extent_io.c 163.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2

3 4 5 6 7 8 9 10 11 12 13
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/bio.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/page-flags.h>
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
14
#include <linux/prefetch.h>
D
Dan Magenheimer 已提交
15
#include <linux/cleancache.h>
16
#include "extent_io.h"
17
#include "extent-io-tree.h"
18
#include "extent_map.h"
19 20
#include "ctree.h"
#include "btrfs_inode.h"
21
#include "volumes.h"
22
#include "check-integrity.h"
23
#include "locking.h"
24
#include "rcu-string.h"
25
#include "backref.h"
26
#include "disk-io.h"
27
#include "subpage.h"
28 29 30

static struct kmem_cache *extent_state_cache;
static struct kmem_cache *extent_buffer_cache;
31
static struct bio_set btrfs_bioset;
32

33 34 35 36 37
static inline bool extent_state_in_tree(const struct extent_state *state)
{
	return !RB_EMPTY_NODE(&state->rb_node);
}

38
#ifdef CONFIG_BTRFS_DEBUG
39
static LIST_HEAD(states);
C
Chris Mason 已提交
40
static DEFINE_SPINLOCK(leak_lock);
41

42 43 44
static inline void btrfs_leak_debug_add(spinlock_t *lock,
					struct list_head *new,
					struct list_head *head)
45 46 47
{
	unsigned long flags;

48
	spin_lock_irqsave(lock, flags);
49
	list_add(new, head);
50
	spin_unlock_irqrestore(lock, flags);
51 52
}

53 54
static inline void btrfs_leak_debug_del(spinlock_t *lock,
					struct list_head *entry)
55 56 57
{
	unsigned long flags;

58
	spin_lock_irqsave(lock, flags);
59
	list_del(entry);
60
	spin_unlock_irqrestore(lock, flags);
61 62
}

63
void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
64 65
{
	struct extent_buffer *eb;
66
	unsigned long flags;
67

68 69 70 71 72 73 74
	/*
	 * If we didn't get into open_ctree our allocated_ebs will not be
	 * initialized, so just skip this.
	 */
	if (!fs_info->allocated_ebs.next)
		return;

75 76 77 78
	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
	while (!list_empty(&fs_info->allocated_ebs)) {
		eb = list_first_entry(&fs_info->allocated_ebs,
				      struct extent_buffer, leak_list);
79 80 81 82
		pr_err(
	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
		       btrfs_header_owner(eb));
83 84 85
		list_del(&eb->leak_list);
		kmem_cache_free(extent_buffer_cache, eb);
	}
86
	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
87 88 89 90 91 92
}

static inline void btrfs_extent_state_leak_debug_check(void)
{
	struct extent_state *state;

93 94
	while (!list_empty(&states)) {
		state = list_entry(states.next, struct extent_state, leak_list);
95
		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
96 97
		       state->start, state->end, state->state,
		       extent_state_in_tree(state),
98
		       refcount_read(&state->refs));
99 100 101 102
		list_del(&state->leak_list);
		kmem_cache_free(extent_state_cache, state);
	}
}
103

104 105
#define btrfs_debug_check_extent_io_range(tree, start, end)		\
	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
106
static inline void __btrfs_debug_check_extent_io_range(const char *caller,
107
		struct extent_io_tree *tree, u64 start, u64 end)
108
{
109 110 111 112 113 114 115 116 117 118 119 120
	struct inode *inode = tree->private_data;
	u64 isize;

	if (!inode || !is_data_inode(inode))
		return;

	isize = i_size_read(inode);
	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
	}
121
}
122
#else
123 124
#define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
#define btrfs_leak_debug_del(lock, entry)	do {} while (0)
125
#define btrfs_extent_state_leak_debug_check()	do {} while (0)
126
#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
C
Chris Mason 已提交
127
#endif
128 129 130 131 132 133 134 135 136

struct tree_entry {
	u64 start;
	u64 end;
	struct rb_node rb_node;
};

struct extent_page_data {
	struct bio *bio;
137 138 139
	/* tells writepage not to lock the state bits for this range
	 * it still does the unlocking
	 */
140 141
	unsigned int extent_locked:1;

142
	/* tells the submit_bio code to use REQ_SYNC */
143
	unsigned int sync_io:1;
144 145
};

146
static int add_extent_changeset(struct extent_state *state, u32 bits,
147 148 149 150 151 152
				 struct extent_changeset *changeset,
				 int set)
{
	int ret;

	if (!changeset)
153
		return 0;
154
	if (set && (state->state & bits) == bits)
155
		return 0;
156
	if (!set && (state->state & bits) == 0)
157
		return 0;
158
	changeset->bytes_changed += state->end - state->start + 1;
159
	ret = ulist_add(&changeset->range_changed, state->start, state->end,
160
			GFP_ATOMIC);
161
	return ret;
162 163
}

164 165
int __must_check submit_one_bio(struct bio *bio, int mirror_num,
				unsigned long bio_flags)
166 167 168 169 170 171
{
	blk_status_t ret = 0;
	struct extent_io_tree *tree = bio->bi_private;

	bio->bi_private = NULL;

172 173 174 175
	if (is_data_inode(tree->private_data))
		ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
					    bio_flags);
	else
176 177
		ret = btrfs_submit_metadata_bio(tree->private_data, bio,
						mirror_num, bio_flags);
178 179 180 181

	return blk_status_to_errno(ret);
}

182 183 184 185 186 187 188 189 190 191
/* Cleanup unsubmitted bios */
static void end_write_bio(struct extent_page_data *epd, int ret)
{
	if (epd->bio) {
		epd->bio->bi_status = errno_to_blk_status(ret);
		bio_endio(epd->bio);
		epd->bio = NULL;
	}
}

192 193 194 195 196 197 198
/*
 * Submit bio from extent page data via submit_one_bio
 *
 * Return 0 if everything is OK.
 * Return <0 for error.
 */
static int __must_check flush_write_bio(struct extent_page_data *epd)
199
{
200
	int ret = 0;
201

202
	if (epd->bio) {
203
		ret = submit_one_bio(epd->bio, 0, 0);
204 205 206 207 208 209 210
		/*
		 * Clean up of epd->bio is handled by its endio function.
		 * And endio is either triggered by successful bio execution
		 * or the error handler of submit bio hook.
		 * So at this point, no matter what happened, we don't need
		 * to clean up epd->bio.
		 */
211 212
		epd->bio = NULL;
	}
213
	return ret;
214
}
215

216
int __init extent_state_cache_init(void)
217
{
D
David Sterba 已提交
218
	extent_state_cache = kmem_cache_create("btrfs_extent_state",
219
			sizeof(struct extent_state), 0,
220
			SLAB_MEM_SPREAD, NULL);
221 222
	if (!extent_state_cache)
		return -ENOMEM;
223 224
	return 0;
}
225

226 227
int __init extent_io_init(void)
{
D
David Sterba 已提交
228
	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
229
			sizeof(struct extent_buffer), 0,
230
			SLAB_MEM_SPREAD, NULL);
231
	if (!extent_buffer_cache)
232
		return -ENOMEM;
233

234 235 236
	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
			offsetof(struct btrfs_io_bio, bio),
			BIOSET_NEED_BVECS))
237
		goto free_buffer_cache;
238

239
	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
240 241
		goto free_bioset;

242 243
	return 0;

244
free_bioset:
245
	bioset_exit(&btrfs_bioset);
246

247 248 249
free_buffer_cache:
	kmem_cache_destroy(extent_buffer_cache);
	extent_buffer_cache = NULL;
250 251
	return -ENOMEM;
}
252

253 254 255
void __cold extent_state_cache_exit(void)
{
	btrfs_extent_state_leak_debug_check();
256 257 258
	kmem_cache_destroy(extent_state_cache);
}

259
void __cold extent_io_exit(void)
260
{
261 262 263 264 265
	/*
	 * Make sure all delayed rcu free are flushed before we
	 * destroy caches.
	 */
	rcu_barrier();
266
	kmem_cache_destroy(extent_buffer_cache);
267
	bioset_exit(&btrfs_bioset);
268 269
}

270 271 272 273 274 275 276 277 278
/*
 * For the file_extent_tree, we want to hold the inode lock when we lookup and
 * update the disk_i_size, but lockdep will complain because our io_tree we hold
 * the tree lock and get the inode lock when setting delalloc.  These two things
 * are unrelated, so make a class for the file_extent_tree so we don't get the
 * two locking patterns mixed up.
 */
static struct lock_class_key file_extent_tree_class;

279
void extent_io_tree_init(struct btrfs_fs_info *fs_info,
280 281
			 struct extent_io_tree *tree, unsigned int owner,
			 void *private_data)
282
{
283
	tree->fs_info = fs_info;
284
	tree->state = RB_ROOT;
285
	tree->dirty_bytes = 0;
286
	spin_lock_init(&tree->lock);
287
	tree->private_data = private_data;
288
	tree->owner = owner;
289 290
	if (owner == IO_TREE_INODE_FILE_EXTENT)
		lockdep_set_class(&tree->lock, &file_extent_tree_class);
291 292
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
void extent_io_tree_release(struct extent_io_tree *tree)
{
	spin_lock(&tree->lock);
	/*
	 * Do a single barrier for the waitqueue_active check here, the state
	 * of the waitqueue should not change once extent_io_tree_release is
	 * called.
	 */
	smp_mb();
	while (!RB_EMPTY_ROOT(&tree->state)) {
		struct rb_node *node;
		struct extent_state *state;

		node = rb_first(&tree->state);
		state = rb_entry(node, struct extent_state, rb_node);
		rb_erase(&state->rb_node, &tree->state);
		RB_CLEAR_NODE(&state->rb_node);
		/*
		 * btree io trees aren't supposed to have tasks waiting for
		 * changes in the flags of extent states ever.
		 */
		ASSERT(!waitqueue_active(&state->wq));
		free_extent_state(state);

		cond_resched_lock(&tree->lock);
	}
	spin_unlock(&tree->lock);
}

322
static struct extent_state *alloc_extent_state(gfp_t mask)
323 324 325
{
	struct extent_state *state;

326 327 328 329 330
	/*
	 * The given mask might be not appropriate for the slab allocator,
	 * drop the unsupported bits
	 */
	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
331
	state = kmem_cache_alloc(extent_state_cache, mask);
332
	if (!state)
333 334
		return state;
	state->state = 0;
335
	state->failrec = NULL;
336
	RB_CLEAR_NODE(&state->rb_node);
337
	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
338
	refcount_set(&state->refs, 1);
339
	init_waitqueue_head(&state->wq);
340
	trace_alloc_extent_state(state, mask, _RET_IP_);
341 342 343
	return state;
}

344
void free_extent_state(struct extent_state *state)
345 346 347
{
	if (!state)
		return;
348
	if (refcount_dec_and_test(&state->refs)) {
349
		WARN_ON(extent_state_in_tree(state));
350
		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
351
		trace_free_extent_state(state, _RET_IP_);
352 353 354 355
		kmem_cache_free(extent_state_cache, state);
	}
}

356 357 358
static struct rb_node *tree_insert(struct rb_root *root,
				   struct rb_node *search_start,
				   u64 offset,
359 360 361
				   struct rb_node *node,
				   struct rb_node ***p_in,
				   struct rb_node **parent_in)
362
{
363
	struct rb_node **p;
C
Chris Mason 已提交
364
	struct rb_node *parent = NULL;
365 366
	struct tree_entry *entry;

367 368 369 370 371 372
	if (p_in && parent_in) {
		p = *p_in;
		parent = *parent_in;
		goto do_insert;
	}

373
	p = search_start ? &search_start : &root->rb_node;
C
Chris Mason 已提交
374
	while (*p) {
375 376 377 378 379 380 381 382 383 384 385
		parent = *p;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (offset < entry->start)
			p = &(*p)->rb_left;
		else if (offset > entry->end)
			p = &(*p)->rb_right;
		else
			return parent;
	}

386
do_insert:
387 388 389 390 391
	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
	return NULL;
}

N
Nikolay Borisov 已提交
392
/**
393 394
 * Search @tree for an entry that contains @offset. Such entry would have
 * entry->start <= offset && entry->end >= offset.
N
Nikolay Borisov 已提交
395
 *
396 397 398 399 400 401 402
 * @tree:       the tree to search
 * @offset:     offset that should fall within an entry in @tree
 * @next_ret:   pointer to the first entry whose range ends after @offset
 * @prev_ret:   pointer to the first entry whose range begins before @offset
 * @p_ret:      pointer where new node should be anchored (used when inserting an
 *	        entry in the tree)
 * @parent_ret: points to entry which would have been the parent of the entry,
N
Nikolay Borisov 已提交
403 404 405 406 407 408 409
 *               containing @offset
 *
 * This function returns a pointer to the entry that contains @offset byte
 * address. If no such entry exists, then NULL is returned and the other
 * pointer arguments to the function are filled, otherwise the found entry is
 * returned and other pointers are left untouched.
 */
410
static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
411
				      struct rb_node **next_ret,
412
				      struct rb_node **prev_ret,
413 414
				      struct rb_node ***p_ret,
				      struct rb_node **parent_ret)
415
{
416
	struct rb_root *root = &tree->state;
417
	struct rb_node **n = &root->rb_node;
418 419 420 421 422
	struct rb_node *prev = NULL;
	struct rb_node *orig_prev = NULL;
	struct tree_entry *entry;
	struct tree_entry *prev_entry = NULL;

423 424 425
	while (*n) {
		prev = *n;
		entry = rb_entry(prev, struct tree_entry, rb_node);
426 427 428
		prev_entry = entry;

		if (offset < entry->start)
429
			n = &(*n)->rb_left;
430
		else if (offset > entry->end)
431
			n = &(*n)->rb_right;
C
Chris Mason 已提交
432
		else
433
			return *n;
434 435
	}

436 437 438 439 440
	if (p_ret)
		*p_ret = n;
	if (parent_ret)
		*parent_ret = prev;

441
	if (next_ret) {
442
		orig_prev = prev;
C
Chris Mason 已提交
443
		while (prev && offset > prev_entry->end) {
444 445 446
			prev = rb_next(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
447
		*next_ret = prev;
448 449 450
		prev = orig_prev;
	}

451
	if (prev_ret) {
452
		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
C
Chris Mason 已提交
453
		while (prev && offset < prev_entry->start) {
454 455 456
			prev = rb_prev(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
457
		*prev_ret = prev;
458 459 460 461
	}
	return NULL;
}

462 463 464 465 466
static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree *tree,
		       u64 offset,
		       struct rb_node ***p_ret,
		       struct rb_node **parent_ret)
467
{
468
	struct rb_node *next= NULL;
469
	struct rb_node *ret;
470

471
	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
C
Chris Mason 已提交
472
	if (!ret)
473
		return next;
474 475 476
	return ret;
}

477 478 479 480 481 482
static inline struct rb_node *tree_search(struct extent_io_tree *tree,
					  u64 offset)
{
	return tree_search_for_insert(tree, offset, NULL, NULL);
}

483 484 485 486 487 488 489 490 491
/*
 * utility function to look for merge candidates inside a given range.
 * Any extents with matching state are merged together into a single
 * extent in the tree.  Extents with EXTENT_IO in their state field
 * are not merged because the end_io handlers need to be able to do
 * operations on them without sleeping (or doing allocations/splits).
 *
 * This should be called with the tree lock held.
 */
492 493
static void merge_state(struct extent_io_tree *tree,
		        struct extent_state *state)
494 495 496 497
{
	struct extent_state *other;
	struct rb_node *other_node;

N
Nikolay Borisov 已提交
498
	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
499
		return;
500 501 502 503 504 505

	other_node = rb_prev(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->end == state->start - 1 &&
		    other->state == state->state) {
506 507 508 509
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
510 511
			state->start = other->start;
			rb_erase(&other->rb_node, &tree->state);
512
			RB_CLEAR_NODE(&other->rb_node);
513 514 515 516 517 518 519 520
			free_extent_state(other);
		}
	}
	other_node = rb_next(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->start == state->end + 1 &&
		    other->state == state->state) {
521 522 523 524
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
525 526
			state->end = other->end;
			rb_erase(&other->rb_node, &tree->state);
527
			RB_CLEAR_NODE(&other->rb_node);
528
			free_extent_state(other);
529 530 531 532
		}
	}
}

533
static void set_state_bits(struct extent_io_tree *tree,
534
			   struct extent_state *state, u32 *bits,
535
			   struct extent_changeset *changeset);
536

537 538 539 540 541 542 543 544 545 546 547 548
/*
 * insert an extent_state struct into the tree.  'bits' are set on the
 * struct before it is inserted.
 *
 * This may return -EEXIST if the extent is already there, in which case the
 * state struct is freed.
 *
 * The tree lock is not taken internally.  This is a utility function and
 * probably isn't what you want to call (see set/clear_extent_bit).
 */
static int insert_state(struct extent_io_tree *tree,
			struct extent_state *state, u64 start, u64 end,
549 550
			struct rb_node ***p,
			struct rb_node **parent,
551
			u32 *bits, struct extent_changeset *changeset)
552 553 554
{
	struct rb_node *node;

555 556 557 558 559
	if (end < start) {
		btrfs_err(tree->fs_info,
			"insert state: end < start %llu %llu", end, start);
		WARN_ON(1);
	}
560 561
	state->start = start;
	state->end = end;
J
Josef Bacik 已提交
562

563
	set_state_bits(tree, state, bits, changeset);
564

565
	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
566 567 568
	if (node) {
		struct extent_state *found;
		found = rb_entry(node, struct extent_state, rb_node);
569 570
		btrfs_err(tree->fs_info,
		       "found node %llu %llu on insert of %llu %llu",
571
		       found->start, found->end, start, end);
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
		return -EEXIST;
	}
	merge_state(tree, state);
	return 0;
}

/*
 * split a given extent state struct in two, inserting the preallocated
 * struct 'prealloc' as the newly created second half.  'split' indicates an
 * offset inside 'orig' where it should be split.
 *
 * Before calling,
 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 * are two extent state structs in the tree:
 * prealloc: [orig->start, split - 1]
 * orig: [ split, orig->end ]
 *
 * The tree locks are not taken by this function. They need to be held
 * by the caller.
 */
static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
		       struct extent_state *prealloc, u64 split)
{
	struct rb_node *node;
J
Josef Bacik 已提交
596

597 598
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_split_delalloc_extent(tree->private_data, orig, split);
J
Josef Bacik 已提交
599

600 601 602 603 604
	prealloc->start = orig->start;
	prealloc->end = split - 1;
	prealloc->state = orig->state;
	orig->start = split;

605 606
	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
			   &prealloc->rb_node, NULL, NULL);
607 608 609 610 611 612 613
	if (node) {
		free_extent_state(prealloc);
		return -EEXIST;
	}
	return 0;
}

614 615 616 617 618 619 620 621 622
static struct extent_state *next_state(struct extent_state *state)
{
	struct rb_node *next = rb_next(&state->rb_node);
	if (next)
		return rb_entry(next, struct extent_state, rb_node);
	else
		return NULL;
}

623 624
/*
 * utility function to clear some bits in an extent state struct.
625
 * it will optionally wake up anyone waiting on this state (wake == 1).
626 627 628 629
 *
 * If no bits are set on the state struct after clearing things, the
 * struct is freed and removed from the tree
 */
630 631
static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
					    struct extent_state *state,
632
					    u32 *bits, int wake,
633
					    struct extent_changeset *changeset)
634
{
635
	struct extent_state *next;
636
	u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
637
	int ret;
638

639
	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
640 641 642 643
		u64 range = state->end - state->start + 1;
		WARN_ON(range > tree->dirty_bytes);
		tree->dirty_bytes -= range;
	}
644 645 646 647

	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_clear_delalloc_extent(tree->private_data, state, bits);

648 649
	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
	BUG_ON(ret < 0);
650
	state->state &= ~bits_to_clear;
651 652
	if (wake)
		wake_up(&state->wq);
653
	if (state->state == 0) {
654
		next = next_state(state);
655
		if (extent_state_in_tree(state)) {
656
			rb_erase(&state->rb_node, &tree->state);
657
			RB_CLEAR_NODE(&state->rb_node);
658 659 660 661 662 663
			free_extent_state(state);
		} else {
			WARN_ON(1);
		}
	} else {
		merge_state(tree, state);
664
		next = next_state(state);
665
	}
666
	return next;
667 668
}

669 670 671 672 673 674 675 676 677
static struct extent_state *
alloc_extent_state_atomic(struct extent_state *prealloc)
{
	if (!prealloc)
		prealloc = alloc_extent_state(GFP_ATOMIC);

	return prealloc;
}

678
static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
679
{
680
	btrfs_panic(tree->fs_info, err,
681
	"locking error: extent tree was modified by another thread while locked");
682 683
}

684 685 686 687 688 689 690 691 692 693
/*
 * clear some bits on a range in the tree.  This may require splitting
 * or inserting elements in the tree, so the gfp mask is used to
 * indicate which allocations or sleeping are allowed.
 *
 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 * the given range from the tree regardless of state (ie for truncate).
 *
 * the range [start, end] is inclusive.
 *
694
 * This takes the tree lock, and returns 0 on success and < 0 on error.
695
 */
696
int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
697 698 699
		       u32 bits, int wake, int delete,
		       struct extent_state **cached_state,
		       gfp_t mask, struct extent_changeset *changeset)
700 701
{
	struct extent_state *state;
702
	struct extent_state *cached;
703 704
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
705
	u64 last_end;
706
	int err;
707
	int clear = 0;
708

709
	btrfs_debug_check_extent_io_range(tree, start, end);
710
	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
711

712 713 714
	if (bits & EXTENT_DELALLOC)
		bits |= EXTENT_NORESERVE;

715 716 717
	if (delete)
		bits |= ~EXTENT_CTLBITS;

N
Nikolay Borisov 已提交
718
	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
719
		clear = 1;
720
again:
721
	if (!prealloc && gfpflags_allow_blocking(mask)) {
722 723 724 725 726 727 728
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
729 730 731
		prealloc = alloc_extent_state(mask);
	}

732
	spin_lock(&tree->lock);
733 734
	if (cached_state) {
		cached = *cached_state;
735 736 737 738 739 740

		if (clear) {
			*cached_state = NULL;
			cached_state = NULL;
		}

741 742
		if (cached && extent_state_in_tree(cached) &&
		    cached->start <= start && cached->end > start) {
743
			if (clear)
744
				refcount_dec(&cached->refs);
745
			state = cached;
746
			goto hit_next;
747
		}
748 749
		if (clear)
			free_extent_state(cached);
750
	}
751 752 753 754
	/*
	 * this search will find the extents that end after
	 * our range starts
	 */
755
	node = tree_search(tree, start);
756 757 758
	if (!node)
		goto out;
	state = rb_entry(node, struct extent_state, rb_node);
759
hit_next:
760 761 762
	if (state->start > end)
		goto out;
	WARN_ON(state->end < start);
763
	last_end = state->end;
764

765
	/* the state doesn't have the wanted bits, go ahead */
766 767
	if (!(state->state & bits)) {
		state = next_state(state);
768
		goto next;
769
	}
770

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
	/*
	 *     | ---- desired range ---- |
	 *  | state | or
	 *  | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip
	 * bits on second half.
	 *
	 * If the extent we found extends past our range, we
	 * just split and search again.  It'll get split again
	 * the next time though.
	 *
	 * If the extent we found is inside our range, we clear
	 * the desired bit on it.
	 */

	if (state->start < start) {
788 789
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
790
		err = split_state(tree, state, prealloc, start);
791 792 793
		if (err)
			extent_io_tree_panic(tree, err);

794 795 796 797
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
798 799
			state = clear_state_bit(tree, state, &bits, wake,
						changeset);
800
			goto next;
801 802 803 804 805 806 807 808 809 810
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and clear the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
811 812
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
813
		err = split_state(tree, state, prealloc, end + 1);
814 815 816
		if (err)
			extent_io_tree_panic(tree, err);

817 818
		if (wake)
			wake_up(&state->wq);
819

820
		clear_state_bit(tree, prealloc, &bits, wake, changeset);
J
Josef Bacik 已提交
821

822 823 824
		prealloc = NULL;
		goto out;
	}
825

826
	state = clear_state_bit(tree, state, &bits, wake, changeset);
827
next:
828 829 830
	if (last_end == (u64)-1)
		goto out;
	start = last_end + 1;
831
	if (start <= end && state && !need_resched())
832
		goto hit_next;
833 834 835 836

search_again:
	if (start > end)
		goto out;
837
	spin_unlock(&tree->lock);
838
	if (gfpflags_allow_blocking(mask))
839 840
		cond_resched();
	goto again;
841 842 843 844 845 846 847 848

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return 0;

849 850
}

851 852
static void wait_on_state(struct extent_io_tree *tree,
			  struct extent_state *state)
853 854
		__releases(tree->lock)
		__acquires(tree->lock)
855 856 857
{
	DEFINE_WAIT(wait);
	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
858
	spin_unlock(&tree->lock);
859
	schedule();
860
	spin_lock(&tree->lock);
861 862 863 864 865 866 867 868
	finish_wait(&state->wq, &wait);
}

/*
 * waits for one or more bits to clear on a range in the state tree.
 * The range [start, end] is inclusive.
 * The tree lock is taken by this function
 */
869
static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
870
			    u32 bits)
871 872 873 874
{
	struct extent_state *state;
	struct rb_node *node;

875
	btrfs_debug_check_extent_io_range(tree, start, end);
876

877
	spin_lock(&tree->lock);
878 879 880 881 882 883
again:
	while (1) {
		/*
		 * this search will find all the extents that end after
		 * our range starts
		 */
884
		node = tree_search(tree, start);
885
process_node:
886 887 888 889 890 891 892 893 894 895
		if (!node)
			break;

		state = rb_entry(node, struct extent_state, rb_node);

		if (state->start > end)
			goto out;

		if (state->state & bits) {
			start = state->start;
896
			refcount_inc(&state->refs);
897 898 899 900 901 902 903 904 905
			wait_on_state(tree, state);
			free_extent_state(state);
			goto again;
		}
		start = state->end + 1;

		if (start > end)
			break;

906 907 908 909
		if (!cond_resched_lock(&tree->lock)) {
			node = rb_next(node);
			goto process_node;
		}
910 911
	}
out:
912
	spin_unlock(&tree->lock);
913 914
}

915
static void set_state_bits(struct extent_io_tree *tree,
916
			   struct extent_state *state,
917
			   u32 *bits, struct extent_changeset *changeset)
918
{
919
	u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
920
	int ret;
J
Josef Bacik 已提交
921

922 923 924
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_set_delalloc_extent(tree->private_data, state, bits);

925
	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
926 927 928
		u64 range = state->end - state->start + 1;
		tree->dirty_bytes += range;
	}
929 930
	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
	BUG_ON(ret < 0);
931
	state->state |= bits_to_set;
932 933
}

934 935
static void cache_state_if_flags(struct extent_state *state,
				 struct extent_state **cached_ptr,
936
				 unsigned flags)
937 938
{
	if (cached_ptr && !(*cached_ptr)) {
939
		if (!flags || (state->state & flags)) {
940
			*cached_ptr = state;
941
			refcount_inc(&state->refs);
942 943 944 945
		}
	}
}

946 947 948 949
static void cache_state(struct extent_state *state,
			struct extent_state **cached_ptr)
{
	return cache_state_if_flags(state, cached_ptr,
N
Nikolay Borisov 已提交
950
				    EXTENT_LOCKED | EXTENT_BOUNDARY);
951 952
}

953
/*
954 955
 * set some bits on a range in the tree.  This may require allocations or
 * sleeping, so the gfp mask is used to indicate what is allowed.
956
 *
957 958 959
 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 * part of the range already has the desired bits set.  The start of the
 * existing range is returned in failed_start in this case.
960
 *
961
 * [start, end] is inclusive This takes the tree lock.
962
 */
963 964
int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
		   u32 exclusive_bits, u64 *failed_start,
965 966
		   struct extent_state **cached_state, gfp_t mask,
		   struct extent_changeset *changeset)
967 968 969 970
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
971 972
	struct rb_node **p;
	struct rb_node *parent;
973 974 975
	int err = 0;
	u64 last_start;
	u64 last_end;
976

977
	btrfs_debug_check_extent_io_range(tree, start, end);
978
	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
979

980 981 982 983
	if (exclusive_bits)
		ASSERT(failed_start);
	else
		ASSERT(failed_start == NULL);
984
again:
985
	if (!prealloc && gfpflags_allow_blocking(mask)) {
986 987 988 989 990 991 992
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
993 994 995
		prealloc = alloc_extent_state(mask);
	}

996
	spin_lock(&tree->lock);
997 998
	if (cached_state && *cached_state) {
		state = *cached_state;
999
		if (state->start <= start && state->end > start &&
1000
		    extent_state_in_tree(state)) {
1001 1002 1003 1004
			node = &state->rb_node;
			goto hit_next;
		}
	}
1005 1006 1007 1008
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1009
	node = tree_search_for_insert(tree, start, &p, &parent);
1010
	if (!node) {
1011 1012
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1013
		err = insert_state(tree, prealloc, start, end,
1014
				   &p, &parent, &bits, changeset);
1015 1016 1017
		if (err)
			extent_io_tree_panic(tree, err);

1018
		cache_state(prealloc, cached_state);
1019 1020 1021 1022
		prealloc = NULL;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1023
hit_next:
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1034
		if (state->state & exclusive_bits) {
1035 1036 1037 1038
			*failed_start = state->start;
			err = -EEXIST;
			goto out;
		}
1039

1040
		set_state_bits(tree, state, &bits, changeset);
1041
		cache_state(state, cached_state);
1042
		merge_state(tree, state);
1043 1044 1045
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1046 1047 1048 1049
		state = next_state(state);
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
1070
		if (state->state & exclusive_bits) {
1071 1072 1073 1074
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1075

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
		/*
		 * If this extent already has all the bits we want set, then
		 * skip it, not necessary to split it or do anything with it.
		 */
		if ((state->state & bits) == bits) {
			start = state->end + 1;
			cache_state(state, cached_state);
			goto search_again;
		}

1086 1087
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1088
		err = split_state(tree, state, prealloc, start);
1089 1090 1091
		if (err)
			extent_io_tree_panic(tree, err);

1092 1093 1094 1095
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1096
			set_state_bits(tree, state, &bits, changeset);
1097
			cache_state(state, cached_state);
1098
			merge_state(tree, state);
1099 1100 1101
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1102 1103 1104 1105
			state = next_state(state);
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
C
Chris Mason 已提交
1121
			this_end = last_start - 1;
1122 1123 1124

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1125 1126 1127 1128 1129

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
1130
		err = insert_state(tree, prealloc, start, this_end,
1131
				   NULL, NULL, &bits, changeset);
1132 1133 1134
		if (err)
			extent_io_tree_panic(tree, err);

J
Josef Bacik 已提交
1135 1136
		cache_state(prealloc, cached_state);
		prealloc = NULL;
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
1147
		if (state->state & exclusive_bits) {
1148 1149 1150 1151
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1152 1153 1154

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1155
		err = split_state(tree, state, prealloc, end + 1);
1156 1157
		if (err)
			extent_io_tree_panic(tree, err);
1158

1159
		set_state_bits(tree, prealloc, &bits, changeset);
1160
		cache_state(prealloc, cached_state);
1161 1162 1163 1164 1165
		merge_state(tree, prealloc);
		prealloc = NULL;
		goto out;
	}

1166 1167 1168 1169 1170 1171 1172
search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
	if (gfpflags_allow_blocking(mask))
		cond_resched();
	goto again;
1173 1174

out:
1175
	spin_unlock(&tree->lock);
1176 1177 1178 1179 1180 1181 1182
	if (prealloc)
		free_extent_state(prealloc);

	return err;

}

J
Josef Bacik 已提交
1183
/**
L
Liu Bo 已提交
1184 1185
 * convert_extent_bit - convert all bits in a given range from one bit to
 * 			another
J
Josef Bacik 已提交
1186 1187 1188 1189 1190
 * @tree:	the io tree to search
 * @start:	the start offset in bytes
 * @end:	the end offset in bytes (inclusive)
 * @bits:	the bits to set in this range
 * @clear_bits:	the bits to clear in this range
1191
 * @cached_state:	state that we're going to cache
J
Josef Bacik 已提交
1192 1193 1194 1195 1196 1197
 *
 * This will go through and set bits for the given range.  If any states exist
 * already in this range they are set with the given bit and cleared of the
 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 * boundary bits like LOCK.
1198 1199
 *
 * All allocations are done with GFP_NOFS.
J
Josef Bacik 已提交
1200 1201
 */
int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1202
		       u32 bits, u32 clear_bits,
1203
		       struct extent_state **cached_state)
J
Josef Bacik 已提交
1204 1205 1206 1207
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
1208 1209
	struct rb_node **p;
	struct rb_node *parent;
J
Josef Bacik 已提交
1210 1211 1212
	int err = 0;
	u64 last_start;
	u64 last_end;
1213
	bool first_iteration = true;
J
Josef Bacik 已提交
1214

1215
	btrfs_debug_check_extent_io_range(tree, start, end);
1216 1217
	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
				       clear_bits);
1218

J
Josef Bacik 已提交
1219
again:
1220
	if (!prealloc) {
1221 1222 1223 1224 1225 1226 1227
		/*
		 * Best effort, don't worry if extent state allocation fails
		 * here for the first iteration. We might have a cached state
		 * that matches exactly the target range, in which case no
		 * extent state allocations are needed. We'll only know this
		 * after locking the tree.
		 */
1228
		prealloc = alloc_extent_state(GFP_NOFS);
1229
		if (!prealloc && !first_iteration)
J
Josef Bacik 已提交
1230 1231 1232 1233
			return -ENOMEM;
	}

	spin_lock(&tree->lock);
1234 1235 1236
	if (cached_state && *cached_state) {
		state = *cached_state;
		if (state->start <= start && state->end > start &&
1237
		    extent_state_in_tree(state)) {
1238 1239 1240 1241 1242
			node = &state->rb_node;
			goto hit_next;
		}
	}

J
Josef Bacik 已提交
1243 1244 1245 1246
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1247
	node = tree_search_for_insert(tree, start, &p, &parent);
J
Josef Bacik 已提交
1248 1249
	if (!node) {
		prealloc = alloc_extent_state_atomic(prealloc);
1250 1251 1252 1253
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
1254
		err = insert_state(tree, prealloc, start, end,
1255
				   &p, &parent, &bits, NULL);
1256 1257
		if (err)
			extent_io_tree_panic(tree, err);
1258 1259
		cache_state(prealloc, cached_state);
		prealloc = NULL;
J
Josef Bacik 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
hit_next:
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1274
		set_state_bits(tree, state, &bits, NULL);
1275
		cache_state(state, cached_state);
1276
		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1277 1278 1279
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1280 1281 1282
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
J
Josef Bacik 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
		prealloc = alloc_extent_state_atomic(prealloc);
1304 1305 1306 1307
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1308
		err = split_state(tree, state, prealloc, start);
1309 1310
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1311 1312 1313 1314
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1315
			set_state_bits(tree, state, &bits, NULL);
1316
			cache_state(state, cached_state);
1317 1318
			state = clear_state_bit(tree, state, &clear_bits, 0,
						NULL);
J
Josef Bacik 已提交
1319 1320 1321
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1322 1323 1324
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
J
Josef Bacik 已提交
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
			this_end = last_start - 1;

		prealloc = alloc_extent_state_atomic(prealloc);
1343 1344 1345 1346
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1347 1348 1349 1350 1351 1352

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
		err = insert_state(tree, prealloc, start, this_end,
1353
				   NULL, NULL, &bits, NULL);
1354 1355
		if (err)
			extent_io_tree_panic(tree, err);
1356
		cache_state(prealloc, cached_state);
J
Josef Bacik 已提交
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
		prealloc = NULL;
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
		prealloc = alloc_extent_state_atomic(prealloc);
1369 1370 1371 1372
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1373 1374

		err = split_state(tree, state, prealloc, end + 1);
1375 1376
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1377

1378
		set_state_bits(tree, prealloc, &bits, NULL);
1379
		cache_state(prealloc, cached_state);
1380
		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1381 1382 1383 1384 1385 1386 1387 1388
		prealloc = NULL;
		goto out;
	}

search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
1389
	cond_resched();
1390
	first_iteration = false;
J
Josef Bacik 已提交
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
	goto again;

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return err;
}

1401
/* wrappers around set/clear extent bit */
1402
int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1403
			   u32 bits, struct extent_changeset *changeset)
1404 1405 1406 1407 1408 1409 1410 1411 1412
{
	/*
	 * We don't support EXTENT_LOCKED yet, as current changeset will
	 * record any bits changed, so for EXTENT_LOCKED case, it will
	 * either fail with -EEXIST or changeset will record the whole
	 * range.
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1413 1414
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
			      changeset);
1415 1416
}

1417
int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1418
			   u32 bits)
1419
{
1420 1421
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
			      GFP_NOWAIT, NULL);
1422 1423
}

1424
int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1425
		     u32 bits, int wake, int delete,
1426
		     struct extent_state **cached)
1427 1428
{
	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1429
				  cached, GFP_NOFS, NULL);
1430 1431 1432
}

int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1433
		u32 bits, struct extent_changeset *changeset)
1434 1435 1436 1437 1438 1439 1440
{
	/*
	 * Don't support EXTENT_LOCKED case, same reason as
	 * set_record_extent_bits().
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1441
	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1442 1443 1444
				  changeset);
}

C
Chris Mason 已提交
1445 1446 1447 1448
/*
 * either insert or lock state struct between start and end use mask to tell
 * us if waiting is desired.
 */
1449
int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1450
		     struct extent_state **cached_state)
1451 1452 1453
{
	int err;
	u64 failed_start;
1454

1455
	while (1) {
1456 1457 1458
		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
				     EXTENT_LOCKED, &failed_start,
				     cached_state, GFP_NOFS, NULL);
1459
		if (err == -EEXIST) {
1460 1461
			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
			start = failed_start;
1462
		} else
1463 1464 1465 1466 1467 1468
			break;
		WARN_ON(start > end);
	}
	return err;
}

1469
int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1470 1471 1472 1473
{
	int err;
	u64 failed_start;

1474 1475
	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
			     &failed_start, NULL, GFP_NOFS, NULL);
Y
Yan Zheng 已提交
1476 1477 1478
	if (err == -EEXIST) {
		if (failed_start > start)
			clear_extent_bit(tree, start, failed_start - 1,
1479
					 EXTENT_LOCKED, 1, 0, NULL);
1480
		return 0;
Y
Yan Zheng 已提交
1481
	}
1482 1483 1484
	return 1;
}

1485
void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1486
{
1487 1488
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1489 1490 1491 1492 1493 1494
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		clear_page_dirty_for_io(page);
1495
		put_page(page);
1496 1497 1498 1499
		index++;
	}
}

1500
void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1501
{
1502 1503
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1504 1505 1506 1507 1508 1509
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		__set_page_dirty_nobuffers(page);
1510
		account_page_redirty(page);
1511
		put_page(page);
1512 1513 1514 1515
		index++;
	}
}

C
Chris Mason 已提交
1516 1517 1518 1519
/* find the first state struct with 'bits' set after 'start', and
 * return it.  tree->lock must be held.  NULL will returned if
 * nothing was found after 'start'
 */
1520
static struct extent_state *
1521
find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
C
Chris Mason 已提交
1522 1523 1524 1525 1526 1527 1528 1529 1530
{
	struct rb_node *node;
	struct extent_state *state;

	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
	node = tree_search(tree, start);
C
Chris Mason 已提交
1531
	if (!node)
C
Chris Mason 已提交
1532 1533
		goto out;

C
Chris Mason 已提交
1534
	while (1) {
C
Chris Mason 已提交
1535
		state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1536
		if (state->end >= start && (state->state & bits))
C
Chris Mason 已提交
1537
			return state;
C
Chris Mason 已提交
1538

C
Chris Mason 已提交
1539 1540 1541 1542 1543 1544 1545 1546
		node = rb_next(node);
		if (!node)
			break;
	}
out:
	return NULL;
}

1547
/*
1548
 * Find the first offset in the io tree with one or more @bits set.
1549
 *
1550 1551 1552 1553
 * Note: If there are multiple bits set in @bits, any of them will match.
 *
 * Return 0 if we find something, and update @start_ret and @end_ret.
 * Return 1 if we found nothing.
1554 1555
 */
int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1556
			  u64 *start_ret, u64 *end_ret, u32 bits,
1557
			  struct extent_state **cached_state)
1558 1559 1560 1561 1562
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
1563 1564
	if (cached_state && *cached_state) {
		state = *cached_state;
1565
		if (state->end == start - 1 && extent_state_in_tree(state)) {
1566
			while ((state = next_state(state)) != NULL) {
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
				if (state->state & bits)
					goto got_it;
			}
			free_extent_state(*cached_state);
			*cached_state = NULL;
			goto out;
		}
		free_extent_state(*cached_state);
		*cached_state = NULL;
	}

1578
	state = find_first_extent_bit_state(tree, start, bits);
1579
got_it:
1580
	if (state) {
1581
		cache_state_if_flags(state, cached_state, 0);
1582 1583 1584 1585
		*start_ret = state->start;
		*end_ret = state->end;
		ret = 0;
	}
1586
out:
1587 1588 1589 1590
	spin_unlock(&tree->lock);
	return ret;
}

1591
/**
1592 1593 1594 1595 1596 1597 1598
 * Find a contiguous area of bits
 *
 * @tree:      io tree to check
 * @start:     offset to start the search from
 * @start_ret: the first offset we found with the bits set
 * @end_ret:   the final contiguous range of the bits that were set
 * @bits:      bits to look for
1599 1600 1601 1602 1603 1604 1605 1606 1607
 *
 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
 * to set bits appropriately, and then merge them again.  During this time it
 * will drop the tree->lock, so use this helper if you want to find the actual
 * contiguous area for given bits.  We will search to the first bit we find, and
 * then walk down the tree until we find a non-contiguous area.  The area
 * returned will be the full contiguous area with the bits set.
 */
int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1608
			       u64 *start_ret, u64 *end_ret, u32 bits)
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
	state = find_first_extent_bit_state(tree, start, bits);
	if (state) {
		*start_ret = state->start;
		*end_ret = state->end;
		while ((state = next_state(state)) != NULL) {
			if (state->start > (*end_ret + 1))
				break;
			*end_ret = state->end;
		}
		ret = 0;
	}
	spin_unlock(&tree->lock);
	return ret;
}

1629
/**
1630 1631
 * Find the first range that has @bits not set. This range could start before
 * @start.
1632
 *
1633 1634 1635 1636 1637
 * @tree:      the tree to search
 * @start:     offset at/after which the found extent should start
 * @start_ret: records the beginning of the range
 * @end_ret:   records the end of the range (inclusive)
 * @bits:      the set of bits which must be unset
1638 1639 1640 1641 1642 1643 1644
 *
 * Since unallocated range is also considered one which doesn't have the bits
 * set it's possible that @end_ret contains -1, this happens in case the range
 * spans (last_range_end, end of device]. In this case it's up to the caller to
 * trim @end_ret to the appropriate size.
 */
void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1645
				 u64 *start_ret, u64 *end_ret, u32 bits)
1646 1647 1648 1649 1650 1651 1652 1653 1654
{
	struct extent_state *state;
	struct rb_node *node, *prev = NULL, *next;

	spin_lock(&tree->lock);

	/* Find first extent with bits cleared */
	while (1) {
		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
		if (!node && !next && !prev) {
			/*
			 * Tree is completely empty, send full range and let
			 * caller deal with it
			 */
			*start_ret = 0;
			*end_ret = -1;
			goto out;
		} else if (!node && !next) {
			/*
			 * We are past the last allocated chunk, set start at
			 * the end of the last extent.
			 */
			state = rb_entry(prev, struct extent_state, rb_node);
			*start_ret = state->end + 1;
			*end_ret = -1;
			goto out;
		} else if (!node) {
1673 1674
			node = next;
		}
1675 1676 1677 1678
		/*
		 * At this point 'node' either contains 'start' or start is
		 * before 'node'
		 */
1679
		state = rb_entry(node, struct extent_state, rb_node);
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701

		if (in_range(start, state->start, state->end - state->start + 1)) {
			if (state->state & bits) {
				/*
				 * |--range with bits sets--|
				 *    |
				 *    start
				 */
				start = state->end + 1;
			} else {
				/*
				 * 'start' falls within a range that doesn't
				 * have the bits set, so take its start as
				 * the beginning of the desired range
				 *
				 * |--range with bits cleared----|
				 *      |
				 *      start
				 */
				*start_ret = state->start;
				break;
			}
1702
		} else {
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
			/*
			 * |---prev range---|---hole/unset---|---node range---|
			 *                          |
			 *                        start
			 *
			 *                        or
			 *
			 * |---hole/unset--||--first node--|
			 * 0   |
			 *    start
			 */
			if (prev) {
				state = rb_entry(prev, struct extent_state,
						 rb_node);
				*start_ret = state->end + 1;
			} else {
				*start_ret = 0;
			}
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
			break;
		}
	}

	/*
	 * Find the longest stretch from start until an entry which has the
	 * bits set
	 */
	while (1) {
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->end >= start && !(state->state & bits)) {
			*end_ret = state->end;
		} else {
			*end_ret = state->start - 1;
			break;
		}

		node = rb_next(node);
		if (!node)
			break;
	}
out:
	spin_unlock(&tree->lock);
}

C
Chris Mason 已提交
1746 1747 1748 1749
/*
 * find a contiguous range of bytes in the file marked as delalloc, not
 * more than 'max_bytes'.  start and end are used to return the range,
 *
1750
 * true is returned if we find something, false if nothing was in the tree
C
Chris Mason 已提交
1751
 */
J
Josef Bacik 已提交
1752 1753 1754
bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
			       u64 *end, u64 max_bytes,
			       struct extent_state **cached_state)
1755 1756 1757 1758
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
1759
	bool found = false;
1760 1761
	u64 total_bytes = 0;

1762
	spin_lock(&tree->lock);
C
Chris Mason 已提交
1763

1764 1765 1766 1767
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1768
	node = tree_search(tree, cur_start);
1769
	if (!node) {
1770
		*end = (u64)-1;
1771 1772 1773
		goto out;
	}

C
Chris Mason 已提交
1774
	while (1) {
1775
		state = rb_entry(node, struct extent_state, rb_node);
1776 1777
		if (found && (state->start != cur_start ||
			      (state->state & EXTENT_BOUNDARY))) {
1778 1779 1780 1781 1782 1783 1784
			goto out;
		}
		if (!(state->state & EXTENT_DELALLOC)) {
			if (!found)
				*end = state->end;
			goto out;
		}
1785
		if (!found) {
1786
			*start = state->start;
1787
			*cached_state = state;
1788
			refcount_inc(&state->refs);
1789
		}
1790
		found = true;
1791 1792 1793 1794
		*end = state->end;
		cur_start = state->end + 1;
		node = rb_next(node);
		total_bytes += state->end - state->start + 1;
1795
		if (total_bytes >= max_bytes)
1796 1797
			break;
		if (!node)
1798 1799 1800
			break;
	}
out:
1801
	spin_unlock(&tree->lock);
1802 1803 1804
	return found;
}

1805 1806 1807 1808 1809
static int __process_pages_contig(struct address_space *mapping,
				  struct page *locked_page,
				  pgoff_t start_index, pgoff_t end_index,
				  unsigned long page_ops, pgoff_t *index_ret);

1810 1811 1812
static noinline void __unlock_for_delalloc(struct inode *inode,
					   struct page *locked_page,
					   u64 start, u64 end)
C
Chris Mason 已提交
1813
{
1814 1815
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
C
Chris Mason 已提交
1816

1817
	ASSERT(locked_page);
C
Chris Mason 已提交
1818
	if (index == locked_page->index && end_index == index)
1819
		return;
C
Chris Mason 已提交
1820

1821 1822
	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
			       PAGE_UNLOCK, NULL);
C
Chris Mason 已提交
1823 1824 1825 1826 1827 1828 1829
}

static noinline int lock_delalloc_pages(struct inode *inode,
					struct page *locked_page,
					u64 delalloc_start,
					u64 delalloc_end)
{
1830
	unsigned long index = delalloc_start >> PAGE_SHIFT;
1831
	unsigned long index_ret = index;
1832
	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
C
Chris Mason 已提交
1833 1834
	int ret;

1835
	ASSERT(locked_page);
C
Chris Mason 已提交
1836 1837 1838
	if (index == locked_page->index && index == end_index)
		return 0;

1839 1840 1841 1842 1843
	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
				     end_index, PAGE_LOCK, &index_ret);
	if (ret == -EAGAIN)
		__unlock_for_delalloc(inode, locked_page, delalloc_start,
				      (u64)index_ret << PAGE_SHIFT);
C
Chris Mason 已提交
1844 1845 1846 1847
	return ret;
}

/*
1848 1849
 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
 * more than @max_bytes.  @Start and @end are used to return the range,
C
Chris Mason 已提交
1850
 *
1851 1852
 * Return: true if we find something
 *         false if nothing was in the tree
C
Chris Mason 已提交
1853
 */
1854
EXPORT_FOR_TESTS
1855
noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1856
				    struct page *locked_page, u64 *start,
1857
				    u64 *end)
C
Chris Mason 已提交
1858
{
1859
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1860
	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
C
Chris Mason 已提交
1861 1862
	u64 delalloc_start;
	u64 delalloc_end;
1863
	bool found;
1864
	struct extent_state *cached_state = NULL;
C
Chris Mason 已提交
1865 1866 1867 1868 1869 1870 1871
	int ret;
	int loops = 0;

again:
	/* step one, find a bunch of delalloc bytes starting at start */
	delalloc_start = *start;
	delalloc_end = 0;
J
Josef Bacik 已提交
1872 1873
	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
					  max_bytes, &cached_state);
C
Chris Mason 已提交
1874
	if (!found || delalloc_end <= *start) {
C
Chris Mason 已提交
1875 1876
		*start = delalloc_start;
		*end = delalloc_end;
1877
		free_extent_state(cached_state);
1878
		return false;
C
Chris Mason 已提交
1879 1880
	}

C
Chris Mason 已提交
1881 1882 1883 1884 1885
	/*
	 * start comes from the offset of locked_page.  We have to lock
	 * pages in order, so we can't process delalloc bytes before
	 * locked_page
	 */
C
Chris Mason 已提交
1886
	if (delalloc_start < *start)
C
Chris Mason 已提交
1887 1888
		delalloc_start = *start;

C
Chris Mason 已提交
1889 1890 1891
	/*
	 * make sure to limit the number of pages we try to lock down
	 */
1892 1893
	if (delalloc_end + 1 - delalloc_start > max_bytes)
		delalloc_end = delalloc_start + max_bytes - 1;
C
Chris Mason 已提交
1894

C
Chris Mason 已提交
1895 1896 1897
	/* step two, lock all the pages after the page that has start */
	ret = lock_delalloc_pages(inode, locked_page,
				  delalloc_start, delalloc_end);
1898
	ASSERT(!ret || ret == -EAGAIN);
C
Chris Mason 已提交
1899 1900 1901 1902
	if (ret == -EAGAIN) {
		/* some of the pages are gone, lets avoid looping by
		 * shortening the size of the delalloc range we're searching
		 */
1903
		free_extent_state(cached_state);
1904
		cached_state = NULL;
C
Chris Mason 已提交
1905
		if (!loops) {
1906
			max_bytes = PAGE_SIZE;
C
Chris Mason 已提交
1907 1908 1909
			loops = 1;
			goto again;
		} else {
1910
			found = false;
C
Chris Mason 已提交
1911 1912 1913 1914 1915
			goto out_failed;
		}
	}

	/* step three, lock the state bits for the whole range */
1916
	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
C
Chris Mason 已提交
1917 1918 1919

	/* then test to make sure it is all still delalloc */
	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1920
			     EXTENT_DELALLOC, 1, cached_state);
C
Chris Mason 已提交
1921
	if (!ret) {
1922
		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1923
				     &cached_state);
C
Chris Mason 已提交
1924 1925 1926 1927 1928
		__unlock_for_delalloc(inode, locked_page,
			      delalloc_start, delalloc_end);
		cond_resched();
		goto again;
	}
1929
	free_extent_state(cached_state);
C
Chris Mason 已提交
1930 1931 1932 1933 1934 1935
	*start = delalloc_start;
	*end = delalloc_end;
out_failed:
	return found;
}

1936 1937 1938 1939
static int __process_pages_contig(struct address_space *mapping,
				  struct page *locked_page,
				  pgoff_t start_index, pgoff_t end_index,
				  unsigned long page_ops, pgoff_t *index_ret)
C
Chris Mason 已提交
1940
{
1941
	unsigned long nr_pages = end_index - start_index + 1;
1942
	unsigned long pages_processed = 0;
1943
	pgoff_t index = start_index;
C
Chris Mason 已提交
1944
	struct page *pages[16];
1945
	unsigned ret;
1946
	int err = 0;
C
Chris Mason 已提交
1947
	int i;
1948

1949 1950 1951 1952 1953
	if (page_ops & PAGE_LOCK) {
		ASSERT(page_ops == PAGE_LOCK);
		ASSERT(index_ret && *index_ret == start_index);
	}

1954
	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1955
		mapping_set_error(mapping, -EIO);
1956

C
Chris Mason 已提交
1957
	while (nr_pages > 0) {
1958
		ret = find_get_pages_contig(mapping, index,
1959 1960
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
1961 1962 1963 1964 1965 1966
		if (ret == 0) {
			/*
			 * Only if we're going to lock these pages,
			 * can we find nothing at @index.
			 */
			ASSERT(page_ops & PAGE_LOCK);
1967 1968
			err = -EAGAIN;
			goto out;
1969
		}
1970

1971
		for (i = 0; i < ret; i++) {
1972
			if (page_ops & PAGE_SET_PRIVATE2)
1973 1974
				SetPagePrivate2(pages[i]);

1975
			if (locked_page && pages[i] == locked_page) {
1976
				put_page(pages[i]);
1977
				pages_processed++;
C
Chris Mason 已提交
1978 1979
				continue;
			}
1980
			if (page_ops & PAGE_START_WRITEBACK) {
C
Chris Mason 已提交
1981 1982
				clear_page_dirty_for_io(pages[i]);
				set_page_writeback(pages[i]);
1983
			}
1984 1985
			if (page_ops & PAGE_SET_ERROR)
				SetPageError(pages[i]);
1986
			if (page_ops & PAGE_END_WRITEBACK)
C
Chris Mason 已提交
1987
				end_page_writeback(pages[i]);
1988
			if (page_ops & PAGE_UNLOCK)
1989
				unlock_page(pages[i]);
1990 1991 1992 1993 1994
			if (page_ops & PAGE_LOCK) {
				lock_page(pages[i]);
				if (!PageDirty(pages[i]) ||
				    pages[i]->mapping != mapping) {
					unlock_page(pages[i]);
1995 1996
					for (; i < ret; i++)
						put_page(pages[i]);
1997 1998 1999 2000
					err = -EAGAIN;
					goto out;
				}
			}
2001
			put_page(pages[i]);
2002
			pages_processed++;
C
Chris Mason 已提交
2003 2004 2005 2006 2007
		}
		nr_pages -= ret;
		index += ret;
		cond_resched();
	}
2008 2009
out:
	if (err && index_ret)
2010
		*index_ret = start_index + pages_processed - 1;
2011
	return err;
C
Chris Mason 已提交
2012 2013
}

2014
void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2015
				  struct page *locked_page,
2016
				  u32 clear_bits, unsigned long page_ops)
2017
{
2018
	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2019

2020
	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2021
			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2022
			       page_ops, NULL);
2023 2024
}

C
Chris Mason 已提交
2025 2026 2027 2028 2029
/*
 * count the number of bytes in the tree that have a given bit(s)
 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
 * cached.  The total number found is returned.
 */
2030 2031
u64 count_range_bits(struct extent_io_tree *tree,
		     u64 *start, u64 search_end, u64 max_bytes,
2032
		     u32 bits, int contig)
2033 2034 2035 2036 2037
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
	u64 total_bytes = 0;
2038
	u64 last = 0;
2039 2040
	int found = 0;

2041
	if (WARN_ON(search_end <= cur_start))
2042 2043
		return 0;

2044
	spin_lock(&tree->lock);
2045 2046 2047 2048 2049 2050 2051 2052
	if (cur_start == 0 && bits == EXTENT_DIRTY) {
		total_bytes = tree->dirty_bytes;
		goto out;
	}
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2053
	node = tree_search(tree, cur_start);
C
Chris Mason 已提交
2054
	if (!node)
2055 2056
		goto out;

C
Chris Mason 已提交
2057
	while (1) {
2058 2059 2060
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->start > search_end)
			break;
2061 2062 2063
		if (contig && found && state->start > last + 1)
			break;
		if (state->end >= cur_start && (state->state & bits) == bits) {
2064 2065 2066 2067 2068
			total_bytes += min(search_end, state->end) + 1 -
				       max(cur_start, state->start);
			if (total_bytes >= max_bytes)
				break;
			if (!found) {
2069
				*start = max(cur_start, state->start);
2070 2071
				found = 1;
			}
2072 2073 2074
			last = state->end;
		} else if (contig && found) {
			break;
2075 2076 2077 2078 2079 2080
		}
		node = rb_next(node);
		if (!node)
			break;
	}
out:
2081
	spin_unlock(&tree->lock);
2082 2083
	return total_bytes;
}
2084

C
Chris Mason 已提交
2085 2086 2087 2088
/*
 * set the private field for a given byte offset in the tree.  If there isn't
 * an extent_state there already, this does nothing.
 */
2089 2090
int set_state_failrec(struct extent_io_tree *tree, u64 start,
		      struct io_failure_record *failrec)
2091 2092 2093 2094 2095
{
	struct rb_node *node;
	struct extent_state *state;
	int ret = 0;

2096
	spin_lock(&tree->lock);
2097 2098 2099 2100
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2101
	node = tree_search(tree, start);
2102
	if (!node) {
2103 2104 2105 2106 2107 2108 2109 2110
		ret = -ENOENT;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
		ret = -ENOENT;
		goto out;
	}
2111
	state->failrec = failrec;
2112
out:
2113
	spin_unlock(&tree->lock);
2114 2115 2116
	return ret;
}

2117
struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2118 2119 2120
{
	struct rb_node *node;
	struct extent_state *state;
2121
	struct io_failure_record *failrec;
2122

2123
	spin_lock(&tree->lock);
2124 2125 2126 2127
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2128
	node = tree_search(tree, start);
2129
	if (!node) {
2130
		failrec = ERR_PTR(-ENOENT);
2131 2132 2133 2134
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
2135
		failrec = ERR_PTR(-ENOENT);
2136 2137
		goto out;
	}
2138 2139

	failrec = state->failrec;
2140
out:
2141
	spin_unlock(&tree->lock);
2142
	return failrec;
2143 2144 2145 2146
}

/*
 * searches a range in the state tree for a given mask.
2147
 * If 'filled' == 1, this returns 1 only if every extent in the tree
2148 2149 2150 2151
 * has the bits set.  Otherwise, 1 is returned if any bit in the
 * range is found set.
 */
int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2152
		   u32 bits, int filled, struct extent_state *cached)
2153 2154 2155 2156 2157
{
	struct extent_state *state = NULL;
	struct rb_node *node;
	int bitset = 0;

2158
	spin_lock(&tree->lock);
2159
	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2160
	    cached->end > start)
2161 2162 2163
		node = &cached->rb_node;
	else
		node = tree_search(tree, start);
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
	while (node && start <= end) {
		state = rb_entry(node, struct extent_state, rb_node);

		if (filled && state->start > start) {
			bitset = 0;
			break;
		}

		if (state->start > end)
			break;

		if (state->state & bits) {
			bitset = 1;
			if (!filled)
				break;
		} else if (filled) {
			bitset = 0;
			break;
		}
2183 2184 2185 2186

		if (state->end == (u64)-1)
			break;

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
		start = state->end + 1;
		if (start > end)
			break;
		node = rb_next(node);
		if (!node) {
			if (filled)
				bitset = 0;
			break;
		}
	}
2197
	spin_unlock(&tree->lock);
2198 2199 2200 2201 2202 2203 2204
	return bitset;
}

/*
 * helper function to set a given page up to date if all the
 * extents in the tree for that page are up to date
 */
2205
static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2206
{
M
Miao Xie 已提交
2207
	u64 start = page_offset(page);
2208
	u64 end = start + PAGE_SIZE - 1;
2209
	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2210 2211 2212
		SetPageUptodate(page);
}

2213 2214 2215
int free_io_failure(struct extent_io_tree *failure_tree,
		    struct extent_io_tree *io_tree,
		    struct io_failure_record *rec)
2216 2217 2218 2219
{
	int ret;
	int err = 0;

2220
	set_state_failrec(failure_tree, rec->start, NULL);
2221 2222
	ret = clear_extent_bits(failure_tree, rec->start,
				rec->start + rec->len - 1,
2223
				EXTENT_LOCKED | EXTENT_DIRTY);
2224 2225 2226
	if (ret)
		err = ret;

2227
	ret = clear_extent_bits(io_tree, rec->start,
D
David Woodhouse 已提交
2228
				rec->start + rec->len - 1,
2229
				EXTENT_DAMAGED);
D
David Woodhouse 已提交
2230 2231
	if (ret && !err)
		err = ret;
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241

	kfree(rec);
	return err;
}

/*
 * this bypasses the standard btrfs submit functions deliberately, as
 * the standard behavior is to write all copies in a raid setup. here we only
 * want to write the one bad copy. so we do the mapping for ourselves and issue
 * submit_bio directly.
2242
 * to avoid any synchronization issues, wait for the data after writing, which
2243 2244 2245 2246
 * actually prevents the read that triggered the error from finishing.
 * currently, there can be no more than two copies of every data bit. thus,
 * exactly one rewrite is required.
 */
2247 2248 2249
int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
		      u64 length, u64 logical, struct page *page,
		      unsigned int pg_offset, int mirror_num)
2250 2251 2252 2253 2254 2255 2256 2257
{
	struct bio *bio;
	struct btrfs_device *dev;
	u64 map_length = 0;
	u64 sector;
	struct btrfs_bio *bbio = NULL;
	int ret;

2258
	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2259 2260
	BUG_ON(!mirror_num);

2261
	bio = btrfs_io_bio_alloc(1);
2262
	bio->bi_iter.bi_size = 0;
2263 2264
	map_length = length;

2265 2266 2267 2268 2269 2270
	/*
	 * Avoid races with device replace and make sure our bbio has devices
	 * associated to its stripes that don't go away while we are doing the
	 * read repair operation.
	 */
	btrfs_bio_counter_inc_blocked(fs_info);
2271
	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
		/*
		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
		 * to update all raid stripes, but here we just want to correct
		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
		 * stripe's dev and sector.
		 */
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
				      &map_length, &bbio, 0);
		if (ret) {
			btrfs_bio_counter_dec(fs_info);
			bio_put(bio);
			return -EIO;
		}
		ASSERT(bbio->mirror_num == 1);
	} else {
		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
				      &map_length, &bbio, mirror_num);
		if (ret) {
			btrfs_bio_counter_dec(fs_info);
			bio_put(bio);
			return -EIO;
		}
		BUG_ON(mirror_num != bbio->mirror_num);
2295
	}
2296 2297

	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2298
	bio->bi_iter.bi_sector = sector;
2299
	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2300
	btrfs_put_bbio(bbio);
2301 2302
	if (!dev || !dev->bdev ||
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2303
		btrfs_bio_counter_dec(fs_info);
2304 2305 2306
		bio_put(bio);
		return -EIO;
	}
2307
	bio_set_dev(bio, dev->bdev);
2308
	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2309
	bio_add_page(bio, page, length, pg_offset);
2310

2311
	if (btrfsic_submit_bio_wait(bio)) {
2312
		/* try to remap that extent elsewhere? */
2313
		btrfs_bio_counter_dec(fs_info);
2314
		bio_put(bio);
2315
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2316 2317 2318
		return -EIO;
	}

2319 2320
	btrfs_info_rl_in_rcu(fs_info,
		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2321
				  ino, start,
2322
				  rcu_str_deref(dev->name), sector);
2323
	btrfs_bio_counter_dec(fs_info);
2324 2325 2326 2327
	bio_put(bio);
	return 0;
}

2328
int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2329
{
2330
	struct btrfs_fs_info *fs_info = eb->fs_info;
2331
	u64 start = eb->start;
2332
	int i, num_pages = num_extent_pages(eb);
2333
	int ret = 0;
2334

2335
	if (sb_rdonly(fs_info->sb))
2336 2337
		return -EROFS;

2338
	for (i = 0; i < num_pages; i++) {
2339
		struct page *p = eb->pages[i];
2340

2341
		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2342
					start - page_offset(p), mirror_num);
2343 2344
		if (ret)
			break;
2345
		start += PAGE_SIZE;
2346 2347 2348 2349 2350
	}

	return ret;
}

2351 2352 2353 2354
/*
 * each time an IO finishes, we do a fast check in the IO failure tree
 * to see if we need to process or clean up an io_failure_record
 */
2355 2356 2357 2358
int clean_io_failure(struct btrfs_fs_info *fs_info,
		     struct extent_io_tree *failure_tree,
		     struct extent_io_tree *io_tree, u64 start,
		     struct page *page, u64 ino, unsigned int pg_offset)
2359 2360 2361 2362 2363 2364 2365 2366
{
	u64 private;
	struct io_failure_record *failrec;
	struct extent_state *state;
	int num_copies;
	int ret;

	private = 0;
2367 2368
	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
			       EXTENT_DIRTY, 0);
2369 2370 2371
	if (!ret)
		return 0;

2372 2373
	failrec = get_state_failrec(failure_tree, start);
	if (IS_ERR(failrec))
2374 2375 2376 2377 2378 2379
		return 0;

	BUG_ON(!failrec->this_mirror);

	if (failrec->in_validation) {
		/* there was no real error, just free the record */
2380 2381 2382
		btrfs_debug(fs_info,
			"clean_io_failure: freeing dummy error at %llu",
			failrec->start);
2383 2384
		goto out;
	}
2385
	if (sb_rdonly(fs_info->sb))
2386
		goto out;
2387

2388 2389
	spin_lock(&io_tree->lock);
	state = find_first_extent_bit_state(io_tree,
2390 2391
					    failrec->start,
					    EXTENT_LOCKED);
2392
	spin_unlock(&io_tree->lock);
2393

2394 2395
	if (state && state->start <= failrec->start &&
	    state->end >= failrec->start + failrec->len - 1) {
2396 2397
		num_copies = btrfs_num_copies(fs_info, failrec->logical,
					      failrec->len);
2398
		if (num_copies > 1)  {
2399 2400 2401
			repair_io_failure(fs_info, ino, start, failrec->len,
					  failrec->logical, page, pg_offset,
					  failrec->failed_mirror);
2402 2403 2404 2405
		}
	}

out:
2406
	free_io_failure(failure_tree, io_tree, failrec);
2407

2408
	return 0;
2409 2410
}

2411 2412 2413 2414 2415 2416
/*
 * Can be called when
 * - hold extent lock
 * - under ordered extent
 * - the inode is freeing
 */
2417
void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2418
{
2419
	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
	struct io_failure_record *failrec;
	struct extent_state *state, *next;

	if (RB_EMPTY_ROOT(&failure_tree->state))
		return;

	spin_lock(&failure_tree->lock);
	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
	while (state) {
		if (state->start > end)
			break;

		ASSERT(state->end <= end);

		next = next_state(state);

2436
		failrec = state->failrec;
2437 2438 2439 2440 2441 2442 2443 2444
		free_extent_state(state);
		kfree(failrec);

		state = next;
	}
	spin_unlock(&failure_tree->lock);
}

2445 2446
static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
							     u64 start, u64 end)
2447
{
2448
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2449
	struct io_failure_record *failrec;
2450 2451 2452 2453 2454 2455 2456
	struct extent_map *em;
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
	int ret;
	u64 logical;

2457
	failrec = get_state_failrec(failure_tree, start);
2458
	if (!IS_ERR(failrec)) {
2459 2460 2461 2462
		btrfs_debug(fs_info,
			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
			failrec->logical, failrec->start, failrec->len,
			failrec->in_validation);
2463 2464 2465 2466 2467
		/*
		 * when data can be on disk more than twice, add to failrec here
		 * (e.g. with a list for failed_mirror) to make
		 * clean_io_failure() clean all those errors at once.
		 */
2468 2469

		return failrec;
2470
	}
2471

2472 2473 2474
	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
	if (!failrec)
		return ERR_PTR(-ENOMEM);
2475

2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
	failrec->start = start;
	failrec->len = end - start + 1;
	failrec->this_mirror = 0;
	failrec->bio_flags = 0;
	failrec->in_validation = 0;

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, start, failrec->len);
	if (!em) {
		read_unlock(&em_tree->lock);
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	if (em->start > start || em->start + em->len <= start) {
		free_extent_map(em);
		em = NULL;
	}
	read_unlock(&em_tree->lock);
	if (!em) {
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	logical = start - em->start;
	logical = em->block_start + logical;
	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
		logical = em->block_start;
		failrec->bio_flags = EXTENT_BIO_COMPRESSED;
		extent_set_compress_type(&failrec->bio_flags, em->compress_type);
	}

	btrfs_debug(fs_info,
		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
		    logical, start, failrec->len);

	failrec->logical = logical;
	free_extent_map(em);

	/* Set the bits in the private failure tree */
	ret = set_extent_bits(failure_tree, start, end,
			      EXTENT_LOCKED | EXTENT_DIRTY);
	if (ret >= 0) {
		ret = set_state_failrec(failure_tree, start, failrec);
		/* Set the bits in the inode's tree */
		ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
	} else if (ret < 0) {
		kfree(failrec);
		return ERR_PTR(ret);
	}

	return failrec;
2528 2529
}

2530 2531 2532
static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
				   struct io_failure_record *failrec,
				   int failed_mirror)
2533
{
2534
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2535 2536
	int num_copies;

2537
	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2538 2539 2540 2541 2542 2543
	if (num_copies == 1) {
		/*
		 * we only have a single copy of the data, so don't bother with
		 * all the retry and error correction code that follows. no
		 * matter what the error is, it is very likely to persist.
		 */
2544 2545 2546
		btrfs_debug(fs_info,
			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2547
		return false;
2548 2549 2550 2551 2552 2553 2554
	}

	/*
	 * there are two premises:
	 *	a) deliver good data to the caller
	 *	b) correct the bad sectors on disk
	 */
2555
	if (needs_validation) {
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
		/*
		 * to fulfill b), we need to know the exact failing sectors, as
		 * we don't want to rewrite any more than the failed ones. thus,
		 * we need separate read requests for the failed bio
		 *
		 * if the following BUG_ON triggers, our validation request got
		 * merged. we need separate requests for our algorithm to work.
		 */
		BUG_ON(failrec->in_validation);
		failrec->in_validation = 1;
		failrec->this_mirror = failed_mirror;
	} else {
		/*
		 * we're ready to fulfill a) and b) alongside. get a good copy
		 * of the failed sector and if we succeed, we have setup
		 * everything for repair_io_failure to do the rest for us.
		 */
		if (failrec->in_validation) {
			BUG_ON(failrec->this_mirror != failed_mirror);
			failrec->in_validation = 0;
			failrec->this_mirror = 0;
		}
		failrec->failed_mirror = failed_mirror;
		failrec->this_mirror++;
		if (failrec->this_mirror == failed_mirror)
			failrec->this_mirror++;
	}

2584
	if (failrec->this_mirror > num_copies) {
2585 2586 2587
		btrfs_debug(fs_info,
			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2588
		return false;
2589 2590
	}

2591
	return true;
2592 2593
}

2594
static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2595
{
2596
	u64 len = 0;
2597
	const u32 blocksize = inode->i_sb->s_blocksize;
2598

2599 2600 2601 2602 2603 2604 2605
	/*
	 * If bi_status is BLK_STS_OK, then this was a checksum error, not an
	 * I/O error. In this case, we already know exactly which sector was
	 * bad, so we don't need to validate.
	 */
	if (bio->bi_status == BLK_STS_OK)
		return false;
2606

2607 2608 2609
	/*
	 * We need to validate each sector individually if the failed I/O was
	 * for multiple sectors.
2610 2611 2612 2613 2614 2615 2616 2617 2618
	 *
	 * There are a few possible bios that can end up here:
	 * 1. A buffered read bio, which is not cloned.
	 * 2. A direct I/O read bio, which is cloned.
	 * 3. A (buffered or direct) repair bio, which is not cloned.
	 *
	 * For cloned bios (case 2), we can get the size from
	 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
	 * it from the bvecs.
2619
	 */
2620 2621
	if (bio_flagged(bio, BIO_CLONED)) {
		if (btrfs_io_bio(bio)->iter.bi_size > blocksize)
2622
			return true;
2623 2624 2625
	} else {
		struct bio_vec *bvec;
		int i;
2626

2627 2628 2629 2630 2631
		bio_for_each_bvec_all(bvec, bio, i) {
			len += bvec->bv_len;
			if (len > blocksize)
				return true;
		}
2632
	}
2633
	return false;
2634 2635
}

2636
blk_status_t btrfs_submit_read_repair(struct inode *inode,
2637
				      struct bio *failed_bio, u32 bio_offset,
2638 2639 2640
				      struct page *page, unsigned int pgoff,
				      u64 start, u64 end, int failed_mirror,
				      submit_bio_hook_t *submit_bio_hook)
2641 2642
{
	struct io_failure_record *failrec;
2643
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2644
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2645
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2646
	struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2647
	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2648
	bool need_validation;
2649 2650
	struct bio *repair_bio;
	struct btrfs_io_bio *repair_io_bio;
2651
	blk_status_t status;
2652

2653 2654
	btrfs_debug(fs_info,
		   "repair read error: read error at %llu", start);
2655

2656
	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2657

2658 2659 2660
	failrec = btrfs_get_io_failure_record(inode, start, end);
	if (IS_ERR(failrec))
		return errno_to_blk_status(PTR_ERR(failrec));
2661

2662
	need_validation = btrfs_io_needs_validation(inode, failed_bio);
2663

2664
	if (!btrfs_check_repairable(inode, need_validation, failrec,
2665
				    failed_mirror)) {
2666
		free_io_failure(failure_tree, tree, failrec);
2667
		return BLK_STS_IOERR;
2668 2669
	}

2670 2671 2672
	repair_bio = btrfs_io_bio_alloc(1);
	repair_io_bio = btrfs_io_bio(repair_bio);
	repair_bio->bi_opf = REQ_OP_READ;
2673
	if (need_validation)
2674 2675 2676 2677
		repair_bio->bi_opf |= REQ_FAILFAST_DEV;
	repair_bio->bi_end_io = failed_bio->bi_end_io;
	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
	repair_bio->bi_private = failed_bio->bi_private;
2678

2679
	if (failed_io_bio->csum) {
2680
		const u32 csum_size = fs_info->csum_size;
2681 2682 2683 2684 2685

		repair_io_bio->csum = repair_io_bio->csum_inline;
		memcpy(repair_io_bio->csum,
		       failed_io_bio->csum + csum_size * icsum, csum_size);
	}
2686

2687 2688 2689
	bio_add_page(repair_bio, page, failrec->len, pgoff);
	repair_io_bio->logical = failrec->start;
	repair_io_bio->iter = repair_bio->bi_iter;
2690

2691
	btrfs_debug(btrfs_sb(inode->i_sb),
2692 2693
"repair read error: submitting new read to mirror %d, in_validation=%d",
		    failrec->this_mirror, failrec->in_validation);
2694

2695 2696
	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
				 failrec->bio_flags);
2697
	if (status) {
2698
		free_io_failure(failure_tree, tree, failrec);
2699
		bio_put(repair_bio);
2700
	}
2701
	return status;
2702 2703
}

2704 2705
/* lots and lots of room for performance fixes in the end_bio funcs */

2706
void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2707 2708
{
	int uptodate = (err == 0);
2709
	int ret = 0;
2710

2711
	btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2712 2713 2714 2715

	if (!uptodate) {
		ClearPageUptodate(page);
		SetPageError(page);
2716
		ret = err < 0 ? err : -EIO;
2717
		mapping_set_error(page->mapping, ret);
2718 2719 2720
	}
}

2721 2722 2723 2724 2725 2726 2727 2728 2729
/*
 * after a writepage IO is done, we need to:
 * clear the uptodate bits on error
 * clear the writeback bits in the extent tree for this IO
 * end_page_writeback if the page has no more pending IO
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2730
static void end_bio_extent_writepage(struct bio *bio)
2731
{
2732
	int error = blk_status_to_errno(bio->bi_status);
2733
	struct bio_vec *bvec;
2734 2735
	u64 start;
	u64 end;
2736
	struct bvec_iter_all iter_all;
2737

2738
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2739
	bio_for_each_segment_all(bvec, bio, iter_all) {
2740
		struct page *page = bvec->bv_page;
2741 2742
		struct inode *inode = page->mapping->host;
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2743

2744 2745 2746 2747 2748
		/* We always issue full-page reads, but if some block
		 * in a page fails to read, blk_update_request() will
		 * advance bv_offset and adjust bv_len to compensate.
		 * Print a warning for nonzero offsets, and an error
		 * if they don't add up to a full page.  */
2749 2750
		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2751
				btrfs_err(fs_info,
2752 2753 2754
				   "partial page write in btrfs with offset %u and length %u",
					bvec->bv_offset, bvec->bv_len);
			else
2755
				btrfs_info(fs_info,
J
Jeff Mahoney 已提交
2756
				   "incomplete page write in btrfs with offset %u and length %u",
2757 2758
					bvec->bv_offset, bvec->bv_len);
		}
2759

2760 2761
		start = page_offset(page);
		end = start + bvec->bv_offset + bvec->bv_len - 1;
2762

2763
		end_extent_writepage(page, error, start, end);
2764
		end_page_writeback(page);
2765
	}
2766

2767 2768 2769
	bio_put(bio);
}

2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
/*
 * Record previously processed extent range
 *
 * For endio_readpage_release_extent() to handle a full extent range, reducing
 * the extent io operations.
 */
struct processed_extent {
	struct btrfs_inode *inode;
	/* Start of the range in @inode */
	u64 start;
2780
	/* End of the range in @inode */
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
	u64 end;
	bool uptodate;
};

/*
 * Try to release processed extent range
 *
 * May not release the extent range right now if the current range is
 * contiguous to processed extent.
 *
 * Will release processed extent when any of @inode, @uptodate, the range is
 * no longer contiguous to the processed range.
 *
 * Passing @inode == NULL will force processed extent to be released.
 */
static void endio_readpage_release_extent(struct processed_extent *processed,
			      struct btrfs_inode *inode, u64 start, u64 end,
			      bool uptodate)
2799 2800
{
	struct extent_state *cached = NULL;
2801 2802 2803 2804 2805
	struct extent_io_tree *tree;

	/* The first extent, initialize @processed */
	if (!processed->inode)
		goto update;
2806

2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
	/*
	 * Contiguous to processed extent, just uptodate the end.
	 *
	 * Several things to notice:
	 *
	 * - bio can be merged as long as on-disk bytenr is contiguous
	 *   This means we can have page belonging to other inodes, thus need to
	 *   check if the inode still matches.
	 * - bvec can contain range beyond current page for multi-page bvec
	 *   Thus we need to do processed->end + 1 >= start check
	 */
	if (processed->inode == inode && processed->uptodate == uptodate &&
	    processed->end + 1 >= start && end >= processed->end) {
		processed->end = end;
		return;
	}

	tree = &processed->inode->io_tree;
	/*
	 * Now we don't have range contiguous to the processed range, release
	 * the processed range now.
	 */
	if (processed->uptodate && tree->track_uptodate)
		set_extent_uptodate(tree, processed->start, processed->end,
				    &cached, GFP_ATOMIC);
	unlock_extent_cached_atomic(tree, processed->start, processed->end,
				    &cached);

update:
	/* Update processed to current range */
	processed->inode = inode;
	processed->start = start;
	processed->end = end;
	processed->uptodate = uptodate;
2841 2842
}

2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
static void endio_readpage_update_page_status(struct page *page, bool uptodate)
{
	if (uptodate) {
		SetPageUptodate(page);
	} else {
		ClearPageUptodate(page);
		SetPageError(page);
	}
	unlock_page(page);
}

2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
/*
 * after a readpage IO is done, we need to:
 * clear the uptodate bits on error
 * set the uptodate bits if things worked
 * set the page up to date if all extents in the tree are uptodate
 * clear the lock bit in the extent tree
 * unlock the page if there are no other extents locked for it
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2865
static void end_bio_extent_readpage(struct bio *bio)
2866
{
2867
	struct bio_vec *bvec;
2868
	int uptodate = !bio->bi_status;
2869
	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2870
	struct extent_io_tree *tree, *failure_tree;
2871
	struct processed_extent processed = { 0 };
2872 2873 2874 2875 2876
	/*
	 * The offset to the beginning of a bio, since one bio can never be
	 * larger than UINT_MAX, u32 here is enough.
	 */
	u32 bio_offset = 0;
2877
	int mirror;
2878
	int ret;
2879
	struct bvec_iter_all iter_all;
2880

2881
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2882
	bio_for_each_segment_all(bvec, bio, iter_all) {
2883
		struct page *page = bvec->bv_page;
2884
		struct inode *inode = page->mapping->host;
2885
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2886 2887 2888 2889
		const u32 sectorsize = fs_info->sectorsize;
		u64 start;
		u64 end;
		u32 len;
2890

2891 2892
		btrfs_debug(fs_info,
			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
D
David Sterba 已提交
2893
			bio->bi_iter.bi_sector, bio->bi_status,
2894
			io_bio->mirror_num);
2895
		tree = &BTRFS_I(inode)->io_tree;
2896
		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2897

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
		/*
		 * We always issue full-sector reads, but if some block in a
		 * page fails to read, blk_update_request() will advance
		 * bv_offset and adjust bv_len to compensate.  Print a warning
		 * for unaligned offsets, and an error if they don't add up to
		 * a full sector.
		 */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page read in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
				     sectorsize))
			btrfs_info(fs_info,
		"incomplete page read with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
2917
		len = bvec->bv_len;
2918

2919
		mirror = io_bio->mirror_num;
2920
		if (likely(uptodate)) {
2921
			if (is_data_inode(inode))
2922 2923 2924
				ret = btrfs_verify_data_csum(io_bio,
						bio_offset, page, start, end,
						mirror);
2925 2926
			else
				ret = btrfs_validate_metadata_buffer(io_bio,
2927
					page, start, end, mirror);
2928
			if (ret)
2929
				uptodate = 0;
2930
			else
2931 2932 2933 2934
				clean_io_failure(BTRFS_I(inode)->root->fs_info,
						 failure_tree, tree, start,
						 page,
						 btrfs_ino(BTRFS_I(inode)), 0);
2935
		}
2936

2937 2938 2939
		if (likely(uptodate))
			goto readpage_ok;

2940
		if (is_data_inode(inode)) {
L
Liu Bo 已提交
2941

2942
			/*
2943 2944 2945 2946 2947 2948 2949 2950
			 * The generic bio_readpage_error handles errors the
			 * following way: If possible, new read requests are
			 * created and submitted and will end up in
			 * end_bio_extent_readpage as well (if we're lucky,
			 * not in the !uptodate case). In that case it returns
			 * 0 and we just go on with the next page in our bio.
			 * If it can't handle the error it will return -EIO and
			 * we remain responsible for that page.
2951
			 */
2952 2953
			if (!btrfs_submit_read_repair(inode, bio, bio_offset,
						page,
2954 2955
						start - page_offset(page),
						start, end, mirror,
2956
						btrfs_submit_data_bio)) {
2957
				uptodate = !bio->bi_status;
2958 2959
				ASSERT(bio_offset + len > bio_offset);
				bio_offset += len;
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
				continue;
			}
		} else {
			struct extent_buffer *eb;

			eb = (struct extent_buffer *)page->private;
			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
			eb->read_mirror = mirror;
			atomic_dec(&eb->io_pages);
			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
					       &eb->bflags))
				btree_readahead_hook(eb, -EIO);
2972
		}
2973
readpage_ok:
2974
		if (likely(uptodate)) {
2975
			loff_t i_size = i_size_read(inode);
2976
			pgoff_t end_index = i_size >> PAGE_SHIFT;
2977
			unsigned off;
2978 2979

			/* Zero out the end if this page straddles i_size */
2980
			off = offset_in_page(i_size);
2981
			if (page->index == end_index && off)
2982
				zero_user_segment(page, off, PAGE_SIZE);
2983
		}
2984 2985
		ASSERT(bio_offset + len > bio_offset);
		bio_offset += len;
2986

2987 2988
		/* Update page status and unlock */
		endio_readpage_update_page_status(page, uptodate);
2989 2990
		endio_readpage_release_extent(&processed, BTRFS_I(inode),
					      start, end, uptodate);
2991
	}
2992 2993
	/* Release the last extent */
	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
2994
	btrfs_io_bio_free_csum(io_bio);
2995 2996 2997
	bio_put(bio);
}

2998
/*
2999 3000 3001
 * Initialize the members up to but not including 'bio'. Use after allocating a
 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
 * 'bio' because use of __GFP_ZERO is not supported.
3002
 */
3003
static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
3004
{
3005 3006
	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
}
3007

3008
/*
3009 3010 3011
 * The following helpers allocate a bio. As it's backed by a bioset, it'll
 * never fail.  We're returning a bio right now but you can call btrfs_io_bio
 * for the appropriate container_of magic
3012
 */
3013
struct bio *btrfs_bio_alloc(u64 first_byte)
3014 3015 3016
{
	struct bio *bio;

3017
	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
3018
	bio->bi_iter.bi_sector = first_byte >> 9;
3019
	btrfs_io_bio_init(btrfs_io_bio(bio));
3020 3021 3022
	return bio;
}

3023
struct bio *btrfs_bio_clone(struct bio *bio)
3024
{
3025 3026
	struct btrfs_io_bio *btrfs_bio;
	struct bio *new;
3027

3028
	/* Bio allocation backed by a bioset does not fail */
3029
	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
3030
	btrfs_bio = btrfs_io_bio(new);
3031
	btrfs_io_bio_init(btrfs_bio);
3032
	btrfs_bio->iter = bio->bi_iter;
3033 3034
	return new;
}
3035

3036
struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
3037
{
3038 3039
	struct bio *bio;

3040
	/* Bio allocation backed by a bioset does not fail */
3041
	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
3042
	btrfs_io_bio_init(btrfs_io_bio(bio));
3043
	return bio;
3044 3045
}

3046
struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
3047 3048 3049 3050 3051
{
	struct bio *bio;
	struct btrfs_io_bio *btrfs_bio;

	/* this will never fail when it's backed by a bioset */
3052
	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3053 3054 3055
	ASSERT(bio);

	btrfs_bio = btrfs_io_bio(bio);
3056
	btrfs_io_bio_init(btrfs_bio);
3057 3058

	bio_trim(bio, offset >> 9, size >> 9);
3059
	btrfs_bio->iter = bio->bi_iter;
3060 3061
	return bio;
}
3062

3063 3064
/*
 * @opf:	bio REQ_OP_* and REQ_* flags as one value
3065 3066
 * @wbc:	optional writeback control for io accounting
 * @page:	page to add to the bio
3067 3068
 * @disk_bytenr: logical bytenr where the write will be
 * @size:	portion of page that we want to write to
3069 3070
 * @pg_offset:	offset of the new bio or to check whether we are adding
 *              a contiguous page to the previous one
3071
 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3072 3073 3074 3075
 * @end_io_func:     end_io callback for new bio
 * @mirror_num:	     desired mirror to read/write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
 * @bio_flags:	flags of the current bio to see if we can merge them
3076
 */
3077
static int submit_extent_page(unsigned int opf,
3078
			      struct writeback_control *wbc,
3079
			      struct page *page, u64 disk_bytenr,
3080
			      size_t size, unsigned long pg_offset,
3081
			      struct bio **bio_ret,
3082
			      bio_end_io_t end_io_func,
C
Chris Mason 已提交
3083 3084
			      int mirror_num,
			      unsigned long prev_bio_flags,
3085 3086
			      unsigned long bio_flags,
			      bool force_bio_submit)
3087 3088 3089
{
	int ret = 0;
	struct bio *bio;
3090
	size_t io_size = min_t(size_t, size, PAGE_SIZE);
3091
	sector_t sector = disk_bytenr >> 9;
3092
	struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
3093

3094 3095 3096
	ASSERT(bio_ret);

	if (*bio_ret) {
3097 3098 3099
		bool contig;
		bool can_merge = true;

3100
		bio = *bio_ret;
3101
		if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
3102
			contig = bio->bi_iter.bi_sector == sector;
C
Chris Mason 已提交
3103
		else
K
Kent Overstreet 已提交
3104
			contig = bio_end_sector(bio) == sector;
C
Chris Mason 已提交
3105

3106
		if (btrfs_bio_fits_in_stripe(page, io_size, bio, bio_flags))
3107 3108 3109
			can_merge = false;

		if (prev_bio_flags != bio_flags || !contig || !can_merge ||
3110
		    force_bio_submit ||
3111
		    bio_add_page(bio, page, io_size, pg_offset) < io_size) {
3112
			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3113 3114
			if (ret < 0) {
				*bio_ret = NULL;
3115
				return ret;
3116
			}
3117 3118
			bio = NULL;
		} else {
3119
			if (wbc)
3120
				wbc_account_cgroup_owner(wbc, page, io_size);
3121 3122 3123
			return 0;
		}
	}
C
Chris Mason 已提交
3124

3125
	bio = btrfs_bio_alloc(disk_bytenr);
3126
	bio_add_page(bio, page, io_size, pg_offset);
3127 3128
	bio->bi_end_io = end_io_func;
	bio->bi_private = tree;
3129
	bio->bi_write_hint = page->mapping->host->i_write_hint;
3130
	bio->bi_opf = opf;
3131
	if (wbc) {
3132 3133 3134 3135
		struct block_device *bdev;

		bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
		bio_set_dev(bio, bdev);
3136
		wbc_init_bio(wbc, bio);
3137
		wbc_account_cgroup_owner(wbc, page, io_size);
3138
	}
3139

3140
	*bio_ret = bio;
3141 3142 3143 3144

	return ret;
}

3145 3146 3147
static int attach_extent_buffer_page(struct extent_buffer *eb,
				     struct page *page,
				     struct btrfs_subpage *prealloc)
3148
{
3149 3150 3151
	struct btrfs_fs_info *fs_info = eb->fs_info;
	int ret = 0;

3152 3153 3154 3155 3156 3157 3158 3159 3160
	/*
	 * If the page is mapped to btree inode, we should hold the private
	 * lock to prevent race.
	 * For cloned or dummy extent buffers, their pages are not mapped and
	 * will not race with any other ebs.
	 */
	if (page->mapping)
		lockdep_assert_held(&page->mapping->private_lock);

3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
	if (fs_info->sectorsize == PAGE_SIZE) {
		if (!PagePrivate(page))
			attach_page_private(page, eb);
		else
			WARN_ON(page->private != (unsigned long)eb);
		return 0;
	}

	/* Already mapped, just free prealloc */
	if (PagePrivate(page)) {
		btrfs_free_subpage(prealloc);
		return 0;
	}

	if (prealloc)
		/* Has preallocated memory for subpage */
		attach_page_private(page, prealloc);
3178
	else
3179 3180 3181 3182
		/* Do new allocation to attach subpage */
		ret = btrfs_attach_subpage(fs_info, page,
					   BTRFS_SUBPAGE_METADATA);
	return ret;
3183 3184
}

J
Josef Bacik 已提交
3185
void set_page_extent_mapped(struct page *page)
3186
{
3187 3188
	if (!PagePrivate(page))
		attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3189 3190
}

3191 3192
static struct extent_map *
__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3193
		 u64 start, u64 len, struct extent_map **em_cached)
3194 3195 3196 3197 3198
{
	struct extent_map *em;

	if (em_cached && *em_cached) {
		em = *em_cached;
3199
		if (extent_map_in_tree(em) && start >= em->start &&
3200
		    start < extent_map_end(em)) {
3201
			refcount_inc(&em->refs);
3202 3203 3204 3205 3206 3207 3208
			return em;
		}

		free_extent_map(em);
		*em_cached = NULL;
	}

3209
	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3210 3211
	if (em_cached && !IS_ERR_OR_NULL(em)) {
		BUG_ON(*em_cached);
3212
		refcount_inc(&em->refs);
3213 3214 3215 3216
		*em_cached = em;
	}
	return em;
}
3217 3218 3219 3220
/*
 * basic readpage implementation.  Locked extent state structs are inserted
 * into the tree that are removed when the IO is done (by the end_io
 * handlers)
3221
 * XXX JDM: This needs looking at to ensure proper page locking
3222
 * return 0 on success, otherwise return error
3223
 */
3224 3225 3226
int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
		      struct bio **bio, unsigned long *bio_flags,
		      unsigned int read_flags, u64 *prev_em_start)
3227 3228
{
	struct inode *inode = page->mapping->host;
M
Miao Xie 已提交
3229
	u64 start = page_offset(page);
3230
	const u64 end = start + PAGE_SIZE - 1;
3231 3232 3233 3234 3235 3236
	u64 cur = start;
	u64 extent_offset;
	u64 last_byte = i_size_read(inode);
	u64 block_start;
	u64 cur_end;
	struct extent_map *em;
3237
	int ret = 0;
3238
	int nr = 0;
3239
	size_t pg_offset = 0;
3240 3241
	size_t iosize;
	size_t blocksize = inode->i_sb->s_blocksize;
3242
	unsigned long this_bio_flag = 0;
3243
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3244

3245 3246
	set_page_extent_mapped(page);

D
Dan Magenheimer 已提交
3247 3248 3249
	if (!PageUptodate(page)) {
		if (cleancache_get_page(page) == 0) {
			BUG_ON(blocksize != PAGE_SIZE);
3250
			unlock_extent(tree, start, end);
D
Dan Magenheimer 已提交
3251 3252 3253 3254
			goto out;
		}
	}

3255
	if (page->index == last_byte >> PAGE_SHIFT) {
C
Chris Mason 已提交
3256
		char *userpage;
3257
		size_t zero_offset = offset_in_page(last_byte);
C
Chris Mason 已提交
3258 3259

		if (zero_offset) {
3260
			iosize = PAGE_SIZE - zero_offset;
3261
			userpage = kmap_atomic(page);
C
Chris Mason 已提交
3262 3263
			memset(userpage + zero_offset, 0, iosize);
			flush_dcache_page(page);
3264
			kunmap_atomic(userpage);
C
Chris Mason 已提交
3265 3266
		}
	}
3267
	while (cur <= end) {
3268
		bool force_bio_submit = false;
3269
		u64 disk_bytenr;
3270

3271 3272
		if (cur >= last_byte) {
			char *userpage;
3273 3274
			struct extent_state *cached = NULL;

3275
			iosize = PAGE_SIZE - pg_offset;
3276
			userpage = kmap_atomic(page);
3277
			memset(userpage + pg_offset, 0, iosize);
3278
			flush_dcache_page(page);
3279
			kunmap_atomic(userpage);
3280
			set_extent_uptodate(tree, cur, cur + iosize - 1,
3281
					    &cached, GFP_NOFS);
3282
			unlock_extent_cached(tree, cur,
3283
					     cur + iosize - 1, &cached);
3284 3285
			break;
		}
3286
		em = __get_extent_map(inode, page, pg_offset, cur,
3287
				      end - cur + 1, em_cached);
3288
		if (IS_ERR_OR_NULL(em)) {
3289
			SetPageError(page);
3290
			unlock_extent(tree, cur, end);
3291 3292 3293 3294 3295 3296
			break;
		}
		extent_offset = cur - em->start;
		BUG_ON(extent_map_end(em) <= cur);
		BUG_ON(end < cur);

3297
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3298
			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3299 3300 3301
			extent_set_compress_type(&this_bio_flag,
						 em->compress_type);
		}
C
Chris Mason 已提交
3302

3303 3304
		iosize = min(extent_map_end(em) - cur, end - cur + 1);
		cur_end = min(extent_map_end(em) - 1, end);
3305
		iosize = ALIGN(iosize, blocksize);
3306
		if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3307
			disk_bytenr = em->block_start;
3308
		else
3309
			disk_bytenr = em->block_start + extent_offset;
3310
		block_start = em->block_start;
Y
Yan Zheng 已提交
3311 3312
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			block_start = EXTENT_MAP_HOLE;
3313 3314 3315

		/*
		 * If we have a file range that points to a compressed extent
3316
		 * and it's followed by a consecutive file range that points
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
		 * to the same compressed extent (possibly with a different
		 * offset and/or length, so it either points to the whole extent
		 * or only part of it), we must make sure we do not submit a
		 * single bio to populate the pages for the 2 ranges because
		 * this makes the compressed extent read zero out the pages
		 * belonging to the 2nd range. Imagine the following scenario:
		 *
		 *  File layout
		 *  [0 - 8K]                     [8K - 24K]
		 *    |                               |
		 *    |                               |
		 * points to extent X,         points to extent X,
		 * offset 4K, length of 8K     offset 0, length 16K
		 *
		 * [extent X, compressed length = 4K uncompressed length = 16K]
		 *
		 * If the bio to read the compressed extent covers both ranges,
		 * it will decompress extent X into the pages belonging to the
		 * first range and then it will stop, zeroing out the remaining
		 * pages that belong to the other range that points to extent X.
		 * So here we make sure we submit 2 bios, one for the first
		 * range and another one for the third range. Both will target
		 * the same physical extent from disk, but we can't currently
		 * make the compressed bio endio callback populate the pages
		 * for both ranges because each compressed bio is tightly
		 * coupled with a single extent map, and each range can have
		 * an extent map with a different offset value relative to the
		 * uncompressed data of our extent and different lengths. This
		 * is a corner case so we prioritize correctness over
		 * non-optimal behavior (submitting 2 bios for the same extent).
		 */
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
		    prev_em_start && *prev_em_start != (u64)-1 &&
3350
		    *prev_em_start != em->start)
3351 3352 3353
			force_bio_submit = true;

		if (prev_em_start)
3354
			*prev_em_start = em->start;
3355

3356 3357 3358 3359 3360 3361
		free_extent_map(em);
		em = NULL;

		/* we've found a hole, just zero and go on */
		if (block_start == EXTENT_MAP_HOLE) {
			char *userpage;
3362 3363
			struct extent_state *cached = NULL;

3364
			userpage = kmap_atomic(page);
3365
			memset(userpage + pg_offset, 0, iosize);
3366
			flush_dcache_page(page);
3367
			kunmap_atomic(userpage);
3368 3369

			set_extent_uptodate(tree, cur, cur + iosize - 1,
3370
					    &cached, GFP_NOFS);
3371
			unlock_extent_cached(tree, cur,
3372
					     cur + iosize - 1, &cached);
3373
			cur = cur + iosize;
3374
			pg_offset += iosize;
3375 3376 3377
			continue;
		}
		/* the get_extent function already copied into the page */
3378 3379
		if (test_range_bit(tree, cur, cur_end,
				   EXTENT_UPTODATE, 1, NULL)) {
3380
			check_page_uptodate(tree, page);
3381
			unlock_extent(tree, cur, cur + iosize - 1);
3382
			cur = cur + iosize;
3383
			pg_offset += iosize;
3384 3385
			continue;
		}
3386 3387 3388 3389 3390
		/* we have an inline extent but it didn't get marked up
		 * to date.  Error out
		 */
		if (block_start == EXTENT_MAP_INLINE) {
			SetPageError(page);
3391
			unlock_extent(tree, cur, cur + iosize - 1);
3392
			cur = cur + iosize;
3393
			pg_offset += iosize;
3394 3395
			continue;
		}
3396

3397
		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3398
					 page, disk_bytenr, iosize,
3399
					 pg_offset, bio,
3400
					 end_bio_extent_readpage, 0,
C
Chris Mason 已提交
3401
					 *bio_flags,
3402 3403
					 this_bio_flag,
					 force_bio_submit);
3404 3405 3406 3407
		if (!ret) {
			nr++;
			*bio_flags = this_bio_flag;
		} else {
3408
			SetPageError(page);
3409
			unlock_extent(tree, cur, cur + iosize - 1);
3410
			goto out;
3411
		}
3412
		cur = cur + iosize;
3413
		pg_offset += iosize;
3414
	}
D
Dan Magenheimer 已提交
3415
out:
3416 3417 3418 3419 3420
	if (!nr) {
		if (!PageError(page))
			SetPageUptodate(page);
		unlock_page(page);
	}
3421
	return ret;
3422 3423
}

3424
static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3425
					     u64 start, u64 end,
3426
					     struct extent_map **em_cached,
3427
					     struct bio **bio,
3428
					     unsigned long *bio_flags,
3429
					     u64 *prev_em_start)
3430
{
3431
	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3432 3433
	int index;

3434
	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3435 3436

	for (index = 0; index < nr_pages; index++) {
3437 3438
		btrfs_do_readpage(pages[index], em_cached, bio, bio_flags,
				  REQ_RAHEAD, prev_em_start);
3439
		put_page(pages[index]);
3440 3441 3442
	}
}

3443
static void update_nr_written(struct writeback_control *wbc,
3444
			      unsigned long nr_written)
3445 3446 3447 3448
{
	wbc->nr_to_write -= nr_written;
}

3449
/*
3450 3451
 * helper for __extent_writepage, doing all of the delayed allocation setup.
 *
3452
 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3453 3454 3455 3456 3457
 * to write the page (copy into inline extent).  In this case the IO has
 * been started and the page is already unlocked.
 *
 * This returns 0 if all went well (page still locked)
 * This returns < 0 if there were errors (page still locked)
3458
 */
3459
static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3460 3461
		struct page *page, struct writeback_control *wbc,
		u64 delalloc_start, unsigned long *nr_written)
3462
{
3463
	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3464
	bool found;
3465 3466 3467 3468 3469 3470 3471
	u64 delalloc_to_write = 0;
	u64 delalloc_end = 0;
	int ret;
	int page_started = 0;


	while (delalloc_end < page_end) {
3472
		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3473
					       &delalloc_start,
3474
					       &delalloc_end);
3475
		if (!found) {
3476 3477 3478
			delalloc_start = delalloc_end + 1;
			continue;
		}
3479
		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3480
				delalloc_end, &page_started, nr_written, wbc);
3481 3482
		if (ret) {
			SetPageError(page);
3483 3484 3485 3486 3487
			/*
			 * btrfs_run_delalloc_range should return < 0 for error
			 * but just in case, we use > 0 here meaning the IO is
			 * started, so we don't want to return > 0 unless
			 * things are going well.
3488
			 */
3489
			return ret < 0 ? ret : -EIO;
3490 3491
		}
		/*
3492 3493
		 * delalloc_end is already one less than the total length, so
		 * we don't subtract one from PAGE_SIZE
3494 3495
		 */
		delalloc_to_write += (delalloc_end - delalloc_start +
3496
				      PAGE_SIZE) >> PAGE_SHIFT;
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
		delalloc_start = delalloc_end + 1;
	}
	if (wbc->nr_to_write < delalloc_to_write) {
		int thresh = 8192;

		if (delalloc_to_write < thresh * 2)
			thresh = delalloc_to_write;
		wbc->nr_to_write = min_t(u64, delalloc_to_write,
					 thresh);
	}

	/* did the fill delalloc function already unlock and start
	 * the IO?
	 */
	if (page_started) {
		/*
		 * we've unlocked the page, so we can't update
		 * the mapping's writeback index, just update
		 * nr_to_write.
		 */
		wbc->nr_to_write -= *nr_written;
		return 1;
	}

3521
	return 0;
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
}

/*
 * helper for __extent_writepage.  This calls the writepage start hooks,
 * and does the loop to map the page into extents and bios.
 *
 * We return 1 if the IO is started and the page is unlocked,
 * 0 if all went well (page still locked)
 * < 0 if there were errors (page still locked)
 */
3532
static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3533 3534 3535 3536 3537
				 struct page *page,
				 struct writeback_control *wbc,
				 struct extent_page_data *epd,
				 loff_t i_size,
				 unsigned long nr_written,
3538
				 int *nr_ret)
3539
{
3540
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3541
	struct extent_io_tree *tree = &inode->io_tree;
M
Miao Xie 已提交
3542
	u64 start = page_offset(page);
3543
	u64 end = start + PAGE_SIZE - 1;
3544 3545 3546 3547
	u64 cur = start;
	u64 extent_offset;
	u64 block_start;
	struct extent_map *em;
3548 3549
	int ret = 0;
	int nr = 0;
3550
	const unsigned int write_flags = wbc_to_write_flags(wbc);
3551
	bool compressed;
C
Chris Mason 已提交
3552

3553
	ret = btrfs_writepage_cow_fixup(page, start, end);
3554 3555
	if (ret) {
		/* Fixup worker will requeue */
3556
		redirty_page_for_writepage(wbc, page);
3557 3558 3559
		update_nr_written(wbc, nr_written);
		unlock_page(page);
		return 1;
3560 3561
	}

3562 3563 3564 3565
	/*
	 * we don't want to touch the inode after unlocking the page,
	 * so we update the mapping writeback index now
	 */
3566
	update_nr_written(wbc, nr_written + 1);
3567

3568
	while (cur <= end) {
3569
		u64 disk_bytenr;
3570
		u64 em_end;
3571
		u32 iosize;
3572

3573
		if (cur >= i_size) {
3574
			btrfs_writepage_endio_finish_ordered(page, cur, end, 1);
3575 3576
			break;
		}
3577
		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3578
		if (IS_ERR_OR_NULL(em)) {
3579
			SetPageError(page);
3580
			ret = PTR_ERR_OR_ZERO(em);
3581 3582 3583 3584
			break;
		}

		extent_offset = cur - em->start;
3585
		em_end = extent_map_end(em);
3586 3587 3588 3589
		ASSERT(cur <= em_end);
		ASSERT(cur < end);
		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
3590
		block_start = em->block_start;
C
Chris Mason 已提交
3591
		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3592 3593 3594 3595
		disk_bytenr = em->block_start + extent_offset;

		/* Note that em_end from extent_map_end() is exclusive */
		iosize = min(em_end, end + 1) - cur;
3596 3597 3598
		free_extent_map(em);
		em = NULL;

C
Chris Mason 已提交
3599 3600 3601 3602 3603
		/*
		 * compressed and inline extents are written through other
		 * paths in the FS
		 */
		if (compressed || block_start == EXTENT_MAP_HOLE ||
3604
		    block_start == EXTENT_MAP_INLINE) {
3605
			if (compressed)
C
Chris Mason 已提交
3606
				nr++;
3607 3608 3609
			else
				btrfs_writepage_endio_finish_ordered(page, cur,
							cur + iosize - 1, 1);
C
Chris Mason 已提交
3610
			cur += iosize;
3611 3612
			continue;
		}
C
Chris Mason 已提交
3613

3614
		btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3615
		if (!PageWriteback(page)) {
3616
			btrfs_err(inode->root->fs_info,
3617 3618
				   "page %lu not writeback, cur %llu end %llu",
			       page->index, cur, end);
3619
		}
3620

3621
		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3622 3623
					 page, disk_bytenr, iosize,
					 cur - page_offset(page), &epd->bio,
3624 3625
					 end_bio_extent_writepage,
					 0, 0, 0, false);
3626
		if (ret) {
3627
			SetPageError(page);
3628 3629 3630
			if (PageWriteback(page))
				end_page_writeback(page);
		}
3631

3632
		cur += iosize;
3633 3634
		nr++;
	}
3635 3636 3637 3638 3639 3640 3641 3642 3643
	*nr_ret = nr;
	return ret;
}

/*
 * the writepage semantics are similar to regular writepage.  extent
 * records are inserted to lock ranges in the tree, and as dirty areas
 * are found, they are marked writeback.  Then the lock bits are removed
 * and the end_io handler clears the writeback ranges
3644 3645 3646
 *
 * Return 0 if everything goes well.
 * Return <0 for error.
3647 3648
 */
static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3649
			      struct extent_page_data *epd)
3650 3651 3652
{
	struct inode *inode = page->mapping->host;
	u64 start = page_offset(page);
3653
	u64 page_end = start + PAGE_SIZE - 1;
3654 3655
	int ret;
	int nr = 0;
3656
	size_t pg_offset;
3657
	loff_t i_size = i_size_read(inode);
3658
	unsigned long end_index = i_size >> PAGE_SHIFT;
3659 3660 3661 3662 3663 3664 3665 3666
	unsigned long nr_written = 0;

	trace___extent_writepage(page, inode, wbc);

	WARN_ON(!PageLocked(page));

	ClearPageError(page);

3667
	pg_offset = offset_in_page(i_size);
3668 3669
	if (page->index > end_index ||
	   (page->index == end_index && !pg_offset)) {
3670
		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3671 3672 3673 3674 3675 3676 3677 3678 3679
		unlock_page(page);
		return 0;
	}

	if (page->index == end_index) {
		char *userpage;

		userpage = kmap_atomic(page);
		memset(userpage + pg_offset, 0,
3680
		       PAGE_SIZE - pg_offset);
3681 3682 3683 3684 3685 3686
		kunmap_atomic(userpage);
		flush_dcache_page(page);
	}

	set_page_extent_mapped(page);

3687
	if (!epd->extent_locked) {
3688 3689
		ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
					 &nr_written);
3690
		if (ret == 1)
3691
			return 0;
3692 3693 3694
		if (ret)
			goto done;
	}
3695

3696 3697
	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
				    nr_written, &nr);
3698
	if (ret == 1)
3699
		return 0;
3700

3701 3702 3703 3704 3705 3706
done:
	if (nr == 0) {
		/* make sure the mapping tag for page dirty gets cleared */
		set_page_writeback(page);
		end_page_writeback(page);
	}
3707 3708 3709 3710
	if (PageError(page)) {
		ret = ret < 0 ? ret : -EIO;
		end_extent_writepage(page, ret, start, page_end);
	}
3711
	unlock_page(page);
3712
	ASSERT(ret <= 0);
3713
	return ret;
3714 3715
}

3716
void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3717
{
3718 3719
	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
		       TASK_UNINTERRUPTIBLE);
3720 3721
}

3722 3723 3724 3725 3726 3727 3728
static void end_extent_buffer_writeback(struct extent_buffer *eb)
{
	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
	smp_mb__after_atomic();
	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
}

3729
/*
3730
 * Lock extent buffer status and pages for writeback.
3731
 *
3732 3733 3734 3735 3736 3737
 * May try to flush write bio if we can't get the lock.
 *
 * Return  0 if the extent buffer doesn't need to be submitted.
 *           (E.g. the extent buffer is not dirty)
 * Return >0 is the extent buffer is submitted to bio.
 * Return <0 if something went wrong, no page is locked.
3738
 */
3739
static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3740
			  struct extent_page_data *epd)
3741
{
3742
	struct btrfs_fs_info *fs_info = eb->fs_info;
3743
	int i, num_pages, failed_page_nr;
3744 3745 3746 3747
	int flush = 0;
	int ret = 0;

	if (!btrfs_try_tree_write_lock(eb)) {
3748
		ret = flush_write_bio(epd);
3749 3750 3751
		if (ret < 0)
			return ret;
		flush = 1;
3752 3753 3754 3755 3756 3757 3758 3759
		btrfs_tree_lock(eb);
	}

	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
		btrfs_tree_unlock(eb);
		if (!epd->sync_io)
			return 0;
		if (!flush) {
3760
			ret = flush_write_bio(epd);
3761 3762
			if (ret < 0)
				return ret;
3763 3764
			flush = 1;
		}
C
Chris Mason 已提交
3765 3766 3767 3768 3769
		while (1) {
			wait_on_extent_buffer_writeback(eb);
			btrfs_tree_lock(eb);
			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
				break;
3770 3771 3772 3773
			btrfs_tree_unlock(eb);
		}
	}

3774 3775 3776 3777 3778 3779
	/*
	 * We need to do this to prevent races in people who check if the eb is
	 * under IO since we can end up having no IO bits set for a short period
	 * of time.
	 */
	spin_lock(&eb->refs_lock);
3780 3781
	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3782
		spin_unlock(&eb->refs_lock);
3783
		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3784 3785 3786
		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
					 -eb->len,
					 fs_info->dirty_metadata_batch);
3787
		ret = 1;
3788 3789
	} else {
		spin_unlock(&eb->refs_lock);
3790 3791 3792 3793 3794 3795 3796
	}

	btrfs_tree_unlock(eb);

	if (!ret)
		return ret;

3797
	num_pages = num_extent_pages(eb);
3798
	for (i = 0; i < num_pages; i++) {
3799
		struct page *p = eb->pages[i];
3800 3801 3802

		if (!trylock_page(p)) {
			if (!flush) {
3803 3804 3805 3806 3807
				int err;

				err = flush_write_bio(epd);
				if (err < 0) {
					ret = err;
3808 3809 3810
					failed_page_nr = i;
					goto err_unlock;
				}
3811 3812 3813 3814 3815 3816 3817
				flush = 1;
			}
			lock_page(p);
		}
	}

	return ret;
3818 3819 3820 3821
err_unlock:
	/* Unlock already locked pages */
	for (i = 0; i < failed_page_nr; i++)
		unlock_page(eb->pages[i]);
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
	/*
	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
	 * be made and undo everything done before.
	 */
	btrfs_tree_lock(eb);
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
	end_extent_buffer_writeback(eb);
	spin_unlock(&eb->refs_lock);
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
				 fs_info->dirty_metadata_batch);
	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
	btrfs_tree_unlock(eb);
3836
	return ret;
3837 3838
}

3839 3840 3841
static void set_btree_ioerr(struct page *page)
{
	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3842
	struct btrfs_fs_info *fs_info;
3843 3844 3845 3846 3847

	SetPageError(page);
	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
		return;

3848 3849 3850 3851 3852 3853 3854 3855
	/*
	 * If we error out, we should add back the dirty_metadata_bytes
	 * to make it consistent.
	 */
	fs_info = eb->fs_info;
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
				 eb->len, fs_info->dirty_metadata_batch);

3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
	/*
	 * If writeback for a btree extent that doesn't belong to a log tree
	 * failed, increment the counter transaction->eb_write_errors.
	 * We do this because while the transaction is running and before it's
	 * committing (when we call filemap_fdata[write|wait]_range against
	 * the btree inode), we might have
	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
	 * returns an error or an error happens during writeback, when we're
	 * committing the transaction we wouldn't know about it, since the pages
	 * can be no longer dirty nor marked anymore for writeback (if a
	 * subsequent modification to the extent buffer didn't happen before the
	 * transaction commit), which makes filemap_fdata[write|wait]_range not
	 * able to find the pages tagged with SetPageError at transaction
	 * commit time. So if this happens we must abort the transaction,
	 * otherwise we commit a super block with btree roots that point to
	 * btree nodes/leafs whose content on disk is invalid - either garbage
	 * or the content of some node/leaf from a past generation that got
	 * cowed or deleted and is no longer valid.
	 *
	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
	 * not be enough - we need to distinguish between log tree extents vs
	 * non-log tree extents, and the next filemap_fdatawait_range() call
	 * will catch and clear such errors in the mapping - and that call might
	 * be from a log sync and not from a transaction commit. Also, checking
	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
	 * not done and would not be reliable - the eb might have been released
	 * from memory and reading it back again means that flag would not be
	 * set (since it's a runtime flag, not persisted on disk).
	 *
	 * Using the flags below in the btree inode also makes us achieve the
	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
	 * writeback for all dirty pages and before filemap_fdatawait_range()
	 * is called, the writeback for all dirty pages had already finished
	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
	 * filemap_fdatawait_range() would return success, as it could not know
	 * that writeback errors happened (the pages were no longer tagged for
	 * writeback).
	 */
	switch (eb->log_index) {
	case -1:
3896
		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3897 3898
		break;
	case 0:
3899
		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3900 3901
		break;
	case 1:
3902
		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3903 3904 3905 3906 3907 3908
		break;
	default:
		BUG(); /* unexpected, logic error */
	}
}

3909
static void end_bio_extent_buffer_writepage(struct bio *bio)
3910
{
3911
	struct bio_vec *bvec;
3912
	struct extent_buffer *eb;
3913
	int done;
3914
	struct bvec_iter_all iter_all;
3915

3916
	ASSERT(!bio_flagged(bio, BIO_CLONED));
3917
	bio_for_each_segment_all(bvec, bio, iter_all) {
3918 3919 3920 3921 3922 3923
		struct page *page = bvec->bv_page;

		eb = (struct extent_buffer *)page->private;
		BUG_ON(!eb);
		done = atomic_dec_and_test(&eb->io_pages);

3924
		if (bio->bi_status ||
3925
		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3926
			ClearPageUptodate(page);
3927
			set_btree_ioerr(page);
3928 3929 3930 3931 3932 3933 3934 3935
		}

		end_page_writeback(page);

		if (!done)
			continue;

		end_extent_buffer_writeback(eb);
3936
	}
3937 3938 3939 3940

	bio_put(bio);
}

3941
static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3942 3943 3944
			struct writeback_control *wbc,
			struct extent_page_data *epd)
{
3945
	u64 disk_bytenr = eb->start;
3946
	u32 nritems;
3947
	int i, num_pages;
3948
	unsigned long start, end;
3949
	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3950
	int ret = 0;
3951

3952
	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3953
	num_pages = num_extent_pages(eb);
3954
	atomic_set(&eb->io_pages, num_pages);
3955

3956 3957
	/* set btree blocks beyond nritems with 0 to avoid stale content. */
	nritems = btrfs_header_nritems(eb);
3958 3959 3960
	if (btrfs_header_level(eb) > 0) {
		end = btrfs_node_key_ptr_offset(nritems);

3961
		memzero_extent_buffer(eb, end, eb->len - end);
3962 3963 3964 3965 3966 3967
	} else {
		/*
		 * leaf:
		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
		 */
		start = btrfs_item_nr_offset(nritems);
3968
		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3969
		memzero_extent_buffer(eb, start, end - start);
3970 3971
	}

3972
	for (i = 0; i < num_pages; i++) {
3973
		struct page *p = eb->pages[i];
3974 3975 3976

		clear_page_dirty_for_io(p);
		set_page_writeback(p);
3977
		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3978
					 p, disk_bytenr, PAGE_SIZE, 0,
3979
					 &epd->bio,
3980
					 end_bio_extent_buffer_writepage,
3981
					 0, 0, 0, false);
3982
		if (ret) {
3983
			set_btree_ioerr(p);
3984 3985
			if (PageWriteback(p))
				end_page_writeback(p);
3986 3987 3988 3989 3990
			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
				end_extent_buffer_writeback(eb);
			ret = -EIO;
			break;
		}
3991
		disk_bytenr += PAGE_SIZE;
3992
		update_nr_written(wbc, 1);
3993 3994 3995 3996 3997
		unlock_page(p);
	}

	if (unlikely(ret)) {
		for (; i < num_pages; i++) {
3998
			struct page *p = eb->pages[i];
3999
			clear_page_dirty_for_io(p);
4000 4001 4002 4003 4004 4005 4006
			unlock_page(p);
		}
	}

	return ret;
}

4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
/*
 * Submit all page(s) of one extent buffer.
 *
 * @page:	the page of one extent buffer
 * @eb_context:	to determine if we need to submit this page, if current page
 *		belongs to this eb, we don't need to submit
 *
 * The caller should pass each page in their bytenr order, and here we use
 * @eb_context to determine if we have submitted pages of one extent buffer.
 *
 * If we have, we just skip until we hit a new page that doesn't belong to
 * current @eb_context.
 *
 * If not, we submit all the page(s) of the extent buffer.
 *
 * Return >0 if we have submitted the extent buffer successfully.
 * Return 0 if we don't need to submit the page, as it's already submitted by
 * previous call.
 * Return <0 for fatal error.
 */
static int submit_eb_page(struct page *page, struct writeback_control *wbc,
			  struct extent_page_data *epd,
			  struct extent_buffer **eb_context)
{
	struct address_space *mapping = page->mapping;
	struct extent_buffer *eb;
	int ret;

	if (!PagePrivate(page))
		return 0;

	spin_lock(&mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	eb = (struct extent_buffer *)page->private;

	/*
	 * Shouldn't happen and normally this would be a BUG_ON but no point
	 * crashing the machine for something we can survive anyway.
	 */
	if (WARN_ON(!eb)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	if (eb == *eb_context) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}
	ret = atomic_inc_not_zero(&eb->refs);
	spin_unlock(&mapping->private_lock);
	if (!ret)
		return 0;

	*eb_context = eb;

	ret = lock_extent_buffer_for_io(eb, epd);
	if (ret <= 0) {
		free_extent_buffer(eb);
		return ret;
	}
	ret = write_one_eb(eb, wbc, epd);
	free_extent_buffer(eb);
	if (ret < 0)
		return ret;
	return 1;
}

4078 4079 4080
int btree_write_cache_pages(struct address_space *mapping,
				   struct writeback_control *wbc)
{
4081
	struct extent_buffer *eb_context = NULL;
4082 4083 4084 4085 4086
	struct extent_page_data epd = {
		.bio = NULL,
		.extent_locked = 0,
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
	};
4087
	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4088 4089 4090 4091 4092 4093 4094 4095
	int ret = 0;
	int done = 0;
	int nr_to_write_done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	int scanned = 0;
M
Matthew Wilcox 已提交
4096
	xa_mark_t tag;
4097

4098
	pagevec_init(&pvec);
4099 4100 4101
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4102 4103 4104 4105 4106
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4107
	} else {
4108 4109
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
		scanned = 1;
	}
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
retry:
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);
	while (!done && !nr_to_write_done && (index <= end) &&
J
Jan Kara 已提交
4120
	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4121
			tag))) {
4122 4123 4124 4125 4126
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4127 4128
			ret = submit_eb_page(page, wbc, &epd, &eb_context);
			if (ret == 0)
4129
				continue;
4130
			if (ret < 0) {
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
				done = 1;
				break;
			}

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	if (!scanned && !done) {
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
		goto retry;
	}
4154 4155 4156 4157
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
	/*
	 * If something went wrong, don't allow any metadata write bio to be
	 * submitted.
	 *
	 * This would prevent use-after-free if we had dirty pages not
	 * cleaned up, which can still happen by fuzzed images.
	 *
	 * - Bad extent tree
	 *   Allowing existing tree block to be allocated for other trees.
	 *
	 * - Log tree operations
	 *   Exiting tree blocks get allocated to log tree, bumps its
	 *   generation, then get cleaned in tree re-balance.
	 *   Such tree block will not be written back, since it's clean,
	 *   thus no WRITTEN flag set.
	 *   And after log writes back, this tree block is not traced by
	 *   any dirty extent_io_tree.
	 *
	 * - Offending tree block gets re-dirtied from its original owner
	 *   Since it has bumped generation, no WRITTEN flag, it can be
	 *   reused without COWing. This tree block will not be traced
	 *   by btrfs_transaction::dirty_pages.
	 *
	 *   Now such dirty tree block will not be cleaned by any dirty
	 *   extent io tree. Thus we don't want to submit such wild eb
	 *   if the fs already has error.
	 */
	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
		ret = flush_write_bio(&epd);
	} else {
4188
		ret = -EROFS;
4189 4190
		end_write_bio(&epd, ret);
	}
4191 4192 4193
	return ret;
}

4194
/**
4195 4196
 * Walk the list of dirty pages of the given address space and write all of them.
 *
4197
 * @mapping: address space structure to write
4198 4199
 * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
 * @epd:     holds context for the write, namely the bio
4200 4201 4202 4203 4204 4205 4206 4207 4208
 *
 * If a page is already under I/O, write_cache_pages() skips it, even
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
 */
4209
static int extent_write_cache_pages(struct address_space *mapping,
C
Chris Mason 已提交
4210
			     struct writeback_control *wbc,
4211
			     struct extent_page_data *epd)
4212
{
4213
	struct inode *inode = mapping->host;
4214 4215
	int ret = 0;
	int done = 0;
4216
	int nr_to_write_done = 0;
4217 4218 4219 4220
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
4221 4222
	pgoff_t done_index;
	int range_whole = 0;
4223
	int scanned = 0;
M
Matthew Wilcox 已提交
4224
	xa_mark_t tag;
4225

4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
	/*
	 * We have to hold onto the inode so that ordered extents can do their
	 * work when the IO finishes.  The alternative to this is failing to add
	 * an ordered extent if the igrab() fails there and that is a huge pain
	 * to deal with, so instead just hold onto the inode throughout the
	 * writepages operation.  If it fails here we are freeing up the inode
	 * anyway and we'd rather not waste our time writing out stuff that is
	 * going to be truncated anyway.
	 */
	if (!igrab(inode))
		return 0;

4238
	pagevec_init(&pvec);
4239 4240 4241
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4242 4243 4244 4245 4246
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4247
	} else {
4248 4249
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4250 4251
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
4252 4253
		scanned = 1;
	}
4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267

	/*
	 * We do the tagged writepage as long as the snapshot flush bit is set
	 * and we are the first one who do the filemap_flush() on this inode.
	 *
	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
	 * not race in and drop the bit.
	 */
	if (range_whole && wbc->nr_to_write == LONG_MAX &&
	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
			       &BTRFS_I(inode)->runtime_flags))
		wbc->tagged_writepages = 1;

	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4268 4269 4270
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4271
retry:
4272
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4273
		tag_pages_for_writeback(mapping, index, end);
4274
	done_index = index;
4275
	while (!done && !nr_to_write_done && (index <= end) &&
4276 4277
			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
						&index, end, tag))) {
4278 4279 4280 4281 4282
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4283
			done_index = page->index + 1;
4284
			/*
M
Matthew Wilcox 已提交
4285 4286 4287 4288 4289
			 * At this point we hold neither the i_pages lock nor
			 * the page lock: the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to
			 * tmpfs file mapping
4290
			 */
4291
			if (!trylock_page(page)) {
4292 4293
				ret = flush_write_bio(epd);
				BUG_ON(ret < 0);
4294
				lock_page(page);
4295
			}
4296 4297 4298 4299 4300 4301

			if (unlikely(page->mapping != mapping)) {
				unlock_page(page);
				continue;
			}

C
Chris Mason 已提交
4302
			if (wbc->sync_mode != WB_SYNC_NONE) {
4303 4304 4305 4306
				if (PageWriteback(page)) {
					ret = flush_write_bio(epd);
					BUG_ON(ret < 0);
				}
4307
				wait_on_page_writeback(page);
C
Chris Mason 已提交
4308
			}
4309 4310 4311 4312 4313 4314 4315

			if (PageWriteback(page) ||
			    !clear_page_dirty_for_io(page)) {
				unlock_page(page);
				continue;
			}

4316
			ret = __extent_writepage(page, wbc, epd);
4317 4318 4319 4320
			if (ret < 0) {
				done = 1;
				break;
			}
4321 4322 4323 4324 4325 4326 4327

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
4328 4329 4330 4331
		}
		pagevec_release(&pvec);
		cond_resched();
	}
4332
	if (!scanned && !done) {
4333 4334 4335 4336 4337 4338
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348

		/*
		 * If we're looping we could run into a page that is locked by a
		 * writer and that writer could be waiting on writeback for a
		 * page in our current bio, and thus deadlock, so flush the
		 * write bio here.
		 */
		ret = flush_write_bio(epd);
		if (!ret)
			goto retry;
4349
	}
4350 4351 4352 4353

	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
		mapping->writeback_index = done_index;

4354
	btrfs_add_delayed_iput(inode);
4355
	return ret;
4356 4357
}

4358
int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4359 4360 4361 4362
{
	int ret;
	struct extent_page_data epd = {
		.bio = NULL,
4363
		.extent_locked = 0,
4364
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4365 4366 4367
	};

	ret = __extent_writepage(page, wbc, &epd);
4368 4369 4370 4371 4372
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
4373

4374 4375
	ret = flush_write_bio(&epd);
	ASSERT(ret <= 0);
4376 4377 4378
	return ret;
}

4379
int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4380 4381 4382 4383 4384
			      int mode)
{
	int ret = 0;
	struct address_space *mapping = inode->i_mapping;
	struct page *page;
4385 4386
	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
		PAGE_SHIFT;
4387 4388 4389 4390

	struct extent_page_data epd = {
		.bio = NULL,
		.extent_locked = 1,
4391
		.sync_io = mode == WB_SYNC_ALL,
4392 4393 4394 4395 4396 4397
	};
	struct writeback_control wbc_writepages = {
		.sync_mode	= mode,
		.nr_to_write	= nr_pages * 2,
		.range_start	= start,
		.range_end	= end + 1,
4398 4399 4400
		/* We're called from an async helper function */
		.punt_to_cgroup	= 1,
		.no_cgroup_owner = 1,
4401 4402
	};

4403
	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
C
Chris Mason 已提交
4404
	while (start <= end) {
4405
		page = find_get_page(mapping, start >> PAGE_SHIFT);
4406 4407 4408
		if (clear_page_dirty_for_io(page))
			ret = __extent_writepage(page, &wbc_writepages, &epd);
		else {
4409
			btrfs_writepage_endio_finish_ordered(page, start,
4410
						    start + PAGE_SIZE - 1, 1);
4411 4412
			unlock_page(page);
		}
4413 4414
		put_page(page);
		start += PAGE_SIZE;
4415 4416
	}

4417
	ASSERT(ret <= 0);
4418 4419 4420
	if (ret == 0)
		ret = flush_write_bio(&epd);
	else
4421
		end_write_bio(&epd, ret);
4422 4423

	wbc_detach_inode(&wbc_writepages);
4424 4425
	return ret;
}
4426

4427
int extent_writepages(struct address_space *mapping,
4428 4429 4430 4431 4432
		      struct writeback_control *wbc)
{
	int ret = 0;
	struct extent_page_data epd = {
		.bio = NULL,
4433
		.extent_locked = 0,
4434
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4435 4436
	};

4437
	ret = extent_write_cache_pages(mapping, wbc, &epd);
4438 4439 4440 4441 4442 4443
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
	ret = flush_write_bio(&epd);
4444 4445 4446
	return ret;
}

4447
void extent_readahead(struct readahead_control *rac)
4448 4449
{
	struct bio *bio = NULL;
C
Chris Mason 已提交
4450
	unsigned long bio_flags = 0;
L
Liu Bo 已提交
4451
	struct page *pagepool[16];
4452
	struct extent_map *em_cached = NULL;
4453
	u64 prev_em_start = (u64)-1;
4454
	int nr;
4455

4456 4457 4458
	while ((nr = readahead_page_batch(rac, pagepool))) {
		u64 contig_start = page_offset(pagepool[0]);
		u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1;
4459

4460
		ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4461

4462 4463
		contiguous_readpages(pagepool, nr, contig_start, contig_end,
				&em_cached, &bio, &bio_flags, &prev_em_start);
4464
	}
L
Liu Bo 已提交
4465

4466 4467 4468
	if (em_cached)
		free_extent_map(em_cached);

4469 4470 4471 4472
	if (bio) {
		if (submit_one_bio(bio, 0, bio_flags))
			return;
	}
4473 4474 4475 4476 4477 4478 4479 4480 4481 4482
}

/*
 * basic invalidatepage code, this waits on any locked or writeback
 * ranges corresponding to the page, and then deletes any extent state
 * records from the tree
 */
int extent_invalidatepage(struct extent_io_tree *tree,
			  struct page *page, unsigned long offset)
{
4483
	struct extent_state *cached_state = NULL;
M
Miao Xie 已提交
4484
	u64 start = page_offset(page);
4485
	u64 end = start + PAGE_SIZE - 1;
4486 4487
	size_t blocksize = page->mapping->host->i_sb->s_blocksize;

4488 4489 4490
	/* This function is only called for the btree inode */
	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);

4491
	start += ALIGN(offset, blocksize);
4492 4493 4494
	if (start > end)
		return 0;

4495
	lock_extent_bits(tree, start, end, &cached_state);
4496
	wait_on_page_writeback(page);
4497 4498 4499 4500 4501 4502 4503

	/*
	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
	 * so here we only need to unlock the extent range to free any
	 * existing extent state.
	 */
	unlock_extent_cached(tree, start, end, &cached_state);
4504 4505 4506
	return 0;
}

4507 4508 4509 4510 4511
/*
 * a helper for releasepage, this tests for areas of the page that
 * are locked or under IO and drops the related state bits if it is safe
 * to drop the page.
 */
4512
static int try_release_extent_state(struct extent_io_tree *tree,
4513
				    struct page *page, gfp_t mask)
4514
{
M
Miao Xie 已提交
4515
	u64 start = page_offset(page);
4516
	u64 end = start + PAGE_SIZE - 1;
4517 4518
	int ret = 1;

N
Nikolay Borisov 已提交
4519
	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4520
		ret = 0;
N
Nikolay Borisov 已提交
4521
	} else {
4522
		/*
4523 4524 4525 4526
		 * At this point we can safely clear everything except the
		 * locked bit, the nodatasum bit and the delalloc new bit.
		 * The delalloc new bit will be cleared by ordered extent
		 * completion.
4527
		 */
4528
		ret = __clear_extent_bit(tree, start, end,
4529 4530
			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
			 0, 0, NULL, mask, NULL);
4531 4532 4533 4534 4535 4536 4537 4538

		/* if clear_extent_bit failed for enomem reasons,
		 * we can't allow the release to continue.
		 */
		if (ret < 0)
			ret = 0;
		else
			ret = 1;
4539 4540 4541 4542
	}
	return ret;
}

4543 4544 4545 4546 4547
/*
 * a helper for releasepage.  As long as there are no locked extents
 * in the range corresponding to the page, both state records and extent
 * map records are removed
 */
4548
int try_release_extent_mapping(struct page *page, gfp_t mask)
4549 4550
{
	struct extent_map *em;
M
Miao Xie 已提交
4551
	u64 start = page_offset(page);
4552
	u64 end = start + PAGE_SIZE - 1;
4553 4554 4555
	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
	struct extent_io_tree *tree = &btrfs_inode->io_tree;
	struct extent_map_tree *map = &btrfs_inode->extent_tree;
4556

4557
	if (gfpflags_allow_blocking(mask) &&
4558
	    page->mapping->host->i_size > SZ_16M) {
4559
		u64 len;
4560
		while (start <= end) {
4561 4562 4563
			struct btrfs_fs_info *fs_info;
			u64 cur_gen;

4564
			len = end - start + 1;
4565
			write_lock(&map->lock);
4566
			em = lookup_extent_mapping(map, start, len);
4567
			if (!em) {
4568
				write_unlock(&map->lock);
4569 4570
				break;
			}
4571 4572
			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
			    em->start != start) {
4573
				write_unlock(&map->lock);
4574 4575 4576
				free_extent_map(em);
				break;
			}
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
			if (test_range_bit(tree, em->start,
					   extent_map_end(em) - 1,
					   EXTENT_LOCKED, 0, NULL))
				goto next;
			/*
			 * If it's not in the list of modified extents, used
			 * by a fast fsync, we can remove it. If it's being
			 * logged we can safely remove it since fsync took an
			 * extra reference on the em.
			 */
			if (list_empty(&em->list) ||
4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
				goto remove_em;
			/*
			 * If it's in the list of modified extents, remove it
			 * only if its generation is older then the current one,
			 * in which case we don't need it for a fast fsync.
			 * Otherwise don't remove it, we could be racing with an
			 * ongoing fast fsync that could miss the new extent.
			 */
			fs_info = btrfs_inode->root->fs_info;
			spin_lock(&fs_info->trans_lock);
			cur_gen = fs_info->generation;
			spin_unlock(&fs_info->trans_lock);
			if (em->generation >= cur_gen)
				goto next;
remove_em:
4604 4605 4606 4607 4608 4609 4610 4611
			/*
			 * We only remove extent maps that are not in the list of
			 * modified extents or that are in the list but with a
			 * generation lower then the current generation, so there
			 * is no need to set the full fsync flag on the inode (it
			 * hurts the fsync performance for workloads with a data
			 * size that exceeds or is close to the system's memory).
			 */
4612 4613 4614
			remove_extent_mapping(map, em);
			/* once for the rb tree */
			free_extent_map(em);
4615
next:
4616
			start = extent_map_end(em);
4617
			write_unlock(&map->lock);
4618 4619

			/* once for us */
4620
			free_extent_map(em);
4621 4622

			cond_resched(); /* Allow large-extent preemption. */
4623 4624
		}
	}
4625
	return try_release_extent_state(tree, page, mask);
4626 4627
}

4628 4629 4630 4631
/*
 * helper function for fiemap, which doesn't want to see any holes.
 * This maps until we find something past 'last'
 */
4632
static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
4633
						u64 offset, u64 last)
4634
{
4635
	u64 sectorsize = btrfs_inode_sectorsize(inode);
4636 4637 4638 4639 4640 4641
	struct extent_map *em;
	u64 len;

	if (offset >= last)
		return NULL;

4642
	while (1) {
4643 4644 4645
		len = last - offset;
		if (len == 0)
			break;
4646
		len = ALIGN(len, sectorsize);
4647
		em = btrfs_get_extent_fiemap(inode, offset, len);
4648
		if (IS_ERR_OR_NULL(em))
4649 4650 4651
			return em;

		/* if this isn't a hole return it */
4652
		if (em->block_start != EXTENT_MAP_HOLE)
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
			return em;

		/* this is a hole, advance to the next extent */
		offset = extent_map_end(em);
		free_extent_map(em);
		if (offset >= last)
			break;
	}
	return NULL;
}

4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
/*
 * To cache previous fiemap extent
 *
 * Will be used for merging fiemap extent
 */
struct fiemap_cache {
	u64 offset;
	u64 phys;
	u64 len;
	u32 flags;
	bool cached;
};

/*
 * Helper to submit fiemap extent.
 *
 * Will try to merge current fiemap extent specified by @offset, @phys,
 * @len and @flags with cached one.
 * And only when we fails to merge, cached one will be submitted as
 * fiemap extent.
 *
 * Return value is the same as fiemap_fill_next_extent().
 */
static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
				struct fiemap_cache *cache,
				u64 offset, u64 phys, u64 len, u32 flags)
{
	int ret = 0;

	if (!cache->cached)
		goto assign;

	/*
	 * Sanity check, extent_fiemap() should have ensured that new
4698
	 * fiemap extent won't overlap with cached one.
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
	 * Not recoverable.
	 *
	 * NOTE: Physical address can overlap, due to compression
	 */
	if (cache->offset + cache->len > offset) {
		WARN_ON(1);
		return -EINVAL;
	}

	/*
	 * Only merges fiemap extents if
	 * 1) Their logical addresses are continuous
	 *
	 * 2) Their physical addresses are continuous
	 *    So truly compressed (physical size smaller than logical size)
	 *    extents won't get merged with each other
	 *
	 * 3) Share same flags except FIEMAP_EXTENT_LAST
	 *    So regular extent won't get merged with prealloc extent
	 */
	if (cache->offset + cache->len  == offset &&
	    cache->phys + cache->len == phys  &&
	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
			(flags & ~FIEMAP_EXTENT_LAST)) {
		cache->len += len;
		cache->flags |= flags;
		goto try_submit_last;
	}

	/* Not mergeable, need to submit cached one */
	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret)
		return ret;
assign:
	cache->cached = true;
	cache->offset = offset;
	cache->phys = phys;
	cache->len = len;
	cache->flags = flags;
try_submit_last:
	if (cache->flags & FIEMAP_EXTENT_LAST) {
		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
				cache->phys, cache->len, cache->flags);
		cache->cached = false;
	}
	return ret;
}

/*
4750
 * Emit last fiemap cache
4751
 *
4752 4753 4754 4755 4756 4757 4758
 * The last fiemap cache may still be cached in the following case:
 * 0		      4k		    8k
 * |<- Fiemap range ->|
 * |<------------  First extent ----------->|
 *
 * In this case, the first extent range will be cached but not emitted.
 * So we must emit it before ending extent_fiemap().
4759
 */
4760
static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4761
				  struct fiemap_cache *cache)
4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775
{
	int ret;

	if (!cache->cached)
		return 0;

	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret > 0)
		ret = 0;
	return ret;
}

4776
int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
4777
		  u64 start, u64 len)
Y
Yehuda Sadeh 已提交
4778
{
J
Josef Bacik 已提交
4779
	int ret = 0;
Y
Yehuda Sadeh 已提交
4780 4781 4782
	u64 off = start;
	u64 max = start + len;
	u32 flags = 0;
J
Josef Bacik 已提交
4783 4784
	u32 found_type;
	u64 last;
4785
	u64 last_for_get_extent = 0;
Y
Yehuda Sadeh 已提交
4786
	u64 disko = 0;
4787
	u64 isize = i_size_read(&inode->vfs_inode);
J
Josef Bacik 已提交
4788
	struct btrfs_key found_key;
Y
Yehuda Sadeh 已提交
4789
	struct extent_map *em = NULL;
4790
	struct extent_state *cached_state = NULL;
J
Josef Bacik 已提交
4791
	struct btrfs_path *path;
4792
	struct btrfs_root *root = inode->root;
4793
	struct fiemap_cache cache = { 0 };
4794 4795
	struct ulist *roots;
	struct ulist *tmp_ulist;
Y
Yehuda Sadeh 已提交
4796
	int end = 0;
4797 4798 4799
	u64 em_start = 0;
	u64 em_len = 0;
	u64 em_end = 0;
Y
Yehuda Sadeh 已提交
4800 4801 4802 4803

	if (len == 0)
		return -EINVAL;

J
Josef Bacik 已提交
4804 4805 4806 4807
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

4808 4809 4810 4811 4812 4813 4814
	roots = ulist_alloc(GFP_KERNEL);
	tmp_ulist = ulist_alloc(GFP_KERNEL);
	if (!roots || !tmp_ulist) {
		ret = -ENOMEM;
		goto out_free_ulist;
	}

4815 4816
	start = round_down(start, btrfs_inode_sectorsize(inode));
	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4817

4818 4819 4820 4821
	/*
	 * lookup the last file extent.  We're not using i_size here
	 * because there might be preallocation past i_size
	 */
4822 4823
	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
				       0);
J
Josef Bacik 已提交
4824
	if (ret < 0) {
4825
		goto out_free_ulist;
4826 4827 4828 4829
	} else {
		WARN_ON(!ret);
		if (ret == 1)
			ret = 0;
J
Josef Bacik 已提交
4830
	}
4831

J
Josef Bacik 已提交
4832 4833
	path->slots[0]--;
	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4834
	found_type = found_key.type;
J
Josef Bacik 已提交
4835

4836
	/* No extents, but there might be delalloc bits */
4837
	if (found_key.objectid != btrfs_ino(inode) ||
J
Josef Bacik 已提交
4838
	    found_type != BTRFS_EXTENT_DATA_KEY) {
4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
		/* have to trust i_size as the end */
		last = (u64)-1;
		last_for_get_extent = isize;
	} else {
		/*
		 * remember the start of the last extent.  There are a
		 * bunch of different factors that go into the length of the
		 * extent, so its much less complex to remember where it started
		 */
		last = found_key.offset;
		last_for_get_extent = last + 1;
J
Josef Bacik 已提交
4850
	}
4851
	btrfs_release_path(path);
J
Josef Bacik 已提交
4852

4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
	/*
	 * we might have some extents allocated but more delalloc past those
	 * extents.  so, we trust isize unless the start of the last extent is
	 * beyond isize
	 */
	if (last < isize) {
		last = (u64)-1;
		last_for_get_extent = isize;
	}

4863
	lock_extent_bits(&inode->io_tree, start, start + len - 1,
4864
			 &cached_state);
4865

4866
	em = get_extent_skip_holes(inode, start, last_for_get_extent);
Y
Yehuda Sadeh 已提交
4867 4868 4869 4870 4871 4872
	if (!em)
		goto out;
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out;
	}
J
Josef Bacik 已提交
4873

Y
Yehuda Sadeh 已提交
4874
	while (!end) {
4875
		u64 offset_in_extent = 0;
4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887

		/* break if the extent we found is outside the range */
		if (em->start >= max || extent_map_end(em) < off)
			break;

		/*
		 * get_extent may return an extent that starts before our
		 * requested range.  We have to make sure the ranges
		 * we return to fiemap always move forward and don't
		 * overlap, so adjust the offsets here
		 */
		em_start = max(em->start, off);
Y
Yehuda Sadeh 已提交
4888

4889 4890
		/*
		 * record the offset from the start of the extent
4891 4892 4893
		 * for adjusting the disk offset below.  Only do this if the
		 * extent isn't compressed since our in ram offset may be past
		 * what we have actually allocated on disk.
4894
		 */
4895 4896
		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			offset_in_extent = em_start - em->start;
4897
		em_end = extent_map_end(em);
4898
		em_len = em_end - em_start;
Y
Yehuda Sadeh 已提交
4899
		flags = 0;
4900 4901 4902 4903
		if (em->block_start < EXTENT_MAP_LAST_BYTE)
			disko = em->block_start + offset_in_extent;
		else
			disko = 0;
Y
Yehuda Sadeh 已提交
4904

4905 4906 4907 4908 4909 4910 4911
		/*
		 * bump off for our next call to get_extent
		 */
		off = extent_map_end(em);
		if (off >= max)
			end = 1;

4912
		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
Y
Yehuda Sadeh 已提交
4913 4914
			end = 1;
			flags |= FIEMAP_EXTENT_LAST;
4915
		} else if (em->block_start == EXTENT_MAP_INLINE) {
Y
Yehuda Sadeh 已提交
4916 4917
			flags |= (FIEMAP_EXTENT_DATA_INLINE |
				  FIEMAP_EXTENT_NOT_ALIGNED);
4918
		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
Y
Yehuda Sadeh 已提交
4919 4920
			flags |= (FIEMAP_EXTENT_DELALLOC |
				  FIEMAP_EXTENT_UNKNOWN);
4921 4922 4923
		} else if (fieinfo->fi_extents_max) {
			u64 bytenr = em->block_start -
				(em->start - em->orig_start);
4924 4925 4926 4927

			/*
			 * As btrfs supports shared space, this information
			 * can be exported to userspace tools via
4928 4929 4930
			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
			 * then we're just getting a count and we can skip the
			 * lookup stuff.
4931
			 */
4932
			ret = btrfs_check_shared(root, btrfs_ino(inode),
4933
						 bytenr, roots, tmp_ulist);
4934
			if (ret < 0)
4935
				goto out_free;
4936
			if (ret)
4937
				flags |= FIEMAP_EXTENT_SHARED;
4938
			ret = 0;
Y
Yehuda Sadeh 已提交
4939 4940 4941
		}
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			flags |= FIEMAP_EXTENT_ENCODED;
4942 4943
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			flags |= FIEMAP_EXTENT_UNWRITTEN;
Y
Yehuda Sadeh 已提交
4944 4945 4946

		free_extent_map(em);
		em = NULL;
4947 4948
		if ((em_start >= last) || em_len == (u64)-1 ||
		   (last == (u64)-1 && isize <= em_end)) {
Y
Yehuda Sadeh 已提交
4949 4950 4951 4952
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}

4953
		/* now scan forward to see if this is really the last extent. */
4954
		em = get_extent_skip_holes(inode, off, last_for_get_extent);
4955 4956 4957 4958 4959
		if (IS_ERR(em)) {
			ret = PTR_ERR(em);
			goto out;
		}
		if (!em) {
J
Josef Bacik 已提交
4960 4961 4962
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}
4963 4964
		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
					   em_len, flags);
4965 4966 4967
		if (ret) {
			if (ret == 1)
				ret = 0;
4968
			goto out_free;
4969
		}
Y
Yehuda Sadeh 已提交
4970 4971
	}
out_free:
4972
	if (!ret)
4973
		ret = emit_last_fiemap_cache(fieinfo, &cache);
Y
Yehuda Sadeh 已提交
4974 4975
	free_extent_map(em);
out:
4976
	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
4977
			     &cached_state);
4978 4979

out_free_ulist:
4980
	btrfs_free_path(path);
4981 4982
	ulist_free(roots);
	ulist_free(tmp_ulist);
Y
Yehuda Sadeh 已提交
4983 4984 4985
	return ret;
}

4986 4987 4988 4989 4990
static void __free_extent_buffer(struct extent_buffer *eb)
{
	kmem_cache_free(extent_buffer_cache, eb);
}

4991
int extent_buffer_under_io(const struct extent_buffer *eb)
4992 4993 4994 4995 4996 4997 4998
{
	return (atomic_read(&eb->io_pages) ||
		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
}

/*
4999
 * Release all pages attached to the extent buffer.
5000
 */
5001
static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
5002
{
5003 5004
	int i;
	int num_pages;
5005
	int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5006 5007 5008

	BUG_ON(extent_buffer_under_io(eb));

5009 5010 5011
	num_pages = num_extent_pages(eb);
	for (i = 0; i < num_pages; i++) {
		struct page *page = eb->pages[i];
5012

5013 5014 5015
		if (!page)
			continue;
		if (mapped)
5016
			spin_lock(&page->mapping->private_lock);
5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028
		/*
		 * We do this since we'll remove the pages after we've
		 * removed the eb from the radix tree, so we could race
		 * and have this page now attached to the new eb.  So
		 * only clear page_private if it's still connected to
		 * this eb.
		 */
		if (PagePrivate(page) &&
		    page->private == (unsigned long)eb) {
			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
			BUG_ON(PageDirty(page));
			BUG_ON(PageWriteback(page));
5029
			/*
5030 5031
			 * We need to make sure we haven't be attached
			 * to a new eb.
5032
			 */
5033
			detach_page_private(page);
5034
		}
5035 5036 5037 5038

		if (mapped)
			spin_unlock(&page->mapping->private_lock);

5039
		/* One for when we allocated the page */
5040
		put_page(page);
5041
	}
5042 5043 5044 5045 5046 5047 5048
}

/*
 * Helper for releasing the extent buffer.
 */
static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
{
5049
	btrfs_release_extent_buffer_pages(eb);
5050
	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5051 5052 5053
	__free_extent_buffer(eb);
}

5054 5055
static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5056
		      unsigned long len)
5057 5058 5059
{
	struct extent_buffer *eb = NULL;

5060
	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5061 5062
	eb->start = start;
	eb->len = len;
5063
	eb->fs_info = fs_info;
5064
	eb->bflags = 0;
5065
	init_rwsem(&eb->lock);
5066

5067 5068
	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
			     &fs_info->allocated_ebs);
5069

5070
	spin_lock_init(&eb->refs_lock);
5071
	atomic_set(&eb->refs, 1);
5072
	atomic_set(&eb->io_pages, 0);
5073

5074
	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5075 5076 5077 5078

	return eb;
}

5079
struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5080
{
5081
	int i;
5082 5083
	struct page *p;
	struct extent_buffer *new;
5084
	int num_pages = num_extent_pages(src);
5085

5086
	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5087 5088 5089
	if (new == NULL)
		return NULL;

5090 5091 5092 5093 5094 5095 5096
	/*
	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
	 * btrfs_release_extent_buffer() have different behavior for
	 * UNMAPPED subpage extent buffer.
	 */
	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);

5097
	for (i = 0; i < num_pages; i++) {
5098 5099
		int ret;

5100
		p = alloc_page(GFP_NOFS);
5101 5102 5103 5104
		if (!p) {
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5105 5106 5107 5108 5109 5110
		ret = attach_extent_buffer_page(new, p, NULL);
		if (ret < 0) {
			put_page(p);
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5111 5112 5113
		WARN_ON(PageDirty(p));
		SetPageUptodate(p);
		new->pages[i] = p;
5114
		copy_page(page_address(p), page_address(src->pages[i]));
5115 5116 5117 5118 5119 5120
	}
	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);

	return new;
}

5121 5122
struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
						  u64 start, unsigned long len)
5123 5124
{
	struct extent_buffer *eb;
5125 5126
	int num_pages;
	int i;
5127

5128
	eb = __alloc_extent_buffer(fs_info, start, len);
5129 5130 5131
	if (!eb)
		return NULL;

5132
	num_pages = num_extent_pages(eb);
5133
	for (i = 0; i < num_pages; i++) {
5134
		eb->pages[i] = alloc_page(GFP_NOFS);
5135 5136 5137 5138 5139
		if (!eb->pages[i])
			goto err;
	}
	set_extent_buffer_uptodate(eb);
	btrfs_set_header_nritems(eb, 0);
5140
	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5141 5142 5143

	return eb;
err:
5144 5145
	for (; i > 0; i--)
		__free_page(eb->pages[i - 1]);
5146 5147 5148 5149
	__free_extent_buffer(eb);
	return NULL;
}

5150
struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5151
						u64 start)
5152
{
5153
	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5154 5155
}

5156 5157
static void check_buffer_tree_ref(struct extent_buffer *eb)
{
5158
	int refs;
5159 5160 5161 5162
	/*
	 * The TREE_REF bit is first set when the extent_buffer is added
	 * to the radix tree. It is also reset, if unset, when a new reference
	 * is created by find_extent_buffer.
5163
	 *
5164 5165 5166
	 * It is only cleared in two cases: freeing the last non-tree
	 * reference to the extent_buffer when its STALE bit is set or
	 * calling releasepage when the tree reference is the only reference.
5167
	 *
5168 5169 5170 5171 5172
	 * In both cases, care is taken to ensure that the extent_buffer's
	 * pages are not under io. However, releasepage can be concurrently
	 * called with creating new references, which is prone to race
	 * conditions between the calls to check_buffer_tree_ref in those
	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5173
	 *
5174 5175 5176 5177 5178 5179 5180
	 * The actual lifetime of the extent_buffer in the radix tree is
	 * adequately protected by the refcount, but the TREE_REF bit and
	 * its corresponding reference are not. To protect against this
	 * class of races, we call check_buffer_tree_ref from the codepaths
	 * which trigger io after they set eb->io_pages. Note that once io is
	 * initiated, TREE_REF can no longer be cleared, so that is the
	 * moment at which any such race is best fixed.
5181
	 */
5182 5183 5184 5185
	refs = atomic_read(&eb->refs);
	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		return;

5186 5187
	spin_lock(&eb->refs_lock);
	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5188
		atomic_inc(&eb->refs);
5189
	spin_unlock(&eb->refs_lock);
5190 5191
}

5192 5193
static void mark_extent_buffer_accessed(struct extent_buffer *eb,
		struct page *accessed)
5194
{
5195
	int num_pages, i;
5196

5197 5198
	check_buffer_tree_ref(eb);

5199
	num_pages = num_extent_pages(eb);
5200
	for (i = 0; i < num_pages; i++) {
5201 5202
		struct page *p = eb->pages[i];

5203 5204
		if (p != accessed)
			mark_page_accessed(p);
5205 5206 5207
	}
}

5208 5209
struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
					 u64 start)
5210 5211 5212 5213
{
	struct extent_buffer *eb;

	rcu_read_lock();
5214
	eb = radix_tree_lookup(&fs_info->buffer_radix,
5215
			       start >> fs_info->sectorsize_bits);
5216 5217
	if (eb && atomic_inc_not_zero(&eb->refs)) {
		rcu_read_unlock();
5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236
		/*
		 * Lock our eb's refs_lock to avoid races with
		 * free_extent_buffer. When we get our eb it might be flagged
		 * with EXTENT_BUFFER_STALE and another task running
		 * free_extent_buffer might have seen that flag set,
		 * eb->refs == 2, that the buffer isn't under IO (dirty and
		 * writeback flags not set) and it's still in the tree (flag
		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
		 * of decrementing the extent buffer's reference count twice.
		 * So here we could race and increment the eb's reference count,
		 * clear its stale flag, mark it as dirty and drop our reference
		 * before the other task finishes executing free_extent_buffer,
		 * which would later result in an attempt to free an extent
		 * buffer that is dirty.
		 */
		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
			spin_lock(&eb->refs_lock);
			spin_unlock(&eb->refs_lock);
		}
5237
		mark_extent_buffer_accessed(eb, NULL);
5238 5239 5240 5241 5242 5243 5244
		return eb;
	}
	rcu_read_unlock();

	return NULL;
}

5245 5246
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5247
					u64 start)
5248 5249 5250 5251 5252 5253 5254
{
	struct extent_buffer *eb, *exists = NULL;
	int ret;

	eb = find_extent_buffer(fs_info, start);
	if (eb)
		return eb;
5255
	eb = alloc_dummy_extent_buffer(fs_info, start);
5256
	if (!eb)
5257
		return ERR_PTR(-ENOMEM);
5258 5259
	eb->fs_info = fs_info;
again:
5260
	ret = radix_tree_preload(GFP_NOFS);
5261 5262
	if (ret) {
		exists = ERR_PTR(ret);
5263
		goto free_eb;
5264
	}
5265 5266
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
5267
				start >> fs_info->sectorsize_bits, eb);
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286
	spin_unlock(&fs_info->buffer_lock);
	radix_tree_preload_end();
	if (ret == -EEXIST) {
		exists = find_extent_buffer(fs_info, start);
		if (exists)
			goto free_eb;
		else
			goto again;
	}
	check_buffer_tree_ref(eb);
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);

	return eb;
free_eb:
	btrfs_release_extent_buffer(eb);
	return exists;
}
#endif

5287 5288
static struct extent_buffer *grab_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page)
5289 5290 5291
{
	struct extent_buffer *exists;

5292 5293 5294 5295 5296 5297 5298 5299
	/*
	 * For subpage case, we completely rely on radix tree to ensure we
	 * don't try to insert two ebs for the same bytenr.  So here we always
	 * return NULL and just continue.
	 */
	if (fs_info->sectorsize < PAGE_SIZE)
		return NULL;

5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
	/* Page not yet attached to an extent buffer */
	if (!PagePrivate(page))
		return NULL;

	/*
	 * We could have already allocated an eb for this page and attached one
	 * so lets see if we can get a ref on the existing eb, and if we can we
	 * know it's good and we can just return that one, else we know we can
	 * just overwrite page->private.
	 */
	exists = (struct extent_buffer *)page->private;
	if (atomic_inc_not_zero(&exists->refs))
		return exists;

	WARN_ON(PageDirty(page));
	detach_page_private(page);
	return NULL;
}

5319
struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5320
					  u64 start, u64 owner_root, int level)
5321
{
5322
	unsigned long len = fs_info->nodesize;
5323 5324
	int num_pages;
	int i;
5325
	unsigned long index = start >> PAGE_SHIFT;
5326
	struct extent_buffer *eb;
5327
	struct extent_buffer *exists = NULL;
5328
	struct page *p;
5329
	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5330
	int uptodate = 1;
5331
	int ret;
5332

5333
	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5334 5335 5336 5337
		btrfs_err(fs_info, "bad tree block start %llu", start);
		return ERR_PTR(-EINVAL);
	}

5338 5339 5340 5341 5342 5343 5344 5345
	if (fs_info->sectorsize < PAGE_SIZE &&
	    offset_in_page(start) + len > PAGE_SIZE) {
		btrfs_err(fs_info,
		"tree block crosses page boundary, start %llu nodesize %lu",
			  start, len);
		return ERR_PTR(-EINVAL);
	}

5346
	eb = find_extent_buffer(fs_info, start);
5347
	if (eb)
5348 5349
		return eb;

5350
	eb = __alloc_extent_buffer(fs_info, start, len);
5351
	if (!eb)
5352
		return ERR_PTR(-ENOMEM);
5353
	btrfs_set_buffer_lockdep_class(owner_root, eb, level);
5354

5355
	num_pages = num_extent_pages(eb);
5356
	for (i = 0; i < num_pages; i++, index++) {
5357 5358
		struct btrfs_subpage *prealloc = NULL;

5359
		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5360 5361
		if (!p) {
			exists = ERR_PTR(-ENOMEM);
5362
			goto free_eb;
5363
		}
J
Josef Bacik 已提交
5364

5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
		/*
		 * Preallocate page->private for subpage case, so that we won't
		 * allocate memory with private_lock hold.  The memory will be
		 * freed by attach_extent_buffer_page() or freed manually if
		 * we exit earlier.
		 *
		 * Although we have ensured one subpage eb can only have one
		 * page, but it may change in the future for 16K page size
		 * support, so we still preallocate the memory in the loop.
		 */
		ret = btrfs_alloc_subpage(fs_info, &prealloc,
					  BTRFS_SUBPAGE_METADATA);
		if (ret < 0) {
			unlock_page(p);
			put_page(p);
			exists = ERR_PTR(ret);
			goto free_eb;
		}

J
Josef Bacik 已提交
5384
		spin_lock(&mapping->private_lock);
5385
		exists = grab_extent_buffer(fs_info, p);
5386 5387 5388 5389 5390
		if (exists) {
			spin_unlock(&mapping->private_lock);
			unlock_page(p);
			put_page(p);
			mark_extent_buffer_accessed(exists, p);
5391
			btrfs_free_subpage(prealloc);
5392
			goto free_eb;
5393
		}
5394 5395 5396
		/* Should not fail, as we have preallocated the memory */
		ret = attach_extent_buffer_page(eb, p, prealloc);
		ASSERT(!ret);
J
Josef Bacik 已提交
5397
		spin_unlock(&mapping->private_lock);
5398

5399
		WARN_ON(PageDirty(p));
5400
		eb->pages[i] = p;
5401 5402
		if (!PageUptodate(p))
			uptodate = 0;
C
Chris Mason 已提交
5403 5404

		/*
5405 5406 5407 5408 5409
		 * We can't unlock the pages just yet since the extent buffer
		 * hasn't been properly inserted in the radix tree, this
		 * opens a race with btree_releasepage which can free a page
		 * while we are still filling in all pages for the buffer and
		 * we could crash.
C
Chris Mason 已提交
5410
		 */
5411 5412
	}
	if (uptodate)
5413
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5414
again:
5415
	ret = radix_tree_preload(GFP_NOFS);
5416 5417
	if (ret) {
		exists = ERR_PTR(ret);
5418
		goto free_eb;
5419
	}
5420

5421 5422
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
5423
				start >> fs_info->sectorsize_bits, eb);
5424
	spin_unlock(&fs_info->buffer_lock);
5425
	radix_tree_preload_end();
5426
	if (ret == -EEXIST) {
5427
		exists = find_extent_buffer(fs_info, start);
5428 5429 5430
		if (exists)
			goto free_eb;
		else
5431
			goto again;
5432 5433
	}
	/* add one reference for the tree */
5434
	check_buffer_tree_ref(eb);
5435
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
C
Chris Mason 已提交
5436 5437

	/*
5438 5439 5440
	 * Now it's safe to unlock the pages because any calls to
	 * btree_releasepage will correctly detect that a page belongs to a
	 * live buffer and won't free them prematurely.
C
Chris Mason 已提交
5441
	 */
5442 5443
	for (i = 0; i < num_pages; i++)
		unlock_page(eb->pages[i]);
5444 5445
	return eb;

5446
free_eb:
5447
	WARN_ON(!atomic_dec_and_test(&eb->refs));
5448 5449 5450 5451
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i])
			unlock_page(eb->pages[i]);
	}
C
Chris Mason 已提交
5452

5453
	btrfs_release_extent_buffer(eb);
5454
	return exists;
5455 5456
}

5457 5458 5459 5460 5461 5462 5463 5464
static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
{
	struct extent_buffer *eb =
			container_of(head, struct extent_buffer, rcu_head);

	__free_extent_buffer(eb);
}

5465
static int release_extent_buffer(struct extent_buffer *eb)
5466
	__releases(&eb->refs_lock)
5467
{
5468 5469
	lockdep_assert_held(&eb->refs_lock);

5470 5471
	WARN_ON(atomic_read(&eb->refs) == 0);
	if (atomic_dec_and_test(&eb->refs)) {
5472
		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5473
			struct btrfs_fs_info *fs_info = eb->fs_info;
5474

5475
			spin_unlock(&eb->refs_lock);
5476

5477 5478
			spin_lock(&fs_info->buffer_lock);
			radix_tree_delete(&fs_info->buffer_radix,
5479
					  eb->start >> fs_info->sectorsize_bits);
5480
			spin_unlock(&fs_info->buffer_lock);
5481 5482
		} else {
			spin_unlock(&eb->refs_lock);
5483
		}
5484

5485
		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5486
		/* Should be safe to release our pages at this point */
5487
		btrfs_release_extent_buffer_pages(eb);
5488
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5489
		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5490 5491 5492 5493
			__free_extent_buffer(eb);
			return 1;
		}
#endif
5494
		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5495
		return 1;
5496 5497
	}
	spin_unlock(&eb->refs_lock);
5498 5499

	return 0;
5500 5501
}

5502 5503
void free_extent_buffer(struct extent_buffer *eb)
{
5504 5505
	int refs;
	int old;
5506 5507 5508
	if (!eb)
		return;

5509 5510
	while (1) {
		refs = atomic_read(&eb->refs);
5511 5512 5513
		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
			refs == 1))
5514 5515 5516 5517 5518 5519
			break;
		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
		if (old == refs)
			return;
	}

5520 5521 5522
	spin_lock(&eb->refs_lock);
	if (atomic_read(&eb->refs) == 2 &&
	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5523
	    !extent_buffer_under_io(eb) &&
5524 5525 5526 5527 5528 5529 5530
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);

	/*
	 * I know this is terrible, but it's temporary until we stop tracking
	 * the uptodate bits and such for the extent buffers.
	 */
5531
	release_extent_buffer(eb);
5532 5533 5534 5535 5536
}

void free_extent_buffer_stale(struct extent_buffer *eb)
{
	if (!eb)
5537 5538
		return;

5539 5540 5541
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);

5542
	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5543 5544
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);
5545
	release_extent_buffer(eb);
5546 5547
}

5548
void clear_extent_buffer_dirty(const struct extent_buffer *eb)
5549
{
5550 5551
	int i;
	int num_pages;
5552 5553
	struct page *page;

5554
	num_pages = num_extent_pages(eb);
5555 5556

	for (i = 0; i < num_pages; i++) {
5557
		page = eb->pages[i];
5558
		if (!PageDirty(page))
C
Chris Mason 已提交
5559 5560
			continue;

5561
		lock_page(page);
C
Chris Mason 已提交
5562 5563
		WARN_ON(!PagePrivate(page));

5564
		clear_page_dirty_for_io(page);
M
Matthew Wilcox 已提交
5565
		xa_lock_irq(&page->mapping->i_pages);
5566 5567 5568
		if (!PageDirty(page))
			__xa_clear_mark(&page->mapping->i_pages,
					page_index(page), PAGECACHE_TAG_DIRTY);
M
Matthew Wilcox 已提交
5569
		xa_unlock_irq(&page->mapping->i_pages);
5570
		ClearPageError(page);
5571
		unlock_page(page);
5572
	}
5573
	WARN_ON(atomic_read(&eb->refs) == 0);
5574 5575
}

5576
bool set_extent_buffer_dirty(struct extent_buffer *eb)
5577
{
5578 5579
	int i;
	int num_pages;
5580
	bool was_dirty;
5581

5582 5583
	check_buffer_tree_ref(eb);

5584
	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5585

5586
	num_pages = num_extent_pages(eb);
5587
	WARN_ON(atomic_read(&eb->refs) == 0);
5588 5589
	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));

5590 5591 5592
	if (!was_dirty)
		for (i = 0; i < num_pages; i++)
			set_page_dirty(eb->pages[i]);
5593 5594 5595 5596 5597 5598

#ifdef CONFIG_BTRFS_DEBUG
	for (i = 0; i < num_pages; i++)
		ASSERT(PageDirty(eb->pages[i]));
#endif

5599
	return was_dirty;
5600 5601
}

5602
void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5603
{
5604
	int i;
5605
	struct page *page;
5606
	int num_pages;
5607

5608
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5609
	num_pages = num_extent_pages(eb);
5610
	for (i = 0; i < num_pages; i++) {
5611
		page = eb->pages[i];
C
Chris Mason 已提交
5612 5613
		if (page)
			ClearPageUptodate(page);
5614 5615 5616
	}
}

5617
void set_extent_buffer_uptodate(struct extent_buffer *eb)
5618
{
5619
	int i;
5620
	struct page *page;
5621
	int num_pages;
5622

5623
	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5624
	num_pages = num_extent_pages(eb);
5625
	for (i = 0; i < num_pages; i++) {
5626
		page = eb->pages[i];
5627 5628 5629 5630
		SetPageUptodate(page);
	}
}

5631
int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5632
{
5633
	int i;
5634 5635 5636
	struct page *page;
	int err;
	int ret = 0;
5637 5638
	int locked_pages = 0;
	int all_uptodate = 1;
5639
	int num_pages;
5640
	unsigned long num_reads = 0;
5641
	struct bio *bio = NULL;
C
Chris Mason 已提交
5642
	unsigned long bio_flags = 0;
5643

5644
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5645 5646
		return 0;

5647
	num_pages = num_extent_pages(eb);
5648
	for (i = 0; i < num_pages; i++) {
5649
		page = eb->pages[i];
5650
		if (wait == WAIT_NONE) {
5651
			if (!trylock_page(page))
5652
				goto unlock_exit;
5653 5654 5655
		} else {
			lock_page(page);
		}
5656
		locked_pages++;
5657 5658 5659 5660 5661 5662
	}
	/*
	 * We need to firstly lock all pages to make sure that
	 * the uptodate bit of our pages won't be affected by
	 * clear_extent_buffer_uptodate().
	 */
5663
	for (i = 0; i < num_pages; i++) {
5664
		page = eb->pages[i];
5665 5666
		if (!PageUptodate(page)) {
			num_reads++;
5667
			all_uptodate = 0;
5668
		}
5669
	}
5670

5671
	if (all_uptodate) {
5672
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5673 5674 5675
		goto unlock_exit;
	}

5676
	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5677
	eb->read_mirror = 0;
5678
	atomic_set(&eb->io_pages, num_reads);
5679 5680 5681 5682 5683
	/*
	 * It is possible for releasepage to clear the TREE_REF bit before we
	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
	 */
	check_buffer_tree_ref(eb);
5684
	for (i = 0; i < num_pages; i++) {
5685
		page = eb->pages[i];
5686

5687
		if (!PageUptodate(page)) {
5688 5689 5690 5691 5692 5693
			if (ret) {
				atomic_dec(&eb->io_pages);
				unlock_page(page);
				continue;
			}

5694
			ClearPageError(page);
5695 5696 5697 5698
			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
					 page, page_offset(page), PAGE_SIZE, 0,
					 &bio, end_bio_extent_readpage,
					 mirror_num, 0, 0, false);
5699 5700
			if (err) {
				/*
5701 5702 5703
				 * We failed to submit the bio so it's the
				 * caller's responsibility to perform cleanup
				 * i.e unlock page/set error bit.
5704
				 */
5705 5706 5707
				ret = err;
				SetPageError(page);
				unlock_page(page);
5708 5709
				atomic_dec(&eb->io_pages);
			}
5710 5711 5712 5713 5714
		} else {
			unlock_page(page);
		}
	}

5715
	if (bio) {
5716
		err = submit_one_bio(bio, mirror_num, bio_flags);
5717 5718
		if (err)
			return err;
5719
	}
5720

5721
	if (ret || wait != WAIT_COMPLETE)
5722
		return ret;
C
Chris Mason 已提交
5723

5724
	for (i = 0; i < num_pages; i++) {
5725
		page = eb->pages[i];
5726
		wait_on_page_locked(page);
C
Chris Mason 已提交
5727
		if (!PageUptodate(page))
5728 5729
			ret = -EIO;
	}
C
Chris Mason 已提交
5730

5731
	return ret;
5732 5733

unlock_exit:
C
Chris Mason 已提交
5734
	while (locked_pages > 0) {
5735
		locked_pages--;
5736 5737
		page = eb->pages[locked_pages];
		unlock_page(page);
5738 5739
	}
	return ret;
5740 5741
}

5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771
static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
			    unsigned long len)
{
	btrfs_warn(eb->fs_info,
		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
		eb->start, eb->len, start, len);
	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));

	return true;
}

/*
 * Check if the [start, start + len) range is valid before reading/writing
 * the eb.
 * NOTE: @start and @len are offset inside the eb, not logical address.
 *
 * Caller should not touch the dst/src memory if this function returns error.
 */
static inline int check_eb_range(const struct extent_buffer *eb,
				 unsigned long start, unsigned long len)
{
	unsigned long offset;

	/* start, start + len should not go beyond eb->len nor overflow */
	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
		return report_eb_range(eb, start, len);

	return false;
}

5772 5773
void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
			unsigned long start, unsigned long len)
5774 5775 5776 5777 5778 5779
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *dst = (char *)dstv;
5780
	unsigned long i = get_eb_page_index(start);
5781

5782
	if (check_eb_range(eb, start, len))
5783
		return;
5784

5785
	offset = get_eb_offset_in_page(eb, start);
5786

C
Chris Mason 已提交
5787
	while (len > 0) {
5788
		page = eb->pages[i];
5789

5790
		cur = min(len, (PAGE_SIZE - offset));
5791
		kaddr = page_address(page);
5792 5793 5794 5795 5796 5797 5798 5799 5800
		memcpy(dst, kaddr + offset, cur);

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

5801 5802 5803
int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
				       void __user *dstv,
				       unsigned long start, unsigned long len)
5804 5805 5806 5807 5808 5809
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char __user *dst = (char __user *)dstv;
5810
	unsigned long i = get_eb_page_index(start);
5811 5812 5813 5814 5815
	int ret = 0;

	WARN_ON(start > eb->len);
	WARN_ON(start + len > eb->start + eb->len);

5816
	offset = get_eb_offset_in_page(eb, start);
5817 5818

	while (len > 0) {
5819
		page = eb->pages[i];
5820

5821
		cur = min(len, (PAGE_SIZE - offset));
5822
		kaddr = page_address(page);
5823
		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836
			ret = -EFAULT;
			break;
		}

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}

	return ret;
}

5837 5838
int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
			 unsigned long start, unsigned long len)
5839 5840 5841 5842 5843 5844
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *ptr = (char *)ptrv;
5845
	unsigned long i = get_eb_page_index(start);
5846 5847
	int ret = 0;

5848 5849
	if (check_eb_range(eb, start, len))
		return -EINVAL;
5850

5851
	offset = get_eb_offset_in_page(eb, start);
5852

C
Chris Mason 已提交
5853
	while (len > 0) {
5854
		page = eb->pages[i];
5855

5856
		cur = min(len, (PAGE_SIZE - offset));
5857

5858
		kaddr = page_address(page);
5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870
		ret = memcmp(ptr, kaddr + offset, cur);
		if (ret)
			break;

		ptr += cur;
		len -= cur;
		offset = 0;
		i++;
	}
	return ret;
}

5871
void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5872 5873 5874 5875 5876
		const void *srcv)
{
	char *kaddr;

	WARN_ON(!PageUptodate(eb->pages[0]));
5877
	kaddr = page_address(eb->pages[0]) + get_eb_offset_in_page(eb, 0);
5878 5879 5880 5881
	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
			BTRFS_FSID_SIZE);
}

5882
void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5883 5884 5885 5886
{
	char *kaddr;

	WARN_ON(!PageUptodate(eb->pages[0]));
5887
	kaddr = page_address(eb->pages[0]) + get_eb_offset_in_page(eb, 0);
5888 5889 5890 5891
	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
			BTRFS_FSID_SIZE);
}

5892
void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5893 5894 5895 5896 5897 5898 5899
			 unsigned long start, unsigned long len)
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *src = (char *)srcv;
5900
	unsigned long i = get_eb_page_index(start);
5901

5902 5903
	if (check_eb_range(eb, start, len))
		return;
5904

5905
	offset = get_eb_offset_in_page(eb, start);
5906

C
Chris Mason 已提交
5907
	while (len > 0) {
5908
		page = eb->pages[i];
5909 5910
		WARN_ON(!PageUptodate(page));

5911
		cur = min(len, PAGE_SIZE - offset);
5912
		kaddr = page_address(page);
5913 5914 5915 5916 5917 5918 5919 5920 5921
		memcpy(kaddr + offset, src, cur);

		src += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

5922
void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5923
		unsigned long len)
5924 5925 5926 5927 5928
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
5929
	unsigned long i = get_eb_page_index(start);
5930

5931 5932
	if (check_eb_range(eb, start, len))
		return;
5933

5934
	offset = get_eb_offset_in_page(eb, start);
5935

C
Chris Mason 已提交
5936
	while (len > 0) {
5937
		page = eb->pages[i];
5938 5939
		WARN_ON(!PageUptodate(page));

5940
		cur = min(len, PAGE_SIZE - offset);
5941
		kaddr = page_address(page);
5942
		memset(kaddr + offset, 0, cur);
5943 5944 5945 5946 5947 5948 5949

		len -= cur;
		offset = 0;
		i++;
	}
}

5950 5951
void copy_extent_buffer_full(const struct extent_buffer *dst,
			     const struct extent_buffer *src)
5952 5953
{
	int i;
5954
	int num_pages;
5955 5956 5957

	ASSERT(dst->len == src->len);

5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971
	if (dst->fs_info->sectorsize == PAGE_SIZE) {
		num_pages = num_extent_pages(dst);
		for (i = 0; i < num_pages; i++)
			copy_page(page_address(dst->pages[i]),
				  page_address(src->pages[i]));
	} else {
		size_t src_offset = get_eb_offset_in_page(src, 0);
		size_t dst_offset = get_eb_offset_in_page(dst, 0);

		ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
		memcpy(page_address(dst->pages[0]) + dst_offset,
		       page_address(src->pages[0]) + src_offset,
		       src->len);
	}
5972 5973
}

5974 5975
void copy_extent_buffer(const struct extent_buffer *dst,
			const struct extent_buffer *src,
5976 5977 5978 5979 5980 5981 5982 5983
			unsigned long dst_offset, unsigned long src_offset,
			unsigned long len)
{
	u64 dst_len = dst->len;
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
5984
	unsigned long i = get_eb_page_index(dst_offset);
5985

5986 5987 5988 5989
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(src, src_offset, len))
		return;

5990 5991
	WARN_ON(src->len != dst_len);

5992
	offset = get_eb_offset_in_page(dst, dst_offset);
5993

C
Chris Mason 已提交
5994
	while (len > 0) {
5995
		page = dst->pages[i];
5996 5997
		WARN_ON(!PageUptodate(page));

5998
		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5999

6000
		kaddr = page_address(page);
6001 6002 6003 6004 6005 6006 6007 6008 6009
		read_extent_buffer(src, kaddr + offset, src_offset, cur);

		src_offset += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022
/*
 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
 * given bit number
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number
 * @page_index: return index of the page in the extent buffer that contains the
 * given bit number
 * @page_offset: return offset into the page given by page_index
 *
 * This helper hides the ugliness of finding the byte in an extent buffer which
 * contains a given bit.
 */
6023
static inline void eb_bitmap_offset(const struct extent_buffer *eb,
6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035
				    unsigned long start, unsigned long nr,
				    unsigned long *page_index,
				    size_t *page_offset)
{
	size_t byte_offset = BIT_BYTE(nr);
	size_t offset;

	/*
	 * The byte we want is the offset of the extent buffer + the offset of
	 * the bitmap item in the extent buffer + the offset of the byte in the
	 * bitmap item.
	 */
6036
	offset = start + offset_in_page(eb->start) + byte_offset;
6037

6038
	*page_index = offset >> PAGE_SHIFT;
6039
	*page_offset = offset_in_page(offset);
6040 6041 6042 6043 6044 6045 6046 6047
}

/**
 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number to test
 */
6048
int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
6049 6050
			   unsigned long nr)
{
6051
	u8 *kaddr;
6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069
	struct page *page;
	unsigned long i;
	size_t offset;

	eb_bitmap_offset(eb, start, nr, &i, &offset);
	page = eb->pages[i];
	WARN_ON(!PageUptodate(page));
	kaddr = page_address(page);
	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
}

/**
 * extent_buffer_bitmap_set - set an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to set
 */
6070
void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
6071 6072
			      unsigned long pos, unsigned long len)
{
6073
	u8 *kaddr;
6074 6075 6076 6077 6078
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6079
	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
6080 6081 6082 6083 6084 6085 6086 6087 6088 6089

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
	WARN_ON(!PageUptodate(page));
	kaddr = page_address(page);

	while (len >= bits_to_set) {
		kaddr[offset] |= mask_to_set;
		len -= bits_to_set;
		bits_to_set = BITS_PER_BYTE;
D
Dan Carpenter 已提交
6090
		mask_to_set = ~0;
6091
		if (++offset >= PAGE_SIZE && len > 0) {
6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111
			offset = 0;
			page = eb->pages[++i];
			WARN_ON(!PageUptodate(page));
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] |= mask_to_set;
	}
}


/**
 * extent_buffer_bitmap_clear - clear an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to clear
 */
6112 6113 6114
void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
				unsigned long start, unsigned long pos,
				unsigned long len)
6115
{
6116
	u8 *kaddr;
6117 6118 6119 6120 6121
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6122
	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
6123 6124 6125 6126 6127 6128 6129 6130 6131 6132

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
	WARN_ON(!PageUptodate(page));
	kaddr = page_address(page);

	while (len >= bits_to_clear) {
		kaddr[offset] &= ~mask_to_clear;
		len -= bits_to_clear;
		bits_to_clear = BITS_PER_BYTE;
D
Dan Carpenter 已提交
6133
		mask_to_clear = ~0;
6134
		if (++offset >= PAGE_SIZE && len > 0) {
6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146
			offset = 0;
			page = eb->pages[++i];
			WARN_ON(!PageUptodate(page));
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] &= ~mask_to_clear;
	}
}

6147 6148 6149 6150 6151 6152
static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
{
	unsigned long distance = (src > dst) ? src - dst : dst - src;
	return distance < len;
}

6153 6154 6155 6156
static void copy_pages(struct page *dst_page, struct page *src_page,
		       unsigned long dst_off, unsigned long src_off,
		       unsigned long len)
{
6157
	char *dst_kaddr = page_address(dst_page);
6158
	char *src_kaddr;
6159
	int must_memmove = 0;
6160

6161
	if (dst_page != src_page) {
6162
		src_kaddr = page_address(src_page);
6163
	} else {
6164
		src_kaddr = dst_kaddr;
6165 6166
		if (areas_overlap(src_off, dst_off, len))
			must_memmove = 1;
6167
	}
6168

6169 6170 6171 6172
	if (must_memmove)
		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
	else
		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6173 6174
}

6175 6176 6177
void memcpy_extent_buffer(const struct extent_buffer *dst,
			  unsigned long dst_offset, unsigned long src_offset,
			  unsigned long len)
6178 6179 6180 6181 6182 6183 6184
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_i;
	unsigned long src_i;

6185 6186 6187
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
6188

C
Chris Mason 已提交
6189
	while (len > 0) {
6190 6191
		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
6192

6193 6194
		dst_i = get_eb_page_index(dst_offset);
		src_i = get_eb_page_index(src_offset);
6195

6196
		cur = min(len, (unsigned long)(PAGE_SIZE -
6197 6198
					       src_off_in_page));
		cur = min_t(unsigned long, cur,
6199
			(unsigned long)(PAGE_SIZE - dst_off_in_page));
6200

6201
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6202 6203 6204 6205 6206 6207 6208 6209
			   dst_off_in_page, src_off_in_page, cur);

		src_offset += cur;
		dst_offset += cur;
		len -= cur;
	}
}

6210 6211 6212
void memmove_extent_buffer(const struct extent_buffer *dst,
			   unsigned long dst_offset, unsigned long src_offset,
			   unsigned long len)
6213 6214 6215 6216 6217 6218 6219 6220 6221
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_end = dst_offset + len - 1;
	unsigned long src_end = src_offset + len - 1;
	unsigned long dst_i;
	unsigned long src_i;

6222 6223 6224
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
6225
	if (dst_offset < src_offset) {
6226 6227 6228
		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
		return;
	}
C
Chris Mason 已提交
6229
	while (len > 0) {
6230 6231
		dst_i = get_eb_page_index(dst_end);
		src_i = get_eb_page_index(src_end);
6232

6233 6234
		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
		src_off_in_page = get_eb_offset_in_page(dst, src_end);
6235 6236 6237

		cur = min_t(unsigned long, len, src_off_in_page + 1);
		cur = min(cur, dst_off_in_page + 1);
6238
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6239 6240 6241 6242 6243 6244 6245 6246
			   dst_off_in_page - cur + 1,
			   src_off_in_page - cur + 1, cur);

		dst_end -= cur;
		src_end -= cur;
		len -= cur;
	}
}
6247

6248
int try_release_extent_buffer(struct page *page)
6249
{
6250 6251
	struct extent_buffer *eb;

6252
	/*
6253
	 * We need to make sure nobody is attaching this page to an eb right
6254 6255 6256 6257 6258
	 * now.
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&page->mapping->private_lock);
J
Josef Bacik 已提交
6259
		return 1;
6260
	}
6261

6262 6263
	eb = (struct extent_buffer *)page->private;
	BUG_ON(!eb);
6264 6265

	/*
6266 6267 6268
	 * This is a little awful but should be ok, we need to make sure that
	 * the eb doesn't disappear out from under us while we're looking at
	 * this page.
6269
	 */
6270
	spin_lock(&eb->refs_lock);
6271
	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6272 6273 6274
		spin_unlock(&eb->refs_lock);
		spin_unlock(&page->mapping->private_lock);
		return 0;
6275
	}
6276
	spin_unlock(&page->mapping->private_lock);
6277

6278
	/*
6279 6280
	 * If tree ref isn't set then we know the ref on this eb is a real ref,
	 * so just return, this page will likely be freed soon anyway.
6281
	 */
6282 6283 6284
	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
		spin_unlock(&eb->refs_lock);
		return 0;
6285
	}
6286

6287
	return release_extent_buffer(eb);
6288
}
6289 6290 6291 6292 6293

/*
 * btrfs_readahead_tree_block - attempt to readahead a child block
 * @fs_info:	the fs_info
 * @bytenr:	bytenr to read
6294
 * @owner_root: objectid of the root that owns this eb
6295
 * @gen:	generation for the uptodate check, can be 0
6296
 * @level:	level for the eb
6297 6298 6299 6300 6301 6302
 *
 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
 * normal uptodate check of the eb, without checking the generation.  If we have
 * to read the block we will not block on anything.
 */
void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
6303
				u64 bytenr, u64 owner_root, u64 gen, int level)
6304 6305 6306 6307
{
	struct extent_buffer *eb;
	int ret;

6308
	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335
	if (IS_ERR(eb))
		return;

	if (btrfs_buffer_uptodate(eb, gen, 1)) {
		free_extent_buffer(eb);
		return;
	}

	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
	if (ret < 0)
		free_extent_buffer_stale(eb);
	else
		free_extent_buffer(eb);
}

/*
 * btrfs_readahead_node_child - readahead a node's child block
 * @node:	parent node we're reading from
 * @slot:	slot in the parent node for the child we want to read
 *
 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
 * the slot in the node provided.
 */
void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
{
	btrfs_readahead_tree_block(node->fs_info,
				   btrfs_node_blockptr(node, slot),
6336 6337 6338
				   btrfs_header_owner(node),
				   btrfs_node_ptr_generation(node, slot),
				   btrfs_header_level(node) - 1);
6339
}