
	 * Now we don't have range contiguous to the processed range, release
	 * the processed range now.
	 */
	unlock_extent_cached_atomic(tree, processed->start, processed->end,
				    &cached);

update:
	/* Update processed to current range */
	processed->inode = inode;
	processed->start = start;
	processed->end = end;
	processed->uptodate = uptodate;
2721 2722
}

2723 2724 2725
static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
{
	ASSERT(PageLocked(page));
2726
	if (!btrfs_is_subpage(fs_info, page))
2727 2728 2729 2730 2731 2732
		return;

	ASSERT(PagePrivate(page));
	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
}

2733
/*
2734
 * Find extent buffer for a givne bytenr.
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
 *
 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
 * in endio context.
 */
static struct extent_buffer *find_extent_buffer_readpage(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
	struct extent_buffer *eb;

	/*
	 * For regular sectorsize, we can use page->private to grab extent
	 * buffer
	 */
2748
	if (fs_info->nodesize >= PAGE_SIZE) {
2749 2750 2751 2752
		ASSERT(PagePrivate(page) && page->private);
		return (struct extent_buffer *)page->private;
	}

2753 2754 2755 2756 2757
	/* For subpage case, we need to lookup buffer radix tree */
	rcu_read_lock();
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       bytenr >> fs_info->sectorsize_bits);
	rcu_read_unlock();
2758 2759 2760 2761
	ASSERT(eb);
	return eb;
}

2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
/*
 * after a readpage IO is done, we need to:
 * clear the uptodate bits on error
 * set the uptodate bits if things worked
 * set the page up to date if all extents in the tree are uptodate
 * clear the lock bit in the extent tree
 * unlock the page if there are no other extents locked for it
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2773
static void end_bio_extent_readpage(struct btrfs_bio *bbio)
2774
{
2775
	struct bio *bio = &bbio->bio;
2776
	struct bio_vec *bvec;
2777
	struct processed_extent processed = { 0 };
2778 2779 2780 2781 2782
	/*
	 * The offset to the beginning of a bio, since one bio can never be
	 * larger than UINT_MAX, u32 here is enough.
	 */
	u32 bio_offset = 0;
2783
	int mirror;
2784
	struct bvec_iter_all iter_all;
2785

2786
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2787
	bio_for_each_segment_all(bvec, bio, iter_all) {
2788
		bool uptodate = !bio->bi_status;
2789
		struct page *page = bvec->bv_page;
2790
		struct inode *inode = page->mapping->host;
2791
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2792
		const u32 sectorsize = fs_info->sectorsize;
2793
		unsigned int error_bitmap = (unsigned int)-1;
2794
		bool repair = false;
2795 2796 2797
		u64 start;
		u64 end;
		u32 len;
2798

2799 2800
		btrfs_debug(fs_info,
			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
D
David Sterba 已提交
2801
			bio->bi_iter.bi_sector, bio->bi_status,
2802
			bbio->mirror_num);
2803

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
		/*
		 * We always issue full-sector reads, but if some block in a
		 * page fails to read, blk_update_request() will advance
		 * bv_offset and adjust bv_len to compensate.  Print a warning
		 * for unaligned offsets, and an error if they don't add up to
		 * a full sector.
		 */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page read in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
				     sectorsize))
			btrfs_info(fs_info,
		"incomplete page read with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
2823
		len = bvec->bv_len;
2824

2825
		mirror = bbio->mirror_num;
2826
		if (likely(uptodate)) {
2827
			if (is_data_inode(inode)) {
2828
				error_bitmap = btrfs_verify_data_csum(bbio,
2829
						bio_offset, page, start, end);
2830 2831
				if (error_bitmap)
					uptodate = false;
2832
			} else {
2833 2834 2835
				if (btrfs_validate_metadata_buffer(bbio,
						page, start, end, mirror))
					uptodate = false;
2836
			}
2837
		}
2838

2839
		if (likely(uptodate)) {
2840
			loff_t i_size = i_size_read(inode);
2841
			pgoff_t end_index = i_size >> PAGE_SHIFT;
2842

2843
			btrfs_clean_io_failure(BTRFS_I(inode), start, page, 0);
2844

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
			/*
			 * Zero out the remaining part if this range straddles
			 * i_size.
			 *
			 * Here we should only zero the range inside the bvec,
			 * not touch anything else.
			 *
			 * NOTE: i_size is exclusive while end is inclusive.
			 */
			if (page->index == end_index && i_size <= end) {
				u32 zero_start = max(offset_in_page(i_size),
2856
						     offset_in_page(start));
2857 2858 2859 2860

				zero_user_segment(page, zero_start,
						  offset_in_page(end) + 1);
			}
2861 2862 2863 2864 2865
		} else if (is_data_inode(inode)) {
			/*
			 * Only try to repair bios that actually made it to a
			 * device.  If the bio failed to be submitted mirror
			 * is 0 and we need to fail it without retrying.
2866 2867 2868 2869
			 *
			 * This also includes the high level bios for compressed
			 * extents - these never make it to a device and repair
			 * is already handled on the lower compressed bio.
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
			 */
			if (mirror > 0)
				repair = true;
		} else {
			struct extent_buffer *eb;

			eb = find_extent_buffer_readpage(fs_info, page, start);
			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
			eb->read_mirror = mirror;
			atomic_dec(&eb->io_pages);
2880
		}
2881 2882 2883 2884 2885 2886

		if (repair) {
			/*
			 * submit_data_read_repair() will handle all the good
			 * and bad sectors, we just continue to the next bvec.
			 */
2887 2888
			submit_data_read_repair(inode, bbio, bio_offset, bvec,
						error_bitmap);
2889 2890 2891 2892 2893
		} else {
			/* Update page status and unlock */
			end_page_read(page, uptodate, start, len);
			endio_readpage_release_extent(&processed, BTRFS_I(inode),
					start, end, PageUptodate(page));
2894
		}
2895

2896 2897
		ASSERT(bio_offset + len > bio_offset);
		bio_offset += len;
2898

2899
	}
2900 2901
	/* Release the last extent */
	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
2902
	btrfs_bio_free_csum(bbio);
2903 2904 2905
	bio_put(bio);
}

2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
/**
 * Populate every free slot in a provided array with pages.
 *
 * @nr_pages:   number of pages to allocate
 * @page_array: the array to fill with pages; any existing non-null entries in
 * 		the array will be skipped
 *
 * Return: 0        if all pages were able to be allocated;
 *         -ENOMEM  otherwise, and the caller is responsible for freeing all
 *                  non-null page pointers in the array.
 */
int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
{
2919
	unsigned int allocated;
2920

2921 2922
	for (allocated = 0; allocated < nr_pages;) {
		unsigned int last = allocated;
2923

2924 2925
		allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);

2926 2927 2928
		if (allocated == nr_pages)
			return 0;

2929 2930 2931 2932 2933 2934
		/*
		 * During this iteration, no page could be allocated, even
		 * though alloc_pages_bulk_array() falls back to alloc_page()
		 * if  it could not bulk-allocate. So we must be out of memory.
		 */
		if (allocated == last)
2935
			return -ENOMEM;
2936 2937

		memalloc_retry_wait(GFP_NOFS);
2938 2939 2940 2941
	}
	return 0;
}

2942 2943 2944
/**
 * Attempt to add a page to bio
 *
2945
 * @bio_ctrl:	record both the bio, and its bio_flags
2946 2947 2948 2949
 * @page:	page to add to the bio
 * @disk_bytenr:  offset of the new bio or to check whether we are adding
 *                a contiguous page to the previous one
 * @size:	portion of page that we want to write
2950
 * @pg_offset:	starting offset in the page
2951
 * @compress_type:   compression type of the current bio to see if we can merge them
2952 2953 2954
 *
 * Attempt to add a page to bio considering stripe alignment etc.
 *
2955 2956 2957
 * Return >= 0 for the number of bytes added to the bio.
 * Can return 0 if the current bio is already at stripe/zone boundary.
 * Return <0 for error.
2958
 */
2959 2960 2961 2962
static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
			      struct page *page,
			      u64 disk_bytenr, unsigned int size,
			      unsigned int pg_offset,
2963
			      enum btrfs_compression_type compress_type)
2964
{
2965 2966
	struct bio *bio = bio_ctrl->bio;
	u32 bio_size = bio->bi_iter.bi_size;
2967
	u32 real_size;
2968
	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
2969
	bool contig = false;
2970
	int ret;
2971

2972 2973 2974
	ASSERT(bio);
	/* The limit should be calculated when bio_ctrl->bio is allocated */
	ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
2975
	if (bio_ctrl->compress_type != compress_type)
2976
		return 0;
2977

2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003

	if (bio->bi_iter.bi_size == 0) {
		/* We can always add a page into an empty bio. */
		contig = true;
	} else if (bio_ctrl->compress_type == BTRFS_COMPRESS_NONE) {
		struct bio_vec *bvec = bio_last_bvec_all(bio);

		/*
		 * The contig check requires the following conditions to be met:
		 * 1) The pages are belonging to the same inode
		 *    This is implied by the call chain.
		 *
		 * 2) The range has adjacent logical bytenr
		 *
		 * 3) The range has adjacent file offset
		 *    This is required for the usage of btrfs_bio->file_offset.
		 */
		if (bio_end_sector(bio) == sector &&
		    page_offset(bvec->bv_page) + bvec->bv_offset +
		    bvec->bv_len == page_offset(page) + pg_offset)
			contig = true;
	} else {
		/*
		 * For compression, all IO should have its logical bytenr
		 * set to the starting bytenr of the compressed extent.
		 */
3004
		contig = bio->bi_iter.bi_sector == sector;
3005 3006
	}

3007
	if (!contig)
3008
		return 0;
3009

3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
	real_size = min(bio_ctrl->len_to_oe_boundary,
			bio_ctrl->len_to_stripe_boundary) - bio_size;
	real_size = min(real_size, size);

	/*
	 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
	 * bio will still execute its endio function on the page!
	 */
	if (real_size == 0)
		return 0;
3020

3021
	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3022
		ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
3023
	else
3024
		ret = bio_add_page(bio, page, real_size, pg_offset);
3025

3026
	return ret;
3027 3028
}

3029
static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
3030
			       struct btrfs_inode *inode, u64 file_offset)
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct btrfs_io_geometry geom;
	struct btrfs_ordered_extent *ordered;
	struct extent_map *em;
	u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
	int ret;

	/*
	 * Pages for compressed extent are never submitted to disk directly,
	 * thus it has no real boundary, just set them to U32_MAX.
	 *
	 * The split happens for real compressed bio, which happens in
	 * btrfs_submit_compressed_read/write().
	 */
3046
	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
		return 0;
	}
	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
	if (IS_ERR(em))
		return PTR_ERR(em);
	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
				    logical, &geom);
	free_extent_map(em);
	if (ret < 0) {
		return ret;
	}
	if (geom.len > U32_MAX)
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
	else
		bio_ctrl->len_to_stripe_boundary = (u32)geom.len;

3065
	if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
3066 3067 3068 3069 3070
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	/* Ordered extent not yet created, so we're good */
3071
	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
	if (!ordered) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
		ordered->disk_bytenr + ordered->disk_num_bytes - logical);
	btrfs_put_ordered_extent(ordered);
	return 0;
}

3083 3084 3085
static int alloc_new_bio(struct btrfs_inode *inode,
			 struct btrfs_bio_ctrl *bio_ctrl,
			 struct writeback_control *wbc,
3086
			 blk_opf_t opf,
3087
			 btrfs_bio_end_io_t end_io_func,
3088
			 u64 disk_bytenr, u32 offset, u64 file_offset,
3089
			 enum btrfs_compression_type compress_type)
3090 3091 3092 3093 3094
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct bio *bio;
	int ret;

3095
	bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, end_io_func, NULL);
3096 3097 3098 3099
	/*
	 * For compressed page range, its disk_bytenr is always @disk_bytenr
	 * passed in, no matter if we have added any range into previous bio.
	 */
3100
	if (compress_type != BTRFS_COMPRESS_NONE)
Q
Qu Wenruo 已提交
3101
		bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
3102
	else
Q
Qu Wenruo 已提交
3103
		bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
3104
	bio_ctrl->bio = bio;
3105
	bio_ctrl->compress_type = compress_type;
3106 3107 3108
	ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
	if (ret < 0)
		goto error;
3109

3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
	if (wbc) {
		/*
		 * For Zone append we need the correct block_device that we are
		 * going to write to set in the bio to be able to respect the
		 * hardware limitation.  Look it up here:
		 */
		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
			struct btrfs_device *dev;

			dev = btrfs_zoned_get_device(fs_info, disk_bytenr,
						     fs_info->sectorsize);
			if (IS_ERR(dev)) {
				ret = PTR_ERR(dev);
				goto error;
			}
3125

3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
			bio_set_dev(bio, dev->bdev);
		} else {
			/*
			 * Otherwise pick the last added device to support
			 * cgroup writeback.  For multi-device file systems this
			 * means blk-cgroup policies have to always be set on the
			 * last added/replaced device.  This is a bit odd but has
			 * been like that for a long time.
			 */
			bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev);
3136
		}
3137 3138 3139
		wbc_init_bio(wbc, bio);
	} else {
		ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND);
3140 3141 3142 3143
	}
	return 0;
error:
	bio_ctrl->bio = NULL;
3144
	btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
3145 3146 3147
	return ret;
}

3148 3149
/*
 * @opf:	bio REQ_OP_* and REQ_* flags as one value
3150 3151
 * @wbc:	optional writeback control for io accounting
 * @page:	page to add to the bio
3152 3153
 * @disk_bytenr: logical bytenr where the write will be
 * @size:	portion of page that we want to write to
3154 3155
 * @pg_offset:	offset of the new bio or to check whether we are adding
 *              a contiguous page to the previous one
3156
 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3157 3158 3159
 * @end_io_func:     end_io callback for new bio
 * @mirror_num:	     desired mirror to read/write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3160
 * @compress_type:   compress type for current bio
3161
 */
3162
static int submit_extent_page(blk_opf_t opf,
3163
			      struct writeback_control *wbc,
3164
			      struct btrfs_bio_ctrl *bio_ctrl,
3165
			      struct page *page, u64 disk_bytenr,
3166
			      size_t size, unsigned long pg_offset,
3167
			      btrfs_bio_end_io_t end_io_func,
3168
			      enum btrfs_compression_type compress_type,
3169
			      bool force_bio_submit)
3170 3171
{
	int ret = 0;
3172
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3173
	unsigned int cur = pg_offset;
3174

3175
	ASSERT(bio_ctrl);
3176

3177 3178
	ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
	       pg_offset + size <= PAGE_SIZE);
3179 3180
	if (force_bio_submit)
		submit_one_bio(bio_ctrl);
3181 3182 3183 3184 3185 3186 3187 3188 3189

	while (cur < pg_offset + size) {
		u32 offset = cur - pg_offset;
		int added;

		/* Allocate new bio if needed */
		if (!bio_ctrl->bio) {
			ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
					    end_io_func, disk_bytenr, offset,
3190
					    page_offset(page) + cur,
3191
					    compress_type);
3192 3193 3194 3195 3196 3197 3198
			if (ret < 0)
				return ret;
		}
		/*
		 * We must go through btrfs_bio_add_page() to ensure each
		 * page range won't cross various boundaries.
		 */
3199
		if (compress_type != BTRFS_COMPRESS_NONE)
3200 3201
			added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
					size - offset, pg_offset + offset,
3202
					compress_type);
3203 3204 3205
		else
			added = btrfs_bio_add_page(bio_ctrl, page,
					disk_bytenr + offset, size - offset,
3206
					pg_offset + offset, compress_type);
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219

		/* Metadata page range should never be split */
		if (!is_data_inode(&inode->vfs_inode))
			ASSERT(added == 0 || added == size - offset);

		/* At least we added some page, update the account */
		if (wbc && added)
			wbc_account_cgroup_owner(wbc, page, added);

		/* We have reached boundary, submit right now */
		if (added < size - offset) {
			/* The bio should contain some page(s) */
			ASSERT(bio_ctrl->bio->bi_iter.bi_size);
3220
			submit_one_bio(bio_ctrl);
3221
		}
3222
		cur += added;
3223
	}
3224
	return 0;
3225 3226
}

3227 3228 3229
static int attach_extent_buffer_page(struct extent_buffer *eb,
				     struct page *page,
				     struct btrfs_subpage *prealloc)
3230
{
3231 3232 3233
	struct btrfs_fs_info *fs_info = eb->fs_info;
	int ret = 0;

3234 3235 3236 3237 3238 3239 3240 3241 3242
	/*
	 * If the page is mapped to btree inode, we should hold the private
	 * lock to prevent race.
	 * For cloned or dummy extent buffers, their pages are not mapped and
	 * will not race with any other ebs.
	 */
	if (page->mapping)
		lockdep_assert_held(&page->mapping->private_lock);

3243
	if (fs_info->nodesize >= PAGE_SIZE) {
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
		if (!PagePrivate(page))
			attach_page_private(page, eb);
		else
			WARN_ON(page->private != (unsigned long)eb);
		return 0;
	}

	/* Already mapped, just free prealloc */
	if (PagePrivate(page)) {
		btrfs_free_subpage(prealloc);
		return 0;
	}

	if (prealloc)
		/* Has preallocated memory for subpage */
		attach_page_private(page, prealloc);
3260
	else
3261 3262 3263 3264
		/* Do new allocation to attach subpage */
		ret = btrfs_attach_subpage(fs_info, page,
					   BTRFS_SUBPAGE_METADATA);
	return ret;
3265 3266
}

3267
int set_page_extent_mapped(struct page *page)
3268
{
3269 3270 3271 3272 3273 3274 3275 3276 3277
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

	if (PagePrivate(page))
		return 0;

	fs_info = btrfs_sb(page->mapping->host->i_sb);

3278
	if (btrfs_is_subpage(fs_info, page))
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);

	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
	return 0;
}

void clear_page_extent_mapped(struct page *page)
{
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

3291
	if (!PagePrivate(page))
3292 3293 3294
		return;

	fs_info = btrfs_sb(page->mapping->host->i_sb);
3295
	if (btrfs_is_subpage(fs_info, page))
3296 3297 3298
		return btrfs_detach_subpage(fs_info, page);

	detach_page_private(page);
3299 3300
}

3301 3302
static struct extent_map *
__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3303
		 u64 start, u64 len, struct extent_map **em_cached)
3304 3305 3306 3307 3308
{
	struct extent_map *em;

	if (em_cached && *em_cached) {
		em = *em_cached;
3309
		if (extent_map_in_tree(em) && start >= em->start &&
3310
		    start < extent_map_end(em)) {
3311
			refcount_inc(&em->refs);
3312 3313 3314 3315 3316 3317 3318
			return em;
		}

		free_extent_map(em);
		*em_cached = NULL;
	}

3319
	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3320
	if (em_cached && !IS_ERR(em)) {
3321
		BUG_ON(*em_cached);
3322
		refcount_inc(&em->refs);
3323 3324 3325 3326
		*em_cached = em;
	}
	return em;
}
3327 3328 3329 3330
/*
 * basic readpage implementation.  Locked extent state structs are inserted
 * into the tree that are removed when the IO is done (by the end_io
 * handlers)
3331
 * XXX JDM: This needs looking at to ensure proper page locking
3332
 * return 0 on success, otherwise return error
3333
 */
3334
static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3335
		      struct btrfs_bio_ctrl *bio_ctrl,
3336
		      blk_opf_t read_flags, u64 *prev_em_start)
3337 3338
{
	struct inode *inode = page->mapping->host;
3339
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
M
Miao Xie 已提交
3340
	u64 start = page_offset(page);
3341
	const u64 end = start + PAGE_SIZE - 1;
3342 3343 3344 3345 3346
	u64 cur = start;
	u64 extent_offset;
	u64 last_byte = i_size_read(inode);
	u64 block_start;
	struct extent_map *em;
3347
	int ret = 0;
3348
	size_t pg_offset = 0;
3349 3350
	size_t iosize;
	size_t blocksize = inode->i_sb->s_blocksize;
3351
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3352

3353 3354 3355
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		unlock_extent(tree, start, end);
3356 3357
		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
		unlock_page(page);
3358 3359
		goto out;
	}
3360

3361
	if (page->index == last_byte >> PAGE_SHIFT) {
3362
		size_t zero_offset = offset_in_page(last_byte);
C
Chris Mason 已提交
3363 3364

		if (zero_offset) {
3365
			iosize = PAGE_SIZE - zero_offset;
3366
			memzero_page(page, zero_offset, iosize);
C
Chris Mason 已提交
3367 3368
		}
	}
3369
	begin_page_read(fs_info, page);
3370
	while (cur <= end) {
3371
		unsigned long this_bio_flag = 0;
3372
		bool force_bio_submit = false;
3373
		u64 disk_bytenr;
3374

3375
		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
3376
		if (cur >= last_byte) {
3377 3378
			struct extent_state *cached = NULL;

3379
			iosize = PAGE_SIZE - pg_offset;
3380
			memzero_page(page, pg_offset, iosize);
3381
			set_extent_uptodate(tree, cur, cur + iosize - 1,
3382
					    &cached, GFP_NOFS);
3383
			unlock_extent_cached(tree, cur,
3384
					     cur + iosize - 1, &cached);
3385
			end_page_read(page, true, cur, iosize);
3386 3387
			break;
		}
3388
		em = __get_extent_map(inode, page, pg_offset, cur,
3389
				      end - cur + 1, em_cached);
3390
		if (IS_ERR(em)) {
3391
			unlock_extent(tree, cur, end);
3392
			end_page_read(page, false, cur, end + 1 - cur);
3393
			ret = PTR_ERR(em);
3394 3395 3396 3397 3398 3399
			break;
		}
		extent_offset = cur - em->start;
		BUG_ON(extent_map_end(em) <= cur);
		BUG_ON(end < cur);

3400 3401
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			this_bio_flag = em->compress_type;
C
Chris Mason 已提交
3402

3403
		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3404
		iosize = ALIGN(iosize, blocksize);
3405
		if (this_bio_flag != BTRFS_COMPRESS_NONE)
3406
			disk_bytenr = em->block_start;
3407
		else
3408
			disk_bytenr = em->block_start + extent_offset;
3409
		block_start = em->block_start;
Y
Yan Zheng 已提交
3410 3411
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			block_start = EXTENT_MAP_HOLE;
3412 3413 3414

		/*
		 * If we have a file range that points to a compressed extent
3415
		 * and it's followed by a consecutive file range that points
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
		 * to the same compressed extent (possibly with a different
		 * offset and/or length, so it either points to the whole extent
		 * or only part of it), we must make sure we do not submit a
		 * single bio to populate the pages for the 2 ranges because
		 * this makes the compressed extent read zero out the pages
		 * belonging to the 2nd range. Imagine the following scenario:
		 *
		 *  File layout
		 *  [0 - 8K]                     [8K - 24K]
		 *    |                               |
		 *    |                               |
		 * points to extent X,         points to extent X,
		 * offset 4K, length of 8K     offset 0, length 16K
		 *
		 * [extent X, compressed length = 4K uncompressed length = 16K]
		 *
		 * If the bio to read the compressed extent covers both ranges,
		 * it will decompress extent X into the pages belonging to the
		 * first range and then it will stop, zeroing out the remaining
		 * pages that belong to the other range that points to extent X.
		 * So here we make sure we submit 2 bios, one for the first
		 * range and another one for the third range. Both will target
		 * the same physical extent from disk, but we can't currently
		 * make the compressed bio endio callback populate the pages
		 * for both ranges because each compressed bio is tightly
		 * coupled with a single extent map, and each range can have
		 * an extent map with a different offset value relative to the
		 * uncompressed data of our extent and different lengths. This
		 * is a corner case so we prioritize correctness over
		 * non-optimal behavior (submitting 2 bios for the same extent).
		 */
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
		    prev_em_start && *prev_em_start != (u64)-1 &&
3449
		    *prev_em_start != em->start)
3450 3451 3452
			force_bio_submit = true;

		if (prev_em_start)
3453
			*prev_em_start = em->start;
3454

3455 3456 3457 3458 3459
		free_extent_map(em);
		em = NULL;

		/* we've found a hole, just zero and go on */
		if (block_start == EXTENT_MAP_HOLE) {
3460 3461
			struct extent_state *cached = NULL;

3462
			memzero_page(page, pg_offset, iosize);
3463 3464

			set_extent_uptodate(tree, cur, cur + iosize - 1,
3465
					    &cached, GFP_NOFS);
3466
			unlock_extent_cached(tree, cur,
3467
					     cur + iosize - 1, &cached);
3468
			end_page_read(page, true, cur, iosize);
3469
			cur = cur + iosize;
3470
			pg_offset += iosize;
3471 3472 3473
			continue;
		}
		/* the get_extent function already copied into the page */
3474
		if (block_start == EXTENT_MAP_INLINE) {
3475
			unlock_extent(tree, cur, cur + iosize - 1);
3476
			end_page_read(page, true, cur, iosize);
3477
			cur = cur + iosize;
3478
			pg_offset += iosize;
3479 3480
			continue;
		}
3481

3482
		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3483
					 bio_ctrl, page, disk_bytenr, iosize,
3484 3485
					 pg_offset, end_bio_extent_readpage,
					 this_bio_flag, force_bio_submit);
3486
		if (ret) {
3487 3488 3489 3490 3491 3492
			/*
			 * We have to unlock the remaining range, or the page
			 * will never be unlocked.
			 */
			unlock_extent(tree, cur, end);
			end_page_read(page, false, cur, end + 1 - cur);
3493
			goto out;
3494
		}
3495
		cur = cur + iosize;
3496
		pg_offset += iosize;
3497
	}
D
Dan Magenheimer 已提交
3498
out:
3499
	return ret;
3500 3501
}

3502
int btrfs_read_folio(struct file *file, struct folio *folio)
3503
{
3504
	struct page *page = &folio->page;
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
	u64 start = page_offset(page);
	u64 end = start + PAGE_SIZE - 1;
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
	int ret;

	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);

	ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
	/*
	 * If btrfs_do_readpage() failed we will want to submit the assembled
	 * bio to do the cleanup.
	 */
3518
	submit_one_bio(&bio_ctrl);
3519 3520 3521
	return ret;
}

3522
static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3523 3524 3525 3526
					u64 start, u64 end,
					struct extent_map **em_cached,
					struct btrfs_bio_ctrl *bio_ctrl,
					u64 *prev_em_start)
3527
{
3528
	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3529 3530
	int index;

3531
	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3532 3533

	for (index = 0; index < nr_pages; index++) {
3534
		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3535
				  REQ_RAHEAD, prev_em_start);
3536
		put_page(pages[index]);
3537 3538 3539
	}
}

3540
/*
3541 3542
 * helper for __extent_writepage, doing all of the delayed allocation setup.
 *
3543
 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3544 3545 3546 3547 3548
 * to write the page (copy into inline extent).  In this case the IO has
 * been started and the page is already unlocked.
 *
 * This returns 0 if all went well (page still locked)
 * This returns < 0 if there were errors (page still locked)
3549
 */
3550
static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3551
		struct page *page, struct writeback_control *wbc)
3552
{
3553
	const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
3554
	u64 delalloc_start = page_offset(page);
3555
	u64 delalloc_to_write = 0;
3556 3557
	/* How many pages are started by btrfs_run_delalloc_range() */
	unsigned long nr_written = 0;
3558 3559 3560
	int ret;
	int page_started = 0;

3561 3562 3563
	while (delalloc_start < page_end) {
		u64 delalloc_end = page_end;
		bool found;
3564

3565
		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3566
					       &delalloc_start,
3567
					       &delalloc_end);
3568
		if (!found) {
3569 3570 3571
			delalloc_start = delalloc_end + 1;
			continue;
		}
3572
		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3573
				delalloc_end, &page_started, &nr_written, wbc);
3574
		if (ret) {
3575 3576
			btrfs_page_set_error(inode->root->fs_info, page,
					     page_offset(page), PAGE_SIZE);
3577
			return ret;
3578 3579
		}
		/*
3580 3581
		 * delalloc_end is already one less than the total length, so
		 * we don't subtract one from PAGE_SIZE
3582 3583
		 */
		delalloc_to_write += (delalloc_end - delalloc_start +
3584
				      PAGE_SIZE) >> PAGE_SHIFT;
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
		delalloc_start = delalloc_end + 1;
	}
	if (wbc->nr_to_write < delalloc_to_write) {
		int thresh = 8192;

		if (delalloc_to_write < thresh * 2)
			thresh = delalloc_to_write;
		wbc->nr_to_write = min_t(u64, delalloc_to_write,
					 thresh);
	}

3596
	/* Did btrfs_run_dealloc_range() already unlock and start the IO? */
3597 3598
	if (page_started) {
		/*
3599 3600
		 * We've unlocked the page, so we can't update the mapping's
		 * writeback index, just update nr_to_write.
3601
		 */
3602
		wbc->nr_to_write -= nr_written;
3603 3604 3605
		return 1;
	}

3606
	return 0;
3607 3608
}

3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
/*
 * Find the first byte we need to write.
 *
 * For subpage, one page can contain several sectors, and
 * __extent_writepage_io() will just grab all extent maps in the page
 * range and try to submit all non-inline/non-compressed extents.
 *
 * This is a big problem for subpage, we shouldn't re-submit already written
 * data at all.
 * This function will lookup subpage dirty bit to find which range we really
 * need to submit.
 *
 * Return the next dirty range in [@start, @end).
 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
 */
static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
				 struct page *page, u64 *start, u64 *end)
{
	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
3628
	struct btrfs_subpage_info *spi = fs_info->subpage_info;
3629 3630 3631
	u64 orig_start = *start;
	/* Declare as unsigned long so we can use bitmap ops */
	unsigned long flags;
3632
	int range_start_bit;
3633 3634 3635 3636 3637 3638
	int range_end_bit;

	/*
	 * For regular sector size == page size case, since one page only
	 * contains one sector, we return the page offset directly.
	 */
3639
	if (!btrfs_is_subpage(fs_info, page)) {
3640 3641 3642 3643 3644
		*start = page_offset(page);
		*end = page_offset(page) + PAGE_SIZE;
		return;
	}

3645 3646 3647
	range_start_bit = spi->dirty_offset +
			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);

3648 3649
	/* We should have the page locked, but just in case */
	spin_lock_irqsave(&subpage->lock, flags);
3650 3651
	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
			       spi->dirty_offset + spi->bitmap_nr_bits);
3652 3653
	spin_unlock_irqrestore(&subpage->lock, flags);

3654 3655 3656
	range_start_bit -= spi->dirty_offset;
	range_end_bit -= spi->dirty_offset;

3657 3658 3659 3660
	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
}

3661 3662 3663 3664 3665 3666 3667 3668
/*
 * helper for __extent_writepage.  This calls the writepage start hooks,
 * and does the loop to map the page into extents and bios.
 *
 * We return 1 if the IO is started and the page is unlocked,
 * 0 if all went well (page still locked)
 * < 0 if there were errors (page still locked)
 */
3669
static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3670 3671 3672 3673
				 struct page *page,
				 struct writeback_control *wbc,
				 struct extent_page_data *epd,
				 loff_t i_size,
3674
				 int *nr_ret)
3675
{
3676
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3677 3678
	u64 cur = page_offset(page);
	u64 end = cur + PAGE_SIZE - 1;
3679 3680 3681
	u64 extent_offset;
	u64 block_start;
	struct extent_map *em;
3682
	int saved_ret = 0;
3683 3684
	int ret = 0;
	int nr = 0;
3685 3686
	enum req_op op = REQ_OP_WRITE;
	const blk_opf_t write_flags = wbc_to_write_flags(wbc);
3687
	bool has_error = false;
3688
	bool compressed;
C
Chris Mason 已提交
3689

3690
	ret = btrfs_writepage_cow_fixup(page);
3691 3692
	if (ret) {
		/* Fixup worker will requeue */
3693
		redirty_page_for_writepage(wbc, page);
3694 3695
		unlock_page(page);
		return 1;
3696 3697
	}

3698 3699 3700 3701
	/*
	 * we don't want to touch the inode after unlocking the page,
	 * so we update the mapping writeback index now
	 */
3702
	wbc->nr_to_write--;
3703

3704
	while (cur <= end) {
3705
		u64 disk_bytenr;
3706
		u64 em_end;
3707 3708
		u64 dirty_range_start = cur;
		u64 dirty_range_end;
3709
		u32 iosize;
3710

3711
		if (cur >= i_size) {
3712
			btrfs_writepage_endio_finish_ordered(inode, page, cur,
3713
							     end, true);
3714 3715 3716 3717 3718 3719 3720 3721 3722
			/*
			 * This range is beyond i_size, thus we don't need to
			 * bother writing back.
			 * But we still need to clear the dirty subpage bit, or
			 * the next time the page gets dirtied, we will try to
			 * writeback the sectors with subpage dirty bits,
			 * causing writeback without ordered extent.
			 */
			btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
3723 3724
			break;
		}
3725 3726 3727 3728 3729 3730 3731 3732

		find_next_dirty_byte(fs_info, page, &dirty_range_start,
				     &dirty_range_end);
		if (cur < dirty_range_start) {
			cur = dirty_range_start;
			continue;
		}

3733
		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3734
		if (IS_ERR(em)) {
3735
			btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
3736
			ret = PTR_ERR_OR_ZERO(em);
3737 3738 3739
			has_error = true;
			if (!saved_ret)
				saved_ret = ret;
3740 3741 3742 3743
			break;
		}

		extent_offset = cur - em->start;
3744
		em_end = extent_map_end(em);
3745 3746 3747 3748
		ASSERT(cur <= em_end);
		ASSERT(cur < end);
		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
3749
		block_start = em->block_start;
C
Chris Mason 已提交
3750
		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3751 3752
		disk_bytenr = em->block_start + extent_offset;

3753 3754 3755 3756 3757
		/*
		 * Note that em_end from extent_map_end() and dirty_range_end from
		 * find_next_dirty_byte() are all exclusive
		 */
		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
3758

3759
		if (btrfs_use_zone_append(inode, em->block_start))
3760
			op = REQ_OP_ZONE_APPEND;
3761

3762 3763 3764
		free_extent_map(em);
		em = NULL;

C
Chris Mason 已提交
3765 3766 3767 3768 3769
		/*
		 * compressed and inline extents are written through other
		 * paths in the FS
		 */
		if (compressed || block_start == EXTENT_MAP_HOLE ||
3770
		    block_start == EXTENT_MAP_INLINE) {
3771
			if (compressed)
C
Chris Mason 已提交
3772
				nr++;
3773
			else
3774
				btrfs_writepage_endio_finish_ordered(inode,
3775
						page, cur, cur + iosize - 1, true);
3776
			btrfs_page_clear_dirty(fs_info, page, cur, iosize);
C
Chris Mason 已提交
3777
			cur += iosize;
3778 3779
			continue;
		}
C
Chris Mason 已提交
3780

3781
		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
3782
		if (!PageWriteback(page)) {
3783
			btrfs_err(inode->root->fs_info,
3784 3785
				   "page %lu not writeback, cur %llu end %llu",
			       page->index, cur, end);
3786
		}
3787

3788 3789 3790 3791 3792 3793 3794 3795
		/*
		 * Although the PageDirty bit is cleared before entering this
		 * function, subpage dirty bit is not cleared.
		 * So clear subpage dirty bit here so next time we won't submit
		 * page for range already written to disk.
		 */
		btrfs_page_clear_dirty(fs_info, page, cur, iosize);

3796
		ret = submit_extent_page(op | write_flags, wbc,
3797
					 &epd->bio_ctrl, page,
3798
					 disk_bytenr, iosize,
3799
					 cur - page_offset(page),
3800
					 end_bio_extent_writepage,
3801
					 0, false);
3802
		if (ret) {
3803 3804 3805 3806
			has_error = true;
			if (!saved_ret)
				saved_ret = ret;

3807
			btrfs_page_set_error(fs_info, page, cur, iosize);
3808
			if (PageWriteback(page))
3809 3810
				btrfs_page_clear_writeback(fs_info, page, cur,
							   iosize);
3811
		}
3812

3813
		cur += iosize;
3814 3815
		nr++;
	}
3816 3817 3818 3819
	/*
	 * If we finish without problem, we should not only clear page dirty,
	 * but also empty subpage dirty bits
	 */
3820
	if (!has_error)
3821
		btrfs_page_assert_not_dirty(fs_info, page);
3822 3823
	else
		ret = saved_ret;
3824 3825 3826 3827 3828 3829 3830 3831 3832
	*nr_ret = nr;
	return ret;
}

/*
 * the writepage semantics are similar to regular writepage.  extent
 * records are inserted to lock ranges in the tree, and as dirty areas
 * are found, they are marked writeback.  Then the lock bits are removed
 * and the end_io handler clears the writeback ranges
3833 3834 3835
 *
 * Return 0 if everything goes well.
 * Return <0 for error.
3836 3837
 */
static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3838
			      struct extent_page_data *epd)
3839
{
3840
	struct folio *folio = page_folio(page);
3841
	struct inode *inode = page->mapping->host;
3842
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3843 3844
	const u64 page_start = page_offset(page);
	const u64 page_end = page_start + PAGE_SIZE - 1;
3845 3846
	int ret;
	int nr = 0;
3847
	size_t pg_offset;
3848
	loff_t i_size = i_size_read(inode);
3849
	unsigned long end_index = i_size >> PAGE_SHIFT;
3850 3851 3852 3853 3854

	trace___extent_writepage(page, inode, wbc);

	WARN_ON(!PageLocked(page));

3855 3856
	btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
			       page_offset(page), PAGE_SIZE);
3857

3858
	pg_offset = offset_in_page(i_size);
3859 3860
	if (page->index > end_index ||
	   (page->index == end_index && !pg_offset)) {
3861 3862
		folio_invalidate(folio, 0, folio_size(folio));
		folio_unlock(folio);
3863 3864 3865
		return 0;
	}

3866
	if (page->index == end_index)
3867
		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
3868

3869 3870 3871 3872 3873
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		SetPageError(page);
		goto done;
	}
3874

3875
	if (!epd->extent_locked) {
3876
		ret = writepage_delalloc(BTRFS_I(inode), page, wbc);
3877
		if (ret == 1)
3878
			return 0;
3879 3880 3881
		if (ret)
			goto done;
	}
3882

3883
	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
3884
				    &nr);
3885
	if (ret == 1)
3886
		return 0;
3887

3888 3889 3890 3891 3892 3893
done:
	if (nr == 0) {
		/* make sure the mapping tag for page dirty gets cleared */
		set_page_writeback(page);
		end_page_writeback(page);
	}
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
	/*
	 * Here we used to have a check for PageError() and then set @ret and
	 * call end_extent_writepage().
	 *
	 * But in fact setting @ret here will cause different error paths
	 * between subpage and regular sectorsize.
	 *
	 * For regular page size, we never submit current page, but only add
	 * current page to current bio.
	 * The bio submission can only happen in next page.
	 * Thus if we hit the PageError() branch, @ret is already set to
	 * non-zero value and will not get updated for regular sectorsize.
	 *
	 * But for subpage case, it's possible we submit part of current page,
	 * thus can get PageError() set by submitted bio of the same page,
	 * while our @ret is still 0.
	 *
	 * So here we unify the behavior and don't set @ret.
	 * Error can still be properly passed to higher layer as page will
	 * be set error, here we just don't handle the IO failure.
	 *
	 * NOTE: This is just a hotfix for subpage.
	 * The root fix will be properly ending ordered extent when we hit
	 * an error during writeback.
	 *
	 * But that needs a bigger refactoring, as we not only need to grab the
	 * submitted OE, but also need to know exactly at which bytenr we hit
	 * the error.
	 * Currently the full page based __extent_writepage_io() is not
	 * capable of that.
	 */
	if (PageError(page))
3926
		end_extent_writepage(page, ret, page_start, page_end);
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
	if (epd->extent_locked) {
		/*
		 * If epd->extent_locked, it's from extent_write_locked_range(),
		 * the page can either be locked by lock_page() or
		 * process_one_page().
		 * Let btrfs_page_unlock_writer() handle both cases.
		 */
		ASSERT(wbc);
		btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
					 wbc->range_end + 1 - wbc->range_start);
	} else {
		unlock_page(page);
	}
3940
	ASSERT(ret <= 0);
3941
	return ret;
3942 3943
}

3944
void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3945
{
3946 3947
	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
		       TASK_UNINTERRUPTIBLE);
3948 3949
}

3950 3951 3952 3953 3954 3955 3956
static void end_extent_buffer_writeback(struct extent_buffer *eb)
{
	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
	smp_mb__after_atomic();
	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
}

3957
/*
3958
 * Lock extent buffer status and pages for writeback.
3959
 *
3960 3961 3962 3963 3964 3965
 * May try to flush write bio if we can't get the lock.
 *
 * Return  0 if the extent buffer doesn't need to be submitted.
 *           (E.g. the extent buffer is not dirty)
 * Return >0 is the extent buffer is submitted to bio.
 * Return <0 if something went wrong, no page is locked.
3966
 */
3967
static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3968
			  struct extent_page_data *epd)
3969
{
3970
	struct btrfs_fs_info *fs_info = eb->fs_info;
3971
	int i, num_pages;
3972 3973 3974 3975
	int flush = 0;
	int ret = 0;

	if (!btrfs_try_tree_write_lock(eb)) {
3976
		submit_write_bio(epd, 0);
3977
		flush = 1;
3978 3979 3980 3981 3982 3983 3984 3985
		btrfs_tree_lock(eb);
	}

	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
		btrfs_tree_unlock(eb);
		if (!epd->sync_io)
			return 0;
		if (!flush) {
3986
			submit_write_bio(epd, 0);
3987 3988
			flush = 1;
		}
C
Chris Mason 已提交
3989 3990 3991 3992 3993
		while (1) {
			wait_on_extent_buffer_writeback(eb);
			btrfs_tree_lock(eb);
			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
				break;
3994 3995 3996 3997
			btrfs_tree_unlock(eb);
		}
	}

3998 3999 4000 4001 4002 4003
	/*
	 * We need to do this to prevent races in people who check if the eb is
	 * under IO since we can end up having no IO bits set for a short period
	 * of time.
	 */
	spin_lock(&eb->refs_lock);
4004 4005
	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4006
		spin_unlock(&eb->refs_lock);
4007
		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4008 4009 4010
		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
					 -eb->len,
					 fs_info->dirty_metadata_batch);
4011
		ret = 1;
4012 4013
	} else {
		spin_unlock(&eb->refs_lock);
4014 4015 4016 4017
	}

	btrfs_tree_unlock(eb);

4018 4019 4020 4021 4022 4023
	/*
	 * Either we don't need to submit any tree block, or we're submitting
	 * subpage eb.
	 * Subpage metadata doesn't use page locking at all, so we can skip
	 * the page locking.
	 */
4024
	if (!ret || fs_info->nodesize < PAGE_SIZE)
4025 4026
		return ret;

4027
	num_pages = num_extent_pages(eb);
4028
	for (i = 0; i < num_pages; i++) {
4029
		struct page *p = eb->pages[i];
4030 4031 4032

		if (!trylock_page(p)) {
			if (!flush) {
4033
				submit_write_bio(epd, 0);
4034 4035 4036 4037 4038 4039
				flush = 1;
			}
			lock_page(p);
		}
	}

4040
	return ret;
4041 4042
}

4043
static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4044
{
4045
	struct btrfs_fs_info *fs_info = eb->fs_info;
4046

4047
	btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4048 4049 4050
	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
		return;

4051 4052 4053 4054 4055 4056
	/*
	 * A read may stumble upon this buffer later, make sure that it gets an
	 * error and knows there was an error.
	 */
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);

4057 4058 4059 4060 4061 4062 4063 4064
	/*
	 * We need to set the mapping with the io error as well because a write
	 * error will flip the file system readonly, and then syncfs() will
	 * return a 0 because we are readonly if we don't modify the err seq for
	 * the superblock.
	 */
	mapping_set_error(page->mapping, -EIO);

4065 4066 4067 4068 4069 4070 4071
	/*
	 * If we error out, we should add back the dirty_metadata_bytes
	 * to make it consistent.
	 */
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
				 eb->len, fs_info->dirty_metadata_batch);

4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
	/*
	 * If writeback for a btree extent that doesn't belong to a log tree
	 * failed, increment the counter transaction->eb_write_errors.
	 * We do this because while the transaction is running and before it's
	 * committing (when we call filemap_fdata[write|wait]_range against
	 * the btree inode), we might have
	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
	 * returns an error or an error happens during writeback, when we're
	 * committing the transaction we wouldn't know about it, since the pages
	 * can be no longer dirty nor marked anymore for writeback (if a
	 * subsequent modification to the extent buffer didn't happen before the
	 * transaction commit), which makes filemap_fdata[write|wait]_range not
	 * able to find the pages tagged with SetPageError at transaction
	 * commit time. So if this happens we must abort the transaction,
	 * otherwise we commit a super block with btree roots that point to
	 * btree nodes/leafs whose content on disk is invalid - either garbage
	 * or the content of some node/leaf from a past generation that got
	 * cowed or deleted and is no longer valid.
	 *
	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
	 * not be enough - we need to distinguish between log tree extents vs
	 * non-log tree extents, and the next filemap_fdatawait_range() call
	 * will catch and clear such errors in the mapping - and that call might
	 * be from a log sync and not from a transaction commit. Also, checking
	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
	 * not done and would not be reliable - the eb might have been released
	 * from memory and reading it back again means that flag would not be
	 * set (since it's a runtime flag, not persisted on disk).
	 *
	 * Using the flags below in the btree inode also makes us achieve the
	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
	 * writeback for all dirty pages and before filemap_fdatawait_range()
	 * is called, the writeback for all dirty pages had already finished
	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
	 * filemap_fdatawait_range() would return success, as it could not know
	 * that writeback errors happened (the pages were no longer tagged for
	 * writeback).
	 */
	switch (eb->log_index) {
	case -1:
4112
		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4113 4114
		break;
	case 0:
4115
		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4116 4117
		break;
	case 1:
4118
		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4119 4120 4121 4122 4123 4124
		break;
	default:
		BUG(); /* unexpected, logic error */
	}
}

4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
/*
 * The endio specific version which won't touch any unsafe spinlock in endio
 * context.
 */
static struct extent_buffer *find_extent_buffer_nolock(
		struct btrfs_fs_info *fs_info, u64 start)
{
	struct extent_buffer *eb;

	rcu_read_lock();
4135 4136
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       start >> fs_info->sectorsize_bits);
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
	if (eb && atomic_inc_not_zero(&eb->refs)) {
		rcu_read_unlock();
		return eb;
	}
	rcu_read_unlock();
	return NULL;
}

/*
 * The endio function for subpage extent buffer write.
 *
 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
 * after all extent buffers in the page has finished their writeback.
 */
4151
static void end_bio_subpage_eb_writepage(struct btrfs_bio *bbio)
4152
{
4153
	struct bio *bio = &bbio->bio;
4154
	struct btrfs_fs_info *fs_info;
4155 4156 4157
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

4158
	fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
4159
	ASSERT(fs_info->nodesize < PAGE_SIZE);
4160

4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
	ASSERT(!bio_flagged(bio, BIO_CLONED));
	bio_for_each_segment_all(bvec, bio, iter_all) {
		struct page *page = bvec->bv_page;
		u64 bvec_start = page_offset(page) + bvec->bv_offset;
		u64 bvec_end = bvec_start + bvec->bv_len - 1;
		u64 cur_bytenr = bvec_start;

		ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));

		/* Iterate through all extent buffers in the range */
		while (cur_bytenr <= bvec_end) {
			struct extent_buffer *eb;
			int done;

			/*
			 * Here we can't use find_extent_buffer(), as it may
			 * try to lock eb->refs_lock, which is not safe in endio
			 * context.
			 */
			eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
			ASSERT(eb);

			cur_bytenr = eb->start + eb->len;

			ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
			done = atomic_dec_and_test(&eb->io_pages);
			ASSERT(done);

			if (bio->bi_status ||
			    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
				ClearPageUptodate(page);
				set_btree_ioerr(page, eb);
			}

			btrfs_subpage_clear_writeback(fs_info, page, eb->start,
						      eb->len);
			end_extent_buffer_writeback(eb);
			/*
			 * free_extent_buffer() will grab spinlock which is not
			 * safe in endio context. Thus here we manually dec
			 * the ref.
			 */
			atomic_dec(&eb->refs);
		}
	}
	bio_put(bio);
}

4209
static void end_bio_extent_buffer_writepage(struct btrfs_bio *bbio)
4210
{
4211
	struct bio *bio = &bbio->bio;
4212
	struct bio_vec *bvec;
4213
	struct extent_buffer *eb;
4214
	int done;
4215
	struct bvec_iter_all iter_all;
4216

4217
	ASSERT(!bio_flagged(bio, BIO_CLONED));
4218
	bio_for_each_segment_all(bvec, bio, iter_all) {
4219 4220 4221 4222 4223 4224
		struct page *page = bvec->bv_page;

		eb = (struct extent_buffer *)page->private;
		BUG_ON(!eb);
		done = atomic_dec_and_test(&eb->io_pages);

4225
		if (bio->bi_status ||
4226
		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4227
			ClearPageUptodate(page);
4228
			set_btree_ioerr(page, eb);
4229 4230 4231 4232 4233 4234 4235 4236
		}

		end_page_writeback(page);

		if (!done)
			continue;

		end_extent_buffer_writeback(eb);
4237
	}
4238 4239 4240 4241

	bio_put(bio);
}

4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
static void prepare_eb_write(struct extent_buffer *eb)
{
	u32 nritems;
	unsigned long start;
	unsigned long end;

	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
	atomic_set(&eb->io_pages, num_extent_pages(eb));

	/* Set btree blocks beyond nritems with 0 to avoid stale content */
	nritems = btrfs_header_nritems(eb);
	if (btrfs_header_level(eb) > 0) {
		end = btrfs_node_key_ptr_offset(nritems);
		memzero_extent_buffer(eb, end, eb->len - end);
	} else {
		/*
		 * Leaf:
		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
		 */
		start = btrfs_item_nr_offset(nritems);
		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
		memzero_extent_buffer(eb, start, end - start);
	}
}

4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
/*
 * Unlike the work in write_one_eb(), we rely completely on extent locking.
 * Page locking is only utilized at minimum to keep the VMM code happy.
 */
static int write_one_subpage_eb(struct extent_buffer *eb,
				struct writeback_control *wbc,
				struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
4277
	blk_opf_t write_flags = wbc_to_write_flags(wbc);
4278 4279 4280
	bool no_dirty_ebs = false;
	int ret;

4281 4282
	prepare_eb_write(eb);

4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
	/* clear_page_dirty_for_io() in subpage helper needs page locked */
	lock_page(page);
	btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);

	/* Check if this is the last dirty bit to update nr_written */
	no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
							  eb->start, eb->len);
	if (no_dirty_ebs)
		clear_page_dirty_for_io(page);

4293 4294 4295
	ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
			&epd->bio_ctrl, page, eb->start, eb->len,
			eb->start - page_offset(page),
4296
			end_bio_subpage_eb_writepage, 0, false);
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
	if (ret) {
		btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
		set_btree_ioerr(page, eb);
		unlock_page(page);

		if (atomic_dec_and_test(&eb->io_pages))
			end_extent_buffer_writeback(eb);
		return -EIO;
	}
	unlock_page(page);
	/*
	 * Submission finished without problem, if no range of the page is
	 * dirty anymore, we have submitted a page.  Update nr_written in wbc.
	 */
	if (no_dirty_ebs)
4312
		wbc->nr_to_write--;
4313 4314 4315
	return ret;
}

4316
static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4317 4318 4319
			struct writeback_control *wbc,
			struct extent_page_data *epd)
{
4320
	u64 disk_bytenr = eb->start;
4321
	int i, num_pages;
4322
	blk_opf_t write_flags = wbc_to_write_flags(wbc);
4323
	int ret = 0;
4324

4325
	prepare_eb_write(eb);
4326

4327
	num_pages = num_extent_pages(eb);
4328
	for (i = 0; i < num_pages; i++) {
4329
		struct page *p = eb->pages[i];
4330 4331 4332

		clear_page_dirty_for_io(p);
		set_page_writeback(p);
4333
		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4334 4335
					 &epd->bio_ctrl, p, disk_bytenr,
					 PAGE_SIZE, 0,
4336
					 end_bio_extent_buffer_writepage,
4337
					 0, false);
4338
		if (ret) {
4339
			set_btree_ioerr(p, eb);
4340 4341
			if (PageWriteback(p))
				end_page_writeback(p);
4342 4343 4344 4345 4346
			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
				end_extent_buffer_writeback(eb);
			ret = -EIO;
			break;
		}
4347
		disk_bytenr += PAGE_SIZE;
4348
		wbc->nr_to_write--;
4349 4350 4351 4352 4353
		unlock_page(p);
	}

	if (unlikely(ret)) {
		for (; i < num_pages; i++) {
4354
			struct page *p = eb->pages[i];
4355
			clear_page_dirty_for_io(p);
4356 4357 4358 4359 4360 4361 4362
			unlock_page(p);
		}
	}

	return ret;
}

4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
/*
 * Submit one subpage btree page.
 *
 * The main difference to submit_eb_page() is:
 * - Page locking
 *   For subpage, we don't rely on page locking at all.
 *
 * - Flush write bio
 *   We only flush bio if we may be unable to fit current extent buffers into
 *   current bio.
 *
 * Return >=0 for the number of submitted extent buffers.
 * Return <0 for fatal error.
 */
static int submit_eb_subpage(struct page *page,
			     struct writeback_control *wbc,
			     struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	int submitted = 0;
	u64 page_start = page_offset(page);
	int bit_start = 0;
	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
	int ret;

	/* Lock and write each dirty extent buffers in the range */
4389
	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
		struct extent_buffer *eb;
		unsigned long flags;
		u64 start;

		/*
		 * Take private lock to ensure the subpage won't be detached
		 * in the meantime.
		 */
		spin_lock(&page->mapping->private_lock);
		if (!PagePrivate(page)) {
			spin_unlock(&page->mapping->private_lock);
			break;
		}
		spin_lock_irqsave(&subpage->lock, flags);
4405 4406
		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
			      subpage->bitmaps)) {
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
			spin_unlock_irqrestore(&subpage->lock, flags);
			spin_unlock(&page->mapping->private_lock);
			bit_start++;
			continue;
		}

		start = page_start + bit_start * fs_info->sectorsize;
		bit_start += sectors_per_node;

		/*
		 * Here we just want to grab the eb without touching extra
		 * spin locks, so call find_extent_buffer_nolock().
		 */
		eb = find_extent_buffer_nolock(fs_info, start);
		spin_unlock_irqrestore(&subpage->lock, flags);
		spin_unlock(&page->mapping->private_lock);

		/*
		 * The eb has already reached 0 refs thus find_extent_buffer()
		 * doesn't return it. We don't need to write back such eb
		 * anyway.
		 */
		if (!eb)
			continue;

		ret = lock_extent_buffer_for_io(eb, epd);
		if (ret == 0) {
			free_extent_buffer(eb);
			continue;
		}
		if (ret < 0) {
			free_extent_buffer(eb);
			goto cleanup;
		}
4441
		ret = write_one_subpage_eb(eb, wbc, epd);
4442 4443 4444 4445 4446 4447 4448 4449 4450
		free_extent_buffer(eb);
		if (ret < 0)
			goto cleanup;
		submitted++;
	}
	return submitted;

cleanup:
	/* We hit error, end bio for the submitted extent buffers */
4451
	submit_write_bio(epd, ret);
4452 4453 4454
	return ret;
}

4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
/*
 * Submit all page(s) of one extent buffer.
 *
 * @page:	the page of one extent buffer
 * @eb_context:	to determine if we need to submit this page, if current page
 *		belongs to this eb, we don't need to submit
 *
 * The caller should pass each page in their bytenr order, and here we use
 * @eb_context to determine if we have submitted pages of one extent buffer.
 *
 * If we have, we just skip until we hit a new page that doesn't belong to
 * current @eb_context.
 *
 * If not, we submit all the page(s) of the extent buffer.
 *
 * Return >0 if we have submitted the extent buffer successfully.
 * Return 0 if we don't need to submit the page, as it's already submitted by
 * previous call.
 * Return <0 for fatal error.
 */
static int submit_eb_page(struct page *page, struct writeback_control *wbc,
			  struct extent_page_data *epd,
			  struct extent_buffer **eb_context)
{
	struct address_space *mapping = page->mapping;
4480
	struct btrfs_block_group *cache = NULL;
4481 4482 4483 4484 4485 4486
	struct extent_buffer *eb;
	int ret;

	if (!PagePrivate(page))
		return 0;

4487
	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
4488 4489
		return submit_eb_subpage(page, wbc, epd);

4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
	spin_lock(&mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	eb = (struct extent_buffer *)page->private;

	/*
	 * Shouldn't happen and normally this would be a BUG_ON but no point
	 * crashing the machine for something we can survive anyway.
	 */
	if (WARN_ON(!eb)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	if (eb == *eb_context) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}
	ret = atomic_inc_not_zero(&eb->refs);
	spin_unlock(&mapping->private_lock);
	if (!ret)
		return 0;

4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
		/*
		 * If for_sync, this hole will be filled with
		 * trasnsaction commit.
		 */
		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
			ret = -EAGAIN;
		else
			ret = 0;
		free_extent_buffer(eb);
		return ret;
	}

4529 4530 4531 4532
	*eb_context = eb;

	ret = lock_extent_buffer_for_io(eb, epd);
	if (ret <= 0) {
4533 4534 4535
		btrfs_revert_meta_write_pointer(cache, eb);
		if (cache)
			btrfs_put_block_group(cache);
4536 4537 4538
		free_extent_buffer(eb);
		return ret;
	}
4539
	if (cache) {
4540 4541 4542
		/*
		 * Implies write in zoned mode. Mark the last eb in a block group.
		 */
4543
		btrfs_schedule_zone_finish_bg(cache, eb);
4544
		btrfs_put_block_group(cache);
4545
	}
4546 4547 4548 4549 4550 4551 4552
	ret = write_one_eb(eb, wbc, epd);
	free_extent_buffer(eb);
	if (ret < 0)
		return ret;
	return 1;
}

4553 4554 4555
int btree_write_cache_pages(struct address_space *mapping,
				   struct writeback_control *wbc)
{
4556
	struct extent_buffer *eb_context = NULL;
4557
	struct extent_page_data epd = {
4558
		.bio_ctrl = { 0 },
4559 4560 4561
		.extent_locked = 0,
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
	};
4562
	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4563 4564 4565 4566 4567 4568 4569 4570
	int ret = 0;
	int done = 0;
	int nr_to_write_done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	int scanned = 0;
M
Matthew Wilcox 已提交
4571
	xa_mark_t tag;
4572

4573
	pagevec_init(&pvec);
4574 4575 4576
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4577 4578 4579 4580 4581
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4582
	} else {
4583 4584
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4585 4586 4587 4588 4589 4590
		scanned = 1;
	}
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4591
	btrfs_zoned_meta_io_lock(fs_info);
4592 4593 4594 4595
retry:
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);
	while (!done && !nr_to_write_done && (index <= end) &&
J
Jan Kara 已提交
4596
	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4597
			tag))) {
4598 4599 4600 4601 4602
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4603 4604
			ret = submit_eb_page(page, wbc, &epd, &eb_context);
			if (ret == 0)
4605
				continue;
4606
			if (ret < 0) {
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
				done = 1;
				break;
			}

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	if (!scanned && !done) {
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
		goto retry;
	}
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
	/*
	 * If something went wrong, don't allow any metadata write bio to be
	 * submitted.
	 *
	 * This would prevent use-after-free if we had dirty pages not
	 * cleaned up, which can still happen by fuzzed images.
	 *
	 * - Bad extent tree
	 *   Allowing existing tree block to be allocated for other trees.
	 *
	 * - Log tree operations
	 *   Exiting tree blocks get allocated to log tree, bumps its
	 *   generation, then get cleaned in tree re-balance.
	 *   Such tree block will not be written back, since it's clean,
	 *   thus no WRITTEN flag set.
	 *   And after log writes back, this tree block is not traced by
	 *   any dirty extent_io_tree.
	 *
	 * - Offending tree block gets re-dirtied from its original owner
	 *   Since it has bumped generation, no WRITTEN flag, it can be
	 *   reused without COWing. This tree block will not be traced
	 *   by btrfs_transaction::dirty_pages.
	 *
	 *   Now such dirty tree block will not be cleaned by any dirty
	 *   extent io tree. Thus we don't want to submit such wild eb
	 *   if the fs already has error.
4656
	 *
4657 4658 4659 4660 4661
	 * We can get ret > 0 from submit_extent_page() indicating how many ebs
	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
	 */
	if (ret > 0)
		ret = 0;
4662 4663 4664 4665 4666
	if (!ret && BTRFS_FS_ERROR(fs_info))
		ret = -EROFS;
	submit_write_bio(&epd, ret);

	btrfs_zoned_meta_io_unlock(fs_info);
4667 4668 4669
	return ret;
}

4670
/**
4671 4672
 * Walk the list of dirty pages of the given address space and write all of them.
 *
4673
 * @mapping: address space structure to write
4674 4675
 * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
 * @epd:     holds context for the write, namely the bio
4676 4677 4678 4679 4680 4681 4682 4683 4684
 *
 * If a page is already under I/O, write_cache_pages() skips it, even
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
 */
4685
static int extent_write_cache_pages(struct address_space *mapping,
C
Chris Mason 已提交
4686
			     struct writeback_control *wbc,
4687
			     struct extent_page_data *epd)
4688
{
4689
	struct inode *inode = mapping->host;
4690 4691
	int ret = 0;
	int done = 0;
4692
	int nr_to_write_done = 0;
4693 4694 4695 4696
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
4697 4698
	pgoff_t done_index;
	int range_whole = 0;
4699
	int scanned = 0;
M
Matthew Wilcox 已提交
4700
	xa_mark_t tag;
4701

4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
	/*
	 * We have to hold onto the inode so that ordered extents can do their
	 * work when the IO finishes.  The alternative to this is failing to add
	 * an ordered extent if the igrab() fails there and that is a huge pain
	 * to deal with, so instead just hold onto the inode throughout the
	 * writepages operation.  If it fails here we are freeing up the inode
	 * anyway and we'd rather not waste our time writing out stuff that is
	 * going to be truncated anyway.
	 */
	if (!igrab(inode))
		return 0;

4714
	pagevec_init(&pvec);
4715 4716 4717
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4718 4719 4720 4721 4722
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4723
	} else {
4724 4725
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4726 4727
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
4728 4729
		scanned = 1;
	}
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743

	/*
	 * We do the tagged writepage as long as the snapshot flush bit is set
	 * and we are the first one who do the filemap_flush() on this inode.
	 *
	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
	 * not race in and drop the bit.
	 */
	if (range_whole && wbc->nr_to_write == LONG_MAX &&
	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
			       &BTRFS_I(inode)->runtime_flags))
		wbc->tagged_writepages = 1;

	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4744 4745 4746
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4747
retry:
4748
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4749
		tag_pages_for_writeback(mapping, index, end);
4750
	done_index = index;
4751
	while (!done && !nr_to_write_done && (index <= end) &&
4752 4753
			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
						&index, end, tag))) {
4754 4755 4756 4757 4758
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4759
			done_index = page->index + 1;
4760
			/*
M
Matthew Wilcox 已提交
4761 4762 4763 4764 4765
			 * At this point we hold neither the i_pages lock nor
			 * the page lock: the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to
			 * tmpfs file mapping
4766
			 */
4767
			if (!trylock_page(page)) {
4768
				submit_write_bio(epd, 0);
4769
				lock_page(page);
4770
			}
4771 4772 4773 4774 4775 4776

			if (unlikely(page->mapping != mapping)) {
				unlock_page(page);
				continue;
			}

C
Chris Mason 已提交
4777
			if (wbc->sync_mode != WB_SYNC_NONE) {
4778
				if (PageWriteback(page))
4779
					submit_write_bio(epd, 0);
4780
				wait_on_page_writeback(page);
C
Chris Mason 已提交
4781
			}
4782 4783 4784 4785 4786 4787 4788

			if (PageWriteback(page) ||
			    !clear_page_dirty_for_io(page)) {
				unlock_page(page);
				continue;
			}

4789
			ret = __extent_writepage(page, wbc, epd);
4790 4791 4792 4793
			if (ret < 0) {
				done = 1;
				break;
			}
4794 4795 4796 4797 4798 4799 4800

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
4801 4802 4803 4804
		}
		pagevec_release(&pvec);
		cond_resched();
	}
4805
	if (!scanned && !done) {
4806 4807 4808 4809 4810 4811
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
4812 4813 4814 4815 4816 4817 4818

		/*
		 * If we're looping we could run into a page that is locked by a
		 * writer and that writer could be waiting on writeback for a
		 * page in our current bio, and thus deadlock, so flush the
		 * write bio here.
		 */
4819
		submit_write_bio(epd, 0);
4820
		goto retry;
4821
	}
4822 4823 4824 4825

	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
		mapping->writeback_index = done_index;

4826
	btrfs_add_delayed_iput(inode);
4827
	return ret;
4828 4829
}

4830 4831 4832 4833 4834 4835
/*
 * Submit the pages in the range to bio for call sites which delalloc range has
 * already been ran (aka, ordered extent inserted) and all pages are still
 * locked.
 */
int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
4836
{
4837 4838
	bool found_error = false;
	int first_error = 0;
4839 4840 4841
	int ret = 0;
	struct address_space *mapping = inode->i_mapping;
	struct page *page;
4842
	u64 cur = start;
4843 4844
	unsigned long nr_pages;
	const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
4845
	struct extent_page_data epd = {
4846
		.bio_ctrl = { 0 },
4847
		.extent_locked = 1,
4848
		.sync_io = 1,
4849 4850
	};
	struct writeback_control wbc_writepages = {
4851
		.sync_mode	= WB_SYNC_ALL,
4852 4853
		.range_start	= start,
		.range_end	= end + 1,
4854 4855 4856
		/* We're called from an async helper function */
		.punt_to_cgroup	= 1,
		.no_cgroup_owner = 1,
4857 4858
	};

4859 4860 4861 4862 4863
	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
	nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
		   PAGE_SHIFT;
	wbc_writepages.nr_to_write = nr_pages * 2;

4864
	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4865
	while (cur <= end) {
4866 4867
		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);

4868 4869 4870 4871 4872 4873
		page = find_get_page(mapping, cur >> PAGE_SHIFT);
		/*
		 * All pages in the range are locked since
		 * btrfs_run_delalloc_range(), thus there is no way to clear
		 * the page dirty flag.
		 */
4874
		ASSERT(PageLocked(page));
4875 4876 4877 4878 4879 4880 4881
		ASSERT(PageDirty(page));
		clear_page_dirty_for_io(page);
		ret = __extent_writepage(page, &wbc_writepages, &epd);
		ASSERT(ret <= 0);
		if (ret < 0) {
			found_error = true;
			first_error = ret;
4882
		}
4883
		put_page(page);
4884
		cur = cur_end + 1;
4885 4886
	}

4887
	submit_write_bio(&epd, found_error ? ret : 0);
4888 4889

	wbc_detach_inode(&wbc_writepages);
4890 4891
	if (found_error)
		return first_error;
4892 4893
	return ret;
}
4894

4895
int extent_writepages(struct address_space *mapping,
4896 4897
		      struct writeback_control *wbc)
{
4898
	struct inode *inode = mapping->host;
4899 4900
	int ret = 0;
	struct extent_page_data epd = {
4901
		.bio_ctrl = { 0 },
4902
		.extent_locked = 0,
4903
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4904 4905
	};

4906 4907 4908 4909
	/*
	 * Allow only a single thread to do the reloc work in zoned mode to
	 * protect the write pointer updates.
	 */
4910
	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
4911
	ret = extent_write_cache_pages(mapping, wbc, &epd);
4912
	submit_write_bio(&epd, ret);
4913
	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
4914 4915 4916
	return ret;
}

4917
void extent_readahead(struct readahead_control *rac)
4918
{
4919
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
L
Liu Bo 已提交
4920
	struct page *pagepool[16];
4921
	struct extent_map *em_cached = NULL;
4922
	u64 prev_em_start = (u64)-1;
4923
	int nr;
4924

4925
	while ((nr = readahead_page_batch(rac, pagepool))) {
4926 4927
		u64 contig_start = readahead_pos(rac);
		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
4928

4929
		contiguous_readpages(pagepool, nr, contig_start, contig_end,
4930
				&em_cached, &bio_ctrl, &prev_em_start);
4931
	}
L
Liu Bo 已提交
4932

4933 4934
	if (em_cached)
		free_extent_map(em_cached);
4935
	submit_one_bio(&bio_ctrl);
4936 4937 4938
}

/*
4939 4940
 * basic invalidate_folio code, this waits on any locked or writeback
 * ranges corresponding to the folio, and then deletes any extent state
4941 4942
 * records from the tree
 */
4943 4944
int extent_invalidate_folio(struct extent_io_tree *tree,
			  struct folio *folio, size_t offset)
4945
{
4946
	struct extent_state *cached_state = NULL;
4947 4948 4949
	u64 start = folio_pos(folio);
	u64 end = start + folio_size(folio) - 1;
	size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
4950

4951 4952 4953
	/* This function is only called for the btree inode */
	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);

4954
	start += ALIGN(offset, blocksize);
4955 4956 4957
	if (start > end)
		return 0;

4958
	lock_extent_bits(tree, start, end, &cached_state);
4959
	folio_wait_writeback(folio);
4960 4961 4962 4963 4964 4965 4966

	/*
	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
	 * so here we only need to unlock the extent range to free any
	 * existing extent state.
	 */
	unlock_extent_cached(tree, start, end, &cached_state);
4967 4968 4969
	return 0;
}

4970
/*
4971
 * a helper for release_folio, this tests for areas of the page that
4972 4973 4974
 * are locked or under IO and drops the related state bits if it is safe
 * to drop the page.
 */
4975
static int try_release_extent_state(struct extent_io_tree *tree,
4976
				    struct page *page, gfp_t mask)
4977
{
M
Miao Xie 已提交
4978
	u64 start = page_offset(page);
4979
	u64 end = start + PAGE_SIZE - 1;
4980 4981
	int ret = 1;

N
Nikolay Borisov 已提交
4982
	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4983
		ret = 0;
N
Nikolay Borisov 已提交
4984
	} else {
4985
		/*
4986 4987 4988 4989
		 * At this point we can safely clear everything except the
		 * locked bit, the nodatasum bit and the delalloc new bit.
		 * The delalloc new bit will be cleared by ordered extent
		 * completion.
4990
		 */
4991
		ret = __clear_extent_bit(tree, start, end,
4992 4993
			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
			 0, 0, NULL, mask, NULL);
4994 4995 4996 4997 4998 4999 5000 5001

		/* if clear_extent_bit failed for enomem reasons,
		 * we can't allow the release to continue.
		 */
		if (ret < 0)
			ret = 0;
		else
			ret = 1;
5002 5003 5004 5005
	}
	return ret;
}

5006
/*
5007
 * a helper for release_folio.  As long as there are no locked extents
5008 5009 5010
 * in the range corresponding to the page, both state records and extent
 * map records are removed
 */
5011
int try_release_extent_mapping(struct page *page, gfp_t mask)
5012 5013
{
	struct extent_map *em;
M
Miao Xie 已提交
5014
	u64 start = page_offset(page);
5015
	u64 end = start + PAGE_SIZE - 1;
5016 5017 5018
	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
	struct extent_io_tree *tree = &btrfs_inode->io_tree;
	struct extent_map_tree *map = &btrfs_inode->extent_tree;
5019

5020
	if (gfpflags_allow_blocking(mask) &&
5021
	    page->mapping->host->i_size > SZ_16M) {
5022
		u64 len;
5023
		while (start <= end) {
5024 5025 5026
			struct btrfs_fs_info *fs_info;
			u64 cur_gen;

5027
			len = end - start + 1;
5028
			write_lock(&map->lock);
5029
			em = lookup_extent_mapping(map, start, len);
5030
			if (!em) {
5031
				write_unlock(&map->lock);
5032 5033
				break;
			}
5034 5035
			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
			    em->start != start) {
5036
				write_unlock(&map->lock);
5037 5038 5039
				free_extent_map(em);
				break;
			}
5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
			if (test_range_bit(tree, em->start,
					   extent_map_end(em) - 1,
					   EXTENT_LOCKED, 0, NULL))
				goto next;
			/*
			 * If it's not in the list of modified extents, used
			 * by a fast fsync, we can remove it. If it's being
			 * logged we can safely remove it since fsync took an
			 * extra reference on the em.
			 */
			if (list_empty(&em->list) ||
5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066
			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
				goto remove_em;
			/*
			 * If it's in the list of modified extents, remove it
			 * only if its generation is older then the current one,
			 * in which case we don't need it for a fast fsync.
			 * Otherwise don't remove it, we could be racing with an
			 * ongoing fast fsync that could miss the new extent.
			 */
			fs_info = btrfs_inode->root->fs_info;
			spin_lock(&fs_info->trans_lock);
			cur_gen = fs_info->generation;
			spin_unlock(&fs_info->trans_lock);
			if (em->generation >= cur_gen)
				goto next;
remove_em:
5067 5068 5069 5070 5071 5072 5073 5074
			/*
			 * We only remove extent maps that are not in the list of
			 * modified extents or that are in the list but with a
			 * generation lower then the current generation, so there
			 * is no need to set the full fsync flag on the inode (it
			 * hurts the fsync performance for workloads with a data
			 * size that exceeds or is close to the system's memory).
			 */
5075 5076 5077
			remove_extent_mapping(map, em);
			/* once for the rb tree */
			free_extent_map(em);
5078
next:
5079
			start = extent_map_end(em);
5080
			write_unlock(&map->lock);
5081 5082

			/* once for us */
5083
			free_extent_map(em);
5084 5085

			cond_resched(); /* Allow large-extent preemption. */
5086 5087
		}
	}
5088
	return try_release_extent_state(tree, page, mask);
5089 5090
}

5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119
/*
 * To cache previous fiemap extent
 *
 * Will be used for merging fiemap extent
 */
struct fiemap_cache {
	u64 offset;
	u64 phys;
	u64 len;
	u32 flags;
	bool cached;
};

/*
 * Helper to submit fiemap extent.
 *
 * Will try to merge current fiemap extent specified by @offset, @phys,
 * @len and @flags with cached one.
 * And only when we fails to merge, cached one will be submitted as
 * fiemap extent.
 *
 * Return value is the same as fiemap_fill_next_extent().
 */
static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
				struct fiemap_cache *cache,
				u64 offset, u64 phys, u64 len, u32 flags)
{
	int ret = 0;

5120 5121 5122
	/* Set at the end of extent_fiemap(). */
	ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);

5123 5124 5125 5126 5127
	if (!cache->cached)
		goto assign;

	/*
	 * Sanity check, extent_fiemap() should have ensured that new
5128
	 * fiemap extent won't overlap with cached one.
5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145
	 * Not recoverable.
	 *
	 * NOTE: Physical address can overlap, due to compression
	 */
	if (cache->offset + cache->len > offset) {
		WARN_ON(1);
		return -EINVAL;
	}

	/*
	 * Only merges fiemap extents if
	 * 1) Their logical addresses are continuous
	 *
	 * 2) Their physical addresses are continuous
	 *    So truly compressed (physical size smaller than logical size)
	 *    extents won't get merged with each other
	 *
5146
	 * 3) Share same flags
5147 5148 5149
	 */
	if (cache->offset + cache->len  == offset &&
	    cache->phys + cache->len == phys  &&
5150
	    cache->flags == flags) {
5151
		cache->len += len;
5152
		return 0;
5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166
	}

	/* Not mergeable, need to submit cached one */
	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret)
		return ret;
assign:
	cache->cached = true;
	cache->offset = offset;
	cache->phys = phys;
	cache->len = len;
	cache->flags = flags;
5167 5168

	return 0;
5169 5170 5171
}

/*
5172
 * Emit last fiemap cache
5173
 *
5174 5175 5176 5177 5178 5179 5180
 * The last fiemap cache may still be cached in the following case:
 * 0		      4k		    8k
 * |<- Fiemap range ->|
 * |<------------  First extent ----------->|
 *
 * In this case, the first extent range will be cached but not emitted.
 * So we must emit it before ending extent_fiemap().
5181
 */
5182
static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5183
				  struct fiemap_cache *cache)
5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197
{
	int ret;

	if (!cache->cached)
		return 0;

	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret > 0)
		ret = 0;
	return ret;
}

5198
static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
Y
Yehuda Sadeh 已提交
5199
{
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242
	struct extent_buffer *clone;
	struct btrfs_key key;
	int slot;
	int ret;

	path->slots[0]++;
	if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
		return 0;

	ret = btrfs_next_leaf(inode->root, path);
	if (ret != 0)
		return ret;

	/*
	 * Don't bother with cloning if there are no more file extent items for
	 * our inode.
	 */
	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
		return 1;

	/* See the comment at fiemap_search_slot() about why we clone. */
	clone = btrfs_clone_extent_buffer(path->nodes[0]);
	if (!clone)
		return -ENOMEM;

	slot = path->slots[0];
	btrfs_release_path(path);
	path->nodes[0] = clone;
	path->slots[0] = slot;

	return 0;
}

/*
 * Search for the first file extent item that starts at a given file offset or
 * the one that starts immediately before that offset.
 * Returns: 0 on success, < 0 on error, 1 if not found.
 */
static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
			      u64 file_offset)
{
	const u64 ino = btrfs_ino(inode);
5243
	struct btrfs_root *root = inode->root;
5244 5245 5246 5247
	struct extent_buffer *clone;
	struct btrfs_key key;
	int slot;
	int ret;
Y
Yehuda Sadeh 已提交
5248

5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
	key.objectid = ino;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = file_offset;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	if (ret > 0 && path->slots[0] > 0) {
		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
			path->slots[0]--;
	}

	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
		ret = btrfs_next_leaf(root, path);
		if (ret != 0)
			return ret;

		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
			return 1;
5271 5272
	}

5273
	/*
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287
	 * We clone the leaf and use it during fiemap. This is because while
	 * using the leaf we do expensive things like checking if an extent is
	 * shared, which can take a long time. In order to prevent blocking
	 * other tasks for too long, we use a clone of the leaf. We have locked
	 * the file range in the inode's io tree, so we know none of our file
	 * extent items can change. This way we avoid blocking other tasks that
	 * want to insert items for other inodes in the same leaf or b+tree
	 * rebalance operations (triggered for example when someone is trying
	 * to push items into this leaf when trying to insert an item in a
	 * neighbour leaf).
	 * We also need the private clone because holding a read lock on an
	 * extent buffer of the subvolume's b+tree will make lockdep unhappy
	 * when we call fiemap_fill_next_extent(), because that may cause a page
	 * fault when filling the user space buffer with fiemap data.
5288
	 */
5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
	clone = btrfs_clone_extent_buffer(path->nodes[0]);
	if (!clone)
		return -ENOMEM;

	slot = path->slots[0];
	btrfs_release_path(path);
	path->nodes[0] = clone;
	path->slots[0] = slot;

	return 0;
}

/*
 * Process a range which is a hole or a prealloc extent in the inode's subvolume
 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
 * extent. The end offset (@end) is inclusive.
 */
static int fiemap_process_hole(struct btrfs_inode *inode,
			       struct fiemap_extent_info *fieinfo,
			       struct fiemap_cache *cache,
			       struct btrfs_backref_shared_cache *backref_cache,
			       u64 disk_bytenr, u64 extent_offset,
			       u64 extent_gen,
			       struct ulist *roots, struct ulist *tmp_ulist,
			       u64 start, u64 end)
{
	const u64 i_size = i_size_read(&inode->vfs_inode);
	const u64 ino = btrfs_ino(inode);
	u64 cur_offset = start;
	u64 last_delalloc_end = 0;
	u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
	bool checked_extent_shared = false;
	int ret;
5322

5323
	/*
5324 5325
	 * There can be no delalloc past i_size, so don't waste time looking for
	 * it beyond i_size.
5326
	 */
5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338
	while (cur_offset < end && cur_offset < i_size) {
		u64 delalloc_start;
		u64 delalloc_end;
		u64 prealloc_start;
		u64 prealloc_len = 0;
		bool delalloc;

		delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
							&delalloc_start,
							&delalloc_end);
		if (!delalloc)
			break;
5339

5340
		/*
5341 5342
		 * If this is a prealloc extent we have to report every section
		 * of it that has no delalloc.
5343
		 */
5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461
		if (disk_bytenr != 0) {
			if (last_delalloc_end == 0) {
				prealloc_start = start;
				prealloc_len = delalloc_start - start;
			} else {
				prealloc_start = last_delalloc_end + 1;
				prealloc_len = delalloc_start - prealloc_start;
			}
		}

		if (prealloc_len > 0) {
			if (!checked_extent_shared && fieinfo->fi_extents_max) {
				ret = btrfs_is_data_extent_shared(inode->root,
							  ino, disk_bytenr,
							  extent_gen, roots,
							  tmp_ulist,
							  backref_cache);
				if (ret < 0)
					return ret;
				else if (ret > 0)
					prealloc_flags |= FIEMAP_EXTENT_SHARED;

				checked_extent_shared = true;
			}
			ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
						 disk_bytenr + extent_offset,
						 prealloc_len, prealloc_flags);
			if (ret)
				return ret;
			extent_offset += prealloc_len;
		}

		ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
					 delalloc_end + 1 - delalloc_start,
					 FIEMAP_EXTENT_DELALLOC |
					 FIEMAP_EXTENT_UNKNOWN);
		if (ret)
			return ret;

		last_delalloc_end = delalloc_end;
		cur_offset = delalloc_end + 1;
		extent_offset += cur_offset - delalloc_start;
		cond_resched();
	}

	/*
	 * Either we found no delalloc for the whole prealloc extent or we have
	 * a prealloc extent that spans i_size or starts at or after i_size.
	 */
	if (disk_bytenr != 0 && last_delalloc_end < end) {
		u64 prealloc_start;
		u64 prealloc_len;

		if (last_delalloc_end == 0) {
			prealloc_start = start;
			prealloc_len = end + 1 - start;
		} else {
			prealloc_start = last_delalloc_end + 1;
			prealloc_len = end + 1 - prealloc_start;
		}

		if (!checked_extent_shared && fieinfo->fi_extents_max) {
			ret = btrfs_is_data_extent_shared(inode->root,
							  ino, disk_bytenr,
							  extent_gen, roots,
							  tmp_ulist,
							  backref_cache);
			if (ret < 0)
				return ret;
			else if (ret > 0)
				prealloc_flags |= FIEMAP_EXTENT_SHARED;
		}
		ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
					 disk_bytenr + extent_offset,
					 prealloc_len, prealloc_flags);
		if (ret)
			return ret;
	}

	return 0;
}

static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
					  struct btrfs_path *path,
					  u64 *last_extent_end_ret)
{
	const u64 ino = btrfs_ino(inode);
	struct btrfs_root *root = inode->root;
	struct extent_buffer *leaf;
	struct btrfs_file_extent_item *ei;
	struct btrfs_key key;
	u64 disk_bytenr;
	int ret;

	/*
	 * Lookup the last file extent. We're not using i_size here because
	 * there might be preallocation past i_size.
	 */
	ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
	/* There can't be a file extent item at offset (u64)-1 */
	ASSERT(ret != 0);
	if (ret < 0)
		return ret;

	/*
	 * For a non-existing key, btrfs_search_slot() always leaves us at a
	 * slot > 0, except if the btree is empty, which is impossible because
	 * at least it has the inode item for this inode and all the items for
	 * the root inode 256.
	 */
	ASSERT(path->slots[0] > 0);
	path->slots[0]--;
	leaf = path->nodes[0];
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
		/* No file extent items in the subvolume tree. */
		*last_extent_end_ret = 0;
		return 0;
J
Josef Bacik 已提交
5462 5463
	}

5464
	/*
5465 5466 5467
	 * For an inline extent, the disk_bytenr is where inline data starts at,
	 * so first check if we have an inline extent item before checking if we
	 * have an implicit hole (disk_bytenr == 0).
5468
	 */
5469 5470 5471 5472
	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
	if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
		*last_extent_end_ret = btrfs_file_extent_end(path);
		return 0;
5473 5474
	}

5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496
	/*
	 * Find the last file extent item that is not a hole (when NO_HOLES is
	 * not enabled). This should take at most 2 iterations in the worst
	 * case: we have one hole file extent item at slot 0 of a leaf and
	 * another hole file extent item as the last item in the previous leaf.
	 * This is because we merge file extent items that represent holes.
	 */
	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
	while (disk_bytenr == 0) {
		ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
		if (ret < 0) {
			return ret;
		} else if (ret > 0) {
			/* No file extent items that are not holes. */
			*last_extent_end_ret = 0;
			return 0;
		}
		leaf = path->nodes[0];
		ei = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
	}
5497

5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525
	*last_extent_end_ret = btrfs_file_extent_end(path);
	return 0;
}

int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
		  u64 start, u64 len)
{
	const u64 ino = btrfs_ino(inode);
	struct extent_state *cached_state = NULL;
	struct btrfs_path *path;
	struct btrfs_root *root = inode->root;
	struct fiemap_cache cache = { 0 };
	struct btrfs_backref_shared_cache *backref_cache;
	struct ulist *roots;
	struct ulist *tmp_ulist;
	u64 last_extent_end;
	u64 prev_extent_end;
	u64 lockstart;
	u64 lockend;
	bool stopped = false;
	int ret;

	backref_cache = kzalloc(sizeof(*backref_cache), GFP_KERNEL);
	path = btrfs_alloc_path();
	roots = ulist_alloc(GFP_KERNEL);
	tmp_ulist = ulist_alloc(GFP_KERNEL);
	if (!backref_cache || !path || !roots || !tmp_ulist) {
		ret = -ENOMEM;
Y
Yehuda Sadeh 已提交
5526 5527
		goto out;
	}
J
Josef Bacik 已提交
5528

5529 5530 5531
	lockstart = round_down(start, btrfs_inode_sectorsize(inode));
	lockend = round_up(start + len, btrfs_inode_sectorsize(inode));
	prev_extent_end = lockstart;
5532

5533
	lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state);
5534

5535 5536 5537 5538
	ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
	if (ret < 0)
		goto out_unlock;
	btrfs_release_path(path);
Y
Yehuda Sadeh 已提交
5539

5540 5541 5542 5543 5544
	path->reada = READA_FORWARD;
	ret = fiemap_search_slot(inode, path, lockstart);
	if (ret < 0) {
		goto out_unlock;
	} else if (ret > 0) {
5545
		/*
5546 5547
		 * No file extent item found, but we may have delalloc between
		 * the current offset and i_size. So check for that.
5548
		 */
5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570
		ret = 0;
		goto check_eof_delalloc;
	}

	while (prev_extent_end < lockend) {
		struct extent_buffer *leaf = path->nodes[0];
		struct btrfs_file_extent_item *ei;
		struct btrfs_key key;
		u64 extent_end;
		u64 extent_len;
		u64 extent_offset = 0;
		u64 extent_gen;
		u64 disk_bytenr = 0;
		u64 flags = 0;
		int extent_type;
		u8 compression;

		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		extent_end = btrfs_file_extent_end(path);
Y
Yehuda Sadeh 已提交
5571

5572
		/*
5573 5574
		 * The first iteration can leave us at an extent item that ends
		 * before our range's start. Move to the next item.
5575
		 */
5576 5577
		if (extent_end <= lockstart)
			goto next_item;
5578

5579 5580 5581
		/* We have in implicit hole (NO_HOLES feature enabled). */
		if (prev_extent_end < key.offset) {
			const u64 range_end = min(key.offset, lockend) - 1;
5582

5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593
			ret = fiemap_process_hole(inode, fieinfo, &cache,
						  backref_cache, 0, 0, 0,
						  roots, tmp_ulist,
						  prev_extent_end, range_end);
			if (ret < 0) {
				goto out_unlock;
			} else if (ret > 0) {
				/* fiemap_fill_next_extent() told us to stop. */
				stopped = true;
				break;
			}
Y
Yehuda Sadeh 已提交
5594

5595 5596 5597 5598 5599
			/* We've reached the end of the fiemap range, stop. */
			if (key.offset >= lockend) {
				stopped = true;
				break;
			}
Y
Yehuda Sadeh 已提交
5600 5601
		}

5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612
		extent_len = extent_end - key.offset;
		ei = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		compression = btrfs_file_extent_compression(leaf, ei);
		extent_type = btrfs_file_extent_type(leaf, ei);
		extent_gen = btrfs_file_extent_generation(leaf, ei);

		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
			if (compression == BTRFS_COMPRESS_NONE)
				extent_offset = btrfs_file_extent_offset(leaf, ei);
5613
		}
5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652

		if (compression != BTRFS_COMPRESS_NONE)
			flags |= FIEMAP_EXTENT_ENCODED;

		if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
			flags |= FIEMAP_EXTENT_DATA_INLINE;
			flags |= FIEMAP_EXTENT_NOT_ALIGNED;
			ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
						 extent_len, flags);
		} else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
			ret = fiemap_process_hole(inode, fieinfo, &cache,
						  backref_cache,
						  disk_bytenr, extent_offset,
						  extent_gen, roots, tmp_ulist,
						  key.offset, extent_end - 1);
		} else if (disk_bytenr == 0) {
			/* We have an explicit hole. */
			ret = fiemap_process_hole(inode, fieinfo, &cache,
						  backref_cache, 0, 0, 0,
						  roots, tmp_ulist,
						  key.offset, extent_end - 1);
		} else {
			/* We have a regular extent. */
			if (fieinfo->fi_extents_max) {
				ret = btrfs_is_data_extent_shared(root, ino,
								  disk_bytenr,
								  extent_gen,
								  roots,
								  tmp_ulist,
								  backref_cache);
				if (ret < 0)
					goto out_unlock;
				else if (ret > 0)
					flags |= FIEMAP_EXTENT_SHARED;
			}

			ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
						 disk_bytenr + extent_offset,
						 extent_len, flags);
J
Josef Bacik 已提交
5653
		}
5654 5655 5656 5657 5658 5659 5660

		if (ret < 0) {
			goto out_unlock;
		} else if (ret > 0) {
			/* fiemap_fill_next_extent() told us to stop. */
			stopped = true;
			break;
5661
		}
5662

5663 5664
		prev_extent_end = extent_end;
next_item:
5665 5666
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
5667
			goto out_unlock;
5668
		}
5669 5670 5671 5672 5673 5674 5675 5676 5677

		ret = fiemap_next_leaf_item(inode, path);
		if (ret < 0) {
			goto out_unlock;
		} else if (ret > 0) {
			/* No more file extent items for this inode. */
			break;
		}
		cond_resched();
Y
Yehuda Sadeh 已提交
5678
	}
5679

5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724
check_eof_delalloc:
	/*
	 * Release (and free) the path before emitting any final entries to
	 * fiemap_fill_next_extent() to keep lockdep happy. This is because
	 * once we find no more file extent items exist, we may have a
	 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
	 * faults when copying data to the user space buffer.
	 */
	btrfs_free_path(path);
	path = NULL;

	if (!stopped && prev_extent_end < lockend) {
		ret = fiemap_process_hole(inode, fieinfo, &cache, backref_cache,
					  0, 0, 0, roots, tmp_ulist,
					  prev_extent_end, lockend - 1);
		if (ret < 0)
			goto out_unlock;
		prev_extent_end = lockend;
	}

	if (cache.cached && cache.offset + cache.len >= last_extent_end) {
		const u64 i_size = i_size_read(&inode->vfs_inode);

		if (prev_extent_end < i_size) {
			u64 delalloc_start;
			u64 delalloc_end;
			bool delalloc;

			delalloc = btrfs_find_delalloc_in_range(inode,
								prev_extent_end,
								i_size - 1,
								&delalloc_start,
								&delalloc_end);
			if (!delalloc)
				cache.flags |= FIEMAP_EXTENT_LAST;
		} else {
			cache.flags |= FIEMAP_EXTENT_LAST;
		}
	}

	ret = emit_last_fiemap_cache(fieinfo, &cache);

out_unlock:
	unlock_extent_cached(&inode->io_tree, lockstart, lockend, &cached_state);
out:
5725
	kfree(backref_cache);
5726
	btrfs_free_path(path);
5727 5728
	ulist_free(roots);
	ulist_free(tmp_ulist);
Y
Yehuda Sadeh 已提交
5729 5730 5731
	return ret;
}

5732 5733 5734 5735 5736
static void __free_extent_buffer(struct extent_buffer *eb)
{
	kmem_cache_free(extent_buffer_cache, eb);
}

5737
int extent_buffer_under_io(const struct extent_buffer *eb)
5738 5739 5740 5741 5742 5743
{
	return (atomic_read(&eb->io_pages) ||
		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
}

5744
static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5745
{
5746
	struct btrfs_subpage *subpage;
5747

5748
	lockdep_assert_held(&page->mapping->private_lock);
5749

5750 5751 5752 5753
	if (PagePrivate(page)) {
		subpage = (struct btrfs_subpage *)page->private;
		if (atomic_read(&subpage->eb_refs))
			return true;
5754 5755 5756 5757 5758 5759
		/*
		 * Even there is no eb refs here, we may still have
		 * end_page_read() call relying on page::private.
		 */
		if (atomic_read(&subpage->readers))
			return true;
5760 5761 5762
	}
	return false;
}
5763

5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776
static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);

	/*
	 * For mapped eb, we're going to change the page private, which should
	 * be done under the private_lock.
	 */
	if (mapped)
		spin_lock(&page->mapping->private_lock);

	if (!PagePrivate(page)) {
5777
		if (mapped)
5778 5779 5780 5781
			spin_unlock(&page->mapping->private_lock);
		return;
	}

5782
	if (fs_info->nodesize >= PAGE_SIZE) {
5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794
		/*
		 * We do this since we'll remove the pages after we've
		 * removed the eb from the radix tree, so we could race
		 * and have this page now attached to the new eb.  So
		 * only clear page_private if it's still connected to
		 * this eb.
		 */
		if (PagePrivate(page) &&
		    page->private == (unsigned long)eb) {
			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
			BUG_ON(PageDirty(page));
			BUG_ON(PageWriteback(page));
5795
			/*
5796 5797
			 * We need to make sure we haven't be attached
			 * to a new eb.
5798
			 */
5799
			detach_page_private(page);
5800
		}
5801 5802
		if (mapped)
			spin_unlock(&page->mapping->private_lock);
5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819
		return;
	}

	/*
	 * For subpage, we can have dummy eb with page private.  In this case,
	 * we can directly detach the private as such page is only attached to
	 * one dummy eb, no sharing.
	 */
	if (!mapped) {
		btrfs_detach_subpage(fs_info, page);
		return;
	}

	btrfs_page_dec_eb_refs(fs_info, page);

	/*
	 * We can only detach the page private if there are no other ebs in the
5820
	 * page range and no unfinished IO.
5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843
	 */
	if (!page_range_has_eb(fs_info, page))
		btrfs_detach_subpage(fs_info, page);

	spin_unlock(&page->mapping->private_lock);
}

/* Release all pages attached to the extent buffer */
static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
{
	int i;
	int num_pages;

	ASSERT(!extent_buffer_under_io(eb));

	num_pages = num_extent_pages(eb);
	for (i = 0; i < num_pages; i++) {
		struct page *page = eb->pages[i];

		if (!page)
			continue;

		detach_extent_buffer_page(eb, page);
5844

5845
		/* One for when we allocated the page */
5846
		put_page(page);
5847
	}
5848 5849 5850 5851 5852 5853 5854
}

/*
 * Helper for releasing the extent buffer.
 */
static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
{
5855
	btrfs_release_extent_buffer_pages(eb);
5856
	btrfs_leak_debug_del_eb(eb);
5857 5858 5859
	__free_extent_buffer(eb);
}

5860 5861
static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5862
		      unsigned long len)
5863 5864 5865
{
	struct extent_buffer *eb = NULL;

5866
	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5867 5868
	eb->start = start;
	eb->len = len;
5869
	eb->fs_info = fs_info;
5870
	eb->bflags = 0;
5871
	init_rwsem(&eb->lock);
5872

5873
	btrfs_leak_debug_add_eb(eb);
5874
	INIT_LIST_HEAD(&eb->release_list);
5875

5876
	spin_lock_init(&eb->refs_lock);
5877
	atomic_set(&eb->refs, 1);
5878
	atomic_set(&eb->io_pages, 0);
5879

5880
	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5881 5882 5883 5884

	return eb;
}

5885
struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5886
{
5887
	int i;
5888
	struct extent_buffer *new;
5889
	int num_pages = num_extent_pages(src);
5890
	int ret;
5891

5892
	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5893 5894 5895
	if (new == NULL)
		return NULL;

5896 5897 5898 5899 5900 5901 5902
	/*
	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
	 * btrfs_release_extent_buffer() have different behavior for
	 * UNMAPPED subpage extent buffer.
	 */
	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);

5903 5904 5905 5906 5907 5908 5909
	memset(new->pages, 0, sizeof(*new->pages) * num_pages);
	ret = btrfs_alloc_page_array(num_pages, new->pages);
	if (ret) {
		btrfs_release_extent_buffer(new);
		return NULL;
	}

5910
	for (i = 0; i < num_pages; i++) {
5911
		int ret;
5912
		struct page *p = new->pages[i];
5913 5914 5915 5916 5917 5918

		ret = attach_extent_buffer_page(new, p, NULL);
		if (ret < 0) {
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5919
		WARN_ON(PageDirty(p));
5920
		copy_page(page_address(p), page_address(src->pages[i]));
5921
	}
5922
	set_extent_buffer_uptodate(new);
5923 5924 5925 5926

	return new;
}

5927 5928
struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
						  u64 start, unsigned long len)
5929 5930
{
	struct extent_buffer *eb;
5931 5932
	int num_pages;
	int i;
5933
	int ret;
5934

5935
	eb = __alloc_extent_buffer(fs_info, start, len);
5936 5937 5938
	if (!eb)
		return NULL;

5939
	num_pages = num_extent_pages(eb);
5940 5941 5942 5943
	ret = btrfs_alloc_page_array(num_pages, eb->pages);
	if (ret)
		goto err;

5944
	for (i = 0; i < num_pages; i++) {
5945
		struct page *p = eb->pages[i];
5946

5947
		ret = attach_extent_buffer_page(eb, p, NULL);
5948 5949
		if (ret < 0)
			goto err;
5950
	}
5951

5952 5953
	set_extent_buffer_uptodate(eb);
	btrfs_set_header_nritems(eb, 0);
5954
	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5955 5956 5957

	return eb;
err:
5958 5959 5960 5961 5962
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i]) {
			detach_extent_buffer_page(eb, eb->pages[i]);
			__free_page(eb->pages[i]);
		}
5963
	}
5964 5965 5966 5967
	__free_extent_buffer(eb);
	return NULL;
}

5968
struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5969
						u64 start)
5970
{
5971
	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5972 5973
}

5974 5975
static void check_buffer_tree_ref(struct extent_buffer *eb)
{
5976
	int refs;
5977 5978 5979 5980
	/*
	 * The TREE_REF bit is first set when the extent_buffer is added
	 * to the radix tree. It is also reset, if unset, when a new reference
	 * is created by find_extent_buffer.
5981
	 *
5982 5983
	 * It is only cleared in two cases: freeing the last non-tree
	 * reference to the extent_buffer when its STALE bit is set or
5984
	 * calling release_folio when the tree reference is the only reference.
5985
	 *
5986
	 * In both cases, care is taken to ensure that the extent_buffer's
5987
	 * pages are not under io. However, release_folio can be concurrently
5988 5989 5990
	 * called with creating new references, which is prone to race
	 * conditions between the calls to check_buffer_tree_ref in those
	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5991
	 *
5992 5993 5994 5995 5996 5997 5998
	 * The actual lifetime of the extent_buffer in the radix tree is
	 * adequately protected by the refcount, but the TREE_REF bit and
	 * its corresponding reference are not. To protect against this
	 * class of races, we call check_buffer_tree_ref from the codepaths
	 * which trigger io after they set eb->io_pages. Note that once io is
	 * initiated, TREE_REF can no longer be cleared, so that is the
	 * moment at which any such race is best fixed.
5999
	 */
6000 6001 6002 6003
	refs = atomic_read(&eb->refs);
	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		return;

6004 6005
	spin_lock(&eb->refs_lock);
	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6006
		atomic_inc(&eb->refs);
6007
	spin_unlock(&eb->refs_lock);
6008 6009
}

6010 6011
static void mark_extent_buffer_accessed(struct extent_buffer *eb,
		struct page *accessed)
6012
{
6013
	int num_pages, i;
6014

6015 6016
	check_buffer_tree_ref(eb);

6017
	num_pages = num_extent_pages(eb);
6018
	for (i = 0; i < num_pages; i++) {
6019 6020
		struct page *p = eb->pages[i];

6021 6022
		if (p != accessed)
			mark_page_accessed(p);
6023 6024 6025
	}
}

6026 6027
struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
					 u64 start)
6028 6029 6030
{
	struct extent_buffer *eb;

6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049
	eb = find_extent_buffer_nolock(fs_info, start);
	if (!eb)
		return NULL;
	/*
	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
	 * another task running free_extent_buffer() might have seen that flag
	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
	 * writeback flags not set) and it's still in the tree (flag
	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
	 * decrementing the extent buffer's reference count twice.  So here we
	 * could race and increment the eb's reference count, clear its stale
	 * flag, mark it as dirty and drop our reference before the other task
	 * finishes executing free_extent_buffer, which would later result in
	 * an attempt to free an extent buffer that is dirty.
	 */
	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
		spin_lock(&eb->refs_lock);
		spin_unlock(&eb->refs_lock);
6050
	}
6051 6052
	mark_extent_buffer_accessed(eb, NULL);
	return eb;
6053 6054
}

6055 6056
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
6057
					u64 start)
6058 6059 6060 6061 6062 6063 6064
{
	struct extent_buffer *eb, *exists = NULL;
	int ret;

	eb = find_extent_buffer(fs_info, start);
	if (eb)
		return eb;
6065
	eb = alloc_dummy_extent_buffer(fs_info, start);
6066
	if (!eb)
6067
		return ERR_PTR(-ENOMEM);
6068
	eb->fs_info = fs_info;
6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
again:
	ret = radix_tree_preload(GFP_NOFS);
	if (ret) {
		exists = ERR_PTR(ret);
		goto free_eb;
	}
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
				start >> fs_info->sectorsize_bits, eb);
	spin_unlock(&fs_info->buffer_lock);
	radix_tree_preload_end();
	if (ret == -EEXIST) {
		exists = find_extent_buffer(fs_info, start);
		if (exists)
6083
			goto free_eb;
6084 6085 6086
		else
			goto again;
	}
6087 6088 6089 6090 6091 6092 6093 6094 6095 6096
	check_buffer_tree_ref(eb);
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);

	return eb;
free_eb:
	btrfs_release_extent_buffer(eb);
	return exists;
}
#endif

6097 6098
static struct extent_buffer *grab_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page)
6099 6100 6101
{
	struct extent_buffer *exists;

6102 6103 6104 6105 6106
	/*
	 * For subpage case, we completely rely on radix tree to ensure we
	 * don't try to insert two ebs for the same bytenr.  So here we always
	 * return NULL and just continue.
	 */
6107
	if (fs_info->nodesize < PAGE_SIZE)
6108 6109
		return NULL;

6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128
	/* Page not yet attached to an extent buffer */
	if (!PagePrivate(page))
		return NULL;

	/*
	 * We could have already allocated an eb for this page and attached one
	 * so lets see if we can get a ref on the existing eb, and if we can we
	 * know it's good and we can just return that one, else we know we can
	 * just overwrite page->private.
	 */
	exists = (struct extent_buffer *)page->private;
	if (atomic_inc_not_zero(&exists->refs))
		return exists;

	WARN_ON(PageDirty(page));
	detach_page_private(page);
	return NULL;
}

6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143
static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
{
	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
		btrfs_err(fs_info, "bad tree block start %llu", start);
		return -EINVAL;
	}

	if (fs_info->nodesize < PAGE_SIZE &&
	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
		btrfs_err(fs_info,
		"tree block crosses page boundary, start %llu nodesize %u",
			  start, fs_info->nodesize);
		return -EINVAL;
	}
	if (fs_info->nodesize >= PAGE_SIZE &&
6144
	    !PAGE_ALIGNED(start)) {
6145 6146 6147 6148 6149 6150 6151 6152
		btrfs_err(fs_info,
		"tree block is not page aligned, start %llu nodesize %u",
			  start, fs_info->nodesize);
		return -EINVAL;
	}
	return 0;
}

6153
struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
6154
					  u64 start, u64 owner_root, int level)
6155
{
6156
	unsigned long len = fs_info->nodesize;
6157 6158
	int num_pages;
	int i;
6159
	unsigned long index = start >> PAGE_SHIFT;
6160
	struct extent_buffer *eb;
6161
	struct extent_buffer *exists = NULL;
6162
	struct page *p;
6163
	struct address_space *mapping = fs_info->btree_inode->i_mapping;
6164
	u64 lockdep_owner = owner_root;
6165
	int uptodate = 1;
6166
	int ret;
6167

6168
	if (check_eb_alignment(fs_info, start))
6169 6170
		return ERR_PTR(-EINVAL);

6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181
#if BITS_PER_LONG == 32
	if (start >= MAX_LFS_FILESIZE) {
		btrfs_err_rl(fs_info,
		"extent buffer %llu is beyond 32bit page cache limit", start);
		btrfs_err_32bit_limit(fs_info);
		return ERR_PTR(-EOVERFLOW);
	}
	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
		btrfs_warn_32bit_limit(fs_info);
#endif

6182
	eb = find_extent_buffer(fs_info, start);
6183
	if (eb)
6184 6185
		return eb;

6186
	eb = __alloc_extent_buffer(fs_info, start, len);
6187
	if (!eb)
6188
		return ERR_PTR(-ENOMEM);
6189 6190 6191 6192 6193 6194 6195 6196 6197

	/*
	 * The reloc trees are just snapshots, so we need them to appear to be
	 * just like any other fs tree WRT lockdep.
	 */
	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
		lockdep_owner = BTRFS_FS_TREE_OBJECTID;

	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
6198

6199
	num_pages = num_extent_pages(eb);
6200
	for (i = 0; i < num_pages; i++, index++) {
6201 6202
		struct btrfs_subpage *prealloc = NULL;

6203
		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
6204 6205
		if (!p) {
			exists = ERR_PTR(-ENOMEM);
6206
			goto free_eb;
6207
		}
J
Josef Bacik 已提交
6208

6209 6210 6211 6212 6213 6214 6215 6216 6217 6218
		/*
		 * Preallocate page->private for subpage case, so that we won't
		 * allocate memory with private_lock hold.  The memory will be
		 * freed by attach_extent_buffer_page() or freed manually if
		 * we exit earlier.
		 *
		 * Although we have ensured one subpage eb can only have one
		 * page, but it may change in the future for 16K page size
		 * support, so we still preallocate the memory in the loop.
		 */
6219
		if (fs_info->nodesize < PAGE_SIZE) {
6220 6221 6222
			prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
			if (IS_ERR(prealloc)) {
				ret = PTR_ERR(prealloc);
6223 6224 6225 6226 6227
				unlock_page(p);
				put_page(p);
				exists = ERR_PTR(ret);
				goto free_eb;
			}
6228 6229
		}

J
Josef Bacik 已提交
6230
		spin_lock(&mapping->private_lock);
6231
		exists = grab_extent_buffer(fs_info, p);
6232 6233 6234 6235 6236
		if (exists) {
			spin_unlock(&mapping->private_lock);
			unlock_page(p);
			put_page(p);
			mark_extent_buffer_accessed(exists, p);
6237
			btrfs_free_subpage(prealloc);
6238
			goto free_eb;
6239
		}
6240 6241 6242
		/* Should not fail, as we have preallocated the memory */
		ret = attach_extent_buffer_page(eb, p, prealloc);
		ASSERT(!ret);
6243 6244 6245 6246 6247 6248 6249 6250 6251 6252
		/*
		 * To inform we have extra eb under allocation, so that
		 * detach_extent_buffer_page() won't release the page private
		 * when the eb hasn't yet been inserted into radix tree.
		 *
		 * The ref will be decreased when the eb released the page, in
		 * detach_extent_buffer_page().
		 * Thus needs no special handling in error path.
		 */
		btrfs_page_inc_eb_refs(fs_info, p);
J
Josef Bacik 已提交
6253
		spin_unlock(&mapping->private_lock);
6254

6255
		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6256
		eb->pages[i] = p;
6257 6258
		if (!PageUptodate(p))
			uptodate = 0;
C
Chris Mason 已提交
6259 6260

		/*
6261 6262
		 * We can't unlock the pages just yet since the extent buffer
		 * hasn't been properly inserted in the radix tree, this
6263
		 * opens a race with btree_release_folio which can free a page
6264 6265
		 * while we are still filling in all pages for the buffer and
		 * we could crash.
C
Chris Mason 已提交
6266
		 */
6267 6268
	}
	if (uptodate)
6269
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284
again:
	ret = radix_tree_preload(GFP_NOFS);
	if (ret) {
		exists = ERR_PTR(ret);
		goto free_eb;
	}

	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
				start >> fs_info->sectorsize_bits, eb);
	spin_unlock(&fs_info->buffer_lock);
	radix_tree_preload_end();
	if (ret == -EEXIST) {
		exists = find_extent_buffer(fs_info, start);
		if (exists)
6285
			goto free_eb;
6286 6287 6288
		else
			goto again;
	}
6289
	/* add one reference for the tree */
6290
	check_buffer_tree_ref(eb);
6291
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
C
Chris Mason 已提交
6292 6293

	/*
6294
	 * Now it's safe to unlock the pages because any calls to
6295
	 * btree_release_folio will correctly detect that a page belongs to a
6296
	 * live buffer and won't free them prematurely.
C
Chris Mason 已提交
6297
	 */
6298 6299
	for (i = 0; i < num_pages; i++)
		unlock_page(eb->pages[i]);
6300 6301
	return eb;

6302
free_eb:
6303
	WARN_ON(!atomic_dec_and_test(&eb->refs));
6304 6305 6306 6307
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i])
			unlock_page(eb->pages[i]);
	}
C
Chris Mason 已提交
6308

6309
	btrfs_release_extent_buffer(eb);
6310
	return exists;
6311 6312
}

6313 6314 6315 6316 6317 6318 6319 6320
static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
{
	struct extent_buffer *eb =
			container_of(head, struct extent_buffer, rcu_head);

	__free_extent_buffer(eb);
}

6321
static int release_extent_buffer(struct extent_buffer *eb)
6322
	__releases(&eb->refs_lock)
6323
{
6324 6325
	lockdep_assert_held(&eb->refs_lock);

6326 6327
	WARN_ON(atomic_read(&eb->refs) == 0);
	if (atomic_dec_and_test(&eb->refs)) {
6328
		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6329
			struct btrfs_fs_info *fs_info = eb->fs_info;
6330

6331
			spin_unlock(&eb->refs_lock);
6332

6333 6334 6335 6336
			spin_lock(&fs_info->buffer_lock);
			radix_tree_delete(&fs_info->buffer_radix,
					  eb->start >> fs_info->sectorsize_bits);
			spin_unlock(&fs_info->buffer_lock);
6337 6338
		} else {
			spin_unlock(&eb->refs_lock);
6339
		}
6340

6341
		btrfs_leak_debug_del_eb(eb);
6342
		/* Should be safe to release our pages at this point */
6343
		btrfs_release_extent_buffer_pages(eb);
6344
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6345
		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6346 6347 6348 6349
			__free_extent_buffer(eb);
			return 1;
		}
#endif
6350
		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6351
		return 1;
6352 6353
	}
	spin_unlock(&eb->refs_lock);
6354 6355

	return 0;
6356 6357
}

6358 6359
void free_extent_buffer(struct extent_buffer *eb)
{
6360
	int refs;
6361 6362 6363
	if (!eb)
		return;

6364
	refs = atomic_read(&eb->refs);
6365
	while (1) {
6366 6367 6368
		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
			refs == 1))
6369
			break;
6370
		if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
6371 6372 6373
			return;
	}

6374 6375 6376
	spin_lock(&eb->refs_lock);
	if (atomic_read(&eb->refs) == 2 &&
	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6377
	    !extent_buffer_under_io(eb) &&
6378 6379 6380 6381 6382 6383 6384
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);

	/*
	 * I know this is terrible, but it's temporary until we stop tracking
	 * the uptodate bits and such for the extent buffers.
	 */
6385
	release_extent_buffer(eb);
6386 6387 6388 6389 6390
}

void free_extent_buffer_stale(struct extent_buffer *eb)
{
	if (!eb)
6391 6392
		return;

6393 6394 6395
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);

6396
	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6397 6398
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);
6399
	release_extent_buffer(eb);
6400 6401
}

6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429
static void btree_clear_page_dirty(struct page *page)
{
	ASSERT(PageDirty(page));
	ASSERT(PageLocked(page));
	clear_page_dirty_for_io(page);
	xa_lock_irq(&page->mapping->i_pages);
	if (!PageDirty(page))
		__xa_clear_mark(&page->mapping->i_pages,
				page_index(page), PAGECACHE_TAG_DIRTY);
	xa_unlock_irq(&page->mapping->i_pages);
}

static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
	bool last;

	/* btree_clear_page_dirty() needs page locked */
	lock_page(page);
	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
						  eb->len);
	if (last)
		btree_clear_page_dirty(page);
	unlock_page(page);
	WARN_ON(atomic_read(&eb->refs) == 0);
}

6430
void clear_extent_buffer_dirty(const struct extent_buffer *eb)
6431
{
6432 6433
	int i;
	int num_pages;
6434 6435
	struct page *page;

6436
	if (eb->fs_info->nodesize < PAGE_SIZE)
6437 6438
		return clear_subpage_extent_buffer_dirty(eb);

6439
	num_pages = num_extent_pages(eb);
6440 6441

	for (i = 0; i < num_pages; i++) {
6442
		page = eb->pages[i];
6443
		if (!PageDirty(page))
C
Chris Mason 已提交
6444
			continue;
6445
		lock_page(page);
6446
		btree_clear_page_dirty(page);
6447
		ClearPageError(page);
6448
		unlock_page(page);
6449
	}
6450
	WARN_ON(atomic_read(&eb->refs) == 0);
6451 6452
}

6453
bool set_extent_buffer_dirty(struct extent_buffer *eb)
6454
{
6455 6456
	int i;
	int num_pages;
6457
	bool was_dirty;
6458

6459 6460
	check_buffer_tree_ref(eb);

6461
	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6462

6463
	num_pages = num_extent_pages(eb);
6464
	WARN_ON(atomic_read(&eb->refs) == 0);
6465 6466
	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));

6467
	if (!was_dirty) {
6468
		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
6469

6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488
		/*
		 * For subpage case, we can have other extent buffers in the
		 * same page, and in clear_subpage_extent_buffer_dirty() we
		 * have to clear page dirty without subpage lock held.
		 * This can cause race where our page gets dirty cleared after
		 * we just set it.
		 *
		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
		 * its page for other reasons, we can use page lock to prevent
		 * the above race.
		 */
		if (subpage)
			lock_page(eb->pages[0]);
		for (i = 0; i < num_pages; i++)
			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
					     eb->start, eb->len);
		if (subpage)
			unlock_page(eb->pages[0]);
	}
6489 6490 6491 6492 6493
#ifdef CONFIG_BTRFS_DEBUG
	for (i = 0; i < num_pages; i++)
		ASSERT(PageDirty(eb->pages[i]));
#endif

6494
	return was_dirty;
6495 6496
}

6497
void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6498
{
6499
	struct btrfs_fs_info *fs_info = eb->fs_info;
6500
	struct page *page;
6501
	int num_pages;
6502
	int i;
6503

6504
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6505
	num_pages = num_extent_pages(eb);
6506
	for (i = 0; i < num_pages; i++) {
6507
		page = eb->pages[i];
6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519
		if (!page)
			continue;

		/*
		 * This is special handling for metadata subpage, as regular
		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
		 */
		if (fs_info->nodesize >= PAGE_SIZE)
			ClearPageUptodate(page);
		else
			btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
						     eb->len);
6520 6521 6522
	}
}

6523
void set_extent_buffer_uptodate(struct extent_buffer *eb)
6524
{
6525
	struct btrfs_fs_info *fs_info = eb->fs_info;
6526
	struct page *page;
6527
	int num_pages;
6528
	int i;
6529

6530
	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6531
	num_pages = num_extent_pages(eb);
6532
	for (i = 0; i < num_pages; i++) {
6533
		page = eb->pages[i];
6534 6535 6536 6537 6538 6539 6540 6541 6542 6543

		/*
		 * This is special handling for metadata subpage, as regular
		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
		 */
		if (fs_info->nodesize >= PAGE_SIZE)
			SetPageUptodate(page);
		else
			btrfs_subpage_set_uptodate(fs_info, page, eb->start,
						   eb->len);
6544 6545 6546
	}
}

6547 6548 6549 6550 6551 6552
static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
				      int mirror_num)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct extent_io_tree *io_tree;
	struct page *page = eb->pages[0];
6553 6554 6555
	struct btrfs_bio_ctrl bio_ctrl = {
		.mirror_num = mirror_num,
	};
6556 6557 6558 6559 6560 6561 6562
	int ret = 0;

	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
	ASSERT(PagePrivate(page));
	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;

	if (wait == WAIT_NONE) {
6563 6564
		if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
			return -EAGAIN;
6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585
	} else {
		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		if (ret < 0)
			return ret;
	}

	ret = 0;
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
	    PageUptodate(page) ||
	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		return ret;
	}

	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
	eb->read_mirror = 0;
	atomic_set(&eb->io_pages, 1);
	check_buffer_tree_ref(eb);
	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);

6586
	btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
6587
	ret = submit_extent_page(REQ_OP_READ, NULL, &bio_ctrl,
6588 6589
				 page, eb->start, eb->len,
				 eb->start - page_offset(page),
6590
				 end_bio_extent_readpage, 0, true);
6591 6592 6593 6594 6595 6596 6597 6598
	if (ret) {
		/*
		 * In the endio function, if we hit something wrong we will
		 * increase the io_pages, so here we need to decrease it for
		 * error path.
		 */
		atomic_dec(&eb->io_pages);
	}
6599
	submit_one_bio(&bio_ctrl);
6600 6601 6602 6603 6604 6605 6606 6607 6608
	if (ret || wait != WAIT_COMPLETE)
		return ret;

	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
		ret = -EIO;
	return ret;
}

6609
int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6610
{
6611
	int i;
6612 6613 6614
	struct page *page;
	int err;
	int ret = 0;
6615 6616
	int locked_pages = 0;
	int all_uptodate = 1;
6617
	int num_pages;
6618
	unsigned long num_reads = 0;
6619 6620 6621
	struct btrfs_bio_ctrl bio_ctrl = {
		.mirror_num = mirror_num,
	};
6622

6623
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6624 6625
		return 0;

6626 6627 6628 6629 6630 6631 6632 6633
	/*
	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
	 * operation, which could potentially still be in flight.  In this case
	 * we simply want to return an error.
	 */
	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
		return -EIO;

6634
	if (eb->fs_info->nodesize < PAGE_SIZE)
6635 6636
		return read_extent_buffer_subpage(eb, wait, mirror_num);

6637
	num_pages = num_extent_pages(eb);
6638
	for (i = 0; i < num_pages; i++) {
6639
		page = eb->pages[i];
6640
		if (wait == WAIT_NONE) {
6641 6642 6643 6644 6645 6646 6647
			/*
			 * WAIT_NONE is only utilized by readahead. If we can't
			 * acquire the lock atomically it means either the eb
			 * is being read out or under modification.
			 * Either way the eb will be or has been cached,
			 * readahead can exit safely.
			 */
6648
			if (!trylock_page(page))
6649
				goto unlock_exit;
6650 6651 6652
		} else {
			lock_page(page);
		}
6653
		locked_pages++;
6654 6655 6656 6657 6658 6659
	}
	/*
	 * We need to firstly lock all pages to make sure that
	 * the uptodate bit of our pages won't be affected by
	 * clear_extent_buffer_uptodate().
	 */
6660
	for (i = 0; i < num_pages; i++) {
6661
		page = eb->pages[i];
6662 6663
		if (!PageUptodate(page)) {
			num_reads++;
6664
			all_uptodate = 0;
6665
		}
6666
	}
6667

6668
	if (all_uptodate) {
6669
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6670 6671 6672
		goto unlock_exit;
	}

6673
	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6674
	eb->read_mirror = 0;
6675
	atomic_set(&eb->io_pages, num_reads);
6676
	/*
6677
	 * It is possible for release_folio to clear the TREE_REF bit before we
6678 6679 6680
	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
	 */
	check_buffer_tree_ref(eb);
6681
	for (i = 0; i < num_pages; i++) {
6682
		page = eb->pages[i];
6683

6684
		if (!PageUptodate(page)) {
6685 6686 6687 6688 6689 6690
			if (ret) {
				atomic_dec(&eb->io_pages);
				unlock_page(page);
				continue;
			}

6691
			ClearPageError(page);
6692
			err = submit_extent_page(REQ_OP_READ, NULL,
6693 6694
					 &bio_ctrl, page, page_offset(page),
					 PAGE_SIZE, 0, end_bio_extent_readpage,
6695
					 0, false);
6696 6697
			if (err) {
				/*
6698 6699 6700
				 * We failed to submit the bio so it's the
				 * caller's responsibility to perform cleanup
				 * i.e unlock page/set error bit.
6701
				 */
6702 6703 6704
				ret = err;
				SetPageError(page);
				unlock_page(page);
6705 6706
				atomic_dec(&eb->io_pages);
			}
6707 6708 6709 6710 6711
		} else {
			unlock_page(page);
		}
	}

6712
	submit_one_bio(&bio_ctrl);
6713

6714
	if (ret || wait != WAIT_COMPLETE)
6715
		return ret;
C
Chris Mason 已提交
6716

6717
	for (i = 0; i < num_pages; i++) {
6718
		page = eb->pages[i];
6719
		wait_on_page_locked(page);
C
Chris Mason 已提交
6720
		if (!PageUptodate(page))
6721 6722
			ret = -EIO;
	}
C
Chris Mason 已提交
6723

6724
	return ret;
6725 6726

unlock_exit:
C
Chris Mason 已提交
6727
	while (locked_pages > 0) {
6728
		locked_pages--;
6729 6730
		page = eb->pages[locked_pages];
		unlock_page(page);
6731 6732
	}
	return ret;
6733 6734
}

6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764
static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
			    unsigned long len)
{
	btrfs_warn(eb->fs_info,
		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
		eb->start, eb->len, start, len);
	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));

	return true;
}

/*
 * Check if the [start, start + len) range is valid before reading/writing
 * the eb.
 * NOTE: @start and @len are offset inside the eb, not logical address.
 *
 * Caller should not touch the dst/src memory if this function returns error.
 */
static inline int check_eb_range(const struct extent_buffer *eb,
				 unsigned long start, unsigned long len)
{
	unsigned long offset;

	/* start, start + len should not go beyond eb->len nor overflow */
	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
		return report_eb_range(eb, start, len);

	return false;
}

6765 6766
void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
			unsigned long start, unsigned long len)
6767 6768 6769 6770 6771 6772
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *dst = (char *)dstv;
6773
	unsigned long i = get_eb_page_index(start);
6774

6775
	if (check_eb_range(eb, start, len))
6776
		return;
6777

6778
	offset = get_eb_offset_in_page(eb, start);
6779

C
Chris Mason 已提交
6780
	while (len > 0) {
6781
		page = eb->pages[i];
6782

6783
		cur = min(len, (PAGE_SIZE - offset));
6784
		kaddr = page_address(page);
6785 6786 6787 6788 6789 6790 6791 6792 6793
		memcpy(dst, kaddr + offset, cur);

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6794 6795 6796
int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
				       void __user *dstv,
				       unsigned long start, unsigned long len)
6797 6798 6799 6800 6801 6802
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char __user *dst = (char __user *)dstv;
6803
	unsigned long i = get_eb_page_index(start);
6804 6805 6806 6807 6808
	int ret = 0;

	WARN_ON(start > eb->len);
	WARN_ON(start + len > eb->start + eb->len);

6809
	offset = get_eb_offset_in_page(eb, start);
6810 6811

	while (len > 0) {
6812
		page = eb->pages[i];
6813

6814
		cur = min(len, (PAGE_SIZE - offset));
6815
		kaddr = page_address(page);
6816
		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829
			ret = -EFAULT;
			break;
		}

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}

	return ret;
}

6830 6831
int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
			 unsigned long start, unsigned long len)
6832 6833 6834 6835 6836 6837
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *ptr = (char *)ptrv;
6838
	unsigned long i = get_eb_page_index(start);
6839 6840
	int ret = 0;

6841 6842
	if (check_eb_range(eb, start, len))
		return -EINVAL;
6843

6844
	offset = get_eb_offset_in_page(eb, start);
6845

C
Chris Mason 已提交
6846
	while (len > 0) {
6847
		page = eb->pages[i];
6848

6849
		cur = min(len, (PAGE_SIZE - offset));
6850

6851
		kaddr = page_address(page);
6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863
		ret = memcmp(ptr, kaddr + offset, cur);
		if (ret)
			break;

		ptr += cur;
		len -= cur;
		offset = 0;
		i++;
	}
	return ret;
}

6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874
/*
 * Check that the extent buffer is uptodate.
 *
 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
 */
static void assert_eb_page_uptodate(const struct extent_buffer *eb,
				    struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;

6875 6876 6877 6878 6879 6880 6881 6882 6883
	/*
	 * If we are using the commit root we could potentially clear a page
	 * Uptodate while we're using the extent buffer that we've previously
	 * looked up.  We don't want to complain in this case, as the page was
	 * valid before, we just didn't write it out.  Instead we want to catch
	 * the case where we didn't actually read the block properly, which
	 * would have !PageUptodate && !PageError, as we clear PageError before
	 * reading.
	 */
6884
	if (fs_info->nodesize < PAGE_SIZE) {
6885
		bool uptodate, error;
6886 6887 6888

		uptodate = btrfs_subpage_test_uptodate(fs_info, page,
						       eb->start, eb->len);
6889 6890
		error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len);
		WARN_ON(!uptodate && !error);
6891
	} else {
6892
		WARN_ON(!PageUptodate(page) && !PageError(page));
6893 6894 6895
	}
}

6896
void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6897 6898 6899 6900
		const void *srcv)
{
	char *kaddr;

6901
	assert_eb_page_uptodate(eb, eb->pages[0]);
6902 6903 6904 6905
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
						   chunk_tree_uuid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6906 6907
}

6908
void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6909 6910 6911
{
	char *kaddr;

6912
	assert_eb_page_uptodate(eb, eb->pages[0]);
6913 6914 6915
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6916 6917
}

6918
void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6919 6920 6921 6922 6923 6924 6925
			 unsigned long start, unsigned long len)
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *src = (char *)srcv;
6926
	unsigned long i = get_eb_page_index(start);
6927

6928 6929
	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));

6930 6931
	if (check_eb_range(eb, start, len))
		return;
6932

6933
	offset = get_eb_offset_in_page(eb, start);
6934

C
Chris Mason 已提交
6935
	while (len > 0) {
6936
		page = eb->pages[i];
6937
		assert_eb_page_uptodate(eb, page);
6938

6939
		cur = min(len, PAGE_SIZE - offset);
6940
		kaddr = page_address(page);
6941 6942 6943 6944 6945 6946 6947 6948 6949
		memcpy(kaddr + offset, src, cur);

		src += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6950
void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6951
		unsigned long len)
6952 6953 6954 6955 6956
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
6957
	unsigned long i = get_eb_page_index(start);
6958

6959 6960
	if (check_eb_range(eb, start, len))
		return;
6961

6962
	offset = get_eb_offset_in_page(eb, start);
6963

C
Chris Mason 已提交
6964
	while (len > 0) {
6965
		page = eb->pages[i];
6966
		assert_eb_page_uptodate(eb, page);
6967

6968
		cur = min(len, PAGE_SIZE - offset);
6969
		kaddr = page_address(page);
6970
		memset(kaddr + offset, 0, cur);
6971 6972 6973 6974 6975 6976 6977

		len -= cur;
		offset = 0;
		i++;
	}
}

6978 6979
void copy_extent_buffer_full(const struct extent_buffer *dst,
			     const struct extent_buffer *src)
6980 6981
{
	int i;
6982
	int num_pages;
6983 6984 6985

	ASSERT(dst->len == src->len);

6986
	if (dst->fs_info->nodesize >= PAGE_SIZE) {
6987 6988 6989 6990 6991 6992 6993 6994
		num_pages = num_extent_pages(dst);
		for (i = 0; i < num_pages; i++)
			copy_page(page_address(dst->pages[i]),
				  page_address(src->pages[i]));
	} else {
		size_t src_offset = get_eb_offset_in_page(src, 0);
		size_t dst_offset = get_eb_offset_in_page(dst, 0);

6995
		ASSERT(src->fs_info->nodesize < PAGE_SIZE);
6996 6997 6998 6999
		memcpy(page_address(dst->pages[0]) + dst_offset,
		       page_address(src->pages[0]) + src_offset,
		       src->len);
	}
7000 7001
}

7002 7003
void copy_extent_buffer(const struct extent_buffer *dst,
			const struct extent_buffer *src,
7004 7005 7006 7007 7008 7009 7010 7011
			unsigned long dst_offset, unsigned long src_offset,
			unsigned long len)
{
	u64 dst_len = dst->len;
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
7012
	unsigned long i = get_eb_page_index(dst_offset);
7013

7014 7015 7016 7017
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(src, src_offset, len))
		return;

7018 7019
	WARN_ON(src->len != dst_len);

7020
	offset = get_eb_offset_in_page(dst, dst_offset);
7021

C
Chris Mason 已提交
7022
	while (len > 0) {
7023
		page = dst->pages[i];
7024
		assert_eb_page_uptodate(dst, page);
7025

7026
		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
7027

7028
		kaddr = page_address(page);
7029 7030 7031 7032 7033 7034 7035 7036 7037
		read_extent_buffer(src, kaddr + offset, src_offset, cur);

		src_offset += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050
/*
 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
 * given bit number
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number
 * @page_index: return index of the page in the extent buffer that contains the
 * given bit number
 * @page_offset: return offset into the page given by page_index
 *
 * This helper hides the ugliness of finding the byte in an extent buffer which
 * contains a given bit.
 */
7051
static inline void eb_bitmap_offset(const struct extent_buffer *eb,
7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063
				    unsigned long start, unsigned long nr,
				    unsigned long *page_index,
				    size_t *page_offset)
{
	size_t byte_offset = BIT_BYTE(nr);
	size_t offset;

	/*
	 * The byte we want is the offset of the extent buffer + the offset of
	 * the bitmap item in the extent buffer + the offset of the byte in the
	 * bitmap item.
	 */
7064
	offset = start + offset_in_page(eb->start) + byte_offset;
7065

7066
	*page_index = offset >> PAGE_SHIFT;
7067
	*page_offset = offset_in_page(offset);
7068 7069 7070 7071 7072 7073 7074 7075
}

/**
 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number to test
 */
7076
int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
7077 7078
			   unsigned long nr)
{
7079
	u8 *kaddr;
7080 7081 7082 7083 7084 7085
	struct page *page;
	unsigned long i;
	size_t offset;

	eb_bitmap_offset(eb, start, nr, &i, &offset);
	page = eb->pages[i];
7086
	assert_eb_page_uptodate(eb, page);
7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097
	kaddr = page_address(page);
	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
}

/**
 * extent_buffer_bitmap_set - set an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to set
 */
7098
void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
7099 7100
			      unsigned long pos, unsigned long len)
{
7101
	u8 *kaddr;
7102 7103 7104 7105 7106
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7107
	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
7108 7109 7110

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
7111
	assert_eb_page_uptodate(eb, page);
7112 7113 7114 7115 7116 7117
	kaddr = page_address(page);

	while (len >= bits_to_set) {
		kaddr[offset] |= mask_to_set;
		len -= bits_to_set;
		bits_to_set = BITS_PER_BYTE;
D
Dan Carpenter 已提交
7118
		mask_to_set = ~0;
7119
		if (++offset >= PAGE_SIZE && len > 0) {
7120 7121
			offset = 0;
			page = eb->pages[++i];
7122
			assert_eb_page_uptodate(eb, page);
7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] |= mask_to_set;
	}
}


/**
 * extent_buffer_bitmap_clear - clear an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to clear
 */
7140 7141 7142
void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
				unsigned long start, unsigned long pos,
				unsigned long len)
7143
{
7144
	u8 *kaddr;
7145 7146 7147 7148 7149
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7150
	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
7151 7152 7153

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
7154
	assert_eb_page_uptodate(eb, page);
7155 7156 7157 7158 7159 7160
	kaddr = page_address(page);

	while (len >= bits_to_clear) {
		kaddr[offset] &= ~mask_to_clear;
		len -= bits_to_clear;
		bits_to_clear = BITS_PER_BYTE;
D
Dan Carpenter 已提交
7161
		mask_to_clear = ~0;
7162
		if (++offset >= PAGE_SIZE && len > 0) {
7163 7164
			offset = 0;
			page = eb->pages[++i];
7165
			assert_eb_page_uptodate(eb, page);
7166 7167 7168 7169 7170 7171 7172 7173 7174
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] &= ~mask_to_clear;
	}
}

7175 7176 7177 7178 7179 7180
static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
{
	unsigned long distance = (src > dst) ? src - dst : dst - src;
	return distance < len;
}

7181 7182 7183 7184
static void copy_pages(struct page *dst_page, struct page *src_page,
		       unsigned long dst_off, unsigned long src_off,
		       unsigned long len)
{
7185
	char *dst_kaddr = page_address(dst_page);
7186
	char *src_kaddr;
7187
	int must_memmove = 0;
7188

7189
	if (dst_page != src_page) {
7190
		src_kaddr = page_address(src_page);
7191
	} else {
7192
		src_kaddr = dst_kaddr;
7193 7194
		if (areas_overlap(src_off, dst_off, len))
			must_memmove = 1;
7195
	}
7196

7197 7198 7199 7200
	if (must_memmove)
		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
	else
		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
7201 7202
}

7203 7204 7205
void memcpy_extent_buffer(const struct extent_buffer *dst,
			  unsigned long dst_offset, unsigned long src_offset,
			  unsigned long len)
7206 7207 7208 7209 7210 7211 7212
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_i;
	unsigned long src_i;

7213 7214 7215
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
7216

C
Chris Mason 已提交
7217
	while (len > 0) {
7218 7219
		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
7220

7221 7222
		dst_i = get_eb_page_index(dst_offset);
		src_i = get_eb_page_index(src_offset);
7223

7224
		cur = min(len, (unsigned long)(PAGE_SIZE -
7225 7226
					       src_off_in_page));
		cur = min_t(unsigned long, cur,
7227
			(unsigned long)(PAGE_SIZE - dst_off_in_page));
7228

7229
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7230 7231 7232 7233 7234 7235 7236 7237
			   dst_off_in_page, src_off_in_page, cur);

		src_offset += cur;
		dst_offset += cur;
		len -= cur;
	}
}

7238 7239 7240
void memmove_extent_buffer(const struct extent_buffer *dst,
			   unsigned long dst_offset, unsigned long src_offset,
			   unsigned long len)
7241 7242 7243 7244 7245 7246 7247 7248 7249
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_end = dst_offset + len - 1;
	unsigned long src_end = src_offset + len - 1;
	unsigned long dst_i;
	unsigned long src_i;

7250 7251 7252
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
7253
	if (dst_offset < src_offset) {
7254 7255 7256
		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
		return;
	}
C
Chris Mason 已提交
7257
	while (len > 0) {
7258 7259
		dst_i = get_eb_page_index(dst_end);
		src_i = get_eb_page_index(src_end);
7260

7261 7262
		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
		src_off_in_page = get_eb_offset_in_page(dst, src_end);
7263 7264 7265

		cur = min_t(unsigned long, len, src_off_in_page + 1);
		cur = min(cur, dst_off_in_page + 1);
7266
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7267 7268 7269 7270 7271 7272 7273 7274
			   dst_off_in_page - cur + 1,
			   src_off_in_page - cur + 1, cur);

		dst_end -= cur;
		src_end -= cur;
		len -= cur;
	}
}
7275

7276
#define GANG_LOOKUP_SIZE	16
7277 7278 7279
static struct extent_buffer *get_next_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
7280 7281
	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
	struct extent_buffer *found = NULL;
7282
	u64 page_start = page_offset(page);
7283
	u64 cur = page_start;
7284 7285 7286 7287

	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
	lockdep_assert_held(&fs_info->buffer_lock);

7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308
	while (cur < page_start + PAGE_SIZE) {
		int ret;
		int i;

		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
				(void **)gang, cur >> fs_info->sectorsize_bits,
				min_t(unsigned int, GANG_LOOKUP_SIZE,
				      PAGE_SIZE / fs_info->nodesize));
		if (ret == 0)
			goto out;
		for (i = 0; i < ret; i++) {
			/* Already beyond page end */
			if (gang[i]->start >= page_start + PAGE_SIZE)
				goto out;
			/* Found one */
			if (gang[i]->start >= bytenr) {
				found = gang[i];
				goto out;
			}
		}
		cur = gang[ret - 1]->start + gang[ret - 1]->len;
7309
	}
7310 7311
out:
	return found;
7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383
}

static int try_release_subpage_extent_buffer(struct page *page)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	u64 cur = page_offset(page);
	const u64 end = page_offset(page) + PAGE_SIZE;
	int ret;

	while (cur < end) {
		struct extent_buffer *eb = NULL;

		/*
		 * Unlike try_release_extent_buffer() which uses page->private
		 * to grab buffer, for subpage case we rely on radix tree, thus
		 * we need to ensure radix tree consistency.
		 *
		 * We also want an atomic snapshot of the radix tree, thus go
		 * with spinlock rather than RCU.
		 */
		spin_lock(&fs_info->buffer_lock);
		eb = get_next_extent_buffer(fs_info, page, cur);
		if (!eb) {
			/* No more eb in the page range after or at cur */
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		cur = eb->start + eb->len;

		/*
		 * The same as try_release_extent_buffer(), to ensure the eb
		 * won't disappear out from under us.
		 */
		spin_lock(&eb->refs_lock);
		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
			spin_unlock(&eb->refs_lock);
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		spin_unlock(&fs_info->buffer_lock);

		/*
		 * If tree ref isn't set then we know the ref on this eb is a
		 * real ref, so just return, this eb will likely be freed soon
		 * anyway.
		 */
		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
			spin_unlock(&eb->refs_lock);
			break;
		}

		/*
		 * Here we don't care about the return value, we will always
		 * check the page private at the end.  And
		 * release_extent_buffer() will release the refs_lock.
		 */
		release_extent_buffer(eb);
	}
	/*
	 * Finally to check if we have cleared page private, as if we have
	 * released all ebs in the page, the page private should be cleared now.
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page))
		ret = 1;
	else
		ret = 0;
	spin_unlock(&page->mapping->private_lock);
	return ret;

}

7384
int try_release_extent_buffer(struct page *page)
7385
{
7386 7387
	struct extent_buffer *eb;

7388
	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
7389 7390
		return try_release_subpage_extent_buffer(page);

7391
	/*
7392 7393
	 * We need to make sure nobody is changing page->private, as we rely on
	 * page->private as the pointer to extent buffer.
7394 7395 7396 7397
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&page->mapping->private_lock);
J
Josef Bacik 已提交
7398
		return 1;
7399
	}
7400

7401 7402
	eb = (struct extent_buffer *)page->private;
	BUG_ON(!eb);
7403 7404

	/*
7405 7406 7407
	 * This is a little awful but should be ok, we need to make sure that
	 * the eb doesn't disappear out from under us while we're looking at
	 * this page.
7408
	 */
7409
	spin_lock(&eb->refs_lock);
7410
	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7411 7412 7413
		spin_unlock(&eb->refs_lock);
		spin_unlock(&page->mapping->private_lock);
		return 0;
7414
	}
7415
	spin_unlock(&page->mapping->private_lock);
7416

7417
	/*
7418 7419
	 * If tree ref isn't set then we know the ref on this eb is a real ref,
	 * so just return, this page will likely be freed soon anyway.
7420
	 */
7421 7422 7423
	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
		spin_unlock(&eb->refs_lock);
		return 0;
7424
	}
7425

7426
	return release_extent_buffer(eb);
7427
}
7428 7429 7430 7431 7432

/*
 * btrfs_readahead_tree_block - attempt to readahead a child block
 * @fs_info:	the fs_info
 * @bytenr:	bytenr to read
7433
 * @owner_root: objectid of the root that owns this eb
7434
 * @gen:	generation for the uptodate check, can be 0
7435
 * @level:	level for the eb
7436 7437 7438 7439 7440 7441
 *
 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
 * normal uptodate check of the eb, without checking the generation.  If we have
 * to read the block we will not block on anything.
 */
void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7442
				u64 bytenr, u64 owner_root, u64 gen, int level)
7443 7444 7445 7446
{
	struct extent_buffer *eb;
	int ret;

7447
	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474
	if (IS_ERR(eb))
		return;

	if (btrfs_buffer_uptodate(eb, gen, 1)) {
		free_extent_buffer(eb);
		return;
	}

	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
	if (ret < 0)
		free_extent_buffer_stale(eb);
	else
		free_extent_buffer(eb);
}

/*
 * btrfs_readahead_node_child - readahead a node's child block
 * @node:	parent node we're reading from
 * @slot:	slot in the parent node for the child we want to read
 *
 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
 * the slot in the node provided.
 */
void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
{
	btrfs_readahead_tree_block(node->fs_info,
				   btrfs_node_blockptr(node, slot),
7475 7476 7477
				   btrfs_header_owner(node),
				   btrfs_node_ptr_generation(node, slot),
				   btrfs_header_level(node) - 1);
7478
}