extent_io.c 196.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2

3 4 5 6 7 8
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/bio.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/page-flags.h>
9
#include <linux/sched/mm.h>
10 11 12 13 14
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
15
#include <linux/prefetch.h>
B
Boris Burkov 已提交
16
#include <linux/fsverity.h>
17
#include "misc.h"
18
#include "extent_io.h"
19
#include "extent-io-tree.h"
20
#include "extent_map.h"
21 22
#include "ctree.h"
#include "btrfs_inode.h"
23
#include "volumes.h"
24
#include "check-integrity.h"
25
#include "locking.h"
26
#include "rcu-string.h"
27
#include "backref.h"
28
#include "disk-io.h"
29
#include "subpage.h"
30
#include "zoned.h"
31
#include "block-group.h"
32
#include "compression.h"
33 34 35 36

static struct kmem_cache *extent_state_cache;
static struct kmem_cache *extent_buffer_cache;

37 38 39 40 41
static inline bool extent_state_in_tree(const struct extent_state *state)
{
	return !RB_EMPTY_NODE(&state->rb_node);
}

42
#ifdef CONFIG_BTRFS_DEBUG
43
static LIST_HEAD(states);
C
Chris Mason 已提交
44
static DEFINE_SPINLOCK(leak_lock);
45

46 47 48
static inline void btrfs_leak_debug_add(spinlock_t *lock,
					struct list_head *new,
					struct list_head *head)
49 50 51
{
	unsigned long flags;

52
	spin_lock_irqsave(lock, flags);
53
	list_add(new, head);
54
	spin_unlock_irqrestore(lock, flags);
55 56
}

57 58
static inline void btrfs_leak_debug_del(spinlock_t *lock,
					struct list_head *entry)
59 60 61
{
	unsigned long flags;

62
	spin_lock_irqsave(lock, flags);
63
	list_del(entry);
64
	spin_unlock_irqrestore(lock, flags);
65 66
}

67
void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
68 69
{
	struct extent_buffer *eb;
70
	unsigned long flags;
71

72 73 74 75 76 77 78
	/*
	 * If we didn't get into open_ctree our allocated_ebs will not be
	 * initialized, so just skip this.
	 */
	if (!fs_info->allocated_ebs.next)
		return;

79
	WARN_ON(!list_empty(&fs_info->allocated_ebs));
80 81 82 83
	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
	while (!list_empty(&fs_info->allocated_ebs)) {
		eb = list_first_entry(&fs_info->allocated_ebs,
				      struct extent_buffer, leak_list);
84 85 86 87
		pr_err(
	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
		       btrfs_header_owner(eb));
88 89 90
		list_del(&eb->leak_list);
		kmem_cache_free(extent_buffer_cache, eb);
	}
91
	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
92 93 94 95 96 97
}

static inline void btrfs_extent_state_leak_debug_check(void)
{
	struct extent_state *state;

98 99
	while (!list_empty(&states)) {
		state = list_entry(states.next, struct extent_state, leak_list);
100
		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
101 102
		       state->start, state->end, state->state,
		       extent_state_in_tree(state),
103
		       refcount_read(&state->refs));
104 105 106 107
		list_del(&state->leak_list);
		kmem_cache_free(extent_state_cache, state);
	}
}
108

109 110
#define btrfs_debug_check_extent_io_range(tree, start, end)		\
	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
111
static inline void __btrfs_debug_check_extent_io_range(const char *caller,
112
		struct extent_io_tree *tree, u64 start, u64 end)
113
{
114 115 116 117 118 119 120 121 122 123 124 125
	struct inode *inode = tree->private_data;
	u64 isize;

	if (!inode || !is_data_inode(inode))
		return;

	isize = i_size_read(inode);
	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
	}
126
}
127
#else
128 129
#define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
#define btrfs_leak_debug_del(lock, entry)	do {} while (0)
130
#define btrfs_extent_state_leak_debug_check()	do {} while (0)
131
#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
C
Chris Mason 已提交
132
#endif
133 134 135 136 137 138 139

struct tree_entry {
	u64 start;
	u64 end;
	struct rb_node rb_node;
};

140 141 142 143 144 145
/*
 * Structure to record info about the bio being assembled, and other info like
 * how many bytes are there before stripe/ordered extent boundary.
 */
struct btrfs_bio_ctrl {
	struct bio *bio;
146
	int mirror_num;
147
	enum btrfs_compression_type compress_type;
148 149 150 151
	u32 len_to_stripe_boundary;
	u32 len_to_oe_boundary;
};

152
struct extent_page_data {
153
	struct btrfs_bio_ctrl bio_ctrl;
154 155 156
	/* tells writepage not to lock the state bits for this range
	 * it still does the unlocking
	 */
157 158
	unsigned int extent_locked:1;

159
	/* tells the submit_bio code to use REQ_SYNC */
160
	unsigned int sync_io:1;
161 162
};

163
static int add_extent_changeset(struct extent_state *state, u32 bits,
164 165 166 167 168 169
				 struct extent_changeset *changeset,
				 int set)
{
	int ret;

	if (!changeset)
170
		return 0;
171
	if (set && (state->state & bits) == bits)
172
		return 0;
173
	if (!set && (state->state & bits) == 0)
174
		return 0;
175
	changeset->bytes_changed += state->end - state->start + 1;
176
	ret = ulist_add(&changeset->range_changed, state->start, state->end,
177
			GFP_ATOMIC);
178
	return ret;
179 180
}

181
static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
182
{
183
	struct bio *bio;
184
	struct bio_vec *bv;
185 186 187 188 189
	struct inode *inode;
	int mirror_num;

	if (!bio_ctrl->bio)
		return;
190

191
	bio = bio_ctrl->bio;
192 193
	bv = bio_first_bvec_all(bio);
	inode = bv->bv_page->mapping->host;
194
	mirror_num = bio_ctrl->mirror_num;
195

196 197
	/* Caller should ensure the bio has at least some range added */
	ASSERT(bio->bi_iter.bi_size);
198

199
	btrfs_bio(bio)->file_offset = page_offset(bv->bv_page) + bv->bv_offset;
200

201 202 203 204
	if (!is_data_inode(inode))
		btrfs_submit_metadata_bio(inode, bio, mirror_num);
	else if (btrfs_op(bio) == BTRFS_MAP_WRITE)
		btrfs_submit_data_write_bio(inode, bio, mirror_num);
205
	else
206 207
		btrfs_submit_data_read_bio(inode, bio, mirror_num,
					   bio_ctrl->compress_type);
208

209
	/* The bio is owned by the end_io handler now */
210
	bio_ctrl->bio = NULL;
211 212
}

213
/*
214
 * Submit or fail the current bio in an extent_page_data structure.
215
 */
216
static void submit_write_bio(struct extent_page_data *epd, int ret)
217
{
218
	struct bio *bio = epd->bio_ctrl.bio;
219

220 221 222 223 224
	if (!bio)
		return;

	if (ret) {
		ASSERT(ret < 0);
225 226
		btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
		/* The bio is owned by the end_io handler now */
227
		epd->bio_ctrl.bio = NULL;
228
	} else {
229
		submit_one_bio(&epd->bio_ctrl);
230 231
	}
}
232

233
int __init extent_io_init(void)
234
{
D
David Sterba 已提交
235
	extent_state_cache = kmem_cache_create("btrfs_extent_state",
236
			sizeof(struct extent_state), 0,
237
			SLAB_MEM_SPREAD, NULL);
238 239 240
	if (!extent_state_cache)
		return -ENOMEM;

D
David Sterba 已提交
241
	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
242
			sizeof(struct extent_buffer), 0,
243
			SLAB_MEM_SPREAD, NULL);
244 245
	if (!extent_buffer_cache) {
		kmem_cache_destroy(extent_state_cache);
246
		return -ENOMEM;
247
	}
248

249 250 251
	return 0;
}

252
void __cold extent_io_exit(void)
253
{
254 255 256 257 258
	/*
	 * Make sure all delayed rcu free are flushed before we
	 * destroy caches.
	 */
	rcu_barrier();
259
	kmem_cache_destroy(extent_buffer_cache);
260 261
	btrfs_extent_state_leak_debug_check();
	kmem_cache_destroy(extent_state_cache);
262 263
}

264 265 266 267 268 269 270 271 272
/*
 * For the file_extent_tree, we want to hold the inode lock when we lookup and
 * update the disk_i_size, but lockdep will complain because our io_tree we hold
 * the tree lock and get the inode lock when setting delalloc.  These two things
 * are unrelated, so make a class for the file_extent_tree so we don't get the
 * two locking patterns mixed up.
 */
static struct lock_class_key file_extent_tree_class;

273
void extent_io_tree_init(struct btrfs_fs_info *fs_info,
274 275
			 struct extent_io_tree *tree, unsigned int owner,
			 void *private_data)
276
{
277
	tree->fs_info = fs_info;
278
	tree->state = RB_ROOT;
279
	tree->dirty_bytes = 0;
280
	spin_lock_init(&tree->lock);
281
	tree->private_data = private_data;
282
	tree->owner = owner;
283 284
	if (owner == IO_TREE_INODE_FILE_EXTENT)
		lockdep_set_class(&tree->lock, &file_extent_tree_class);
285 286
}

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
void extent_io_tree_release(struct extent_io_tree *tree)
{
	spin_lock(&tree->lock);
	/*
	 * Do a single barrier for the waitqueue_active check here, the state
	 * of the waitqueue should not change once extent_io_tree_release is
	 * called.
	 */
	smp_mb();
	while (!RB_EMPTY_ROOT(&tree->state)) {
		struct rb_node *node;
		struct extent_state *state;

		node = rb_first(&tree->state);
		state = rb_entry(node, struct extent_state, rb_node);
		rb_erase(&state->rb_node, &tree->state);
		RB_CLEAR_NODE(&state->rb_node);
		/*
		 * btree io trees aren't supposed to have tasks waiting for
		 * changes in the flags of extent states ever.
		 */
		ASSERT(!waitqueue_active(&state->wq));
		free_extent_state(state);

		cond_resched_lock(&tree->lock);
	}
	spin_unlock(&tree->lock);
}

316
static struct extent_state *alloc_extent_state(gfp_t mask)
317 318 319
{
	struct extent_state *state;

320 321 322 323 324
	/*
	 * The given mask might be not appropriate for the slab allocator,
	 * drop the unsupported bits
	 */
	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
325
	state = kmem_cache_alloc(extent_state_cache, mask);
326
	if (!state)
327 328
		return state;
	state->state = 0;
329
	state->failrec = NULL;
330
	RB_CLEAR_NODE(&state->rb_node);
331
	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
332
	refcount_set(&state->refs, 1);
333
	init_waitqueue_head(&state->wq);
334
	trace_alloc_extent_state(state, mask, _RET_IP_);
335 336 337
	return state;
}

338
void free_extent_state(struct extent_state *state)
339 340 341
{
	if (!state)
		return;
342
	if (refcount_dec_and_test(&state->refs)) {
343
		WARN_ON(extent_state_in_tree(state));
344
		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
345
		trace_free_extent_state(state, _RET_IP_);
346 347 348 349
		kmem_cache_free(extent_state_cache, state);
	}
}

N
Nikolay Borisov 已提交
350
/**
351 352
 * Search @tree for an entry that contains @offset. Such entry would have
 * entry->start <= offset && entry->end >= offset.
N
Nikolay Borisov 已提交
353
 *
354 355
 * @tree:       the tree to search
 * @offset:     offset that should fall within an entry in @tree
356
 * @node_ret:   pointer where new node should be anchored (used when inserting an
357 358
 *	        entry in the tree)
 * @parent_ret: points to entry which would have been the parent of the entry,
N
Nikolay Borisov 已提交
359 360
 *               containing @offset
 *
361 362 363 364 365
 * Return a pointer to the entry that contains @offset byte address and don't change
 * @node_ret and @parent_ret.
 *
 * If no such entry exists, return pointer to entry that ends before @offset
 * and fill parameters @node_ret and @parent_ret, ie. does not return NULL.
N
Nikolay Borisov 已提交
366
 */
367 368 369 370
static inline struct rb_node *tree_search_for_insert(struct extent_io_tree *tree,
					             u64 offset,
						     struct rb_node ***node_ret,
						     struct rb_node **parent_ret)
371
{
372
	struct rb_root *root = &tree->state;
373
	struct rb_node **node = &root->rb_node;
374 375 376
	struct rb_node *prev = NULL;
	struct tree_entry *entry;

377 378
	while (*node) {
		prev = *node;
379
		entry = rb_entry(prev, struct tree_entry, rb_node);
380 381

		if (offset < entry->start)
382
			node = &(*node)->rb_left;
383
		else if (offset > entry->end)
384
			node = &(*node)->rb_right;
C
Chris Mason 已提交
385
		else
386
			return *node;
387 388
	}

389 390
	if (node_ret)
		*node_ret = node;
391 392 393
	if (parent_ret)
		*parent_ret = prev;

394 395 396 397
	/* Search neighbors until we find the first one past the end */
	while (prev && offset > entry->end) {
		prev = rb_next(prev);
		entry = rb_entry(prev, struct tree_entry, rb_node);
398 399
	}

400
	return prev;
401 402
}

403 404 405 406
/*
 * Inexact rb-tree search, return the next entry if @offset is not found
 */
static inline struct rb_node *tree_search(struct extent_io_tree *tree, u64 offset)
407
{
408
	return tree_search_for_insert(tree, offset, NULL, NULL);
409 410
}

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
/**
 * Search offset in the tree or fill neighbor rbtree node pointers.
 *
 * @tree:      the tree to search
 * @offset:    offset that should fall within an entry in @tree
 * @next_ret:  pointer to the first entry whose range ends after @offset
 * @prev_ret:  pointer to the first entry whose range begins before @offset
 *
 * Return a pointer to the entry that contains @offset byte address. If no
 * such entry exists, then return NULL and fill @prev_ret and @next_ret.
 * Otherwise return the found entry and other pointers are left untouched.
 */
static struct rb_node *tree_search_prev_next(struct extent_io_tree *tree,
					     u64 offset,
					     struct rb_node **prev_ret,
					     struct rb_node **next_ret)
427
{
428 429 430
	struct rb_root *root = &tree->state;
	struct rb_node **node = &root->rb_node;
	struct rb_node *prev = NULL;
431
	struct rb_node *orig_prev = NULL;
432 433
	struct tree_entry *entry;

434 435 436
	ASSERT(prev_ret);
	ASSERT(next_ret);

437 438 439 440 441 442 443 444 445 446 447 448
	while (*node) {
		prev = *node;
		entry = rb_entry(prev, struct tree_entry, rb_node);

		if (offset < entry->start)
			node = &(*node)->rb_left;
		else if (offset > entry->end)
			node = &(*node)->rb_right;
		else
			return *node;
	}

449
	orig_prev = prev;
450 451 452 453
	while (prev && offset > entry->end) {
		prev = rb_next(prev);
		entry = rb_entry(prev, struct tree_entry, rb_node);
	}
454 455
	*next_ret = prev;
	prev = orig_prev;
456

457 458 459 460 461 462
	entry = rb_entry(prev, struct tree_entry, rb_node);
	while (prev && offset < entry->start) {
		prev = rb_prev(prev);
		entry = rb_entry(prev, struct tree_entry, rb_node);
	}
	*prev_ret = prev;
463

464
	return NULL;
465 466
}

467 468 469 470 471 472 473 474 475
/*
 * utility function to look for merge candidates inside a given range.
 * Any extents with matching state are merged together into a single
 * extent in the tree.  Extents with EXTENT_IO in their state field
 * are not merged because the end_io handlers need to be able to do
 * operations on them without sleeping (or doing allocations/splits).
 *
 * This should be called with the tree lock held.
 */
476 477
static void merge_state(struct extent_io_tree *tree,
		        struct extent_state *state)
478 479 480 481
{
	struct extent_state *other;
	struct rb_node *other_node;

N
Nikolay Borisov 已提交
482
	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
483
		return;
484 485 486 487 488 489

	other_node = rb_prev(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->end == state->start - 1 &&
		    other->state == state->state) {
490 491 492 493
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
494 495
			state->start = other->start;
			rb_erase(&other->rb_node, &tree->state);
496
			RB_CLEAR_NODE(&other->rb_node);
497 498 499 500 501 502 503 504
			free_extent_state(other);
		}
	}
	other_node = rb_next(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->start == state->end + 1 &&
		    other->state == state->state) {
505 506 507 508
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
509 510
			state->end = other->end;
			rb_erase(&other->rb_node, &tree->state);
511
			RB_CLEAR_NODE(&other->rb_node);
512
			free_extent_state(other);
513 514 515 516
		}
	}
}

517
static void set_state_bits(struct extent_io_tree *tree,
518
			   struct extent_state *state, u32 bits,
519
			   struct extent_changeset *changeset);
520

521 522 523 524 525 526 527 528 529 530 531
/*
 * insert an extent_state struct into the tree.  'bits' are set on the
 * struct before it is inserted.
 *
 * This may return -EEXIST if the extent is already there, in which case the
 * state struct is freed.
 *
 * The tree lock is not taken internally.  This is a utility function and
 * probably isn't what you want to call (see set/clear_extent_bit).
 */
static int insert_state(struct extent_io_tree *tree,
532
			struct extent_state *state,
533
			u32 bits, struct extent_changeset *changeset)
534
{
535 536
	struct rb_node **node;
	struct rb_node *parent;
537
	const u64 end = state->end;
J
Josef Bacik 已提交
538

539
	set_state_bits(tree, state, bits, changeset);
540

541 542 543 544 545 546 547 548 549 550 551 552 553 554
	node = &tree->state.rb_node;
	while (*node) {
		struct tree_entry *entry;

		parent = *node;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (end < entry->start) {
			node = &(*node)->rb_left;
		} else if (end > entry->end) {
			node = &(*node)->rb_right;
		} else {
			btrfs_err(tree->fs_info,
			       "found node %llu %llu on insert of %llu %llu",
555
			       entry->start, entry->end, state->start, end);
556 557
			return -EEXIST;
		}
558
	}
559 560 561 562

	rb_link_node(&state->rb_node, parent, node);
	rb_insert_color(&state->rb_node, &tree->state);

563 564 565 566
	merge_state(tree, state);
	return 0;
}

567 568 569 570 571 572 573 574 575 576 577 578 579 580
/*
 * Insert state to @tree to the location given by @node and @parent.
 */
static void insert_state_fast(struct extent_io_tree *tree,
			      struct extent_state *state, struct rb_node **node,
			      struct rb_node *parent, unsigned bits,
			      struct extent_changeset *changeset)
{
	set_state_bits(tree, state, bits, changeset);
	rb_link_node(&state->rb_node, parent, node);
	rb_insert_color(&state->rb_node, &tree->state);
	merge_state(tree, state);
}

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
/*
 * split a given extent state struct in two, inserting the preallocated
 * struct 'prealloc' as the newly created second half.  'split' indicates an
 * offset inside 'orig' where it should be split.
 *
 * Before calling,
 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 * are two extent state structs in the tree:
 * prealloc: [orig->start, split - 1]
 * orig: [ split, orig->end ]
 *
 * The tree locks are not taken by this function. They need to be held
 * by the caller.
 */
static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
		       struct extent_state *prealloc, u64 split)
{
598 599
	struct rb_node *parent = NULL;
	struct rb_node **node;
J
Josef Bacik 已提交
600

601 602
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_split_delalloc_extent(tree->private_data, orig, split);
J
Josef Bacik 已提交
603

604 605 606 607 608
	prealloc->start = orig->start;
	prealloc->end = split - 1;
	prealloc->state = orig->state;
	orig->start = split;

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
	parent = &orig->rb_node;
	node = &parent;
	while (*node) {
		struct tree_entry *entry;

		parent = *node;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (prealloc->end < entry->start) {
			node = &(*node)->rb_left;
		} else if (prealloc->end > entry->end) {
			node = &(*node)->rb_right;
		} else {
			free_extent_state(prealloc);
			return -EEXIST;
		}
625
	}
626 627 628 629

	rb_link_node(&prealloc->rb_node, parent, node);
	rb_insert_color(&prealloc->rb_node, &tree->state);

630 631 632
	return 0;
}

633 634 635 636 637 638 639 640 641
static struct extent_state *next_state(struct extent_state *state)
{
	struct rb_node *next = rb_next(&state->rb_node);
	if (next)
		return rb_entry(next, struct extent_state, rb_node);
	else
		return NULL;
}

642 643
/*
 * utility function to clear some bits in an extent state struct.
644
 * it will optionally wake up anyone waiting on this state (wake == 1).
645 646 647 648
 *
 * If no bits are set on the state struct after clearing things, the
 * struct is freed and removed from the tree
 */
649 650
static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
					    struct extent_state *state,
651
					    u32 bits, int wake,
652
					    struct extent_changeset *changeset)
653
{
654
	struct extent_state *next;
655
	u32 bits_to_clear = bits & ~EXTENT_CTLBITS;
656
	int ret;
657

658
	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
659 660 661 662
		u64 range = state->end - state->start + 1;
		WARN_ON(range > tree->dirty_bytes);
		tree->dirty_bytes -= range;
	}
663 664 665 666

	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_clear_delalloc_extent(tree->private_data, state, bits);

667 668
	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
	BUG_ON(ret < 0);
669
	state->state &= ~bits_to_clear;
670 671
	if (wake)
		wake_up(&state->wq);
672
	if (state->state == 0) {
673
		next = next_state(state);
674
		if (extent_state_in_tree(state)) {
675
			rb_erase(&state->rb_node, &tree->state);
676
			RB_CLEAR_NODE(&state->rb_node);
677 678 679 680 681 682
			free_extent_state(state);
		} else {
			WARN_ON(1);
		}
	} else {
		merge_state(tree, state);
683
		next = next_state(state);
684
	}
685
	return next;
686 687
}

688 689 690 691 692 693 694 695 696
static struct extent_state *
alloc_extent_state_atomic(struct extent_state *prealloc)
{
	if (!prealloc)
		prealloc = alloc_extent_state(GFP_ATOMIC);

	return prealloc;
}

697
static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
698
{
699
	btrfs_panic(tree->fs_info, err,
700
	"locking error: extent tree was modified by another thread while locked");
701 702
}

703 704 705 706 707 708 709 710 711 712
/*
 * clear some bits on a range in the tree.  This may require splitting
 * or inserting elements in the tree, so the gfp mask is used to
 * indicate which allocations or sleeping are allowed.
 *
 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 * the given range from the tree regardless of state (ie for truncate).
 *
 * the range [start, end] is inclusive.
 *
713
 * This takes the tree lock, and returns 0 on success and < 0 on error.
714
 */
715
int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
716 717 718
		       u32 bits, int wake, int delete,
		       struct extent_state **cached_state,
		       gfp_t mask, struct extent_changeset *changeset)
719 720
{
	struct extent_state *state;
721
	struct extent_state *cached;
722 723
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
724
	u64 last_end;
725
	int err;
726
	int clear = 0;
727

728
	btrfs_debug_check_extent_io_range(tree, start, end);
729
	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
730

731 732 733
	if (bits & EXTENT_DELALLOC)
		bits |= EXTENT_NORESERVE;

734 735 736
	if (delete)
		bits |= ~EXTENT_CTLBITS;

N
Nikolay Borisov 已提交
737
	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
738
		clear = 1;
739
again:
740
	if (!prealloc && gfpflags_allow_blocking(mask)) {
741 742 743 744 745 746 747
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
748 749 750
		prealloc = alloc_extent_state(mask);
	}

751
	spin_lock(&tree->lock);
752 753
	if (cached_state) {
		cached = *cached_state;
754 755 756 757 758 759

		if (clear) {
			*cached_state = NULL;
			cached_state = NULL;
		}

760 761
		if (cached && extent_state_in_tree(cached) &&
		    cached->start <= start && cached->end > start) {
762
			if (clear)
763
				refcount_dec(&cached->refs);
764
			state = cached;
765
			goto hit_next;
766
		}
767 768
		if (clear)
			free_extent_state(cached);
769
	}
770 771 772 773
	/*
	 * this search will find the extents that end after
	 * our range starts
	 */
774
	node = tree_search(tree, start);
775 776 777
	if (!node)
		goto out;
	state = rb_entry(node, struct extent_state, rb_node);
778
hit_next:
779 780 781
	if (state->start > end)
		goto out;
	WARN_ON(state->end < start);
782
	last_end = state->end;
783

784
	/* the state doesn't have the wanted bits, go ahead */
785 786
	if (!(state->state & bits)) {
		state = next_state(state);
787
		goto next;
788
	}
789

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
	/*
	 *     | ---- desired range ---- |
	 *  | state | or
	 *  | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip
	 * bits on second half.
	 *
	 * If the extent we found extends past our range, we
	 * just split and search again.  It'll get split again
	 * the next time though.
	 *
	 * If the extent we found is inside our range, we clear
	 * the desired bit on it.
	 */

	if (state->start < start) {
807 808
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
809
		err = split_state(tree, state, prealloc, start);
810 811 812
		if (err)
			extent_io_tree_panic(tree, err);

813 814 815 816
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
817
			state = clear_state_bit(tree, state, bits, wake, changeset);
818
			goto next;
819 820 821 822 823 824 825 826 827 828
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and clear the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
829 830
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
831
		err = split_state(tree, state, prealloc, end + 1);
832 833 834
		if (err)
			extent_io_tree_panic(tree, err);

835 836
		if (wake)
			wake_up(&state->wq);
837

838
		clear_state_bit(tree, prealloc, bits, wake, changeset);
J
Josef Bacik 已提交
839

840 841 842
		prealloc = NULL;
		goto out;
	}
843

844
	state = clear_state_bit(tree, state, bits, wake, changeset);
845
next:
846 847 848
	if (last_end == (u64)-1)
		goto out;
	start = last_end + 1;
849
	if (start <= end && state && !need_resched())
850
		goto hit_next;
851 852 853 854

search_again:
	if (start > end)
		goto out;
855
	spin_unlock(&tree->lock);
856
	if (gfpflags_allow_blocking(mask))
857 858
		cond_resched();
	goto again;
859 860 861 862 863 864 865 866

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return 0;

867 868
}

869 870
static void wait_on_state(struct extent_io_tree *tree,
			  struct extent_state *state)
871 872
		__releases(tree->lock)
		__acquires(tree->lock)
873 874 875
{
	DEFINE_WAIT(wait);
	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
876
	spin_unlock(&tree->lock);
877
	schedule();
878
	spin_lock(&tree->lock);
879 880 881 882 883 884 885 886
	finish_wait(&state->wq, &wait);
}

/*
 * waits for one or more bits to clear on a range in the state tree.
 * The range [start, end] is inclusive.
 * The tree lock is taken by this function
 */
887
static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
888
			    u32 bits)
889 890 891 892
{
	struct extent_state *state;
	struct rb_node *node;

893
	btrfs_debug_check_extent_io_range(tree, start, end);
894

895
	spin_lock(&tree->lock);
896 897 898 899 900 901
again:
	while (1) {
		/*
		 * this search will find all the extents that end after
		 * our range starts
		 */
902
		node = tree_search(tree, start);
903
process_node:
904 905 906 907 908 909 910 911 912 913
		if (!node)
			break;

		state = rb_entry(node, struct extent_state, rb_node);

		if (state->start > end)
			goto out;

		if (state->state & bits) {
			start = state->start;
914
			refcount_inc(&state->refs);
915 916 917 918 919 920 921 922 923
			wait_on_state(tree, state);
			free_extent_state(state);
			goto again;
		}
		start = state->end + 1;

		if (start > end)
			break;

924 925 926 927
		if (!cond_resched_lock(&tree->lock)) {
			node = rb_next(node);
			goto process_node;
		}
928 929
	}
out:
930
	spin_unlock(&tree->lock);
931 932
}

933
static void set_state_bits(struct extent_io_tree *tree,
934
			   struct extent_state *state,
935
			   u32 bits, struct extent_changeset *changeset)
936
{
937
	u32 bits_to_set = bits & ~EXTENT_CTLBITS;
938
	int ret;
J
Josef Bacik 已提交
939

940 941 942
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_set_delalloc_extent(tree->private_data, state, bits);

943
	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
944 945 946
		u64 range = state->end - state->start + 1;
		tree->dirty_bytes += range;
	}
947 948
	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
	BUG_ON(ret < 0);
949
	state->state |= bits_to_set;
950 951
}

952 953
static void cache_state_if_flags(struct extent_state *state,
				 struct extent_state **cached_ptr,
954
				 unsigned flags)
955 956
{
	if (cached_ptr && !(*cached_ptr)) {
957
		if (!flags || (state->state & flags)) {
958
			*cached_ptr = state;
959
			refcount_inc(&state->refs);
960 961 962 963
		}
	}
}

964 965 966 967
static void cache_state(struct extent_state *state,
			struct extent_state **cached_ptr)
{
	return cache_state_if_flags(state, cached_ptr,
N
Nikolay Borisov 已提交
968
				    EXTENT_LOCKED | EXTENT_BOUNDARY);
969 970
}

971
/*
972 973
 * set some bits on a range in the tree.  This may require allocations or
 * sleeping, so the gfp mask is used to indicate what is allowed.
974
 *
975 976 977
 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 * part of the range already has the desired bits set.  The start of the
 * existing range is returned in failed_start in this case.
978
 *
979
 * [start, end] is inclusive This takes the tree lock.
980
 */
981 982
int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
		   u32 exclusive_bits, u64 *failed_start,
983 984
		   struct extent_state **cached_state, gfp_t mask,
		   struct extent_changeset *changeset)
985 986 987 988
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
989 990
	struct rb_node **p;
	struct rb_node *parent;
991 992 993
	int err = 0;
	u64 last_start;
	u64 last_end;
994

995
	btrfs_debug_check_extent_io_range(tree, start, end);
996
	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
997

998 999 1000 1001
	if (exclusive_bits)
		ASSERT(failed_start);
	else
		ASSERT(failed_start == NULL);
1002
again:
1003
	if (!prealloc && gfpflags_allow_blocking(mask)) {
1004 1005 1006 1007 1008 1009 1010
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
1011 1012 1013
		prealloc = alloc_extent_state(mask);
	}

1014
	spin_lock(&tree->lock);
1015 1016
	if (cached_state && *cached_state) {
		state = *cached_state;
1017
		if (state->start <= start && state->end > start &&
1018
		    extent_state_in_tree(state)) {
1019 1020 1021 1022
			node = &state->rb_node;
			goto hit_next;
		}
	}
1023 1024 1025 1026
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1027
	node = tree_search_for_insert(tree, start, &p, &parent);
1028
	if (!node) {
1029 1030
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1031 1032
		prealloc->start = start;
		prealloc->end = end;
1033
		insert_state_fast(tree, prealloc, p, parent, bits, changeset);
1034
		cache_state(prealloc, cached_state);
1035 1036 1037 1038
		prealloc = NULL;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1039
hit_next:
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1050
		if (state->state & exclusive_bits) {
1051 1052 1053 1054
			*failed_start = state->start;
			err = -EEXIST;
			goto out;
		}
1055

1056
		set_state_bits(tree, state, bits, changeset);
1057
		cache_state(state, cached_state);
1058
		merge_state(tree, state);
1059 1060 1061
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1062 1063 1064 1065
		state = next_state(state);
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
1086
		if (state->state & exclusive_bits) {
1087 1088 1089 1090
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1091

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
		/*
		 * If this extent already has all the bits we want set, then
		 * skip it, not necessary to split it or do anything with it.
		 */
		if ((state->state & bits) == bits) {
			start = state->end + 1;
			cache_state(state, cached_state);
			goto search_again;
		}

1102 1103
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1104
		err = split_state(tree, state, prealloc, start);
1105 1106 1107
		if (err)
			extent_io_tree_panic(tree, err);

1108 1109 1110 1111
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1112
			set_state_bits(tree, state, bits, changeset);
1113
			cache_state(state, cached_state);
1114
			merge_state(tree, state);
1115 1116 1117
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1118 1119 1120 1121
			state = next_state(state);
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
C
Chris Mason 已提交
1137
			this_end = last_start - 1;
1138 1139 1140

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1141 1142 1143 1144 1145

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
1146 1147
		prealloc->start = start;
		prealloc->end = this_end;
1148
		err = insert_state(tree, prealloc, bits, changeset);
1149 1150 1151
		if (err)
			extent_io_tree_panic(tree, err);

J
Josef Bacik 已提交
1152 1153
		cache_state(prealloc, cached_state);
		prealloc = NULL;
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
1164
		if (state->state & exclusive_bits) {
1165 1166 1167 1168
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1169 1170 1171

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1172
		err = split_state(tree, state, prealloc, end + 1);
1173 1174
		if (err)
			extent_io_tree_panic(tree, err);
1175

1176
		set_state_bits(tree, prealloc, bits, changeset);
1177
		cache_state(prealloc, cached_state);
1178 1179 1180 1181 1182
		merge_state(tree, prealloc);
		prealloc = NULL;
		goto out;
	}

1183 1184 1185 1186 1187 1188 1189
search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
	if (gfpflags_allow_blocking(mask))
		cond_resched();
	goto again;
1190 1191

out:
1192
	spin_unlock(&tree->lock);
1193 1194 1195 1196 1197 1198 1199
	if (prealloc)
		free_extent_state(prealloc);

	return err;

}

J
Josef Bacik 已提交
1200
/**
L
Liu Bo 已提交
1201 1202
 * convert_extent_bit - convert all bits in a given range from one bit to
 * 			another
J
Josef Bacik 已提交
1203 1204 1205 1206 1207
 * @tree:	the io tree to search
 * @start:	the start offset in bytes
 * @end:	the end offset in bytes (inclusive)
 * @bits:	the bits to set in this range
 * @clear_bits:	the bits to clear in this range
1208
 * @cached_state:	state that we're going to cache
J
Josef Bacik 已提交
1209 1210 1211 1212 1213 1214
 *
 * This will go through and set bits for the given range.  If any states exist
 * already in this range they are set with the given bit and cleared of the
 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 * boundary bits like LOCK.
1215 1216
 *
 * All allocations are done with GFP_NOFS.
J
Josef Bacik 已提交
1217 1218
 */
int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1219
		       u32 bits, u32 clear_bits,
1220
		       struct extent_state **cached_state)
J
Josef Bacik 已提交
1221 1222 1223 1224
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
1225 1226
	struct rb_node **p;
	struct rb_node *parent;
J
Josef Bacik 已提交
1227 1228 1229
	int err = 0;
	u64 last_start;
	u64 last_end;
1230
	bool first_iteration = true;
J
Josef Bacik 已提交
1231

1232
	btrfs_debug_check_extent_io_range(tree, start, end);
1233 1234
	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
				       clear_bits);
1235

J
Josef Bacik 已提交
1236
again:
1237
	if (!prealloc) {
1238 1239 1240 1241 1242 1243 1244
		/*
		 * Best effort, don't worry if extent state allocation fails
		 * here for the first iteration. We might have a cached state
		 * that matches exactly the target range, in which case no
		 * extent state allocations are needed. We'll only know this
		 * after locking the tree.
		 */
1245
		prealloc = alloc_extent_state(GFP_NOFS);
1246
		if (!prealloc && !first_iteration)
J
Josef Bacik 已提交
1247 1248 1249 1250
			return -ENOMEM;
	}

	spin_lock(&tree->lock);
1251 1252 1253
	if (cached_state && *cached_state) {
		state = *cached_state;
		if (state->start <= start && state->end > start &&
1254
		    extent_state_in_tree(state)) {
1255 1256 1257 1258 1259
			node = &state->rb_node;
			goto hit_next;
		}
	}

J
Josef Bacik 已提交
1260 1261 1262 1263
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1264
	node = tree_search_for_insert(tree, start, &p, &parent);
J
Josef Bacik 已提交
1265 1266
	if (!node) {
		prealloc = alloc_extent_state_atomic(prealloc);
1267 1268 1269 1270
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
1271 1272
		prealloc->start = start;
		prealloc->end = end;
1273
		insert_state_fast(tree, prealloc, p, parent, bits, NULL);
1274 1275
		cache_state(prealloc, cached_state);
		prealloc = NULL;
J
Josef Bacik 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
hit_next:
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1290
		set_state_bits(tree, state, bits, NULL);
1291
		cache_state(state, cached_state);
1292
		state = clear_state_bit(tree, state, clear_bits, 0, NULL);
J
Josef Bacik 已提交
1293 1294 1295
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1296 1297 1298
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
J
Josef Bacik 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
		prealloc = alloc_extent_state_atomic(prealloc);
1320 1321 1322 1323
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1324
		err = split_state(tree, state, prealloc, start);
1325 1326
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1327 1328 1329 1330
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1331
			set_state_bits(tree, state, bits, NULL);
1332
			cache_state(state, cached_state);
1333
			state = clear_state_bit(tree, state, clear_bits, 0, NULL);
J
Josef Bacik 已提交
1334 1335 1336
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1337 1338 1339
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
J
Josef Bacik 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
			this_end = last_start - 1;

		prealloc = alloc_extent_state_atomic(prealloc);
1358 1359 1360 1361
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1362 1363 1364 1365 1366

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
1367 1368
		prealloc->start = start;
		prealloc->end = this_end;
1369
		err = insert_state(tree, prealloc, bits, NULL);
1370 1371
		if (err)
			extent_io_tree_panic(tree, err);
1372
		cache_state(prealloc, cached_state);
J
Josef Bacik 已提交
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
		prealloc = NULL;
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
		prealloc = alloc_extent_state_atomic(prealloc);
1385 1386 1387 1388
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1389 1390

		err = split_state(tree, state, prealloc, end + 1);
1391 1392
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1393

1394
		set_state_bits(tree, prealloc, bits, NULL);
1395
		cache_state(prealloc, cached_state);
1396
		clear_state_bit(tree, prealloc, clear_bits, 0, NULL);
J
Josef Bacik 已提交
1397 1398 1399 1400 1401 1402 1403 1404
		prealloc = NULL;
		goto out;
	}

search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
1405
	cond_resched();
1406
	first_iteration = false;
J
Josef Bacik 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	goto again;

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return err;
}

1417
/* wrappers around set/clear extent bit */
1418
int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1419
			   u32 bits, struct extent_changeset *changeset)
1420 1421 1422 1423 1424 1425 1426 1427 1428
{
	/*
	 * We don't support EXTENT_LOCKED yet, as current changeset will
	 * record any bits changed, so for EXTENT_LOCKED case, it will
	 * either fail with -EEXIST or changeset will record the whole
	 * range.
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1429 1430
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
			      changeset);
1431 1432
}

1433
int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1434
			   u32 bits)
1435
{
1436 1437
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
			      GFP_NOWAIT, NULL);
1438 1439
}

1440
int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1441
		     u32 bits, int wake, int delete,
1442
		     struct extent_state **cached)
1443 1444
{
	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1445
				  cached, GFP_NOFS, NULL);
1446 1447 1448
}

int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1449
		u32 bits, struct extent_changeset *changeset)
1450 1451 1452 1453 1454 1455 1456
{
	/*
	 * Don't support EXTENT_LOCKED case, same reason as
	 * set_record_extent_bits().
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1457
	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1458 1459 1460
				  changeset);
}

C
Chris Mason 已提交
1461 1462 1463 1464
/*
 * either insert or lock state struct between start and end use mask to tell
 * us if waiting is desired.
 */
1465
int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1466
		     struct extent_state **cached_state)
1467 1468 1469
{
	int err;
	u64 failed_start;
1470

1471
	while (1) {
1472 1473 1474
		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
				     EXTENT_LOCKED, &failed_start,
				     cached_state, GFP_NOFS, NULL);
1475
		if (err == -EEXIST) {
1476 1477
			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
			start = failed_start;
1478
		} else
1479 1480 1481 1482 1483 1484
			break;
		WARN_ON(start > end);
	}
	return err;
}

1485
int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1486 1487 1488 1489
{
	int err;
	u64 failed_start;

1490 1491
	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
			     &failed_start, NULL, GFP_NOFS, NULL);
Y
Yan Zheng 已提交
1492 1493 1494
	if (err == -EEXIST) {
		if (failed_start > start)
			clear_extent_bit(tree, start, failed_start - 1,
1495
					 EXTENT_LOCKED, 1, 0, NULL);
1496
		return 0;
Y
Yan Zheng 已提交
1497
	}
1498 1499 1500
	return 1;
}

1501
void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1502
{
1503 1504
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1505 1506 1507 1508 1509 1510
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		clear_page_dirty_for_io(page);
1511
		put_page(page);
1512 1513 1514 1515
		index++;
	}
}

1516
void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1517
{
1518
	struct address_space *mapping = inode->i_mapping;
1519 1520
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1521
	struct folio *folio;
1522 1523

	while (index <= end_index) {
1524 1525 1526 1527 1528
		folio = filemap_get_folio(mapping, index);
		filemap_dirty_folio(mapping, folio);
		folio_account_redirty(folio);
		index += folio_nr_pages(folio);
		folio_put(folio);
1529 1530 1531
	}
}

C
Chris Mason 已提交
1532 1533 1534 1535
/* find the first state struct with 'bits' set after 'start', and
 * return it.  tree->lock must be held.  NULL will returned if
 * nothing was found after 'start'
 */
1536
static struct extent_state *
1537
find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
C
Chris Mason 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546
{
	struct rb_node *node;
	struct extent_state *state;

	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
	node = tree_search(tree, start);
C
Chris Mason 已提交
1547
	if (!node)
C
Chris Mason 已提交
1548 1549
		goto out;

C
Chris Mason 已提交
1550
	while (1) {
C
Chris Mason 已提交
1551
		state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1552
		if (state->end >= start && (state->state & bits))
C
Chris Mason 已提交
1553
			return state;
C
Chris Mason 已提交
1554

C
Chris Mason 已提交
1555 1556 1557 1558 1559 1560 1561 1562
		node = rb_next(node);
		if (!node)
			break;
	}
out:
	return NULL;
}

1563
/*
1564
 * Find the first offset in the io tree with one or more @bits set.
1565
 *
1566 1567 1568 1569
 * Note: If there are multiple bits set in @bits, any of them will match.
 *
 * Return 0 if we find something, and update @start_ret and @end_ret.
 * Return 1 if we found nothing.
1570 1571
 */
int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1572
			  u64 *start_ret, u64 *end_ret, u32 bits,
1573
			  struct extent_state **cached_state)
1574 1575 1576 1577 1578
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
1579 1580
	if (cached_state && *cached_state) {
		state = *cached_state;
1581
		if (state->end == start - 1 && extent_state_in_tree(state)) {
1582
			while ((state = next_state(state)) != NULL) {
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
				if (state->state & bits)
					goto got_it;
			}
			free_extent_state(*cached_state);
			*cached_state = NULL;
			goto out;
		}
		free_extent_state(*cached_state);
		*cached_state = NULL;
	}

1594
	state = find_first_extent_bit_state(tree, start, bits);
1595
got_it:
1596
	if (state) {
1597
		cache_state_if_flags(state, cached_state, 0);
1598 1599 1600 1601
		*start_ret = state->start;
		*end_ret = state->end;
		ret = 0;
	}
1602
out:
1603 1604 1605 1606
	spin_unlock(&tree->lock);
	return ret;
}

1607
/**
1608 1609 1610 1611 1612 1613 1614
 * Find a contiguous area of bits
 *
 * @tree:      io tree to check
 * @start:     offset to start the search from
 * @start_ret: the first offset we found with the bits set
 * @end_ret:   the final contiguous range of the bits that were set
 * @bits:      bits to look for
1615 1616 1617 1618 1619 1620 1621 1622 1623
 *
 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
 * to set bits appropriately, and then merge them again.  During this time it
 * will drop the tree->lock, so use this helper if you want to find the actual
 * contiguous area for given bits.  We will search to the first bit we find, and
 * then walk down the tree until we find a non-contiguous area.  The area
 * returned will be the full contiguous area with the bits set.
 */
int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1624
			       u64 *start_ret, u64 *end_ret, u32 bits)
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
	state = find_first_extent_bit_state(tree, start, bits);
	if (state) {
		*start_ret = state->start;
		*end_ret = state->end;
		while ((state = next_state(state)) != NULL) {
			if (state->start > (*end_ret + 1))
				break;
			*end_ret = state->end;
		}
		ret = 0;
	}
	spin_unlock(&tree->lock);
	return ret;
}

1645
/**
1646 1647
 * Find the first range that has @bits not set. This range could start before
 * @start.
1648
 *
1649 1650 1651 1652 1653
 * @tree:      the tree to search
 * @start:     offset at/after which the found extent should start
 * @start_ret: records the beginning of the range
 * @end_ret:   records the end of the range (inclusive)
 * @bits:      the set of bits which must be unset
1654 1655 1656 1657 1658 1659 1660
 *
 * Since unallocated range is also considered one which doesn't have the bits
 * set it's possible that @end_ret contains -1, this happens in case the range
 * spans (last_range_end, end of device]. In this case it's up to the caller to
 * trim @end_ret to the appropriate size.
 */
void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1661
				 u64 *start_ret, u64 *end_ret, u32 bits)
1662 1663 1664 1665 1666 1667 1668 1669
{
	struct extent_state *state;
	struct rb_node *node, *prev = NULL, *next;

	spin_lock(&tree->lock);

	/* Find first extent with bits cleared */
	while (1) {
1670
		node = tree_search_prev_next(tree, start, &prev, &next);
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
		if (!node && !next && !prev) {
			/*
			 * Tree is completely empty, send full range and let
			 * caller deal with it
			 */
			*start_ret = 0;
			*end_ret = -1;
			goto out;
		} else if (!node && !next) {
			/*
			 * We are past the last allocated chunk, set start at
			 * the end of the last extent.
			 */
			state = rb_entry(prev, struct extent_state, rb_node);
			*start_ret = state->end + 1;
			*end_ret = -1;
			goto out;
		} else if (!node) {
1689 1690
			node = next;
		}
1691 1692 1693 1694
		/*
		 * At this point 'node' either contains 'start' or start is
		 * before 'node'
		 */
1695
		state = rb_entry(node, struct extent_state, rb_node);
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717

		if (in_range(start, state->start, state->end - state->start + 1)) {
			if (state->state & bits) {
				/*
				 * |--range with bits sets--|
				 *    |
				 *    start
				 */
				start = state->end + 1;
			} else {
				/*
				 * 'start' falls within a range that doesn't
				 * have the bits set, so take its start as
				 * the beginning of the desired range
				 *
				 * |--range with bits cleared----|
				 *      |
				 *      start
				 */
				*start_ret = state->start;
				break;
			}
1718
		} else {
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
			/*
			 * |---prev range---|---hole/unset---|---node range---|
			 *                          |
			 *                        start
			 *
			 *                        or
			 *
			 * |---hole/unset--||--first node--|
			 * 0   |
			 *    start
			 */
			if (prev) {
				state = rb_entry(prev, struct extent_state,
						 rb_node);
				*start_ret = state->end + 1;
			} else {
				*start_ret = 0;
			}
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
			break;
		}
	}

	/*
	 * Find the longest stretch from start until an entry which has the
	 * bits set
	 */
	while (1) {
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->end >= start && !(state->state & bits)) {
			*end_ret = state->end;
		} else {
			*end_ret = state->start - 1;
			break;
		}

		node = rb_next(node);
		if (!node)
			break;
	}
out:
	spin_unlock(&tree->lock);
}

C
Chris Mason 已提交
1762 1763 1764 1765
/*
 * find a contiguous range of bytes in the file marked as delalloc, not
 * more than 'max_bytes'.  start and end are used to return the range,
 *
1766
 * true is returned if we find something, false if nothing was in the tree
C
Chris Mason 已提交
1767
 */
J
Josef Bacik 已提交
1768 1769 1770
bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
			       u64 *end, u64 max_bytes,
			       struct extent_state **cached_state)
1771 1772 1773 1774
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
1775
	bool found = false;
1776 1777
	u64 total_bytes = 0;

1778
	spin_lock(&tree->lock);
C
Chris Mason 已提交
1779

1780 1781 1782 1783
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1784
	node = tree_search(tree, cur_start);
1785
	if (!node) {
1786
		*end = (u64)-1;
1787 1788 1789
		goto out;
	}

C
Chris Mason 已提交
1790
	while (1) {
1791
		state = rb_entry(node, struct extent_state, rb_node);
1792 1793
		if (found && (state->start != cur_start ||
			      (state->state & EXTENT_BOUNDARY))) {
1794 1795 1796 1797 1798 1799 1800
			goto out;
		}
		if (!(state->state & EXTENT_DELALLOC)) {
			if (!found)
				*end = state->end;
			goto out;
		}
1801
		if (!found) {
1802
			*start = state->start;
1803
			*cached_state = state;
1804
			refcount_inc(&state->refs);
1805
		}
1806
		found = true;
1807 1808 1809 1810
		*end = state->end;
		cur_start = state->end + 1;
		node = rb_next(node);
		total_bytes += state->end - state->start + 1;
1811
		if (total_bytes >= max_bytes)
1812 1813
			break;
		if (!node)
1814 1815 1816
			break;
	}
out:
1817
	spin_unlock(&tree->lock);
1818 1819 1820
	return found;
}

1821 1822 1823 1824 1825 1826 1827 1828
/*
 * Process one page for __process_pages_contig().
 *
 * Return >0 if we hit @page == @locked_page.
 * Return 0 if we updated the page status.
 * Return -EGAIN if the we need to try again.
 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
 */
1829 1830
static int process_one_page(struct btrfs_fs_info *fs_info,
			    struct address_space *mapping,
1831
			    struct page *page, struct page *locked_page,
1832
			    unsigned long page_ops, u64 start, u64 end)
1833
{
1834 1835 1836 1837 1838
	u32 len;

	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
	len = end + 1 - start;

1839
	if (page_ops & PAGE_SET_ORDERED)
1840
		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1841
	if (page_ops & PAGE_SET_ERROR)
1842
		btrfs_page_clamp_set_error(fs_info, page, start, len);
1843
	if (page_ops & PAGE_START_WRITEBACK) {
1844 1845
		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1846 1847
	}
	if (page_ops & PAGE_END_WRITEBACK)
1848
		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1849 1850 1851 1852

	if (page == locked_page)
		return 1;

1853
	if (page_ops & PAGE_LOCK) {
1854 1855 1856 1857 1858
		int ret;

		ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
		if (ret)
			return ret;
1859
		if (!PageDirty(page) || page->mapping != mapping) {
1860
			btrfs_page_end_writer_lock(fs_info, page, start, len);
1861 1862 1863 1864
			return -EAGAIN;
		}
	}
	if (page_ops & PAGE_UNLOCK)
1865
		btrfs_page_end_writer_lock(fs_info, page, start, len);
1866 1867 1868
	return 0;
}

1869 1870
static int __process_pages_contig(struct address_space *mapping,
				  struct page *locked_page,
1871
				  u64 start, u64 end, unsigned long page_ops,
1872 1873
				  u64 *processed_end)
{
1874
	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
	pgoff_t start_index = start >> PAGE_SHIFT;
	pgoff_t end_index = end >> PAGE_SHIFT;
	pgoff_t index = start_index;
	unsigned long nr_pages = end_index - start_index + 1;
	unsigned long pages_processed = 0;
	struct page *pages[16];
	int err = 0;
	int i;

	if (page_ops & PAGE_LOCK) {
		ASSERT(page_ops == PAGE_LOCK);
		ASSERT(processed_end && *processed_end == start);
	}

	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
		mapping_set_error(mapping, -EIO);

	while (nr_pages > 0) {
		int found_pages;

		found_pages = find_get_pages_contig(mapping, index,
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
		if (found_pages == 0) {
			/*
			 * Only if we're going to lock these pages, we can find
			 * nothing at @index.
			 */
			ASSERT(page_ops & PAGE_LOCK);
			err = -EAGAIN;
			goto out;
		}

		for (i = 0; i < found_pages; i++) {
			int process_ret;

1911 1912 1913
			process_ret = process_one_page(fs_info, mapping,
					pages[i], locked_page, page_ops,
					start, end);
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
			if (process_ret < 0) {
				for (; i < found_pages; i++)
					put_page(pages[i]);
				err = -EAGAIN;
				goto out;
			}
			put_page(pages[i]);
			pages_processed++;
		}
		nr_pages -= found_pages;
		index += found_pages;
		cond_resched();
	}
out:
	if (err && processed_end) {
		/*
		 * Update @processed_end. I know this is awful since it has
		 * two different return value patterns (inclusive vs exclusive).
		 *
		 * But the exclusive pattern is necessary if @start is 0, or we
		 * underflow and check against processed_end won't work as
		 * expected.
		 */
		if (pages_processed)
			*processed_end = min(end,
			((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
		else
			*processed_end = start;
	}
	return err;
}
1945

1946 1947 1948
static noinline void __unlock_for_delalloc(struct inode *inode,
					   struct page *locked_page,
					   u64 start, u64 end)
C
Chris Mason 已提交
1949
{
1950 1951
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
C
Chris Mason 已提交
1952

1953
	ASSERT(locked_page);
C
Chris Mason 已提交
1954
	if (index == locked_page->index && end_index == index)
1955
		return;
C
Chris Mason 已提交
1956

1957
	__process_pages_contig(inode->i_mapping, locked_page, start, end,
1958
			       PAGE_UNLOCK, NULL);
C
Chris Mason 已提交
1959 1960 1961 1962 1963 1964 1965
}

static noinline int lock_delalloc_pages(struct inode *inode,
					struct page *locked_page,
					u64 delalloc_start,
					u64 delalloc_end)
{
1966 1967
	unsigned long index = delalloc_start >> PAGE_SHIFT;
	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1968
	u64 processed_end = delalloc_start;
C
Chris Mason 已提交
1969 1970
	int ret;

1971
	ASSERT(locked_page);
C
Chris Mason 已提交
1972 1973 1974
	if (index == locked_page->index && index == end_index)
		return 0;

1975 1976 1977
	ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
				     delalloc_end, PAGE_LOCK, &processed_end);
	if (ret == -EAGAIN && processed_end > delalloc_start)
1978
		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1979
				      processed_end);
C
Chris Mason 已提交
1980 1981 1982 1983
	return ret;
}

/*
1984
 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1985
 * more than @max_bytes.
C
Chris Mason 已提交
1986
 *
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
 * @start:	The original start bytenr to search.
 *		Will store the extent range start bytenr.
 * @end:	The original end bytenr of the search range
 *		Will store the extent range end bytenr.
 *
 * Return true if we find a delalloc range which starts inside the original
 * range, and @start/@end will store the delalloc range start/end.
 *
 * Return false if we can't find any delalloc range which starts inside the
 * original range, and @start/@end will be the non-delalloc range start/end.
C
Chris Mason 已提交
1997
 */
1998
EXPORT_FOR_TESTS
1999
noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
2000
				    struct page *locked_page, u64 *start,
2001
				    u64 *end)
C
Chris Mason 已提交
2002
{
2003
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2004
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2005 2006
	const u64 orig_start = *start;
	const u64 orig_end = *end;
2007 2008
	/* The sanity tests may not set a valid fs_info. */
	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
C
Chris Mason 已提交
2009 2010
	u64 delalloc_start;
	u64 delalloc_end;
2011
	bool found;
2012
	struct extent_state *cached_state = NULL;
C
Chris Mason 已提交
2013 2014 2015
	int ret;
	int loops = 0;

2016 2017 2018 2019 2020 2021
	/* Caller should pass a valid @end to indicate the search range end */
	ASSERT(orig_end > orig_start);

	/* The range should at least cover part of the page */
	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
		 orig_end <= page_offset(locked_page)));
C
Chris Mason 已提交
2022 2023 2024 2025
again:
	/* step one, find a bunch of delalloc bytes starting at start */
	delalloc_start = *start;
	delalloc_end = 0;
J
Josef Bacik 已提交
2026 2027
	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
					  max_bytes, &cached_state);
2028
	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
C
Chris Mason 已提交
2029
		*start = delalloc_start;
2030 2031 2032

		/* @delalloc_end can be -1, never go beyond @orig_end */
		*end = min(delalloc_end, orig_end);
2033
		free_extent_state(cached_state);
2034
		return false;
C
Chris Mason 已提交
2035 2036
	}

C
Chris Mason 已提交
2037 2038 2039 2040 2041
	/*
	 * start comes from the offset of locked_page.  We have to lock
	 * pages in order, so we can't process delalloc bytes before
	 * locked_page
	 */
C
Chris Mason 已提交
2042
	if (delalloc_start < *start)
C
Chris Mason 已提交
2043 2044
		delalloc_start = *start;

C
Chris Mason 已提交
2045 2046 2047
	/*
	 * make sure to limit the number of pages we try to lock down
	 */
2048 2049
	if (delalloc_end + 1 - delalloc_start > max_bytes)
		delalloc_end = delalloc_start + max_bytes - 1;
C
Chris Mason 已提交
2050

C
Chris Mason 已提交
2051 2052 2053
	/* step two, lock all the pages after the page that has start */
	ret = lock_delalloc_pages(inode, locked_page,
				  delalloc_start, delalloc_end);
2054
	ASSERT(!ret || ret == -EAGAIN);
C
Chris Mason 已提交
2055 2056 2057 2058
	if (ret == -EAGAIN) {
		/* some of the pages are gone, lets avoid looping by
		 * shortening the size of the delalloc range we're searching
		 */
2059
		free_extent_state(cached_state);
2060
		cached_state = NULL;
C
Chris Mason 已提交
2061
		if (!loops) {
2062
			max_bytes = PAGE_SIZE;
C
Chris Mason 已提交
2063 2064 2065
			loops = 1;
			goto again;
		} else {
2066
			found = false;
C
Chris Mason 已提交
2067 2068 2069 2070 2071
			goto out_failed;
		}
	}

	/* step three, lock the state bits for the whole range */
2072
	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
C
Chris Mason 已提交
2073 2074 2075

	/* then test to make sure it is all still delalloc */
	ret = test_range_bit(tree, delalloc_start, delalloc_end,
2076
			     EXTENT_DELALLOC, 1, cached_state);
C
Chris Mason 已提交
2077
	if (!ret) {
2078
		unlock_extent_cached(tree, delalloc_start, delalloc_end,
2079
				     &cached_state);
C
Chris Mason 已提交
2080 2081 2082 2083 2084
		__unlock_for_delalloc(inode, locked_page,
			      delalloc_start, delalloc_end);
		cond_resched();
		goto again;
	}
2085
	free_extent_state(cached_state);
C
Chris Mason 已提交
2086 2087 2088 2089 2090 2091
	*start = delalloc_start;
	*end = delalloc_end;
out_failed:
	return found;
}

2092
void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2093
				  struct page *locked_page,
2094
				  u32 clear_bits, unsigned long page_ops)
2095
{
2096
	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2097

2098
	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2099
			       start, end, page_ops, NULL);
2100 2101
}

C
Chris Mason 已提交
2102 2103 2104 2105 2106
/*
 * count the number of bytes in the tree that have a given bit(s)
 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
 * cached.  The total number found is returned.
 */
2107 2108
u64 count_range_bits(struct extent_io_tree *tree,
		     u64 *start, u64 search_end, u64 max_bytes,
2109
		     u32 bits, int contig)
2110 2111 2112 2113 2114
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
	u64 total_bytes = 0;
2115
	u64 last = 0;
2116 2117
	int found = 0;

2118
	if (WARN_ON(search_end <= cur_start))
2119 2120
		return 0;

2121
	spin_lock(&tree->lock);
2122 2123 2124 2125 2126 2127 2128 2129
	if (cur_start == 0 && bits == EXTENT_DIRTY) {
		total_bytes = tree->dirty_bytes;
		goto out;
	}
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2130
	node = tree_search(tree, cur_start);
C
Chris Mason 已提交
2131
	if (!node)
2132 2133
		goto out;

C
Chris Mason 已提交
2134
	while (1) {
2135 2136 2137
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->start > search_end)
			break;
2138 2139 2140
		if (contig && found && state->start > last + 1)
			break;
		if (state->end >= cur_start && (state->state & bits) == bits) {
2141 2142 2143 2144 2145
			total_bytes += min(search_end, state->end) + 1 -
				       max(cur_start, state->start);
			if (total_bytes >= max_bytes)
				break;
			if (!found) {
2146
				*start = max(cur_start, state->start);
2147 2148
				found = 1;
			}
2149 2150 2151
			last = state->end;
		} else if (contig && found) {
			break;
2152 2153 2154 2155 2156 2157
		}
		node = rb_next(node);
		if (!node)
			break;
	}
out:
2158
	spin_unlock(&tree->lock);
2159 2160
	return total_bytes;
}
2161

C
Chris Mason 已提交
2162 2163 2164 2165
/*
 * set the private field for a given byte offset in the tree.  If there isn't
 * an extent_state there already, this does nothing.
 */
2166 2167
int set_state_failrec(struct extent_io_tree *tree, u64 start,
		      struct io_failure_record *failrec)
2168 2169 2170 2171 2172
{
	struct rb_node *node;
	struct extent_state *state;
	int ret = 0;

2173
	spin_lock(&tree->lock);
2174 2175 2176 2177
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2178
	node = tree_search(tree, start);
2179
	if (!node) {
2180 2181 2182 2183 2184 2185 2186 2187
		ret = -ENOENT;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
		ret = -ENOENT;
		goto out;
	}
2188
	state->failrec = failrec;
2189
out:
2190
	spin_unlock(&tree->lock);
2191 2192 2193
	return ret;
}

2194
struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2195 2196 2197
{
	struct rb_node *node;
	struct extent_state *state;
2198
	struct io_failure_record *failrec;
2199

2200
	spin_lock(&tree->lock);
2201 2202 2203 2204
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2205
	node = tree_search(tree, start);
2206
	if (!node) {
2207
		failrec = ERR_PTR(-ENOENT);
2208 2209 2210 2211
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
2212
		failrec = ERR_PTR(-ENOENT);
2213 2214
		goto out;
	}
2215 2216

	failrec = state->failrec;
2217
out:
2218
	spin_unlock(&tree->lock);
2219
	return failrec;
2220 2221 2222 2223
}

/*
 * searches a range in the state tree for a given mask.
2224
 * If 'filled' == 1, this returns 1 only if every extent in the tree
2225 2226 2227 2228
 * has the bits set.  Otherwise, 1 is returned if any bit in the
 * range is found set.
 */
int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2229
		   u32 bits, int filled, struct extent_state *cached)
2230 2231 2232 2233 2234
{
	struct extent_state *state = NULL;
	struct rb_node *node;
	int bitset = 0;

2235
	spin_lock(&tree->lock);
2236
	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2237
	    cached->end > start)
2238 2239 2240
		node = &cached->rb_node;
	else
		node = tree_search(tree, start);
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
	while (node && start <= end) {
		state = rb_entry(node, struct extent_state, rb_node);

		if (filled && state->start > start) {
			bitset = 0;
			break;
		}

		if (state->start > end)
			break;

		if (state->state & bits) {
			bitset = 1;
			if (!filled)
				break;
		} else if (filled) {
			bitset = 0;
			break;
		}
2260 2261 2262 2263

		if (state->end == (u64)-1)
			break;

2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
		start = state->end + 1;
		if (start > end)
			break;
		node = rb_next(node);
		if (!node) {
			if (filled)
				bitset = 0;
			break;
		}
	}
2274
	spin_unlock(&tree->lock);
2275 2276 2277
	return bitset;
}

2278 2279 2280
int free_io_failure(struct extent_io_tree *failure_tree,
		    struct extent_io_tree *io_tree,
		    struct io_failure_record *rec)
2281 2282 2283 2284
{
	int ret;
	int err = 0;

2285
	set_state_failrec(failure_tree, rec->start, NULL);
2286 2287
	ret = clear_extent_bits(failure_tree, rec->start,
				rec->start + rec->len - 1,
2288
				EXTENT_LOCKED | EXTENT_DIRTY);
2289 2290 2291
	if (ret)
		err = ret;

2292
	ret = clear_extent_bits(io_tree, rec->start,
D
David Woodhouse 已提交
2293
				rec->start + rec->len - 1,
2294
				EXTENT_DAMAGED);
D
David Woodhouse 已提交
2295 2296
	if (ret && !err)
		err = ret;
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306

	kfree(rec);
	return err;
}

/*
 * this bypasses the standard btrfs submit functions deliberately, as
 * the standard behavior is to write all copies in a raid setup. here we only
 * want to write the one bad copy. so we do the mapping for ourselves and issue
 * submit_bio directly.
2307
 * to avoid any synchronization issues, wait for the data after writing, which
2308 2309 2310 2311
 * actually prevents the read that triggered the error from finishing.
 * currently, there can be no more than two copies of every data bit. thus,
 * exactly one rewrite is required.
 */
Q
Qu Wenruo 已提交
2312 2313 2314
static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
			     u64 length, u64 logical, struct page *page,
			     unsigned int pg_offset, int mirror_num)
2315 2316
{
	struct btrfs_device *dev;
2317 2318
	struct bio_vec bvec;
	struct bio bio;
2319 2320
	u64 map_length = 0;
	u64 sector;
2321
	struct btrfs_io_context *bioc = NULL;
2322
	int ret = 0;
2323

2324
	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2325 2326
	BUG_ON(!mirror_num);

2327 2328
	if (btrfs_repair_one_zone(fs_info, logical))
		return 0;
2329

2330 2331
	map_length = length;

2332
	/*
2333
	 * Avoid races with device replace and make sure our bioc has devices
2334 2335 2336 2337
	 * associated to its stripes that don't go away while we are doing the
	 * read repair operation.
	 */
	btrfs_bio_counter_inc_blocked(fs_info);
2338
	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2339 2340 2341 2342 2343 2344 2345
		/*
		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
		 * to update all raid stripes, but here we just want to correct
		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
		 * stripe's dev and sector.
		 */
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2346
				      &map_length, &bioc, 0);
2347 2348
		if (ret)
			goto out_counter_dec;
2349
		ASSERT(bioc->mirror_num == 1);
2350 2351
	} else {
		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2352
				      &map_length, &bioc, mirror_num);
2353 2354
		if (ret)
			goto out_counter_dec;
2355
		BUG_ON(mirror_num != bioc->mirror_num);
2356
	}
2357

2358 2359 2360
	sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
	dev = bioc->stripes[bioc->mirror_num - 1].dev;
	btrfs_put_bioc(bioc);
2361

2362 2363
	if (!dev || !dev->bdev ||
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2364 2365
		ret = -EIO;
		goto out_counter_dec;
2366 2367
	}

2368 2369 2370 2371 2372 2373 2374
	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
	bio.bi_iter.bi_sector = sector;
	__bio_add_page(&bio, page, length, pg_offset);

	btrfsic_check_bio(&bio);
	ret = submit_bio_wait(&bio);
	if (ret) {
2375
		/* try to remap that extent elsewhere? */
2376
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2377
		goto out_bio_uninit;
2378 2379
	}

2380 2381
	btrfs_info_rl_in_rcu(fs_info,
		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2382
				  ino, start,
2383
				  rcu_str_deref(dev->name), sector);
2384 2385 2386 2387 2388
	ret = 0;

out_bio_uninit:
	bio_uninit(&bio);
out_counter_dec:
2389
	btrfs_bio_counter_dec(fs_info);
2390
	return ret;
2391 2392
}

2393
int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2394
{
2395
	struct btrfs_fs_info *fs_info = eb->fs_info;
2396
	u64 start = eb->start;
2397
	int i, num_pages = num_extent_pages(eb);
2398
	int ret = 0;
2399

2400
	if (sb_rdonly(fs_info->sb))
2401 2402
		return -EROFS;

2403
	for (i = 0; i < num_pages; i++) {
2404
		struct page *p = eb->pages[i];
2405

2406
		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2407
					start - page_offset(p), mirror_num);
2408 2409
		if (ret)
			break;
2410
		start += PAGE_SIZE;
2411 2412 2413 2414 2415
	}

	return ret;
}

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
static int next_mirror(const struct io_failure_record *failrec, int cur_mirror)
{
	if (cur_mirror == failrec->num_copies)
		return cur_mirror + 1 - failrec->num_copies;
	return cur_mirror + 1;
}

static int prev_mirror(const struct io_failure_record *failrec, int cur_mirror)
{
	if (cur_mirror == 1)
		return failrec->num_copies;
	return cur_mirror - 1;
}

2430 2431 2432 2433
/*
 * each time an IO finishes, we do a fast check in the IO failure tree
 * to see if we need to process or clean up an io_failure_record
 */
2434 2435 2436 2437
int clean_io_failure(struct btrfs_fs_info *fs_info,
		     struct extent_io_tree *failure_tree,
		     struct extent_io_tree *io_tree, u64 start,
		     struct page *page, u64 ino, unsigned int pg_offset)
2438 2439 2440 2441
{
	u64 private;
	struct io_failure_record *failrec;
	struct extent_state *state;
2442
	int mirror;
2443 2444 2445
	int ret;

	private = 0;
2446 2447
	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
			       EXTENT_DIRTY, 0);
2448 2449 2450
	if (!ret)
		return 0;

2451 2452
	failrec = get_state_failrec(failure_tree, start);
	if (IS_ERR(failrec))
2453 2454 2455 2456
		return 0;

	BUG_ON(!failrec->this_mirror);

2457
	if (sb_rdonly(fs_info->sb))
2458
		goto out;
2459

2460 2461
	spin_lock(&io_tree->lock);
	state = find_first_extent_bit_state(io_tree,
2462 2463
					    failrec->start,
					    EXTENT_LOCKED);
2464
	spin_unlock(&io_tree->lock);
2465

2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
	if (!state || state->start > failrec->start ||
	    state->end < failrec->start + failrec->len - 1)
		goto out;

	mirror = failrec->this_mirror;
	do {
		mirror = prev_mirror(failrec, mirror);
		repair_io_failure(fs_info, ino, start, failrec->len,
				  failrec->logical, page, pg_offset, mirror);
	} while (mirror != failrec->failed_mirror);
2476 2477

out:
2478
	free_io_failure(failure_tree, io_tree, failrec);
2479
	return 0;
2480 2481
}

2482 2483 2484 2485 2486 2487
/*
 * Can be called when
 * - hold extent lock
 * - under ordered extent
 * - the inode is freeing
 */
2488
void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2489
{
2490
	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
	struct io_failure_record *failrec;
	struct extent_state *state, *next;

	if (RB_EMPTY_ROOT(&failure_tree->state))
		return;

	spin_lock(&failure_tree->lock);
	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
	while (state) {
		if (state->start > end)
			break;

		ASSERT(state->end <= end);

		next = next_state(state);

2507
		failrec = state->failrec;
2508 2509 2510 2511 2512 2513 2514 2515
		free_extent_state(state);
		kfree(failrec);

		state = next;
	}
	spin_unlock(&failure_tree->lock);
}

2516
static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2517 2518
							     struct btrfs_bio *bbio,
							     unsigned int bio_offset)
2519
{
2520
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2521
	u64 start = bbio->file_offset + bio_offset;
2522
	struct io_failure_record *failrec;
2523 2524
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2525
	const u32 sectorsize = fs_info->sectorsize;
2526 2527
	int ret;

2528
	failrec = get_state_failrec(failure_tree, start);
2529
	if (!IS_ERR(failrec)) {
2530
		btrfs_debug(fs_info,
2531 2532
	"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
			failrec->logical, failrec->start, failrec->len);
2533 2534 2535 2536 2537
		/*
		 * when data can be on disk more than twice, add to failrec here
		 * (e.g. with a list for failed_mirror) to make
		 * clean_io_failure() clean all those errors at once.
		 */
2538
		ASSERT(failrec->this_mirror == bbio->mirror_num);
2539
		ASSERT(failrec->len == fs_info->sectorsize);
2540
		return failrec;
2541
	}
2542

2543 2544 2545
	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
	if (!failrec)
		return ERR_PTR(-ENOMEM);
2546

2547
	failrec->start = start;
2548
	failrec->len = sectorsize;
2549 2550
	failrec->failed_mirror = bbio->mirror_num;
	failrec->this_mirror = bbio->mirror_num;
2551
	failrec->logical = (bbio->iter.bi_sector << SECTOR_SHIFT) + bio_offset;
2552 2553

	btrfs_debug(fs_info,
2554 2555
		    "new io failure record logical %llu start %llu",
		    failrec->logical, start);
2556

2557
	failrec->num_copies = btrfs_num_copies(fs_info, failrec->logical, sectorsize);
2558 2559 2560 2561 2562 2563 2564 2565 2566
	if (failrec->num_copies == 1) {
		/*
		 * We only have a single copy of the data, so don't bother with
		 * all the retry and error correction code that follows. No
		 * matter what the error is, it is very likely to persist.
		 */
		btrfs_debug(fs_info,
			"cannot repair logical %llu num_copies %d",
			failrec->logical, failrec->num_copies);
2567 2568 2569 2570 2571
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	/* Set the bits in the private failure tree */
2572
	ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2573 2574 2575 2576
			      EXTENT_LOCKED | EXTENT_DIRTY);
	if (ret >= 0) {
		ret = set_state_failrec(failure_tree, start, failrec);
		/* Set the bits in the inode's tree */
2577 2578
		ret = set_extent_bits(tree, start, start + sectorsize - 1,
				      EXTENT_DAMAGED);
2579 2580 2581 2582 2583 2584
	} else if (ret < 0) {
		kfree(failrec);
		return ERR_PTR(ret);
	}

	return failrec;
2585 2586
}

2587 2588
int btrfs_repair_one_sector(struct inode *inode, struct btrfs_bio *failed_bbio,
			    u32 bio_offset, struct page *page, unsigned int pgoff,
2589
			    submit_bio_hook_t *submit_bio_hook)
2590
{
2591
	u64 start = failed_bbio->file_offset + bio_offset;
2592
	struct io_failure_record *failrec;
2593
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2594
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2595
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2596
	struct bio *failed_bio = &failed_bbio->bio;
2597
	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2598
	struct bio *repair_bio;
2599
	struct btrfs_bio *repair_bbio;
2600

2601 2602
	btrfs_debug(fs_info,
		   "repair read error: read error at %llu", start);
2603

2604
	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2605

2606
	failrec = btrfs_get_io_failure_record(inode, failed_bbio, bio_offset);
2607
	if (IS_ERR(failrec))
2608
		return PTR_ERR(failrec);
2609

2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
	/*
	 * There are two premises:
	 * a) deliver good data to the caller
	 * b) correct the bad sectors on disk
	 *
	 * Since we're only doing repair for one sector, we only need to get
	 * a good copy of the failed sector and if we succeed, we have setup
	 * everything for repair_io_failure to do the rest for us.
	 */
	failrec->this_mirror = next_mirror(failrec, failrec->this_mirror);
	if (failrec->this_mirror == failrec->failed_mirror) {
		btrfs_debug(fs_info,
			"failed to repair num_copies %d this_mirror %d failed_mirror %d",
			failrec->num_copies, failrec->this_mirror, failrec->failed_mirror);
2624
		free_io_failure(failure_tree, tree, failrec);
2625
		return -EIO;
2626 2627
	}

2628 2629
	repair_bio = btrfs_bio_alloc(1, REQ_OP_READ, failed_bbio->end_io,
				     failed_bbio->private);
2630
	repair_bbio = btrfs_bio(repair_bio);
2631
	repair_bbio->file_offset = start;
2632
	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2633

2634
	if (failed_bbio->csum) {
2635
		const u32 csum_size = fs_info->csum_size;
2636

2637 2638 2639
		repair_bbio->csum = repair_bbio->csum_inline;
		memcpy(repair_bbio->csum,
		       failed_bbio->csum + csum_size * icsum, csum_size);
2640
	}
2641

2642
	bio_add_page(repair_bio, page, failrec->len, pgoff);
2643
	repair_bbio->iter = repair_bio->bi_iter;
2644

2645
	btrfs_debug(btrfs_sb(inode->i_sb),
2646 2647
		    "repair read error: submitting new read to mirror %d",
		    failrec->this_mirror);
2648

2649 2650 2651 2652 2653
	/*
	 * At this point we have a bio, so any errors from submit_bio_hook()
	 * will be handled by the endio on the repair_bio, so we can't return an
	 * error here.
	 */
2654
	submit_bio_hook(inode, repair_bio, failrec->this_mirror, 0);
2655
	return BLK_STS_OK;
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
}

static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);

	ASSERT(page_offset(page) <= start &&
	       start + len <= page_offset(page) + PAGE_SIZE);

	if (uptodate) {
B
Boris Burkov 已提交
2666 2667 2668 2669 2670 2671 2672 2673 2674
		if (fsverity_active(page->mapping->host) &&
		    !PageError(page) &&
		    !PageUptodate(page) &&
		    start < i_size_read(page->mapping->host) &&
		    !fsverity_verify_page(page)) {
			btrfs_page_set_error(fs_info, page, start, len);
		} else {
			btrfs_page_set_uptodate(fs_info, page, start, len);
		}
2675 2676 2677 2678 2679
	} else {
		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
	}

2680
	if (!btrfs_is_subpage(fs_info, page))
2681
		unlock_page(page);
2682
	else
2683 2684 2685
		btrfs_subpage_end_reader(fs_info, page, start, len);
}

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
static void end_sector_io(struct page *page, u64 offset, bool uptodate)
{
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
	const u32 sectorsize = inode->root->fs_info->sectorsize;
	struct extent_state *cached = NULL;

	end_page_read(page, uptodate, offset, sectorsize);
	if (uptodate)
		set_extent_uptodate(&inode->io_tree, offset,
				    offset + sectorsize - 1, &cached, GFP_ATOMIC);
	unlock_extent_cached_atomic(&inode->io_tree, offset,
				    offset + sectorsize - 1, &cached);
}

2700 2701
static void submit_data_read_repair(struct inode *inode,
				    struct btrfs_bio *failed_bbio,
2702
				    u32 bio_offset, const struct bio_vec *bvec,
2703
				    unsigned int error_bitmap)
2704
{
2705
	const unsigned int pgoff = bvec->bv_offset;
2706
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2707 2708 2709
	struct page *page = bvec->bv_page;
	const u64 start = page_offset(bvec->bv_page) + bvec->bv_offset;
	const u64 end = start + bvec->bv_len - 1;
2710 2711 2712 2713
	const u32 sectorsize = fs_info->sectorsize;
	const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
	int i;

2714
	BUG_ON(bio_op(&failed_bbio->bio) == REQ_OP_WRITE);
2715

2716 2717 2718
	/* This repair is only for data */
	ASSERT(is_data_inode(inode));

2719 2720 2721 2722 2723 2724 2725
	/* We're here because we had some read errors or csum mismatch */
	ASSERT(error_bitmap);

	/*
	 * We only get called on buffered IO, thus page must be mapped and bio
	 * must not be cloned.
	 */
2726
	ASSERT(page->mapping && !bio_flagged(&failed_bbio->bio, BIO_CLONED));
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742

	/* Iterate through all the sectors in the range */
	for (i = 0; i < nr_bits; i++) {
		const unsigned int offset = i * sectorsize;
		bool uptodate = false;
		int ret;

		if (!(error_bitmap & (1U << i))) {
			/*
			 * This sector has no error, just end the page read
			 * and unlock the range.
			 */
			uptodate = true;
			goto next;
		}

2743 2744 2745
		ret = btrfs_repair_one_sector(inode, failed_bbio,
				bio_offset + offset, page, pgoff + offset,
				btrfs_submit_data_read_bio);
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
		if (!ret) {
			/*
			 * We have submitted the read repair, the page release
			 * will be handled by the endio function of the
			 * submitted repair bio.
			 * Thus we don't need to do any thing here.
			 */
			continue;
		}
		/*
2756 2757
		 * Continue on failed repair, otherwise the remaining sectors
		 * will not be properly unlocked.
2758 2759
		 */
next:
2760
		end_sector_io(page, start + offset, uptodate);
2761
	}
2762 2763
}

2764 2765
/* lots and lots of room for performance fixes in the end_bio funcs */

2766
void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2767
{
2768
	struct btrfs_inode *inode;
2769
	const bool uptodate = (err == 0);
2770
	int ret = 0;
2771

2772 2773 2774
	ASSERT(page && page->mapping);
	inode = BTRFS_I(page->mapping->host);
	btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2775 2776

	if (!uptodate) {
2777 2778 2779 2780 2781 2782 2783 2784
		const struct btrfs_fs_info *fs_info = inode->root->fs_info;
		u32 len;

		ASSERT(end + 1 - start <= U32_MAX);
		len = end + 1 - start;

		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
2785
		ret = err < 0 ? err : -EIO;
2786
		mapping_set_error(page->mapping, ret);
2787 2788 2789
	}
}

2790 2791 2792 2793 2794 2795 2796 2797 2798
/*
 * after a writepage IO is done, we need to:
 * clear the uptodate bits on error
 * clear the writeback bits in the extent tree for this IO
 * end_page_writeback if the page has no more pending IO
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2799
static void end_bio_extent_writepage(struct btrfs_bio *bbio)
2800
{
2801
	struct bio *bio = &bbio->bio;
2802
	int error = blk_status_to_errno(bio->bi_status);
2803
	struct bio_vec *bvec;
2804 2805
	u64 start;
	u64 end;
2806
	struct bvec_iter_all iter_all;
2807
	bool first_bvec = true;
2808

2809
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2810
	bio_for_each_segment_all(bvec, bio, iter_all) {
2811
		struct page *page = bvec->bv_page;
2812 2813
		struct inode *inode = page->mapping->host;
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
		const u32 sectorsize = fs_info->sectorsize;

		/* Our read/write should always be sector aligned. */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page write in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
			btrfs_info(fs_info,
		"incomplete page write with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
2828

2829 2830 2831 2832 2833
		if (first_bvec) {
			btrfs_record_physical_zoned(inode, start, bio);
			first_bvec = false;
		}

2834
		end_extent_writepage(page, error, start, end);
2835 2836

		btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2837
	}
2838

2839 2840 2841
	bio_put(bio);
}

2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
/*
 * Record previously processed extent range
 *
 * For endio_readpage_release_extent() to handle a full extent range, reducing
 * the extent io operations.
 */
struct processed_extent {
	struct btrfs_inode *inode;
	/* Start of the range in @inode */
	u64 start;
2852
	/* End of the range in @inode */
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
	u64 end;
	bool uptodate;
};

/*
 * Try to release processed extent range
 *
 * May not release the extent range right now if the current range is
 * contiguous to processed extent.
 *
 * Will release processed extent when any of @inode, @uptodate, the range is
 * no longer contiguous to the processed range.
 *
 * Passing @inode == NULL will force processed extent to be released.
 */
static void endio_readpage_release_extent(struct processed_extent *processed,
			      struct btrfs_inode *inode, u64 start, u64 end,
			      bool uptodate)
2871 2872
{
	struct extent_state *cached = NULL;
2873 2874 2875 2876 2877
	struct extent_io_tree *tree;

	/* The first extent, initialize @processed */
	if (!processed->inode)
		goto update;
2878

2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
	/*
	 * Contiguous to processed extent, just uptodate the end.
	 *
	 * Several things to notice:
	 *
	 * - bio can be merged as long as on-disk bytenr is contiguous
	 *   This means we can have page belonging to other inodes, thus need to
	 *   check if the inode still matches.
	 * - bvec can contain range beyond current page for multi-page bvec
	 *   Thus we need to do processed->end + 1 >= start check
	 */
	if (processed->inode == inode && processed->uptodate == uptodate &&
	    processed->end + 1 >= start && end >= processed->end) {
		processed->end = end;
		return;
	}

	tree = &processed->inode->io_tree;
	/*
	 * Now we don't have range contiguous to the processed range, release
	 * the processed range now.
	 */
	unlock_extent_cached_atomic(tree, processed->start, processed->end,
				    &cached);

update:
	/* Update processed to current range */
	processed->inode = inode;
	processed->start = start;
	processed->end = end;
	processed->uptodate = uptodate;
2910 2911
}

2912 2913 2914
static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
{
	ASSERT(PageLocked(page));
2915
	if (!btrfs_is_subpage(fs_info, page))
2916 2917 2918 2919 2920 2921
		return;

	ASSERT(PagePrivate(page));
	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
}

2922
/*
2923
 * Find extent buffer for a givne bytenr.
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
 *
 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
 * in endio context.
 */
static struct extent_buffer *find_extent_buffer_readpage(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
	struct extent_buffer *eb;

	/*
	 * For regular sectorsize, we can use page->private to grab extent
	 * buffer
	 */
2937
	if (fs_info->nodesize >= PAGE_SIZE) {
2938 2939 2940 2941
		ASSERT(PagePrivate(page) && page->private);
		return (struct extent_buffer *)page->private;
	}

2942 2943 2944 2945 2946
	/* For subpage case, we need to lookup buffer radix tree */
	rcu_read_lock();
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       bytenr >> fs_info->sectorsize_bits);
	rcu_read_unlock();
2947 2948 2949 2950
	ASSERT(eb);
	return eb;
}

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
/*
 * after a readpage IO is done, we need to:
 * clear the uptodate bits on error
 * set the uptodate bits if things worked
 * set the page up to date if all extents in the tree are uptodate
 * clear the lock bit in the extent tree
 * unlock the page if there are no other extents locked for it
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2962
static void end_bio_extent_readpage(struct btrfs_bio *bbio)
2963
{
2964
	struct bio *bio = &bbio->bio;
2965
	struct bio_vec *bvec;
2966
	struct extent_io_tree *tree, *failure_tree;
2967
	struct processed_extent processed = { 0 };
2968 2969 2970 2971 2972
	/*
	 * The offset to the beginning of a bio, since one bio can never be
	 * larger than UINT_MAX, u32 here is enough.
	 */
	u32 bio_offset = 0;
2973
	int mirror;
2974
	struct bvec_iter_all iter_all;
2975

2976
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2977
	bio_for_each_segment_all(bvec, bio, iter_all) {
2978
		bool uptodate = !bio->bi_status;
2979
		struct page *page = bvec->bv_page;
2980
		struct inode *inode = page->mapping->host;
2981
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2982
		const u32 sectorsize = fs_info->sectorsize;
2983
		unsigned int error_bitmap = (unsigned int)-1;
2984
		bool repair = false;
2985 2986 2987
		u64 start;
		u64 end;
		u32 len;
2988

2989 2990
		btrfs_debug(fs_info,
			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
D
David Sterba 已提交
2991
			bio->bi_iter.bi_sector, bio->bi_status,
2992
			bbio->mirror_num);
2993
		tree = &BTRFS_I(inode)->io_tree;
2994
		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2995

2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
		/*
		 * We always issue full-sector reads, but if some block in a
		 * page fails to read, blk_update_request() will advance
		 * bv_offset and adjust bv_len to compensate.  Print a warning
		 * for unaligned offsets, and an error if they don't add up to
		 * a full sector.
		 */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page read in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
				     sectorsize))
			btrfs_info(fs_info,
		"incomplete page read with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
3015
		len = bvec->bv_len;
3016

3017
		mirror = bbio->mirror_num;
3018
		if (likely(uptodate)) {
3019
			if (is_data_inode(inode)) {
3020
				error_bitmap = btrfs_verify_data_csum(bbio,
3021
						bio_offset, page, start, end);
3022 3023
				if (error_bitmap)
					uptodate = false;
3024
			} else {
3025 3026 3027
				if (btrfs_validate_metadata_buffer(bbio,
						page, start, end, mirror))
					uptodate = false;
3028
			}
3029
		}
3030

3031
		if (likely(uptodate)) {
3032
			loff_t i_size = i_size_read(inode);
3033
			pgoff_t end_index = i_size >> PAGE_SHIFT;
3034

3035 3036 3037 3038
			clean_io_failure(BTRFS_I(inode)->root->fs_info,
					 failure_tree, tree, start, page,
					 btrfs_ino(BTRFS_I(inode)), 0);

3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
			/*
			 * Zero out the remaining part if this range straddles
			 * i_size.
			 *
			 * Here we should only zero the range inside the bvec,
			 * not touch anything else.
			 *
			 * NOTE: i_size is exclusive while end is inclusive.
			 */
			if (page->index == end_index && i_size <= end) {
				u32 zero_start = max(offset_in_page(i_size),
3050
						     offset_in_page(start));
3051 3052 3053 3054

				zero_user_segment(page, zero_start,
						  offset_in_page(end) + 1);
			}
3055 3056 3057 3058 3059
		} else if (is_data_inode(inode)) {
			/*
			 * Only try to repair bios that actually made it to a
			 * device.  If the bio failed to be submitted mirror
			 * is 0 and we need to fail it without retrying.
3060 3061 3062 3063
			 *
			 * This also includes the high level bios for compressed
			 * extents - these never make it to a device and repair
			 * is already handled on the lower compressed bio.
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
			 */
			if (mirror > 0)
				repair = true;
		} else {
			struct extent_buffer *eb;

			eb = find_extent_buffer_readpage(fs_info, page, start);
			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
			eb->read_mirror = mirror;
			atomic_dec(&eb->io_pages);
3074
		}
3075 3076 3077 3078 3079 3080

		if (repair) {
			/*
			 * submit_data_read_repair() will handle all the good
			 * and bad sectors, we just continue to the next bvec.
			 */
3081 3082
			submit_data_read_repair(inode, bbio, bio_offset, bvec,
						error_bitmap);
3083 3084 3085 3086 3087
		} else {
			/* Update page status and unlock */
			end_page_read(page, uptodate, start, len);
			endio_readpage_release_extent(&processed, BTRFS_I(inode),
					start, end, PageUptodate(page));
3088
		}
3089

3090 3091
		ASSERT(bio_offset + len > bio_offset);
		bio_offset += len;
3092

3093
	}
3094 3095
	/* Release the last extent */
	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3096
	btrfs_bio_free_csum(bbio);
3097 3098 3099
	bio_put(bio);
}

3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
/**
 * Populate every free slot in a provided array with pages.
 *
 * @nr_pages:   number of pages to allocate
 * @page_array: the array to fill with pages; any existing non-null entries in
 * 		the array will be skipped
 *
 * Return: 0        if all pages were able to be allocated;
 *         -ENOMEM  otherwise, and the caller is responsible for freeing all
 *                  non-null page pointers in the array.
 */
int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
{
3113
	unsigned int allocated;
3114

3115 3116
	for (allocated = 0; allocated < nr_pages;) {
		unsigned int last = allocated;
3117

3118 3119
		allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);

3120 3121 3122
		if (allocated == nr_pages)
			return 0;

3123 3124 3125 3126 3127 3128
		/*
		 * During this iteration, no page could be allocated, even
		 * though alloc_pages_bulk_array() falls back to alloc_page()
		 * if  it could not bulk-allocate. So we must be out of memory.
		 */
		if (allocated == last)
3129
			return -ENOMEM;
3130 3131

		memalloc_retry_wait(GFP_NOFS);
3132 3133 3134 3135
	}
	return 0;
}

3136 3137 3138
/**
 * Attempt to add a page to bio
 *
3139
 * @bio_ctrl:	record both the bio, and its bio_flags
3140 3141 3142 3143
 * @page:	page to add to the bio
 * @disk_bytenr:  offset of the new bio or to check whether we are adding
 *                a contiguous page to the previous one
 * @size:	portion of page that we want to write
3144
 * @pg_offset:	starting offset in the page
3145
 * @compress_type:   compression type of the current bio to see if we can merge them
3146 3147 3148
 *
 * Attempt to add a page to bio considering stripe alignment etc.
 *
3149 3150 3151
 * Return >= 0 for the number of bytes added to the bio.
 * Can return 0 if the current bio is already at stripe/zone boundary.
 * Return <0 for error.
3152
 */
3153 3154 3155 3156
static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
			      struct page *page,
			      u64 disk_bytenr, unsigned int size,
			      unsigned int pg_offset,
3157
			      enum btrfs_compression_type compress_type)
3158
{
3159 3160
	struct bio *bio = bio_ctrl->bio;
	u32 bio_size = bio->bi_iter.bi_size;
3161
	u32 real_size;
3162
	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
3163
	bool contig = false;
3164
	int ret;
3165

3166 3167 3168
	ASSERT(bio);
	/* The limit should be calculated when bio_ctrl->bio is allocated */
	ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
3169
	if (bio_ctrl->compress_type != compress_type)
3170
		return 0;
3171

3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197

	if (bio->bi_iter.bi_size == 0) {
		/* We can always add a page into an empty bio. */
		contig = true;
	} else if (bio_ctrl->compress_type == BTRFS_COMPRESS_NONE) {
		struct bio_vec *bvec = bio_last_bvec_all(bio);

		/*
		 * The contig check requires the following conditions to be met:
		 * 1) The pages are belonging to the same inode
		 *    This is implied by the call chain.
		 *
		 * 2) The range has adjacent logical bytenr
		 *
		 * 3) The range has adjacent file offset
		 *    This is required for the usage of btrfs_bio->file_offset.
		 */
		if (bio_end_sector(bio) == sector &&
		    page_offset(bvec->bv_page) + bvec->bv_offset +
		    bvec->bv_len == page_offset(page) + pg_offset)
			contig = true;
	} else {
		/*
		 * For compression, all IO should have its logical bytenr
		 * set to the starting bytenr of the compressed extent.
		 */
3198
		contig = bio->bi_iter.bi_sector == sector;
3199 3200
	}

3201
	if (!contig)
3202
		return 0;
3203

3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
	real_size = min(bio_ctrl->len_to_oe_boundary,
			bio_ctrl->len_to_stripe_boundary) - bio_size;
	real_size = min(real_size, size);

	/*
	 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
	 * bio will still execute its endio function on the page!
	 */
	if (real_size == 0)
		return 0;
3214

3215
	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3216
		ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
3217
	else
3218
		ret = bio_add_page(bio, page, real_size, pg_offset);
3219

3220
	return ret;
3221 3222
}

3223
static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
3224
			       struct btrfs_inode *inode, u64 file_offset)
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct btrfs_io_geometry geom;
	struct btrfs_ordered_extent *ordered;
	struct extent_map *em;
	u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
	int ret;

	/*
	 * Pages for compressed extent are never submitted to disk directly,
	 * thus it has no real boundary, just set them to U32_MAX.
	 *
	 * The split happens for real compressed bio, which happens in
	 * btrfs_submit_compressed_read/write().
	 */
3240
	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
		return 0;
	}
	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
	if (IS_ERR(em))
		return PTR_ERR(em);
	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
				    logical, &geom);
	free_extent_map(em);
	if (ret < 0) {
		return ret;
	}
	if (geom.len > U32_MAX)
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
	else
		bio_ctrl->len_to_stripe_boundary = (u32)geom.len;

3259
	if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
3260 3261 3262 3263 3264
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	/* Ordered extent not yet created, so we're good */
3265
	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
	if (!ordered) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
		ordered->disk_bytenr + ordered->disk_num_bytes - logical);
	btrfs_put_ordered_extent(ordered);
	return 0;
}

3277 3278 3279
static int alloc_new_bio(struct btrfs_inode *inode,
			 struct btrfs_bio_ctrl *bio_ctrl,
			 struct writeback_control *wbc,
3280
			 blk_opf_t opf,
3281
			 btrfs_bio_end_io_t end_io_func,
3282
			 u64 disk_bytenr, u32 offset, u64 file_offset,
3283
			 enum btrfs_compression_type compress_type)
3284 3285 3286 3287 3288
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct bio *bio;
	int ret;

3289
	bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, end_io_func, NULL);
3290 3291 3292 3293
	/*
	 * For compressed page range, its disk_bytenr is always @disk_bytenr
	 * passed in, no matter if we have added any range into previous bio.
	 */
3294
	if (compress_type != BTRFS_COMPRESS_NONE)
Q
Qu Wenruo 已提交
3295
		bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
3296
	else
Q
Qu Wenruo 已提交
3297
		bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
3298
	bio_ctrl->bio = bio;
3299
	bio_ctrl->compress_type = compress_type;
3300 3301 3302
	ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
	if (ret < 0)
		goto error;
3303

3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
	if (wbc) {
		/*
		 * For Zone append we need the correct block_device that we are
		 * going to write to set in the bio to be able to respect the
		 * hardware limitation.  Look it up here:
		 */
		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
			struct btrfs_device *dev;

			dev = btrfs_zoned_get_device(fs_info, disk_bytenr,
						     fs_info->sectorsize);
			if (IS_ERR(dev)) {
				ret = PTR_ERR(dev);
				goto error;
			}
3319

3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
			bio_set_dev(bio, dev->bdev);
		} else {
			/*
			 * Otherwise pick the last added device to support
			 * cgroup writeback.  For multi-device file systems this
			 * means blk-cgroup policies have to always be set on the
			 * last added/replaced device.  This is a bit odd but has
			 * been like that for a long time.
			 */
			bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev);
3330
		}
3331 3332 3333
		wbc_init_bio(wbc, bio);
	} else {
		ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND);
3334 3335 3336 3337
	}
	return 0;
error:
	bio_ctrl->bio = NULL;
3338
	btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
3339 3340 3341
	return ret;
}

3342 3343
/*
 * @opf:	bio REQ_OP_* and REQ_* flags as one value
3344 3345
 * @wbc:	optional writeback control for io accounting
 * @page:	page to add to the bio
3346 3347
 * @disk_bytenr: logical bytenr where the write will be
 * @size:	portion of page that we want to write to
3348 3349
 * @pg_offset:	offset of the new bio or to check whether we are adding
 *              a contiguous page to the previous one
3350
 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3351 3352 3353
 * @end_io_func:     end_io callback for new bio
 * @mirror_num:	     desired mirror to read/write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3354
 * @compress_type:   compress type for current bio
3355
 */
3356
static int submit_extent_page(blk_opf_t opf,
3357
			      struct writeback_control *wbc,
3358
			      struct btrfs_bio_ctrl *bio_ctrl,
3359
			      struct page *page, u64 disk_bytenr,
3360
			      size_t size, unsigned long pg_offset,
3361
			      btrfs_bio_end_io_t end_io_func,
3362
			      enum btrfs_compression_type compress_type,
3363
			      bool force_bio_submit)
3364 3365
{
	int ret = 0;
3366
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3367
	unsigned int cur = pg_offset;
3368

3369
	ASSERT(bio_ctrl);
3370

3371 3372
	ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
	       pg_offset + size <= PAGE_SIZE);
3373 3374
	if (force_bio_submit)
		submit_one_bio(bio_ctrl);
3375 3376 3377 3378 3379 3380 3381 3382 3383

	while (cur < pg_offset + size) {
		u32 offset = cur - pg_offset;
		int added;

		/* Allocate new bio if needed */
		if (!bio_ctrl->bio) {
			ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
					    end_io_func, disk_bytenr, offset,
3384
					    page_offset(page) + cur,
3385
					    compress_type);
3386 3387 3388 3389 3390 3391 3392
			if (ret < 0)
				return ret;
		}
		/*
		 * We must go through btrfs_bio_add_page() to ensure each
		 * page range won't cross various boundaries.
		 */
3393
		if (compress_type != BTRFS_COMPRESS_NONE)
3394 3395
			added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
					size - offset, pg_offset + offset,
3396
					compress_type);
3397 3398 3399
		else
			added = btrfs_bio_add_page(bio_ctrl, page,
					disk_bytenr + offset, size - offset,
3400
					pg_offset + offset, compress_type);
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413

		/* Metadata page range should never be split */
		if (!is_data_inode(&inode->vfs_inode))
			ASSERT(added == 0 || added == size - offset);

		/* At least we added some page, update the account */
		if (wbc && added)
			wbc_account_cgroup_owner(wbc, page, added);

		/* We have reached boundary, submit right now */
		if (added < size - offset) {
			/* The bio should contain some page(s) */
			ASSERT(bio_ctrl->bio->bi_iter.bi_size);
3414
			submit_one_bio(bio_ctrl);
3415
		}
3416
		cur += added;
3417
	}
3418
	return 0;
3419 3420
}

3421 3422 3423
static int attach_extent_buffer_page(struct extent_buffer *eb,
				     struct page *page,
				     struct btrfs_subpage *prealloc)
3424
{
3425 3426 3427
	struct btrfs_fs_info *fs_info = eb->fs_info;
	int ret = 0;

3428 3429 3430 3431 3432 3433 3434 3435 3436
	/*
	 * If the page is mapped to btree inode, we should hold the private
	 * lock to prevent race.
	 * For cloned or dummy extent buffers, their pages are not mapped and
	 * will not race with any other ebs.
	 */
	if (page->mapping)
		lockdep_assert_held(&page->mapping->private_lock);

3437
	if (fs_info->nodesize >= PAGE_SIZE) {
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
		if (!PagePrivate(page))
			attach_page_private(page, eb);
		else
			WARN_ON(page->private != (unsigned long)eb);
		return 0;
	}

	/* Already mapped, just free prealloc */
	if (PagePrivate(page)) {
		btrfs_free_subpage(prealloc);
		return 0;
	}

	if (prealloc)
		/* Has preallocated memory for subpage */
		attach_page_private(page, prealloc);
3454
	else
3455 3456 3457 3458
		/* Do new allocation to attach subpage */
		ret = btrfs_attach_subpage(fs_info, page,
					   BTRFS_SUBPAGE_METADATA);
	return ret;
3459 3460
}

3461
int set_page_extent_mapped(struct page *page)
3462
{
3463 3464 3465 3466 3467 3468 3469 3470 3471
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

	if (PagePrivate(page))
		return 0;

	fs_info = btrfs_sb(page->mapping->host->i_sb);

3472
	if (btrfs_is_subpage(fs_info, page))
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);

	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
	return 0;
}

void clear_page_extent_mapped(struct page *page)
{
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

3485
	if (!PagePrivate(page))
3486 3487 3488
		return;

	fs_info = btrfs_sb(page->mapping->host->i_sb);
3489
	if (btrfs_is_subpage(fs_info, page))
3490 3491 3492
		return btrfs_detach_subpage(fs_info, page);

	detach_page_private(page);
3493 3494
}

3495 3496
static struct extent_map *
__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3497
		 u64 start, u64 len, struct extent_map **em_cached)
3498 3499 3500 3501 3502
{
	struct extent_map *em;

	if (em_cached && *em_cached) {
		em = *em_cached;
3503
		if (extent_map_in_tree(em) && start >= em->start &&
3504
		    start < extent_map_end(em)) {
3505
			refcount_inc(&em->refs);
3506 3507 3508 3509 3510 3511 3512
			return em;
		}

		free_extent_map(em);
		*em_cached = NULL;
	}

3513
	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3514
	if (em_cached && !IS_ERR(em)) {
3515
		BUG_ON(*em_cached);
3516
		refcount_inc(&em->refs);
3517 3518 3519 3520
		*em_cached = em;
	}
	return em;
}
3521 3522 3523 3524
/*
 * basic readpage implementation.  Locked extent state structs are inserted
 * into the tree that are removed when the IO is done (by the end_io
 * handlers)
3525
 * XXX JDM: This needs looking at to ensure proper page locking
3526
 * return 0 on success, otherwise return error
3527
 */
3528
static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3529
		      struct btrfs_bio_ctrl *bio_ctrl,
3530
		      blk_opf_t read_flags, u64 *prev_em_start)
3531 3532
{
	struct inode *inode = page->mapping->host;
3533
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
M
Miao Xie 已提交
3534
	u64 start = page_offset(page);
3535
	const u64 end = start + PAGE_SIZE - 1;
3536 3537 3538 3539 3540
	u64 cur = start;
	u64 extent_offset;
	u64 last_byte = i_size_read(inode);
	u64 block_start;
	struct extent_map *em;
3541
	int ret = 0;
3542
	size_t pg_offset = 0;
3543 3544
	size_t iosize;
	size_t blocksize = inode->i_sb->s_blocksize;
3545
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3546

3547 3548 3549
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		unlock_extent(tree, start, end);
3550 3551
		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
		unlock_page(page);
3552 3553
		goto out;
	}
3554

3555
	if (page->index == last_byte >> PAGE_SHIFT) {
3556
		size_t zero_offset = offset_in_page(last_byte);
C
Chris Mason 已提交
3557 3558

		if (zero_offset) {
3559
			iosize = PAGE_SIZE - zero_offset;
3560
			memzero_page(page, zero_offset, iosize);
C
Chris Mason 已提交
3561 3562
		}
	}
3563
	begin_page_read(fs_info, page);
3564
	while (cur <= end) {
3565
		unsigned long this_bio_flag = 0;
3566
		bool force_bio_submit = false;
3567
		u64 disk_bytenr;
3568

3569
		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
3570
		if (cur >= last_byte) {
3571 3572
			struct extent_state *cached = NULL;

3573
			iosize = PAGE_SIZE - pg_offset;
3574
			memzero_page(page, pg_offset, iosize);
3575
			set_extent_uptodate(tree, cur, cur + iosize - 1,
3576
					    &cached, GFP_NOFS);
3577
			unlock_extent_cached(tree, cur,
3578
					     cur + iosize - 1, &cached);
3579
			end_page_read(page, true, cur, iosize);
3580 3581
			break;
		}
3582
		em = __get_extent_map(inode, page, pg_offset, cur,
3583
				      end - cur + 1, em_cached);
3584
		if (IS_ERR(em)) {
3585
			unlock_extent(tree, cur, end);
3586
			end_page_read(page, false, cur, end + 1 - cur);
3587
			ret = PTR_ERR(em);
3588 3589 3590 3591 3592 3593
			break;
		}
		extent_offset = cur - em->start;
		BUG_ON(extent_map_end(em) <= cur);
		BUG_ON(end < cur);

3594 3595
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			this_bio_flag = em->compress_type;
C
Chris Mason 已提交
3596

3597
		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3598
		iosize = ALIGN(iosize, blocksize);
3599
		if (this_bio_flag != BTRFS_COMPRESS_NONE)
3600
			disk_bytenr = em->block_start;
3601
		else
3602
			disk_bytenr = em->block_start + extent_offset;
3603
		block_start = em->block_start;
Y
Yan Zheng 已提交
3604 3605
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			block_start = EXTENT_MAP_HOLE;
3606 3607 3608

		/*
		 * If we have a file range that points to a compressed extent
3609
		 * and it's followed by a consecutive file range that points
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
		 * to the same compressed extent (possibly with a different
		 * offset and/or length, so it either points to the whole extent
		 * or only part of it), we must make sure we do not submit a
		 * single bio to populate the pages for the 2 ranges because
		 * this makes the compressed extent read zero out the pages
		 * belonging to the 2nd range. Imagine the following scenario:
		 *
		 *  File layout
		 *  [0 - 8K]                     [8K - 24K]
		 *    |                               |
		 *    |                               |
		 * points to extent X,         points to extent X,
		 * offset 4K, length of 8K     offset 0, length 16K
		 *
		 * [extent X, compressed length = 4K uncompressed length = 16K]
		 *
		 * If the bio to read the compressed extent covers both ranges,
		 * it will decompress extent X into the pages belonging to the
		 * first range and then it will stop, zeroing out the remaining
		 * pages that belong to the other range that points to extent X.
		 * So here we make sure we submit 2 bios, one for the first
		 * range and another one for the third range. Both will target
		 * the same physical extent from disk, but we can't currently
		 * make the compressed bio endio callback populate the pages
		 * for both ranges because each compressed bio is tightly
		 * coupled with a single extent map, and each range can have
		 * an extent map with a different offset value relative to the
		 * uncompressed data of our extent and different lengths. This
		 * is a corner case so we prioritize correctness over
		 * non-optimal behavior (submitting 2 bios for the same extent).
		 */
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
		    prev_em_start && *prev_em_start != (u64)-1 &&
3643
		    *prev_em_start != em->start)
3644 3645 3646
			force_bio_submit = true;

		if (prev_em_start)
3647
			*prev_em_start = em->start;
3648

3649 3650 3651 3652 3653
		free_extent_map(em);
		em = NULL;

		/* we've found a hole, just zero and go on */
		if (block_start == EXTENT_MAP_HOLE) {
3654 3655
			struct extent_state *cached = NULL;

3656
			memzero_page(page, pg_offset, iosize);
3657 3658

			set_extent_uptodate(tree, cur, cur + iosize - 1,
3659
					    &cached, GFP_NOFS);
3660
			unlock_extent_cached(tree, cur,
3661
					     cur + iosize - 1, &cached);
3662
			end_page_read(page, true, cur, iosize);
3663
			cur = cur + iosize;
3664
			pg_offset += iosize;
3665 3666 3667
			continue;
		}
		/* the get_extent function already copied into the page */
3668
		if (block_start == EXTENT_MAP_INLINE) {
3669
			unlock_extent(tree, cur, cur + iosize - 1);
3670
			end_page_read(page, true, cur, iosize);
3671
			cur = cur + iosize;
3672
			pg_offset += iosize;
3673 3674
			continue;
		}
3675

3676
		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3677
					 bio_ctrl, page, disk_bytenr, iosize,
3678 3679
					 pg_offset, end_bio_extent_readpage,
					 this_bio_flag, force_bio_submit);
3680
		if (ret) {
3681 3682 3683 3684 3685 3686
			/*
			 * We have to unlock the remaining range, or the page
			 * will never be unlocked.
			 */
			unlock_extent(tree, cur, end);
			end_page_read(page, false, cur, end + 1 - cur);
3687
			goto out;
3688
		}
3689
		cur = cur + iosize;
3690
		pg_offset += iosize;
3691
	}
D
Dan Magenheimer 已提交
3692
out:
3693
	return ret;
3694 3695
}

3696
int btrfs_read_folio(struct file *file, struct folio *folio)
3697
{
3698
	struct page *page = &folio->page;
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
	u64 start = page_offset(page);
	u64 end = start + PAGE_SIZE - 1;
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
	int ret;

	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);

	ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
	/*
	 * If btrfs_do_readpage() failed we will want to submit the assembled
	 * bio to do the cleanup.
	 */
3712
	submit_one_bio(&bio_ctrl);
3713 3714 3715
	return ret;
}

3716
static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3717 3718 3719 3720
					u64 start, u64 end,
					struct extent_map **em_cached,
					struct btrfs_bio_ctrl *bio_ctrl,
					u64 *prev_em_start)
3721
{
3722
	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3723 3724
	int index;

3725
	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3726 3727

	for (index = 0; index < nr_pages; index++) {
3728
		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3729
				  REQ_RAHEAD, prev_em_start);
3730
		put_page(pages[index]);
3731 3732 3733
	}
}

3734
/*
3735 3736
 * helper for __extent_writepage, doing all of the delayed allocation setup.
 *
3737
 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3738 3739 3740 3741 3742
 * to write the page (copy into inline extent).  In this case the IO has
 * been started and the page is already unlocked.
 *
 * This returns 0 if all went well (page still locked)
 * This returns < 0 if there were errors (page still locked)
3743
 */
3744
static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3745
		struct page *page, struct writeback_control *wbc)
3746
{
3747
	const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
3748
	u64 delalloc_start = page_offset(page);
3749
	u64 delalloc_to_write = 0;
3750 3751
	/* How many pages are started by btrfs_run_delalloc_range() */
	unsigned long nr_written = 0;
3752 3753 3754
	int ret;
	int page_started = 0;

3755 3756 3757
	while (delalloc_start < page_end) {
		u64 delalloc_end = page_end;
		bool found;
3758

3759
		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3760
					       &delalloc_start,
3761
					       &delalloc_end);
3762
		if (!found) {
3763 3764 3765
			delalloc_start = delalloc_end + 1;
			continue;
		}
3766
		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3767
				delalloc_end, &page_started, &nr_written, wbc);
3768
		if (ret) {
3769 3770
			btrfs_page_set_error(inode->root->fs_info, page,
					     page_offset(page), PAGE_SIZE);
3771
			return ret;
3772 3773
		}
		/*
3774 3775
		 * delalloc_end is already one less than the total length, so
		 * we don't subtract one from PAGE_SIZE
3776 3777
		 */
		delalloc_to_write += (delalloc_end - delalloc_start +
3778
				      PAGE_SIZE) >> PAGE_SHIFT;
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
		delalloc_start = delalloc_end + 1;
	}
	if (wbc->nr_to_write < delalloc_to_write) {
		int thresh = 8192;

		if (delalloc_to_write < thresh * 2)
			thresh = delalloc_to_write;
		wbc->nr_to_write = min_t(u64, delalloc_to_write,
					 thresh);
	}

3790
	/* Did btrfs_run_dealloc_range() already unlock and start the IO? */
3791 3792
	if (page_started) {
		/*
3793 3794
		 * We've unlocked the page, so we can't update the mapping's
		 * writeback index, just update nr_to_write.
3795
		 */
3796
		wbc->nr_to_write -= nr_written;
3797 3798 3799
		return 1;
	}

3800
	return 0;
3801 3802
}

3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
/*
 * Find the first byte we need to write.
 *
 * For subpage, one page can contain several sectors, and
 * __extent_writepage_io() will just grab all extent maps in the page
 * range and try to submit all non-inline/non-compressed extents.
 *
 * This is a big problem for subpage, we shouldn't re-submit already written
 * data at all.
 * This function will lookup subpage dirty bit to find which range we really
 * need to submit.
 *
 * Return the next dirty range in [@start, @end).
 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
 */
static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
				 struct page *page, u64 *start, u64 *end)
{
	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
3822
	struct btrfs_subpage_info *spi = fs_info->subpage_info;
3823 3824 3825
	u64 orig_start = *start;
	/* Declare as unsigned long so we can use bitmap ops */
	unsigned long flags;
3826
	int range_start_bit;
3827 3828 3829 3830 3831 3832
	int range_end_bit;

	/*
	 * For regular sector size == page size case, since one page only
	 * contains one sector, we return the page offset directly.
	 */
3833
	if (!btrfs_is_subpage(fs_info, page)) {
3834 3835 3836 3837 3838
		*start = page_offset(page);
		*end = page_offset(page) + PAGE_SIZE;
		return;
	}

3839 3840 3841
	range_start_bit = spi->dirty_offset +
			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);

3842 3843
	/* We should have the page locked, but just in case */
	spin_lock_irqsave(&subpage->lock, flags);
3844 3845
	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
			       spi->dirty_offset + spi->bitmap_nr_bits);
3846 3847
	spin_unlock_irqrestore(&subpage->lock, flags);

3848 3849 3850
	range_start_bit -= spi->dirty_offset;
	range_end_bit -= spi->dirty_offset;

3851 3852 3853 3854
	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
}

3855 3856 3857 3858 3859 3860 3861 3862
/*
 * helper for __extent_writepage.  This calls the writepage start hooks,
 * and does the loop to map the page into extents and bios.
 *
 * We return 1 if the IO is started and the page is unlocked,
 * 0 if all went well (page still locked)
 * < 0 if there were errors (page still locked)
 */
3863
static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3864 3865 3866 3867
				 struct page *page,
				 struct writeback_control *wbc,
				 struct extent_page_data *epd,
				 loff_t i_size,
3868
				 int *nr_ret)
3869
{
3870
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3871 3872
	u64 cur = page_offset(page);
	u64 end = cur + PAGE_SIZE - 1;
3873 3874 3875
	u64 extent_offset;
	u64 block_start;
	struct extent_map *em;
3876
	int saved_ret = 0;
3877 3878
	int ret = 0;
	int nr = 0;
3879 3880
	enum req_op op = REQ_OP_WRITE;
	const blk_opf_t write_flags = wbc_to_write_flags(wbc);
3881
	bool has_error = false;
3882
	bool compressed;
C
Chris Mason 已提交
3883

3884
	ret = btrfs_writepage_cow_fixup(page);
3885 3886
	if (ret) {
		/* Fixup worker will requeue */
3887
		redirty_page_for_writepage(wbc, page);
3888 3889
		unlock_page(page);
		return 1;
3890 3891
	}

3892 3893 3894 3895
	/*
	 * we don't want to touch the inode after unlocking the page,
	 * so we update the mapping writeback index now
	 */
3896
	wbc->nr_to_write--;
3897

3898
	while (cur <= end) {
3899
		u64 disk_bytenr;
3900
		u64 em_end;
3901 3902
		u64 dirty_range_start = cur;
		u64 dirty_range_end;
3903
		u32 iosize;
3904

3905
		if (cur >= i_size) {
3906
			btrfs_writepage_endio_finish_ordered(inode, page, cur,
3907
							     end, true);
3908 3909 3910 3911 3912 3913 3914 3915 3916
			/*
			 * This range is beyond i_size, thus we don't need to
			 * bother writing back.
			 * But we still need to clear the dirty subpage bit, or
			 * the next time the page gets dirtied, we will try to
			 * writeback the sectors with subpage dirty bits,
			 * causing writeback without ordered extent.
			 */
			btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
3917 3918
			break;
		}
3919 3920 3921 3922 3923 3924 3925 3926

		find_next_dirty_byte(fs_info, page, &dirty_range_start,
				     &dirty_range_end);
		if (cur < dirty_range_start) {
			cur = dirty_range_start;
			continue;
		}

3927
		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3928
		if (IS_ERR(em)) {
3929
			btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
3930
			ret = PTR_ERR_OR_ZERO(em);
3931 3932 3933
			has_error = true;
			if (!saved_ret)
				saved_ret = ret;
3934 3935 3936 3937
			break;
		}

		extent_offset = cur - em->start;
3938
		em_end = extent_map_end(em);
3939 3940 3941 3942
		ASSERT(cur <= em_end);
		ASSERT(cur < end);
		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
3943
		block_start = em->block_start;
C
Chris Mason 已提交
3944
		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3945 3946
		disk_bytenr = em->block_start + extent_offset;

3947 3948 3949 3950 3951
		/*
		 * Note that em_end from extent_map_end() and dirty_range_end from
		 * find_next_dirty_byte() are all exclusive
		 */
		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
3952

3953
		if (btrfs_use_zone_append(inode, em->block_start))
3954
			op = REQ_OP_ZONE_APPEND;
3955

3956 3957 3958
		free_extent_map(em);
		em = NULL;

C
Chris Mason 已提交
3959 3960 3961 3962 3963
		/*
		 * compressed and inline extents are written through other
		 * paths in the FS
		 */
		if (compressed || block_start == EXTENT_MAP_HOLE ||
3964
		    block_start == EXTENT_MAP_INLINE) {
3965
			if (compressed)
C
Chris Mason 已提交
3966
				nr++;
3967
			else
3968
				btrfs_writepage_endio_finish_ordered(inode,
3969
						page, cur, cur + iosize - 1, true);
3970
			btrfs_page_clear_dirty(fs_info, page, cur, iosize);
C
Chris Mason 已提交
3971
			cur += iosize;
3972 3973
			continue;
		}
C
Chris Mason 已提交
3974

3975
		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
3976
		if (!PageWriteback(page)) {
3977
			btrfs_err(inode->root->fs_info,
3978 3979
				   "page %lu not writeback, cur %llu end %llu",
			       page->index, cur, end);
3980
		}
3981

3982 3983 3984 3985 3986 3987 3988 3989
		/*
		 * Although the PageDirty bit is cleared before entering this
		 * function, subpage dirty bit is not cleared.
		 * So clear subpage dirty bit here so next time we won't submit
		 * page for range already written to disk.
		 */
		btrfs_page_clear_dirty(fs_info, page, cur, iosize);

3990
		ret = submit_extent_page(op | write_flags, wbc,
3991
					 &epd->bio_ctrl, page,
3992
					 disk_bytenr, iosize,
3993
					 cur - page_offset(page),
3994
					 end_bio_extent_writepage,
3995
					 0, false);
3996
		if (ret) {
3997 3998 3999 4000
			has_error = true;
			if (!saved_ret)
				saved_ret = ret;

4001
			btrfs_page_set_error(fs_info, page, cur, iosize);
4002
			if (PageWriteback(page))
4003 4004
				btrfs_page_clear_writeback(fs_info, page, cur,
							   iosize);
4005
		}
4006

4007
		cur += iosize;
4008 4009
		nr++;
	}
4010 4011 4012 4013
	/*
	 * If we finish without problem, we should not only clear page dirty,
	 * but also empty subpage dirty bits
	 */
4014
	if (!has_error)
4015
		btrfs_page_assert_not_dirty(fs_info, page);
4016 4017
	else
		ret = saved_ret;
4018 4019 4020 4021 4022 4023 4024 4025 4026
	*nr_ret = nr;
	return ret;
}

/*
 * the writepage semantics are similar to regular writepage.  extent
 * records are inserted to lock ranges in the tree, and as dirty areas
 * are found, they are marked writeback.  Then the lock bits are removed
 * and the end_io handler clears the writeback ranges
4027 4028 4029
 *
 * Return 0 if everything goes well.
 * Return <0 for error.
4030 4031
 */
static int __extent_writepage(struct page *page, struct writeback_control *wbc,
4032
			      struct extent_page_data *epd)
4033
{
4034
	struct folio *folio = page_folio(page);
4035
	struct inode *inode = page->mapping->host;
4036
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4037 4038
	const u64 page_start = page_offset(page);
	const u64 page_end = page_start + PAGE_SIZE - 1;
4039 4040
	int ret;
	int nr = 0;
4041
	size_t pg_offset;
4042
	loff_t i_size = i_size_read(inode);
4043
	unsigned long end_index = i_size >> PAGE_SHIFT;
4044 4045 4046 4047 4048

	trace___extent_writepage(page, inode, wbc);

	WARN_ON(!PageLocked(page));

4049 4050
	btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
			       page_offset(page), PAGE_SIZE);
4051

4052
	pg_offset = offset_in_page(i_size);
4053 4054
	if (page->index > end_index ||
	   (page->index == end_index && !pg_offset)) {
4055 4056
		folio_invalidate(folio, 0, folio_size(folio));
		folio_unlock(folio);
4057 4058 4059
		return 0;
	}

4060
	if (page->index == end_index)
4061
		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
4062

4063 4064 4065 4066 4067
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		SetPageError(page);
		goto done;
	}
4068

4069
	if (!epd->extent_locked) {
4070
		ret = writepage_delalloc(BTRFS_I(inode), page, wbc);
4071
		if (ret == 1)
4072
			return 0;
4073 4074 4075
		if (ret)
			goto done;
	}
4076

4077
	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
4078
				    &nr);
4079
	if (ret == 1)
4080
		return 0;
4081

4082 4083 4084 4085 4086 4087
done:
	if (nr == 0) {
		/* make sure the mapping tag for page dirty gets cleared */
		set_page_writeback(page);
		end_page_writeback(page);
	}
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
	/*
	 * Here we used to have a check for PageError() and then set @ret and
	 * call end_extent_writepage().
	 *
	 * But in fact setting @ret here will cause different error paths
	 * between subpage and regular sectorsize.
	 *
	 * For regular page size, we never submit current page, but only add
	 * current page to current bio.
	 * The bio submission can only happen in next page.
	 * Thus if we hit the PageError() branch, @ret is already set to
	 * non-zero value and will not get updated for regular sectorsize.
	 *
	 * But for subpage case, it's possible we submit part of current page,
	 * thus can get PageError() set by submitted bio of the same page,
	 * while our @ret is still 0.
	 *
	 * So here we unify the behavior and don't set @ret.
	 * Error can still be properly passed to higher layer as page will
	 * be set error, here we just don't handle the IO failure.
	 *
	 * NOTE: This is just a hotfix for subpage.
	 * The root fix will be properly ending ordered extent when we hit
	 * an error during writeback.
	 *
	 * But that needs a bigger refactoring, as we not only need to grab the
	 * submitted OE, but also need to know exactly at which bytenr we hit
	 * the error.
	 * Currently the full page based __extent_writepage_io() is not
	 * capable of that.
	 */
	if (PageError(page))
4120
		end_extent_writepage(page, ret, page_start, page_end);
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
	if (epd->extent_locked) {
		/*
		 * If epd->extent_locked, it's from extent_write_locked_range(),
		 * the page can either be locked by lock_page() or
		 * process_one_page().
		 * Let btrfs_page_unlock_writer() handle both cases.
		 */
		ASSERT(wbc);
		btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
					 wbc->range_end + 1 - wbc->range_start);
	} else {
		unlock_page(page);
	}
4134
	ASSERT(ret <= 0);
4135
	return ret;
4136 4137
}

4138
void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
4139
{
4140 4141
	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
		       TASK_UNINTERRUPTIBLE);
4142 4143
}

4144 4145 4146 4147 4148 4149 4150
static void end_extent_buffer_writeback(struct extent_buffer *eb)
{
	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
	smp_mb__after_atomic();
	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
}

4151
/*
4152
 * Lock extent buffer status and pages for writeback.
4153
 *
4154 4155 4156 4157 4158 4159
 * May try to flush write bio if we can't get the lock.
 *
 * Return  0 if the extent buffer doesn't need to be submitted.
 *           (E.g. the extent buffer is not dirty)
 * Return >0 is the extent buffer is submitted to bio.
 * Return <0 if something went wrong, no page is locked.
4160
 */
4161
static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
4162
			  struct extent_page_data *epd)
4163
{
4164
	struct btrfs_fs_info *fs_info = eb->fs_info;
4165
	int i, num_pages;
4166 4167 4168 4169
	int flush = 0;
	int ret = 0;

	if (!btrfs_try_tree_write_lock(eb)) {
4170
		submit_write_bio(epd, 0);
4171
		flush = 1;
4172 4173 4174 4175 4176 4177 4178 4179
		btrfs_tree_lock(eb);
	}

	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
		btrfs_tree_unlock(eb);
		if (!epd->sync_io)
			return 0;
		if (!flush) {
4180
			submit_write_bio(epd, 0);
4181 4182
			flush = 1;
		}
C
Chris Mason 已提交
4183 4184 4185 4186 4187
		while (1) {
			wait_on_extent_buffer_writeback(eb);
			btrfs_tree_lock(eb);
			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
				break;
4188 4189 4190 4191
			btrfs_tree_unlock(eb);
		}
	}

4192 4193 4194 4195 4196 4197
	/*
	 * We need to do this to prevent races in people who check if the eb is
	 * under IO since we can end up having no IO bits set for a short period
	 * of time.
	 */
	spin_lock(&eb->refs_lock);
4198 4199
	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4200
		spin_unlock(&eb->refs_lock);
4201
		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4202 4203 4204
		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
					 -eb->len,
					 fs_info->dirty_metadata_batch);
4205
		ret = 1;
4206 4207
	} else {
		spin_unlock(&eb->refs_lock);
4208 4209 4210 4211
	}

	btrfs_tree_unlock(eb);

4212 4213 4214 4215 4216 4217
	/*
	 * Either we don't need to submit any tree block, or we're submitting
	 * subpage eb.
	 * Subpage metadata doesn't use page locking at all, so we can skip
	 * the page locking.
	 */
4218
	if (!ret || fs_info->nodesize < PAGE_SIZE)
4219 4220
		return ret;

4221
	num_pages = num_extent_pages(eb);
4222
	for (i = 0; i < num_pages; i++) {
4223
		struct page *p = eb->pages[i];
4224 4225 4226

		if (!trylock_page(p)) {
			if (!flush) {
4227
				submit_write_bio(epd, 0);
4228 4229 4230 4231 4232 4233
				flush = 1;
			}
			lock_page(p);
		}
	}

4234
	return ret;
4235 4236
}

4237
static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4238
{
4239
	struct btrfs_fs_info *fs_info = eb->fs_info;
4240

4241
	btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4242 4243 4244
	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
		return;

4245 4246 4247 4248 4249 4250
	/*
	 * A read may stumble upon this buffer later, make sure that it gets an
	 * error and knows there was an error.
	 */
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);

4251 4252 4253 4254 4255 4256 4257 4258
	/*
	 * We need to set the mapping with the io error as well because a write
	 * error will flip the file system readonly, and then syncfs() will
	 * return a 0 because we are readonly if we don't modify the err seq for
	 * the superblock.
	 */
	mapping_set_error(page->mapping, -EIO);

4259 4260 4261 4262 4263 4264 4265
	/*
	 * If we error out, we should add back the dirty_metadata_bytes
	 * to make it consistent.
	 */
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
				 eb->len, fs_info->dirty_metadata_batch);

4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
	/*
	 * If writeback for a btree extent that doesn't belong to a log tree
	 * failed, increment the counter transaction->eb_write_errors.
	 * We do this because while the transaction is running and before it's
	 * committing (when we call filemap_fdata[write|wait]_range against
	 * the btree inode), we might have
	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
	 * returns an error or an error happens during writeback, when we're
	 * committing the transaction we wouldn't know about it, since the pages
	 * can be no longer dirty nor marked anymore for writeback (if a
	 * subsequent modification to the extent buffer didn't happen before the
	 * transaction commit), which makes filemap_fdata[write|wait]_range not
	 * able to find the pages tagged with SetPageError at transaction
	 * commit time. So if this happens we must abort the transaction,
	 * otherwise we commit a super block with btree roots that point to
	 * btree nodes/leafs whose content on disk is invalid - either garbage
	 * or the content of some node/leaf from a past generation that got
	 * cowed or deleted and is no longer valid.
	 *
	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
	 * not be enough - we need to distinguish between log tree extents vs
	 * non-log tree extents, and the next filemap_fdatawait_range() call
	 * will catch and clear such errors in the mapping - and that call might
	 * be from a log sync and not from a transaction commit. Also, checking
	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
	 * not done and would not be reliable - the eb might have been released
	 * from memory and reading it back again means that flag would not be
	 * set (since it's a runtime flag, not persisted on disk).
	 *
	 * Using the flags below in the btree inode also makes us achieve the
	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
	 * writeback for all dirty pages and before filemap_fdatawait_range()
	 * is called, the writeback for all dirty pages had already finished
	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
	 * filemap_fdatawait_range() would return success, as it could not know
	 * that writeback errors happened (the pages were no longer tagged for
	 * writeback).
	 */
	switch (eb->log_index) {
	case -1:
4306
		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4307 4308
		break;
	case 0:
4309
		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4310 4311
		break;
	case 1:
4312
		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4313 4314 4315 4316 4317 4318
		break;
	default:
		BUG(); /* unexpected, logic error */
	}
}

4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
/*
 * The endio specific version which won't touch any unsafe spinlock in endio
 * context.
 */
static struct extent_buffer *find_extent_buffer_nolock(
		struct btrfs_fs_info *fs_info, u64 start)
{
	struct extent_buffer *eb;

	rcu_read_lock();
4329 4330
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       start >> fs_info->sectorsize_bits);
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
	if (eb && atomic_inc_not_zero(&eb->refs)) {
		rcu_read_unlock();
		return eb;
	}
	rcu_read_unlock();
	return NULL;
}

/*
 * The endio function for subpage extent buffer write.
 *
 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
 * after all extent buffers in the page has finished their writeback.
 */
4345
static void end_bio_subpage_eb_writepage(struct btrfs_bio *bbio)
4346
{
4347
	struct bio *bio = &bbio->bio;
4348
	struct btrfs_fs_info *fs_info;
4349 4350 4351
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

4352
	fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
4353
	ASSERT(fs_info->nodesize < PAGE_SIZE);
4354

4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
	ASSERT(!bio_flagged(bio, BIO_CLONED));
	bio_for_each_segment_all(bvec, bio, iter_all) {
		struct page *page = bvec->bv_page;
		u64 bvec_start = page_offset(page) + bvec->bv_offset;
		u64 bvec_end = bvec_start + bvec->bv_len - 1;
		u64 cur_bytenr = bvec_start;

		ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));

		/* Iterate through all extent buffers in the range */
		while (cur_bytenr <= bvec_end) {
			struct extent_buffer *eb;
			int done;

			/*
			 * Here we can't use find_extent_buffer(), as it may
			 * try to lock eb->refs_lock, which is not safe in endio
			 * context.
			 */
			eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
			ASSERT(eb);

			cur_bytenr = eb->start + eb->len;

			ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
			done = atomic_dec_and_test(&eb->io_pages);
			ASSERT(done);

			if (bio->bi_status ||
			    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
				ClearPageUptodate(page);
				set_btree_ioerr(page, eb);
			}

			btrfs_subpage_clear_writeback(fs_info, page, eb->start,
						      eb->len);
			end_extent_buffer_writeback(eb);
			/*
			 * free_extent_buffer() will grab spinlock which is not
			 * safe in endio context. Thus here we manually dec
			 * the ref.
			 */
			atomic_dec(&eb->refs);
		}
	}
	bio_put(bio);
}

4403
static void end_bio_extent_buffer_writepage(struct btrfs_bio *bbio)
4404
{
4405
	struct bio *bio = &bbio->bio;
4406
	struct bio_vec *bvec;
4407
	struct extent_buffer *eb;
4408
	int done;
4409
	struct bvec_iter_all iter_all;
4410

4411
	ASSERT(!bio_flagged(bio, BIO_CLONED));
4412
	bio_for_each_segment_all(bvec, bio, iter_all) {
4413 4414 4415 4416 4417 4418
		struct page *page = bvec->bv_page;

		eb = (struct extent_buffer *)page->private;
		BUG_ON(!eb);
		done = atomic_dec_and_test(&eb->io_pages);

4419
		if (bio->bi_status ||
4420
		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4421
			ClearPageUptodate(page);
4422
			set_btree_ioerr(page, eb);
4423 4424 4425 4426 4427 4428 4429 4430
		}

		end_page_writeback(page);

		if (!done)
			continue;

		end_extent_buffer_writeback(eb);
4431
	}
4432 4433 4434 4435

	bio_put(bio);
}

4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
static void prepare_eb_write(struct extent_buffer *eb)
{
	u32 nritems;
	unsigned long start;
	unsigned long end;

	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
	atomic_set(&eb->io_pages, num_extent_pages(eb));

	/* Set btree blocks beyond nritems with 0 to avoid stale content */
	nritems = btrfs_header_nritems(eb);
	if (btrfs_header_level(eb) > 0) {
		end = btrfs_node_key_ptr_offset(nritems);
		memzero_extent_buffer(eb, end, eb->len - end);
	} else {
		/*
		 * Leaf:
		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
		 */
		start = btrfs_item_nr_offset(nritems);
		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
		memzero_extent_buffer(eb, start, end - start);
	}
}

4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
/*
 * Unlike the work in write_one_eb(), we rely completely on extent locking.
 * Page locking is only utilized at minimum to keep the VMM code happy.
 */
static int write_one_subpage_eb(struct extent_buffer *eb,
				struct writeback_control *wbc,
				struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
4471
	blk_opf_t write_flags = wbc_to_write_flags(wbc);
4472 4473 4474
	bool no_dirty_ebs = false;
	int ret;

4475 4476
	prepare_eb_write(eb);

4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
	/* clear_page_dirty_for_io() in subpage helper needs page locked */
	lock_page(page);
	btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);

	/* Check if this is the last dirty bit to update nr_written */
	no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
							  eb->start, eb->len);
	if (no_dirty_ebs)
		clear_page_dirty_for_io(page);

4487 4488 4489
	ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
			&epd->bio_ctrl, page, eb->start, eb->len,
			eb->start - page_offset(page),
4490
			end_bio_subpage_eb_writepage, 0, false);
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
	if (ret) {
		btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
		set_btree_ioerr(page, eb);
		unlock_page(page);

		if (atomic_dec_and_test(&eb->io_pages))
			end_extent_buffer_writeback(eb);
		return -EIO;
	}
	unlock_page(page);
	/*
	 * Submission finished without problem, if no range of the page is
	 * dirty anymore, we have submitted a page.  Update nr_written in wbc.
	 */
	if (no_dirty_ebs)
4506
		wbc->nr_to_write--;
4507 4508 4509
	return ret;
}

4510
static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4511 4512 4513
			struct writeback_control *wbc,
			struct extent_page_data *epd)
{
4514
	u64 disk_bytenr = eb->start;
4515
	int i, num_pages;
4516
	blk_opf_t write_flags = wbc_to_write_flags(wbc);
4517
	int ret = 0;
4518

4519
	prepare_eb_write(eb);
4520

4521
	num_pages = num_extent_pages(eb);
4522
	for (i = 0; i < num_pages; i++) {
4523
		struct page *p = eb->pages[i];
4524 4525 4526

		clear_page_dirty_for_io(p);
		set_page_writeback(p);
4527
		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4528 4529
					 &epd->bio_ctrl, p, disk_bytenr,
					 PAGE_SIZE, 0,
4530
					 end_bio_extent_buffer_writepage,
4531
					 0, false);
4532
		if (ret) {
4533
			set_btree_ioerr(p, eb);
4534 4535
			if (PageWriteback(p))
				end_page_writeback(p);
4536 4537 4538 4539 4540
			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
				end_extent_buffer_writeback(eb);
			ret = -EIO;
			break;
		}
4541
		disk_bytenr += PAGE_SIZE;
4542
		wbc->nr_to_write--;
4543 4544 4545 4546 4547
		unlock_page(p);
	}

	if (unlikely(ret)) {
		for (; i < num_pages; i++) {
4548
			struct page *p = eb->pages[i];
4549
			clear_page_dirty_for_io(p);
4550 4551 4552 4553 4554 4555 4556
			unlock_page(p);
		}
	}

	return ret;
}

4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
/*
 * Submit one subpage btree page.
 *
 * The main difference to submit_eb_page() is:
 * - Page locking
 *   For subpage, we don't rely on page locking at all.
 *
 * - Flush write bio
 *   We only flush bio if we may be unable to fit current extent buffers into
 *   current bio.
 *
 * Return >=0 for the number of submitted extent buffers.
 * Return <0 for fatal error.
 */
static int submit_eb_subpage(struct page *page,
			     struct writeback_control *wbc,
			     struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	int submitted = 0;
	u64 page_start = page_offset(page);
	int bit_start = 0;
	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
	int ret;

	/* Lock and write each dirty extent buffers in the range */
4583
	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
		struct extent_buffer *eb;
		unsigned long flags;
		u64 start;

		/*
		 * Take private lock to ensure the subpage won't be detached
		 * in the meantime.
		 */
		spin_lock(&page->mapping->private_lock);
		if (!PagePrivate(page)) {
			spin_unlock(&page->mapping->private_lock);
			break;
		}
		spin_lock_irqsave(&subpage->lock, flags);
4599 4600
		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
			      subpage->bitmaps)) {
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
			spin_unlock_irqrestore(&subpage->lock, flags);
			spin_unlock(&page->mapping->private_lock);
			bit_start++;
			continue;
		}

		start = page_start + bit_start * fs_info->sectorsize;
		bit_start += sectors_per_node;

		/*
		 * Here we just want to grab the eb without touching extra
		 * spin locks, so call find_extent_buffer_nolock().
		 */
		eb = find_extent_buffer_nolock(fs_info, start);
		spin_unlock_irqrestore(&subpage->lock, flags);
		spin_unlock(&page->mapping->private_lock);

		/*
		 * The eb has already reached 0 refs thus find_extent_buffer()
		 * doesn't return it. We don't need to write back such eb
		 * anyway.
		 */
		if (!eb)
			continue;

		ret = lock_extent_buffer_for_io(eb, epd);
		if (ret == 0) {
			free_extent_buffer(eb);
			continue;
		}
		if (ret < 0) {
			free_extent_buffer(eb);
			goto cleanup;
		}
4635
		ret = write_one_subpage_eb(eb, wbc, epd);
4636 4637 4638 4639 4640 4641 4642 4643 4644
		free_extent_buffer(eb);
		if (ret < 0)
			goto cleanup;
		submitted++;
	}
	return submitted;

cleanup:
	/* We hit error, end bio for the submitted extent buffers */
4645
	submit_write_bio(epd, ret);
4646 4647 4648
	return ret;
}

4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
/*
 * Submit all page(s) of one extent buffer.
 *
 * @page:	the page of one extent buffer
 * @eb_context:	to determine if we need to submit this page, if current page
 *		belongs to this eb, we don't need to submit
 *
 * The caller should pass each page in their bytenr order, and here we use
 * @eb_context to determine if we have submitted pages of one extent buffer.
 *
 * If we have, we just skip until we hit a new page that doesn't belong to
 * current @eb_context.
 *
 * If not, we submit all the page(s) of the extent buffer.
 *
 * Return >0 if we have submitted the extent buffer successfully.
 * Return 0 if we don't need to submit the page, as it's already submitted by
 * previous call.
 * Return <0 for fatal error.
 */
static int submit_eb_page(struct page *page, struct writeback_control *wbc,
			  struct extent_page_data *epd,
			  struct extent_buffer **eb_context)
{
	struct address_space *mapping = page->mapping;
4674
	struct btrfs_block_group *cache = NULL;
4675 4676 4677 4678 4679 4680
	struct extent_buffer *eb;
	int ret;

	if (!PagePrivate(page))
		return 0;

4681
	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
4682 4683
		return submit_eb_subpage(page, wbc, epd);

4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
	spin_lock(&mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	eb = (struct extent_buffer *)page->private;

	/*
	 * Shouldn't happen and normally this would be a BUG_ON but no point
	 * crashing the machine for something we can survive anyway.
	 */
	if (WARN_ON(!eb)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	if (eb == *eb_context) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}
	ret = atomic_inc_not_zero(&eb->refs);
	spin_unlock(&mapping->private_lock);
	if (!ret)
		return 0;

4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
		/*
		 * If for_sync, this hole will be filled with
		 * trasnsaction commit.
		 */
		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
			ret = -EAGAIN;
		else
			ret = 0;
		free_extent_buffer(eb);
		return ret;
	}

4723 4724 4725 4726
	*eb_context = eb;

	ret = lock_extent_buffer_for_io(eb, epd);
	if (ret <= 0) {
4727 4728 4729
		btrfs_revert_meta_write_pointer(cache, eb);
		if (cache)
			btrfs_put_block_group(cache);
4730 4731 4732
		free_extent_buffer(eb);
		return ret;
	}
4733
	if (cache) {
4734 4735 4736
		/*
		 * Implies write in zoned mode. Mark the last eb in a block group.
		 */
4737
		btrfs_schedule_zone_finish_bg(cache, eb);
4738
		btrfs_put_block_group(cache);
4739
	}
4740 4741 4742 4743 4744 4745 4746
	ret = write_one_eb(eb, wbc, epd);
	free_extent_buffer(eb);
	if (ret < 0)
		return ret;
	return 1;
}

4747 4748 4749
int btree_write_cache_pages(struct address_space *mapping,
				   struct writeback_control *wbc)
{
4750
	struct extent_buffer *eb_context = NULL;
4751
	struct extent_page_data epd = {
4752
		.bio_ctrl = { 0 },
4753 4754 4755
		.extent_locked = 0,
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
	};
4756
	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4757 4758 4759 4760 4761 4762 4763 4764
	int ret = 0;
	int done = 0;
	int nr_to_write_done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	int scanned = 0;
M
Matthew Wilcox 已提交
4765
	xa_mark_t tag;
4766

4767
	pagevec_init(&pvec);
4768 4769 4770
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4771 4772 4773 4774 4775
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4776
	} else {
4777 4778
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4779 4780 4781 4782 4783 4784
		scanned = 1;
	}
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4785
	btrfs_zoned_meta_io_lock(fs_info);
4786 4787 4788 4789
retry:
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);
	while (!done && !nr_to_write_done && (index <= end) &&
J
Jan Kara 已提交
4790
	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4791
			tag))) {
4792 4793 4794 4795 4796
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4797 4798
			ret = submit_eb_page(page, wbc, &epd, &eb_context);
			if (ret == 0)
4799
				continue;
4800
			if (ret < 0) {
4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823
				done = 1;
				break;
			}

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	if (!scanned && !done) {
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
		goto retry;
	}
4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
	/*
	 * If something went wrong, don't allow any metadata write bio to be
	 * submitted.
	 *
	 * This would prevent use-after-free if we had dirty pages not
	 * cleaned up, which can still happen by fuzzed images.
	 *
	 * - Bad extent tree
	 *   Allowing existing tree block to be allocated for other trees.
	 *
	 * - Log tree operations
	 *   Exiting tree blocks get allocated to log tree, bumps its
	 *   generation, then get cleaned in tree re-balance.
	 *   Such tree block will not be written back, since it's clean,
	 *   thus no WRITTEN flag set.
	 *   And after log writes back, this tree block is not traced by
	 *   any dirty extent_io_tree.
	 *
	 * - Offending tree block gets re-dirtied from its original owner
	 *   Since it has bumped generation, no WRITTEN flag, it can be
	 *   reused without COWing. This tree block will not be traced
	 *   by btrfs_transaction::dirty_pages.
	 *
	 *   Now such dirty tree block will not be cleaned by any dirty
	 *   extent io tree. Thus we don't want to submit such wild eb
	 *   if the fs already has error.
4850
	 *
4851 4852 4853 4854 4855
	 * We can get ret > 0 from submit_extent_page() indicating how many ebs
	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
	 */
	if (ret > 0)
		ret = 0;
4856 4857 4858 4859 4860
	if (!ret && BTRFS_FS_ERROR(fs_info))
		ret = -EROFS;
	submit_write_bio(&epd, ret);

	btrfs_zoned_meta_io_unlock(fs_info);
4861 4862 4863
	return ret;
}

4864
/**
4865 4866
 * Walk the list of dirty pages of the given address space and write all of them.
 *
4867
 * @mapping: address space structure to write
4868 4869
 * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
 * @epd:     holds context for the write, namely the bio
4870 4871 4872 4873 4874 4875 4876 4877 4878
 *
 * If a page is already under I/O, write_cache_pages() skips it, even
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
 */
4879
static int extent_write_cache_pages(struct address_space *mapping,
C
Chris Mason 已提交
4880
			     struct writeback_control *wbc,
4881
			     struct extent_page_data *epd)
4882
{
4883
	struct inode *inode = mapping->host;
4884 4885
	int ret = 0;
	int done = 0;
4886
	int nr_to_write_done = 0;
4887 4888 4889 4890
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
4891 4892
	pgoff_t done_index;
	int range_whole = 0;
4893
	int scanned = 0;
M
Matthew Wilcox 已提交
4894
	xa_mark_t tag;
4895

4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
	/*
	 * We have to hold onto the inode so that ordered extents can do their
	 * work when the IO finishes.  The alternative to this is failing to add
	 * an ordered extent if the igrab() fails there and that is a huge pain
	 * to deal with, so instead just hold onto the inode throughout the
	 * writepages operation.  If it fails here we are freeing up the inode
	 * anyway and we'd rather not waste our time writing out stuff that is
	 * going to be truncated anyway.
	 */
	if (!igrab(inode))
		return 0;

4908
	pagevec_init(&pvec);
4909 4910 4911
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4912 4913 4914 4915 4916
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4917
	} else {
4918 4919
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4920 4921
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
4922 4923
		scanned = 1;
	}
4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937

	/*
	 * We do the tagged writepage as long as the snapshot flush bit is set
	 * and we are the first one who do the filemap_flush() on this inode.
	 *
	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
	 * not race in and drop the bit.
	 */
	if (range_whole && wbc->nr_to_write == LONG_MAX &&
	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
			       &BTRFS_I(inode)->runtime_flags))
		wbc->tagged_writepages = 1;

	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4938 4939 4940
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4941
retry:
4942
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4943
		tag_pages_for_writeback(mapping, index, end);
4944
	done_index = index;
4945
	while (!done && !nr_to_write_done && (index <= end) &&
4946 4947
			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
						&index, end, tag))) {
4948 4949 4950 4951 4952
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4953
			done_index = page->index + 1;
4954
			/*
M
Matthew Wilcox 已提交
4955 4956 4957 4958 4959
			 * At this point we hold neither the i_pages lock nor
			 * the page lock: the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to
			 * tmpfs file mapping
4960
			 */
4961
			if (!trylock_page(page)) {
4962
				submit_write_bio(epd, 0);
4963
				lock_page(page);
4964
			}
4965 4966 4967 4968 4969 4970

			if (unlikely(page->mapping != mapping)) {
				unlock_page(page);
				continue;
			}

C
Chris Mason 已提交
4971
			if (wbc->sync_mode != WB_SYNC_NONE) {
4972
				if (PageWriteback(page))
4973
					submit_write_bio(epd, 0);
4974
				wait_on_page_writeback(page);
C
Chris Mason 已提交
4975
			}
4976 4977 4978 4979 4980 4981 4982

			if (PageWriteback(page) ||
			    !clear_page_dirty_for_io(page)) {
				unlock_page(page);
				continue;
			}

4983
			ret = __extent_writepage(page, wbc, epd);
4984 4985 4986 4987
			if (ret < 0) {
				done = 1;
				break;
			}
4988 4989 4990 4991 4992 4993 4994

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
4995 4996 4997 4998
		}
		pagevec_release(&pvec);
		cond_resched();
	}
4999
	if (!scanned && !done) {
5000 5001 5002 5003 5004 5005
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
5006 5007 5008 5009 5010 5011 5012

		/*
		 * If we're looping we could run into a page that is locked by a
		 * writer and that writer could be waiting on writeback for a
		 * page in our current bio, and thus deadlock, so flush the
		 * write bio here.
		 */
5013
		submit_write_bio(epd, 0);
5014
		goto retry;
5015
	}
5016 5017 5018 5019

	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
		mapping->writeback_index = done_index;

5020
	btrfs_add_delayed_iput(inode);
5021
	return ret;
5022 5023
}

5024 5025 5026 5027 5028 5029
/*
 * Submit the pages in the range to bio for call sites which delalloc range has
 * already been ran (aka, ordered extent inserted) and all pages are still
 * locked.
 */
int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
5030
{
5031 5032
	bool found_error = false;
	int first_error = 0;
5033 5034 5035
	int ret = 0;
	struct address_space *mapping = inode->i_mapping;
	struct page *page;
5036
	u64 cur = start;
5037 5038
	unsigned long nr_pages;
	const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
5039
	struct extent_page_data epd = {
5040
		.bio_ctrl = { 0 },
5041
		.extent_locked = 1,
5042
		.sync_io = 1,
5043 5044
	};
	struct writeback_control wbc_writepages = {
5045
		.sync_mode	= WB_SYNC_ALL,
5046 5047
		.range_start	= start,
		.range_end	= end + 1,
5048 5049 5050
		/* We're called from an async helper function */
		.punt_to_cgroup	= 1,
		.no_cgroup_owner = 1,
5051 5052
	};

5053 5054 5055 5056 5057
	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
	nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
		   PAGE_SHIFT;
	wbc_writepages.nr_to_write = nr_pages * 2;

5058
	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
5059
	while (cur <= end) {
5060 5061
		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);

5062 5063 5064 5065 5066 5067
		page = find_get_page(mapping, cur >> PAGE_SHIFT);
		/*
		 * All pages in the range are locked since
		 * btrfs_run_delalloc_range(), thus there is no way to clear
		 * the page dirty flag.
		 */
5068
		ASSERT(PageLocked(page));
5069 5070 5071 5072 5073 5074 5075
		ASSERT(PageDirty(page));
		clear_page_dirty_for_io(page);
		ret = __extent_writepage(page, &wbc_writepages, &epd);
		ASSERT(ret <= 0);
		if (ret < 0) {
			found_error = true;
			first_error = ret;
5076
		}
5077
		put_page(page);
5078
		cur = cur_end + 1;
5079 5080
	}

5081
	submit_write_bio(&epd, found_error ? ret : 0);
5082 5083

	wbc_detach_inode(&wbc_writepages);
5084 5085
	if (found_error)
		return first_error;
5086 5087
	return ret;
}
5088

5089
int extent_writepages(struct address_space *mapping,
5090 5091
		      struct writeback_control *wbc)
{
5092
	struct inode *inode = mapping->host;
5093 5094
	int ret = 0;
	struct extent_page_data epd = {
5095
		.bio_ctrl = { 0 },
5096
		.extent_locked = 0,
5097
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5098 5099
	};

5100 5101 5102 5103
	/*
	 * Allow only a single thread to do the reloc work in zoned mode to
	 * protect the write pointer updates.
	 */
5104
	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
5105
	ret = extent_write_cache_pages(mapping, wbc, &epd);
5106
	submit_write_bio(&epd, ret);
5107
	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
5108 5109 5110
	return ret;
}

5111
void extent_readahead(struct readahead_control *rac)
5112
{
5113
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
L
Liu Bo 已提交
5114
	struct page *pagepool[16];
5115
	struct extent_map *em_cached = NULL;
5116
	u64 prev_em_start = (u64)-1;
5117
	int nr;
5118

5119
	while ((nr = readahead_page_batch(rac, pagepool))) {
5120 5121
		u64 contig_start = readahead_pos(rac);
		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
5122

5123
		contiguous_readpages(pagepool, nr, contig_start, contig_end,
5124
				&em_cached, &bio_ctrl, &prev_em_start);
5125
	}
L
Liu Bo 已提交
5126

5127 5128
	if (em_cached)
		free_extent_map(em_cached);
5129
	submit_one_bio(&bio_ctrl);
5130 5131 5132
}

/*
5133 5134
 * basic invalidate_folio code, this waits on any locked or writeback
 * ranges corresponding to the folio, and then deletes any extent state
5135 5136
 * records from the tree
 */
5137 5138
int extent_invalidate_folio(struct extent_io_tree *tree,
			  struct folio *folio, size_t offset)
5139
{
5140
	struct extent_state *cached_state = NULL;
5141 5142 5143
	u64 start = folio_pos(folio);
	u64 end = start + folio_size(folio) - 1;
	size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
5144

5145 5146 5147
	/* This function is only called for the btree inode */
	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);

5148
	start += ALIGN(offset, blocksize);
5149 5150 5151
	if (start > end)
		return 0;

5152
	lock_extent_bits(tree, start, end, &cached_state);
5153
	folio_wait_writeback(folio);
5154 5155 5156 5157 5158 5159 5160

	/*
	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
	 * so here we only need to unlock the extent range to free any
	 * existing extent state.
	 */
	unlock_extent_cached(tree, start, end, &cached_state);
5161 5162 5163
	return 0;
}

5164
/*
5165
 * a helper for release_folio, this tests for areas of the page that
5166 5167 5168
 * are locked or under IO and drops the related state bits if it is safe
 * to drop the page.
 */
5169
static int try_release_extent_state(struct extent_io_tree *tree,
5170
				    struct page *page, gfp_t mask)
5171
{
M
Miao Xie 已提交
5172
	u64 start = page_offset(page);
5173
	u64 end = start + PAGE_SIZE - 1;
5174 5175
	int ret = 1;

N
Nikolay Borisov 已提交
5176
	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
5177
		ret = 0;
N
Nikolay Borisov 已提交
5178
	} else {
5179
		/*
5180 5181 5182 5183
		 * At this point we can safely clear everything except the
		 * locked bit, the nodatasum bit and the delalloc new bit.
		 * The delalloc new bit will be cleared by ordered extent
		 * completion.
5184
		 */
5185
		ret = __clear_extent_bit(tree, start, end,
5186 5187
			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
			 0, 0, NULL, mask, NULL);
5188 5189 5190 5191 5192 5193 5194 5195

		/* if clear_extent_bit failed for enomem reasons,
		 * we can't allow the release to continue.
		 */
		if (ret < 0)
			ret = 0;
		else
			ret = 1;
5196 5197 5198 5199
	}
	return ret;
}

5200
/*
5201
 * a helper for release_folio.  As long as there are no locked extents
5202 5203 5204
 * in the range corresponding to the page, both state records and extent
 * map records are removed
 */
5205
int try_release_extent_mapping(struct page *page, gfp_t mask)
5206 5207
{
	struct extent_map *em;
M
Miao Xie 已提交
5208
	u64 start = page_offset(page);
5209
	u64 end = start + PAGE_SIZE - 1;
5210 5211 5212
	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
	struct extent_io_tree *tree = &btrfs_inode->io_tree;
	struct extent_map_tree *map = &btrfs_inode->extent_tree;
5213

5214
	if (gfpflags_allow_blocking(mask) &&
5215
	    page->mapping->host->i_size > SZ_16M) {
5216
		u64 len;
5217
		while (start <= end) {
5218 5219 5220
			struct btrfs_fs_info *fs_info;
			u64 cur_gen;

5221
			len = end - start + 1;
5222
			write_lock(&map->lock);
5223
			em = lookup_extent_mapping(map, start, len);
5224
			if (!em) {
5225
				write_unlock(&map->lock);
5226 5227
				break;
			}
5228 5229
			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
			    em->start != start) {
5230
				write_unlock(&map->lock);
5231 5232 5233
				free_extent_map(em);
				break;
			}
5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244
			if (test_range_bit(tree, em->start,
					   extent_map_end(em) - 1,
					   EXTENT_LOCKED, 0, NULL))
				goto next;
			/*
			 * If it's not in the list of modified extents, used
			 * by a fast fsync, we can remove it. If it's being
			 * logged we can safely remove it since fsync took an
			 * extra reference on the em.
			 */
			if (list_empty(&em->list) ||
5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
				goto remove_em;
			/*
			 * If it's in the list of modified extents, remove it
			 * only if its generation is older then the current one,
			 * in which case we don't need it for a fast fsync.
			 * Otherwise don't remove it, we could be racing with an
			 * ongoing fast fsync that could miss the new extent.
			 */
			fs_info = btrfs_inode->root->fs_info;
			spin_lock(&fs_info->trans_lock);
			cur_gen = fs_info->generation;
			spin_unlock(&fs_info->trans_lock);
			if (em->generation >= cur_gen)
				goto next;
remove_em:
5261 5262 5263 5264 5265 5266 5267 5268
			/*
			 * We only remove extent maps that are not in the list of
			 * modified extents or that are in the list but with a
			 * generation lower then the current generation, so there
			 * is no need to set the full fsync flag on the inode (it
			 * hurts the fsync performance for workloads with a data
			 * size that exceeds or is close to the system's memory).
			 */
5269 5270 5271
			remove_extent_mapping(map, em);
			/* once for the rb tree */
			free_extent_map(em);
5272
next:
5273
			start = extent_map_end(em);
5274
			write_unlock(&map->lock);
5275 5276

			/* once for us */
5277
			free_extent_map(em);
5278 5279

			cond_resched(); /* Allow large-extent preemption. */
5280 5281
		}
	}
5282
	return try_release_extent_state(tree, page, mask);
5283 5284
}

5285 5286 5287 5288
/*
 * helper function for fiemap, which doesn't want to see any holes.
 * This maps until we find something past 'last'
 */
5289
static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
5290
						u64 offset, u64 last)
5291
{
5292
	u64 sectorsize = btrfs_inode_sectorsize(inode);
5293 5294 5295 5296 5297 5298
	struct extent_map *em;
	u64 len;

	if (offset >= last)
		return NULL;

5299
	while (1) {
5300 5301 5302
		len = last - offset;
		if (len == 0)
			break;
5303
		len = ALIGN(len, sectorsize);
5304
		em = btrfs_get_extent_fiemap(inode, offset, len);
5305
		if (IS_ERR(em))
5306 5307 5308
			return em;

		/* if this isn't a hole return it */
5309
		if (em->block_start != EXTENT_MAP_HOLE)
5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320
			return em;

		/* this is a hole, advance to the next extent */
		offset = extent_map_end(em);
		free_extent_map(em);
		if (offset >= last)
			break;
	}
	return NULL;
}

5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354
/*
 * To cache previous fiemap extent
 *
 * Will be used for merging fiemap extent
 */
struct fiemap_cache {
	u64 offset;
	u64 phys;
	u64 len;
	u32 flags;
	bool cached;
};

/*
 * Helper to submit fiemap extent.
 *
 * Will try to merge current fiemap extent specified by @offset, @phys,
 * @len and @flags with cached one.
 * And only when we fails to merge, cached one will be submitted as
 * fiemap extent.
 *
 * Return value is the same as fiemap_fill_next_extent().
 */
static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
				struct fiemap_cache *cache,
				u64 offset, u64 phys, u64 len, u32 flags)
{
	int ret = 0;

	if (!cache->cached)
		goto assign;

	/*
	 * Sanity check, extent_fiemap() should have ensured that new
5355
	 * fiemap extent won't overlap with cached one.
5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
	 * Not recoverable.
	 *
	 * NOTE: Physical address can overlap, due to compression
	 */
	if (cache->offset + cache->len > offset) {
		WARN_ON(1);
		return -EINVAL;
	}

	/*
	 * Only merges fiemap extents if
	 * 1) Their logical addresses are continuous
	 *
	 * 2) Their physical addresses are continuous
	 *    So truly compressed (physical size smaller than logical size)
	 *    extents won't get merged with each other
	 *
	 * 3) Share same flags except FIEMAP_EXTENT_LAST
	 *    So regular extent won't get merged with prealloc extent
	 */
	if (cache->offset + cache->len  == offset &&
	    cache->phys + cache->len == phys  &&
	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
			(flags & ~FIEMAP_EXTENT_LAST)) {
		cache->len += len;
		cache->flags |= flags;
		goto try_submit_last;
	}

	/* Not mergeable, need to submit cached one */
	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret)
		return ret;
assign:
	cache->cached = true;
	cache->offset = offset;
	cache->phys = phys;
	cache->len = len;
	cache->flags = flags;
try_submit_last:
	if (cache->flags & FIEMAP_EXTENT_LAST) {
		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
				cache->phys, cache->len, cache->flags);
		cache->cached = false;
	}
	return ret;
}

/*
5407
 * Emit last fiemap cache
5408
 *
5409 5410 5411 5412 5413 5414 5415
 * The last fiemap cache may still be cached in the following case:
 * 0		      4k		    8k
 * |<- Fiemap range ->|
 * |<------------  First extent ----------->|
 *
 * In this case, the first extent range will be cached but not emitted.
 * So we must emit it before ending extent_fiemap().
5416
 */
5417
static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5418
				  struct fiemap_cache *cache)
5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
{
	int ret;

	if (!cache->cached)
		return 0;

	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret > 0)
		ret = 0;
	return ret;
}

5433
int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
5434
		  u64 start, u64 len)
Y
Yehuda Sadeh 已提交
5435
{
J
Josef Bacik 已提交
5436
	int ret = 0;
5437
	u64 off;
Y
Yehuda Sadeh 已提交
5438 5439
	u64 max = start + len;
	u32 flags = 0;
J
Josef Bacik 已提交
5440 5441
	u32 found_type;
	u64 last;
5442
	u64 last_for_get_extent = 0;
Y
Yehuda Sadeh 已提交
5443
	u64 disko = 0;
5444
	u64 isize = i_size_read(&inode->vfs_inode);
J
Josef Bacik 已提交
5445
	struct btrfs_key found_key;
Y
Yehuda Sadeh 已提交
5446
	struct extent_map *em = NULL;
5447
	struct extent_state *cached_state = NULL;
J
Josef Bacik 已提交
5448
	struct btrfs_path *path;
5449
	struct btrfs_root *root = inode->root;
5450
	struct fiemap_cache cache = { 0 };
5451 5452
	struct ulist *roots;
	struct ulist *tmp_ulist;
Y
Yehuda Sadeh 已提交
5453
	int end = 0;
5454 5455 5456
	u64 em_start = 0;
	u64 em_len = 0;
	u64 em_end = 0;
Y
Yehuda Sadeh 已提交
5457

J
Josef Bacik 已提交
5458 5459 5460 5461
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

5462 5463 5464 5465 5466 5467 5468
	roots = ulist_alloc(GFP_KERNEL);
	tmp_ulist = ulist_alloc(GFP_KERNEL);
	if (!roots || !tmp_ulist) {
		ret = -ENOMEM;
		goto out_free_ulist;
	}

5469 5470 5471 5472 5473
	/*
	 * We can't initialize that to 'start' as this could miss extents due
	 * to extent item merging
	 */
	off = 0;
5474 5475
	start = round_down(start, btrfs_inode_sectorsize(inode));
	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5476

5477 5478 5479 5480
	/*
	 * lookup the last file extent.  We're not using i_size here
	 * because there might be preallocation past i_size
	 */
5481 5482
	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
				       0);
J
Josef Bacik 已提交
5483
	if (ret < 0) {
5484
		goto out_free_ulist;
5485 5486 5487 5488
	} else {
		WARN_ON(!ret);
		if (ret == 1)
			ret = 0;
J
Josef Bacik 已提交
5489
	}
5490

J
Josef Bacik 已提交
5491 5492
	path->slots[0]--;
	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5493
	found_type = found_key.type;
J
Josef Bacik 已提交
5494

5495
	/* No extents, but there might be delalloc bits */
5496
	if (found_key.objectid != btrfs_ino(inode) ||
J
Josef Bacik 已提交
5497
	    found_type != BTRFS_EXTENT_DATA_KEY) {
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
		/* have to trust i_size as the end */
		last = (u64)-1;
		last_for_get_extent = isize;
	} else {
		/*
		 * remember the start of the last extent.  There are a
		 * bunch of different factors that go into the length of the
		 * extent, so its much less complex to remember where it started
		 */
		last = found_key.offset;
		last_for_get_extent = last + 1;
J
Josef Bacik 已提交
5509
	}
5510
	btrfs_release_path(path);
J
Josef Bacik 已提交
5511

5512 5513 5514 5515 5516 5517 5518 5519 5520 5521
	/*
	 * we might have some extents allocated but more delalloc past those
	 * extents.  so, we trust isize unless the start of the last extent is
	 * beyond isize
	 */
	if (last < isize) {
		last = (u64)-1;
		last_for_get_extent = isize;
	}

5522
	lock_extent_bits(&inode->io_tree, start, start + len - 1,
5523
			 &cached_state);
5524

5525
	em = get_extent_skip_holes(inode, start, last_for_get_extent);
Y
Yehuda Sadeh 已提交
5526 5527 5528 5529 5530 5531
	if (!em)
		goto out;
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out;
	}
J
Josef Bacik 已提交
5532

Y
Yehuda Sadeh 已提交
5533
	while (!end) {
5534
		u64 offset_in_extent = 0;
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546

		/* break if the extent we found is outside the range */
		if (em->start >= max || extent_map_end(em) < off)
			break;

		/*
		 * get_extent may return an extent that starts before our
		 * requested range.  We have to make sure the ranges
		 * we return to fiemap always move forward and don't
		 * overlap, so adjust the offsets here
		 */
		em_start = max(em->start, off);
Y
Yehuda Sadeh 已提交
5547

5548 5549
		/*
		 * record the offset from the start of the extent
5550 5551 5552
		 * for adjusting the disk offset below.  Only do this if the
		 * extent isn't compressed since our in ram offset may be past
		 * what we have actually allocated on disk.
5553
		 */
5554 5555
		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			offset_in_extent = em_start - em->start;
5556
		em_end = extent_map_end(em);
5557
		em_len = em_end - em_start;
Y
Yehuda Sadeh 已提交
5558
		flags = 0;
5559 5560 5561 5562
		if (em->block_start < EXTENT_MAP_LAST_BYTE)
			disko = em->block_start + offset_in_extent;
		else
			disko = 0;
Y
Yehuda Sadeh 已提交
5563

5564 5565 5566 5567 5568 5569 5570
		/*
		 * bump off for our next call to get_extent
		 */
		off = extent_map_end(em);
		if (off >= max)
			end = 1;

5571
		if (em->block_start == EXTENT_MAP_INLINE) {
Y
Yehuda Sadeh 已提交
5572 5573
			flags |= (FIEMAP_EXTENT_DATA_INLINE |
				  FIEMAP_EXTENT_NOT_ALIGNED);
5574
		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
Y
Yehuda Sadeh 已提交
5575 5576
			flags |= (FIEMAP_EXTENT_DELALLOC |
				  FIEMAP_EXTENT_UNKNOWN);
5577 5578 5579
		} else if (fieinfo->fi_extents_max) {
			u64 bytenr = em->block_start -
				(em->start - em->orig_start);
5580 5581 5582 5583

			/*
			 * As btrfs supports shared space, this information
			 * can be exported to userspace tools via
5584 5585 5586
			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
			 * then we're just getting a count and we can skip the
			 * lookup stuff.
5587
			 */
5588
			ret = btrfs_check_shared(root, btrfs_ino(inode),
5589
						 bytenr, roots, tmp_ulist);
5590
			if (ret < 0)
5591
				goto out_free;
5592
			if (ret)
5593
				flags |= FIEMAP_EXTENT_SHARED;
5594
			ret = 0;
Y
Yehuda Sadeh 已提交
5595 5596 5597
		}
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			flags |= FIEMAP_EXTENT_ENCODED;
5598 5599
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			flags |= FIEMAP_EXTENT_UNWRITTEN;
Y
Yehuda Sadeh 已提交
5600 5601 5602

		free_extent_map(em);
		em = NULL;
5603 5604
		if ((em_start >= last) || em_len == (u64)-1 ||
		   (last == (u64)-1 && isize <= em_end)) {
Y
Yehuda Sadeh 已提交
5605 5606 5607 5608
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}

5609
		/* now scan forward to see if this is really the last extent. */
5610
		em = get_extent_skip_holes(inode, off, last_for_get_extent);
5611 5612 5613 5614 5615
		if (IS_ERR(em)) {
			ret = PTR_ERR(em);
			goto out;
		}
		if (!em) {
J
Josef Bacik 已提交
5616 5617 5618
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}
5619 5620
		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
					   em_len, flags);
5621 5622 5623
		if (ret) {
			if (ret == 1)
				ret = 0;
5624
			goto out_free;
5625
		}
Y
Yehuda Sadeh 已提交
5626 5627
	}
out_free:
5628
	if (!ret)
5629
		ret = emit_last_fiemap_cache(fieinfo, &cache);
Y
Yehuda Sadeh 已提交
5630 5631
	free_extent_map(em);
out:
5632
	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5633
			     &cached_state);
5634 5635

out_free_ulist:
5636
	btrfs_free_path(path);
5637 5638
	ulist_free(roots);
	ulist_free(tmp_ulist);
Y
Yehuda Sadeh 已提交
5639 5640 5641
	return ret;
}

5642 5643 5644 5645 5646
static void __free_extent_buffer(struct extent_buffer *eb)
{
	kmem_cache_free(extent_buffer_cache, eb);
}

5647
int extent_buffer_under_io(const struct extent_buffer *eb)
5648 5649 5650 5651 5652 5653
{
	return (atomic_read(&eb->io_pages) ||
		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
}

5654
static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5655
{
5656
	struct btrfs_subpage *subpage;
5657

5658
	lockdep_assert_held(&page->mapping->private_lock);
5659

5660 5661 5662 5663
	if (PagePrivate(page)) {
		subpage = (struct btrfs_subpage *)page->private;
		if (atomic_read(&subpage->eb_refs))
			return true;
5664 5665 5666 5667 5668 5669
		/*
		 * Even there is no eb refs here, we may still have
		 * end_page_read() call relying on page::private.
		 */
		if (atomic_read(&subpage->readers))
			return true;
5670 5671 5672
	}
	return false;
}
5673

5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686
static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);

	/*
	 * For mapped eb, we're going to change the page private, which should
	 * be done under the private_lock.
	 */
	if (mapped)
		spin_lock(&page->mapping->private_lock);

	if (!PagePrivate(page)) {
5687
		if (mapped)
5688 5689 5690 5691
			spin_unlock(&page->mapping->private_lock);
		return;
	}

5692
	if (fs_info->nodesize >= PAGE_SIZE) {
5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704
		/*
		 * We do this since we'll remove the pages after we've
		 * removed the eb from the radix tree, so we could race
		 * and have this page now attached to the new eb.  So
		 * only clear page_private if it's still connected to
		 * this eb.
		 */
		if (PagePrivate(page) &&
		    page->private == (unsigned long)eb) {
			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
			BUG_ON(PageDirty(page));
			BUG_ON(PageWriteback(page));
5705
			/*
5706 5707
			 * We need to make sure we haven't be attached
			 * to a new eb.
5708
			 */
5709
			detach_page_private(page);
5710
		}
5711 5712
		if (mapped)
			spin_unlock(&page->mapping->private_lock);
5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729
		return;
	}

	/*
	 * For subpage, we can have dummy eb with page private.  In this case,
	 * we can directly detach the private as such page is only attached to
	 * one dummy eb, no sharing.
	 */
	if (!mapped) {
		btrfs_detach_subpage(fs_info, page);
		return;
	}

	btrfs_page_dec_eb_refs(fs_info, page);

	/*
	 * We can only detach the page private if there are no other ebs in the
5730
	 * page range and no unfinished IO.
5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753
	 */
	if (!page_range_has_eb(fs_info, page))
		btrfs_detach_subpage(fs_info, page);

	spin_unlock(&page->mapping->private_lock);
}

/* Release all pages attached to the extent buffer */
static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
{
	int i;
	int num_pages;

	ASSERT(!extent_buffer_under_io(eb));

	num_pages = num_extent_pages(eb);
	for (i = 0; i < num_pages; i++) {
		struct page *page = eb->pages[i];

		if (!page)
			continue;

		detach_extent_buffer_page(eb, page);
5754

5755
		/* One for when we allocated the page */
5756
		put_page(page);
5757
	}
5758 5759 5760 5761 5762 5763 5764
}

/*
 * Helper for releasing the extent buffer.
 */
static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
{
5765
	btrfs_release_extent_buffer_pages(eb);
5766
	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5767 5768 5769
	__free_extent_buffer(eb);
}

5770 5771
static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5772
		      unsigned long len)
5773 5774 5775
{
	struct extent_buffer *eb = NULL;

5776
	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5777 5778
	eb->start = start;
	eb->len = len;
5779
	eb->fs_info = fs_info;
5780
	eb->bflags = 0;
5781
	init_rwsem(&eb->lock);
5782

5783 5784
	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
			     &fs_info->allocated_ebs);
5785
	INIT_LIST_HEAD(&eb->release_list);
5786

5787
	spin_lock_init(&eb->refs_lock);
5788
	atomic_set(&eb->refs, 1);
5789
	atomic_set(&eb->io_pages, 0);
5790

5791
	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5792 5793 5794 5795

	return eb;
}

5796
struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5797
{
5798
	int i;
5799
	struct extent_buffer *new;
5800
	int num_pages = num_extent_pages(src);
5801
	int ret;
5802

5803
	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5804 5805 5806
	if (new == NULL)
		return NULL;

5807 5808 5809 5810 5811 5812 5813
	/*
	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
	 * btrfs_release_extent_buffer() have different behavior for
	 * UNMAPPED subpage extent buffer.
	 */
	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);

5814 5815 5816 5817 5818 5819 5820
	memset(new->pages, 0, sizeof(*new->pages) * num_pages);
	ret = btrfs_alloc_page_array(num_pages, new->pages);
	if (ret) {
		btrfs_release_extent_buffer(new);
		return NULL;
	}

5821
	for (i = 0; i < num_pages; i++) {
5822
		int ret;
5823
		struct page *p = new->pages[i];
5824 5825 5826 5827 5828 5829

		ret = attach_extent_buffer_page(new, p, NULL);
		if (ret < 0) {
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5830
		WARN_ON(PageDirty(p));
5831
		copy_page(page_address(p), page_address(src->pages[i]));
5832
	}
5833
	set_extent_buffer_uptodate(new);
5834 5835 5836 5837

	return new;
}

5838 5839
struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
						  u64 start, unsigned long len)
5840 5841
{
	struct extent_buffer *eb;
5842 5843
	int num_pages;
	int i;
5844
	int ret;
5845

5846
	eb = __alloc_extent_buffer(fs_info, start, len);
5847 5848 5849
	if (!eb)
		return NULL;

5850
	num_pages = num_extent_pages(eb);
5851 5852 5853 5854
	ret = btrfs_alloc_page_array(num_pages, eb->pages);
	if (ret)
		goto err;

5855
	for (i = 0; i < num_pages; i++) {
5856
		struct page *p = eb->pages[i];
5857

5858
		ret = attach_extent_buffer_page(eb, p, NULL);
5859 5860
		if (ret < 0)
			goto err;
5861
	}
5862

5863 5864
	set_extent_buffer_uptodate(eb);
	btrfs_set_header_nritems(eb, 0);
5865
	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5866 5867 5868

	return eb;
err:
5869 5870 5871 5872 5873
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i]) {
			detach_extent_buffer_page(eb, eb->pages[i]);
			__free_page(eb->pages[i]);
		}
5874
	}
5875 5876 5877 5878
	__free_extent_buffer(eb);
	return NULL;
}

5879
struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5880
						u64 start)
5881
{
5882
	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5883 5884
}

5885 5886
static void check_buffer_tree_ref(struct extent_buffer *eb)
{
5887
	int refs;
5888 5889 5890 5891
	/*
	 * The TREE_REF bit is first set when the extent_buffer is added
	 * to the radix tree. It is also reset, if unset, when a new reference
	 * is created by find_extent_buffer.
5892
	 *
5893 5894
	 * It is only cleared in two cases: freeing the last non-tree
	 * reference to the extent_buffer when its STALE bit is set or
5895
	 * calling release_folio when the tree reference is the only reference.
5896
	 *
5897
	 * In both cases, care is taken to ensure that the extent_buffer's
5898
	 * pages are not under io. However, release_folio can be concurrently
5899 5900 5901
	 * called with creating new references, which is prone to race
	 * conditions between the calls to check_buffer_tree_ref in those
	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5902
	 *
5903 5904 5905 5906 5907 5908 5909
	 * The actual lifetime of the extent_buffer in the radix tree is
	 * adequately protected by the refcount, but the TREE_REF bit and
	 * its corresponding reference are not. To protect against this
	 * class of races, we call check_buffer_tree_ref from the codepaths
	 * which trigger io after they set eb->io_pages. Note that once io is
	 * initiated, TREE_REF can no longer be cleared, so that is the
	 * moment at which any such race is best fixed.
5910
	 */
5911 5912 5913 5914
	refs = atomic_read(&eb->refs);
	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		return;

5915 5916
	spin_lock(&eb->refs_lock);
	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5917
		atomic_inc(&eb->refs);
5918
	spin_unlock(&eb->refs_lock);
5919 5920
}

5921 5922
static void mark_extent_buffer_accessed(struct extent_buffer *eb,
		struct page *accessed)
5923
{
5924
	int num_pages, i;
5925

5926 5927
	check_buffer_tree_ref(eb);

5928
	num_pages = num_extent_pages(eb);
5929
	for (i = 0; i < num_pages; i++) {
5930 5931
		struct page *p = eb->pages[i];

5932 5933
		if (p != accessed)
			mark_page_accessed(p);
5934 5935 5936
	}
}

5937 5938
struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
					 u64 start)
5939 5940 5941
{
	struct extent_buffer *eb;

5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960
	eb = find_extent_buffer_nolock(fs_info, start);
	if (!eb)
		return NULL;
	/*
	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
	 * another task running free_extent_buffer() might have seen that flag
	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
	 * writeback flags not set) and it's still in the tree (flag
	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
	 * decrementing the extent buffer's reference count twice.  So here we
	 * could race and increment the eb's reference count, clear its stale
	 * flag, mark it as dirty and drop our reference before the other task
	 * finishes executing free_extent_buffer, which would later result in
	 * an attempt to free an extent buffer that is dirty.
	 */
	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
		spin_lock(&eb->refs_lock);
		spin_unlock(&eb->refs_lock);
5961
	}
5962 5963
	mark_extent_buffer_accessed(eb, NULL);
	return eb;
5964 5965
}

5966 5967
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5968
					u64 start)
5969 5970 5971 5972 5973 5974 5975
{
	struct extent_buffer *eb, *exists = NULL;
	int ret;

	eb = find_extent_buffer(fs_info, start);
	if (eb)
		return eb;
5976
	eb = alloc_dummy_extent_buffer(fs_info, start);
5977
	if (!eb)
5978
		return ERR_PTR(-ENOMEM);
5979
	eb->fs_info = fs_info;
5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993
again:
	ret = radix_tree_preload(GFP_NOFS);
	if (ret) {
		exists = ERR_PTR(ret);
		goto free_eb;
	}
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
				start >> fs_info->sectorsize_bits, eb);
	spin_unlock(&fs_info->buffer_lock);
	radix_tree_preload_end();
	if (ret == -EEXIST) {
		exists = find_extent_buffer(fs_info, start);
		if (exists)
5994
			goto free_eb;
5995 5996 5997
		else
			goto again;
	}
5998 5999 6000 6001 6002 6003 6004 6005 6006 6007
	check_buffer_tree_ref(eb);
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);

	return eb;
free_eb:
	btrfs_release_extent_buffer(eb);
	return exists;
}
#endif

6008 6009
static struct extent_buffer *grab_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page)
6010 6011 6012
{
	struct extent_buffer *exists;

6013 6014 6015 6016 6017
	/*
	 * For subpage case, we completely rely on radix tree to ensure we
	 * don't try to insert two ebs for the same bytenr.  So here we always
	 * return NULL and just continue.
	 */
6018
	if (fs_info->nodesize < PAGE_SIZE)
6019 6020
		return NULL;

6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039
	/* Page not yet attached to an extent buffer */
	if (!PagePrivate(page))
		return NULL;

	/*
	 * We could have already allocated an eb for this page and attached one
	 * so lets see if we can get a ref on the existing eb, and if we can we
	 * know it's good and we can just return that one, else we know we can
	 * just overwrite page->private.
	 */
	exists = (struct extent_buffer *)page->private;
	if (atomic_inc_not_zero(&exists->refs))
		return exists;

	WARN_ON(PageDirty(page));
	detach_page_private(page);
	return NULL;
}

6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054
static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
{
	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
		btrfs_err(fs_info, "bad tree block start %llu", start);
		return -EINVAL;
	}

	if (fs_info->nodesize < PAGE_SIZE &&
	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
		btrfs_err(fs_info,
		"tree block crosses page boundary, start %llu nodesize %u",
			  start, fs_info->nodesize);
		return -EINVAL;
	}
	if (fs_info->nodesize >= PAGE_SIZE &&
6055
	    !PAGE_ALIGNED(start)) {
6056 6057 6058 6059 6060 6061 6062 6063
		btrfs_err(fs_info,
		"tree block is not page aligned, start %llu nodesize %u",
			  start, fs_info->nodesize);
		return -EINVAL;
	}
	return 0;
}

6064
struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
6065
					  u64 start, u64 owner_root, int level)
6066
{
6067
	unsigned long len = fs_info->nodesize;
6068 6069
	int num_pages;
	int i;
6070
	unsigned long index = start >> PAGE_SHIFT;
6071
	struct extent_buffer *eb;
6072
	struct extent_buffer *exists = NULL;
6073
	struct page *p;
6074
	struct address_space *mapping = fs_info->btree_inode->i_mapping;
6075
	u64 lockdep_owner = owner_root;
6076
	int uptodate = 1;
6077
	int ret;
6078

6079
	if (check_eb_alignment(fs_info, start))
6080 6081
		return ERR_PTR(-EINVAL);

6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092
#if BITS_PER_LONG == 32
	if (start >= MAX_LFS_FILESIZE) {
		btrfs_err_rl(fs_info,
		"extent buffer %llu is beyond 32bit page cache limit", start);
		btrfs_err_32bit_limit(fs_info);
		return ERR_PTR(-EOVERFLOW);
	}
	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
		btrfs_warn_32bit_limit(fs_info);
#endif

6093
	eb = find_extent_buffer(fs_info, start);
6094
	if (eb)
6095 6096
		return eb;

6097
	eb = __alloc_extent_buffer(fs_info, start, len);
6098
	if (!eb)
6099
		return ERR_PTR(-ENOMEM);
6100 6101 6102 6103 6104 6105 6106 6107 6108

	/*
	 * The reloc trees are just snapshots, so we need them to appear to be
	 * just like any other fs tree WRT lockdep.
	 */
	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
		lockdep_owner = BTRFS_FS_TREE_OBJECTID;

	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
6109

6110
	num_pages = num_extent_pages(eb);
6111
	for (i = 0; i < num_pages; i++, index++) {
6112 6113
		struct btrfs_subpage *prealloc = NULL;

6114
		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
6115 6116
		if (!p) {
			exists = ERR_PTR(-ENOMEM);
6117
			goto free_eb;
6118
		}
J
Josef Bacik 已提交
6119

6120 6121 6122 6123 6124 6125 6126 6127 6128 6129
		/*
		 * Preallocate page->private for subpage case, so that we won't
		 * allocate memory with private_lock hold.  The memory will be
		 * freed by attach_extent_buffer_page() or freed manually if
		 * we exit earlier.
		 *
		 * Although we have ensured one subpage eb can only have one
		 * page, but it may change in the future for 16K page size
		 * support, so we still preallocate the memory in the loop.
		 */
6130
		if (fs_info->nodesize < PAGE_SIZE) {
6131 6132 6133
			prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
			if (IS_ERR(prealloc)) {
				ret = PTR_ERR(prealloc);
6134 6135 6136 6137 6138
				unlock_page(p);
				put_page(p);
				exists = ERR_PTR(ret);
				goto free_eb;
			}
6139 6140
		}

J
Josef Bacik 已提交
6141
		spin_lock(&mapping->private_lock);
6142
		exists = grab_extent_buffer(fs_info, p);
6143 6144 6145 6146 6147
		if (exists) {
			spin_unlock(&mapping->private_lock);
			unlock_page(p);
			put_page(p);
			mark_extent_buffer_accessed(exists, p);
6148
			btrfs_free_subpage(prealloc);
6149
			goto free_eb;
6150
		}
6151 6152 6153
		/* Should not fail, as we have preallocated the memory */
		ret = attach_extent_buffer_page(eb, p, prealloc);
		ASSERT(!ret);
6154 6155 6156 6157 6158 6159 6160 6161 6162 6163
		/*
		 * To inform we have extra eb under allocation, so that
		 * detach_extent_buffer_page() won't release the page private
		 * when the eb hasn't yet been inserted into radix tree.
		 *
		 * The ref will be decreased when the eb released the page, in
		 * detach_extent_buffer_page().
		 * Thus needs no special handling in error path.
		 */
		btrfs_page_inc_eb_refs(fs_info, p);
J
Josef Bacik 已提交
6164
		spin_unlock(&mapping->private_lock);
6165

6166
		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6167
		eb->pages[i] = p;
6168 6169
		if (!PageUptodate(p))
			uptodate = 0;
C
Chris Mason 已提交
6170 6171

		/*
6172 6173
		 * We can't unlock the pages just yet since the extent buffer
		 * hasn't been properly inserted in the radix tree, this
6174
		 * opens a race with btree_release_folio which can free a page
6175 6176
		 * while we are still filling in all pages for the buffer and
		 * we could crash.
C
Chris Mason 已提交
6177
		 */
6178 6179
	}
	if (uptodate)
6180
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195
again:
	ret = radix_tree_preload(GFP_NOFS);
	if (ret) {
		exists = ERR_PTR(ret);
		goto free_eb;
	}

	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
				start >> fs_info->sectorsize_bits, eb);
	spin_unlock(&fs_info->buffer_lock);
	radix_tree_preload_end();
	if (ret == -EEXIST) {
		exists = find_extent_buffer(fs_info, start);
		if (exists)
6196
			goto free_eb;
6197 6198 6199
		else
			goto again;
	}
6200
	/* add one reference for the tree */
6201
	check_buffer_tree_ref(eb);
6202
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
C
Chris Mason 已提交
6203 6204

	/*
6205
	 * Now it's safe to unlock the pages because any calls to
6206
	 * btree_release_folio will correctly detect that a page belongs to a
6207
	 * live buffer and won't free them prematurely.
C
Chris Mason 已提交
6208
	 */
6209 6210
	for (i = 0; i < num_pages; i++)
		unlock_page(eb->pages[i]);
6211 6212
	return eb;

6213
free_eb:
6214
	WARN_ON(!atomic_dec_and_test(&eb->refs));
6215 6216 6217 6218
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i])
			unlock_page(eb->pages[i]);
	}
C
Chris Mason 已提交
6219

6220
	btrfs_release_extent_buffer(eb);
6221
	return exists;
6222 6223
}

6224 6225 6226 6227 6228 6229 6230 6231
static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
{
	struct extent_buffer *eb =
			container_of(head, struct extent_buffer, rcu_head);

	__free_extent_buffer(eb);
}

6232
static int release_extent_buffer(struct extent_buffer *eb)
6233
	__releases(&eb->refs_lock)
6234
{
6235 6236
	lockdep_assert_held(&eb->refs_lock);

6237 6238
	WARN_ON(atomic_read(&eb->refs) == 0);
	if (atomic_dec_and_test(&eb->refs)) {
6239
		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6240
			struct btrfs_fs_info *fs_info = eb->fs_info;
6241

6242
			spin_unlock(&eb->refs_lock);
6243

6244 6245 6246 6247
			spin_lock(&fs_info->buffer_lock);
			radix_tree_delete(&fs_info->buffer_radix,
					  eb->start >> fs_info->sectorsize_bits);
			spin_unlock(&fs_info->buffer_lock);
6248 6249
		} else {
			spin_unlock(&eb->refs_lock);
6250
		}
6251

6252
		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6253
		/* Should be safe to release our pages at this point */
6254
		btrfs_release_extent_buffer_pages(eb);
6255
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6256
		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6257 6258 6259 6260
			__free_extent_buffer(eb);
			return 1;
		}
#endif
6261
		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6262
		return 1;
6263 6264
	}
	spin_unlock(&eb->refs_lock);
6265 6266

	return 0;
6267 6268
}

6269 6270
void free_extent_buffer(struct extent_buffer *eb)
{
6271
	int refs;
6272 6273 6274
	if (!eb)
		return;

6275
	refs = atomic_read(&eb->refs);
6276
	while (1) {
6277 6278 6279
		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
			refs == 1))
6280
			break;
6281
		if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
6282 6283 6284
			return;
	}

6285 6286 6287
	spin_lock(&eb->refs_lock);
	if (atomic_read(&eb->refs) == 2 &&
	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6288
	    !extent_buffer_under_io(eb) &&
6289 6290 6291 6292 6293 6294 6295
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);

	/*
	 * I know this is terrible, but it's temporary until we stop tracking
	 * the uptodate bits and such for the extent buffers.
	 */
6296
	release_extent_buffer(eb);
6297 6298 6299 6300 6301
}

void free_extent_buffer_stale(struct extent_buffer *eb)
{
	if (!eb)
6302 6303
		return;

6304 6305 6306
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);

6307
	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6308 6309
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);
6310
	release_extent_buffer(eb);
6311 6312
}

6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340
static void btree_clear_page_dirty(struct page *page)
{
	ASSERT(PageDirty(page));
	ASSERT(PageLocked(page));
	clear_page_dirty_for_io(page);
	xa_lock_irq(&page->mapping->i_pages);
	if (!PageDirty(page))
		__xa_clear_mark(&page->mapping->i_pages,
				page_index(page), PAGECACHE_TAG_DIRTY);
	xa_unlock_irq(&page->mapping->i_pages);
}

static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
	bool last;

	/* btree_clear_page_dirty() needs page locked */
	lock_page(page);
	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
						  eb->len);
	if (last)
		btree_clear_page_dirty(page);
	unlock_page(page);
	WARN_ON(atomic_read(&eb->refs) == 0);
}

6341
void clear_extent_buffer_dirty(const struct extent_buffer *eb)
6342
{
6343 6344
	int i;
	int num_pages;
6345 6346
	struct page *page;

6347
	if (eb->fs_info->nodesize < PAGE_SIZE)
6348 6349
		return clear_subpage_extent_buffer_dirty(eb);

6350
	num_pages = num_extent_pages(eb);
6351 6352

	for (i = 0; i < num_pages; i++) {
6353
		page = eb->pages[i];
6354
		if (!PageDirty(page))
C
Chris Mason 已提交
6355
			continue;
6356
		lock_page(page);
6357
		btree_clear_page_dirty(page);
6358
		ClearPageError(page);
6359
		unlock_page(page);
6360
	}
6361
	WARN_ON(atomic_read(&eb->refs) == 0);
6362 6363
}

6364
bool set_extent_buffer_dirty(struct extent_buffer *eb)
6365
{
6366 6367
	int i;
	int num_pages;
6368
	bool was_dirty;
6369

6370 6371
	check_buffer_tree_ref(eb);

6372
	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6373

6374
	num_pages = num_extent_pages(eb);
6375
	WARN_ON(atomic_read(&eb->refs) == 0);
6376 6377
	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));

6378
	if (!was_dirty) {
6379
		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
6380

6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399
		/*
		 * For subpage case, we can have other extent buffers in the
		 * same page, and in clear_subpage_extent_buffer_dirty() we
		 * have to clear page dirty without subpage lock held.
		 * This can cause race where our page gets dirty cleared after
		 * we just set it.
		 *
		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
		 * its page for other reasons, we can use page lock to prevent
		 * the above race.
		 */
		if (subpage)
			lock_page(eb->pages[0]);
		for (i = 0; i < num_pages; i++)
			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
					     eb->start, eb->len);
		if (subpage)
			unlock_page(eb->pages[0]);
	}
6400 6401 6402 6403 6404
#ifdef CONFIG_BTRFS_DEBUG
	for (i = 0; i < num_pages; i++)
		ASSERT(PageDirty(eb->pages[i]));
#endif

6405
	return was_dirty;
6406 6407
}

6408
void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6409
{
6410
	struct btrfs_fs_info *fs_info = eb->fs_info;
6411
	struct page *page;
6412
	int num_pages;
6413
	int i;
6414

6415
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6416
	num_pages = num_extent_pages(eb);
6417
	for (i = 0; i < num_pages; i++) {
6418
		page = eb->pages[i];
6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430
		if (!page)
			continue;

		/*
		 * This is special handling for metadata subpage, as regular
		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
		 */
		if (fs_info->nodesize >= PAGE_SIZE)
			ClearPageUptodate(page);
		else
			btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
						     eb->len);
6431 6432 6433
	}
}

6434
void set_extent_buffer_uptodate(struct extent_buffer *eb)
6435
{
6436
	struct btrfs_fs_info *fs_info = eb->fs_info;
6437
	struct page *page;
6438
	int num_pages;
6439
	int i;
6440

6441
	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6442
	num_pages = num_extent_pages(eb);
6443
	for (i = 0; i < num_pages; i++) {
6444
		page = eb->pages[i];
6445 6446 6447 6448 6449 6450 6451 6452 6453 6454

		/*
		 * This is special handling for metadata subpage, as regular
		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
		 */
		if (fs_info->nodesize >= PAGE_SIZE)
			SetPageUptodate(page);
		else
			btrfs_subpage_set_uptodate(fs_info, page, eb->start,
						   eb->len);
6455 6456 6457
	}
}

6458 6459 6460 6461 6462 6463
static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
				      int mirror_num)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct extent_io_tree *io_tree;
	struct page *page = eb->pages[0];
6464 6465 6466
	struct btrfs_bio_ctrl bio_ctrl = {
		.mirror_num = mirror_num,
	};
6467 6468 6469 6470 6471 6472 6473
	int ret = 0;

	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
	ASSERT(PagePrivate(page));
	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;

	if (wait == WAIT_NONE) {
6474 6475
		if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
			return -EAGAIN;
6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496
	} else {
		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		if (ret < 0)
			return ret;
	}

	ret = 0;
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
	    PageUptodate(page) ||
	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		return ret;
	}

	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
	eb->read_mirror = 0;
	atomic_set(&eb->io_pages, 1);
	check_buffer_tree_ref(eb);
	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);

6497
	btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
6498
	ret = submit_extent_page(REQ_OP_READ, NULL, &bio_ctrl,
6499 6500
				 page, eb->start, eb->len,
				 eb->start - page_offset(page),
6501
				 end_bio_extent_readpage, 0, true);
6502 6503 6504 6505 6506 6507 6508 6509
	if (ret) {
		/*
		 * In the endio function, if we hit something wrong we will
		 * increase the io_pages, so here we need to decrease it for
		 * error path.
		 */
		atomic_dec(&eb->io_pages);
	}
6510
	submit_one_bio(&bio_ctrl);
6511 6512 6513 6514 6515 6516 6517 6518 6519
	if (ret || wait != WAIT_COMPLETE)
		return ret;

	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
		ret = -EIO;
	return ret;
}

6520
int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6521
{
6522
	int i;
6523 6524 6525
	struct page *page;
	int err;
	int ret = 0;
6526 6527
	int locked_pages = 0;
	int all_uptodate = 1;
6528
	int num_pages;
6529
	unsigned long num_reads = 0;
6530 6531 6532
	struct btrfs_bio_ctrl bio_ctrl = {
		.mirror_num = mirror_num,
	};
6533

6534
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6535 6536
		return 0;

6537 6538 6539 6540 6541 6542 6543 6544
	/*
	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
	 * operation, which could potentially still be in flight.  In this case
	 * we simply want to return an error.
	 */
	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
		return -EIO;

6545
	if (eb->fs_info->nodesize < PAGE_SIZE)
6546 6547
		return read_extent_buffer_subpage(eb, wait, mirror_num);

6548
	num_pages = num_extent_pages(eb);
6549
	for (i = 0; i < num_pages; i++) {
6550
		page = eb->pages[i];
6551
		if (wait == WAIT_NONE) {
6552 6553 6554 6555 6556 6557 6558
			/*
			 * WAIT_NONE is only utilized by readahead. If we can't
			 * acquire the lock atomically it means either the eb
			 * is being read out or under modification.
			 * Either way the eb will be or has been cached,
			 * readahead can exit safely.
			 */
6559
			if (!trylock_page(page))
6560
				goto unlock_exit;
6561 6562 6563
		} else {
			lock_page(page);
		}
6564
		locked_pages++;
6565 6566 6567 6568 6569 6570
	}
	/*
	 * We need to firstly lock all pages to make sure that
	 * the uptodate bit of our pages won't be affected by
	 * clear_extent_buffer_uptodate().
	 */
6571
	for (i = 0; i < num_pages; i++) {
6572
		page = eb->pages[i];
6573 6574
		if (!PageUptodate(page)) {
			num_reads++;
6575
			all_uptodate = 0;
6576
		}
6577
	}
6578

6579
	if (all_uptodate) {
6580
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6581 6582 6583
		goto unlock_exit;
	}

6584
	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6585
	eb->read_mirror = 0;
6586
	atomic_set(&eb->io_pages, num_reads);
6587
	/*
6588
	 * It is possible for release_folio to clear the TREE_REF bit before we
6589 6590 6591
	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
	 */
	check_buffer_tree_ref(eb);
6592
	for (i = 0; i < num_pages; i++) {
6593
		page = eb->pages[i];
6594

6595
		if (!PageUptodate(page)) {
6596 6597 6598 6599 6600 6601
			if (ret) {
				atomic_dec(&eb->io_pages);
				unlock_page(page);
				continue;
			}

6602
			ClearPageError(page);
6603
			err = submit_extent_page(REQ_OP_READ, NULL,
6604 6605
					 &bio_ctrl, page, page_offset(page),
					 PAGE_SIZE, 0, end_bio_extent_readpage,
6606
					 0, false);
6607 6608
			if (err) {
				/*
6609 6610 6611
				 * We failed to submit the bio so it's the
				 * caller's responsibility to perform cleanup
				 * i.e unlock page/set error bit.
6612
				 */
6613 6614 6615
				ret = err;
				SetPageError(page);
				unlock_page(page);
6616 6617
				atomic_dec(&eb->io_pages);
			}
6618 6619 6620 6621 6622
		} else {
			unlock_page(page);
		}
	}

6623
	submit_one_bio(&bio_ctrl);
6624

6625
	if (ret || wait != WAIT_COMPLETE)
6626
		return ret;
C
Chris Mason 已提交
6627

6628
	for (i = 0; i < num_pages; i++) {
6629
		page = eb->pages[i];
6630
		wait_on_page_locked(page);
C
Chris Mason 已提交
6631
		if (!PageUptodate(page))
6632 6633
			ret = -EIO;
	}
C
Chris Mason 已提交
6634

6635
	return ret;
6636 6637

unlock_exit:
C
Chris Mason 已提交
6638
	while (locked_pages > 0) {
6639
		locked_pages--;
6640 6641
		page = eb->pages[locked_pages];
		unlock_page(page);
6642 6643
	}
	return ret;
6644 6645
}

6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675
static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
			    unsigned long len)
{
	btrfs_warn(eb->fs_info,
		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
		eb->start, eb->len, start, len);
	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));

	return true;
}

/*
 * Check if the [start, start + len) range is valid before reading/writing
 * the eb.
 * NOTE: @start and @len are offset inside the eb, not logical address.
 *
 * Caller should not touch the dst/src memory if this function returns error.
 */
static inline int check_eb_range(const struct extent_buffer *eb,
				 unsigned long start, unsigned long len)
{
	unsigned long offset;

	/* start, start + len should not go beyond eb->len nor overflow */
	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
		return report_eb_range(eb, start, len);

	return false;
}

6676 6677
void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
			unsigned long start, unsigned long len)
6678 6679 6680 6681 6682 6683
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *dst = (char *)dstv;
6684
	unsigned long i = get_eb_page_index(start);
6685

6686
	if (check_eb_range(eb, start, len))
6687
		return;
6688

6689
	offset = get_eb_offset_in_page(eb, start);
6690

C
Chris Mason 已提交
6691
	while (len > 0) {
6692
		page = eb->pages[i];
6693

6694
		cur = min(len, (PAGE_SIZE - offset));
6695
		kaddr = page_address(page);
6696 6697 6698 6699 6700 6701 6702 6703 6704
		memcpy(dst, kaddr + offset, cur);

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6705 6706 6707
int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
				       void __user *dstv,
				       unsigned long start, unsigned long len)
6708 6709 6710 6711 6712 6713
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char __user *dst = (char __user *)dstv;
6714
	unsigned long i = get_eb_page_index(start);
6715 6716 6717 6718 6719
	int ret = 0;

	WARN_ON(start > eb->len);
	WARN_ON(start + len > eb->start + eb->len);

6720
	offset = get_eb_offset_in_page(eb, start);
6721 6722

	while (len > 0) {
6723
		page = eb->pages[i];
6724

6725
		cur = min(len, (PAGE_SIZE - offset));
6726
		kaddr = page_address(page);
6727
		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740
			ret = -EFAULT;
			break;
		}

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}

	return ret;
}

6741 6742
int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
			 unsigned long start, unsigned long len)
6743 6744 6745 6746 6747 6748
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *ptr = (char *)ptrv;
6749
	unsigned long i = get_eb_page_index(start);
6750 6751
	int ret = 0;

6752 6753
	if (check_eb_range(eb, start, len))
		return -EINVAL;
6754

6755
	offset = get_eb_offset_in_page(eb, start);
6756

C
Chris Mason 已提交
6757
	while (len > 0) {
6758
		page = eb->pages[i];
6759

6760
		cur = min(len, (PAGE_SIZE - offset));
6761

6762
		kaddr = page_address(page);
6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774
		ret = memcmp(ptr, kaddr + offset, cur);
		if (ret)
			break;

		ptr += cur;
		len -= cur;
		offset = 0;
		i++;
	}
	return ret;
}

6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785
/*
 * Check that the extent buffer is uptodate.
 *
 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
 */
static void assert_eb_page_uptodate(const struct extent_buffer *eb,
				    struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;

6786 6787 6788 6789 6790 6791 6792 6793 6794
	/*
	 * If we are using the commit root we could potentially clear a page
	 * Uptodate while we're using the extent buffer that we've previously
	 * looked up.  We don't want to complain in this case, as the page was
	 * valid before, we just didn't write it out.  Instead we want to catch
	 * the case where we didn't actually read the block properly, which
	 * would have !PageUptodate && !PageError, as we clear PageError before
	 * reading.
	 */
6795
	if (fs_info->nodesize < PAGE_SIZE) {
6796
		bool uptodate, error;
6797 6798 6799

		uptodate = btrfs_subpage_test_uptodate(fs_info, page,
						       eb->start, eb->len);
6800 6801
		error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len);
		WARN_ON(!uptodate && !error);
6802
	} else {
6803
		WARN_ON(!PageUptodate(page) && !PageError(page));
6804 6805 6806
	}
}

6807
void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6808 6809 6810 6811
		const void *srcv)
{
	char *kaddr;

6812
	assert_eb_page_uptodate(eb, eb->pages[0]);
6813 6814 6815 6816
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
						   chunk_tree_uuid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6817 6818
}

6819
void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6820 6821 6822
{
	char *kaddr;

6823
	assert_eb_page_uptodate(eb, eb->pages[0]);
6824 6825 6826
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6827 6828
}

6829
void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6830 6831 6832 6833 6834 6835 6836
			 unsigned long start, unsigned long len)
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *src = (char *)srcv;
6837
	unsigned long i = get_eb_page_index(start);
6838

6839 6840
	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));

6841 6842
	if (check_eb_range(eb, start, len))
		return;
6843

6844
	offset = get_eb_offset_in_page(eb, start);
6845

C
Chris Mason 已提交
6846
	while (len > 0) {
6847
		page = eb->pages[i];
6848
		assert_eb_page_uptodate(eb, page);
6849

6850
		cur = min(len, PAGE_SIZE - offset);
6851
		kaddr = page_address(page);
6852 6853 6854 6855 6856 6857 6858 6859 6860
		memcpy(kaddr + offset, src, cur);

		src += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6861
void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6862
		unsigned long len)
6863 6864 6865 6866 6867
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
6868
	unsigned long i = get_eb_page_index(start);
6869

6870 6871
	if (check_eb_range(eb, start, len))
		return;
6872

6873
	offset = get_eb_offset_in_page(eb, start);
6874

C
Chris Mason 已提交
6875
	while (len > 0) {
6876
		page = eb->pages[i];
6877
		assert_eb_page_uptodate(eb, page);
6878

6879
		cur = min(len, PAGE_SIZE - offset);
6880
		kaddr = page_address(page);
6881
		memset(kaddr + offset, 0, cur);
6882 6883 6884 6885 6886 6887 6888

		len -= cur;
		offset = 0;
		i++;
	}
}

6889 6890
void copy_extent_buffer_full(const struct extent_buffer *dst,
			     const struct extent_buffer *src)
6891 6892
{
	int i;
6893
	int num_pages;
6894 6895 6896

	ASSERT(dst->len == src->len);

6897
	if (dst->fs_info->nodesize >= PAGE_SIZE) {
6898 6899 6900 6901 6902 6903 6904 6905
		num_pages = num_extent_pages(dst);
		for (i = 0; i < num_pages; i++)
			copy_page(page_address(dst->pages[i]),
				  page_address(src->pages[i]));
	} else {
		size_t src_offset = get_eb_offset_in_page(src, 0);
		size_t dst_offset = get_eb_offset_in_page(dst, 0);

6906
		ASSERT(src->fs_info->nodesize < PAGE_SIZE);
6907 6908 6909 6910
		memcpy(page_address(dst->pages[0]) + dst_offset,
		       page_address(src->pages[0]) + src_offset,
		       src->len);
	}
6911 6912
}

6913 6914
void copy_extent_buffer(const struct extent_buffer *dst,
			const struct extent_buffer *src,
6915 6916 6917 6918 6919 6920 6921 6922
			unsigned long dst_offset, unsigned long src_offset,
			unsigned long len)
{
	u64 dst_len = dst->len;
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
6923
	unsigned long i = get_eb_page_index(dst_offset);
6924

6925 6926 6927 6928
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(src, src_offset, len))
		return;

6929 6930
	WARN_ON(src->len != dst_len);

6931
	offset = get_eb_offset_in_page(dst, dst_offset);
6932

C
Chris Mason 已提交
6933
	while (len > 0) {
6934
		page = dst->pages[i];
6935
		assert_eb_page_uptodate(dst, page);
6936

6937
		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
6938

6939
		kaddr = page_address(page);
6940 6941 6942 6943 6944 6945 6946 6947 6948
		read_extent_buffer(src, kaddr + offset, src_offset, cur);

		src_offset += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961
/*
 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
 * given bit number
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number
 * @page_index: return index of the page in the extent buffer that contains the
 * given bit number
 * @page_offset: return offset into the page given by page_index
 *
 * This helper hides the ugliness of finding the byte in an extent buffer which
 * contains a given bit.
 */
6962
static inline void eb_bitmap_offset(const struct extent_buffer *eb,
6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974
				    unsigned long start, unsigned long nr,
				    unsigned long *page_index,
				    size_t *page_offset)
{
	size_t byte_offset = BIT_BYTE(nr);
	size_t offset;

	/*
	 * The byte we want is the offset of the extent buffer + the offset of
	 * the bitmap item in the extent buffer + the offset of the byte in the
	 * bitmap item.
	 */
6975
	offset = start + offset_in_page(eb->start) + byte_offset;
6976

6977
	*page_index = offset >> PAGE_SHIFT;
6978
	*page_offset = offset_in_page(offset);
6979 6980 6981 6982 6983 6984 6985 6986
}

/**
 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number to test
 */
6987
int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
6988 6989
			   unsigned long nr)
{
6990
	u8 *kaddr;
6991 6992 6993 6994 6995 6996
	struct page *page;
	unsigned long i;
	size_t offset;

	eb_bitmap_offset(eb, start, nr, &i, &offset);
	page = eb->pages[i];
6997
	assert_eb_page_uptodate(eb, page);
6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008
	kaddr = page_address(page);
	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
}

/**
 * extent_buffer_bitmap_set - set an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to set
 */
7009
void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
7010 7011
			      unsigned long pos, unsigned long len)
{
7012
	u8 *kaddr;
7013 7014 7015 7016 7017
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7018
	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
7019 7020 7021

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
7022
	assert_eb_page_uptodate(eb, page);
7023 7024 7025 7026 7027 7028
	kaddr = page_address(page);

	while (len >= bits_to_set) {
		kaddr[offset] |= mask_to_set;
		len -= bits_to_set;
		bits_to_set = BITS_PER_BYTE;
D
Dan Carpenter 已提交
7029
		mask_to_set = ~0;
7030
		if (++offset >= PAGE_SIZE && len > 0) {
7031 7032
			offset = 0;
			page = eb->pages[++i];
7033
			assert_eb_page_uptodate(eb, page);
7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] |= mask_to_set;
	}
}


/**
 * extent_buffer_bitmap_clear - clear an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to clear
 */
7051 7052 7053
void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
				unsigned long start, unsigned long pos,
				unsigned long len)
7054
{
7055
	u8 *kaddr;
7056 7057 7058 7059 7060
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7061
	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
7062 7063 7064

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
7065
	assert_eb_page_uptodate(eb, page);
7066 7067 7068 7069 7070 7071
	kaddr = page_address(page);

	while (len >= bits_to_clear) {
		kaddr[offset] &= ~mask_to_clear;
		len -= bits_to_clear;
		bits_to_clear = BITS_PER_BYTE;
D
Dan Carpenter 已提交
7072
		mask_to_clear = ~0;
7073
		if (++offset >= PAGE_SIZE && len > 0) {
7074 7075
			offset = 0;
			page = eb->pages[++i];
7076
			assert_eb_page_uptodate(eb, page);
7077 7078 7079 7080 7081 7082 7083 7084 7085
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] &= ~mask_to_clear;
	}
}

7086 7087 7088 7089 7090 7091
static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
{
	unsigned long distance = (src > dst) ? src - dst : dst - src;
	return distance < len;
}

7092 7093 7094 7095
static void copy_pages(struct page *dst_page, struct page *src_page,
		       unsigned long dst_off, unsigned long src_off,
		       unsigned long len)
{
7096
	char *dst_kaddr = page_address(dst_page);
7097
	char *src_kaddr;
7098
	int must_memmove = 0;
7099

7100
	if (dst_page != src_page) {
7101
		src_kaddr = page_address(src_page);
7102
	} else {
7103
		src_kaddr = dst_kaddr;
7104 7105
		if (areas_overlap(src_off, dst_off, len))
			must_memmove = 1;
7106
	}
7107

7108 7109 7110 7111
	if (must_memmove)
		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
	else
		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
7112 7113
}

7114 7115 7116
void memcpy_extent_buffer(const struct extent_buffer *dst,
			  unsigned long dst_offset, unsigned long src_offset,
			  unsigned long len)
7117 7118 7119 7120 7121 7122 7123
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_i;
	unsigned long src_i;

7124 7125 7126
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
7127

C
Chris Mason 已提交
7128
	while (len > 0) {
7129 7130
		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
7131

7132 7133
		dst_i = get_eb_page_index(dst_offset);
		src_i = get_eb_page_index(src_offset);
7134

7135
		cur = min(len, (unsigned long)(PAGE_SIZE -
7136 7137
					       src_off_in_page));
		cur = min_t(unsigned long, cur,
7138
			(unsigned long)(PAGE_SIZE - dst_off_in_page));
7139

7140
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7141 7142 7143 7144 7145 7146 7147 7148
			   dst_off_in_page, src_off_in_page, cur);

		src_offset += cur;
		dst_offset += cur;
		len -= cur;
	}
}

7149 7150 7151
void memmove_extent_buffer(const struct extent_buffer *dst,
			   unsigned long dst_offset, unsigned long src_offset,
			   unsigned long len)
7152 7153 7154 7155 7156 7157 7158 7159 7160
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_end = dst_offset + len - 1;
	unsigned long src_end = src_offset + len - 1;
	unsigned long dst_i;
	unsigned long src_i;

7161 7162 7163
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
7164
	if (dst_offset < src_offset) {
7165 7166 7167
		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
		return;
	}
C
Chris Mason 已提交
7168
	while (len > 0) {
7169 7170
		dst_i = get_eb_page_index(dst_end);
		src_i = get_eb_page_index(src_end);
7171

7172 7173
		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
		src_off_in_page = get_eb_offset_in_page(dst, src_end);
7174 7175 7176

		cur = min_t(unsigned long, len, src_off_in_page + 1);
		cur = min(cur, dst_off_in_page + 1);
7177
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7178 7179 7180 7181 7182 7183 7184 7185
			   dst_off_in_page - cur + 1,
			   src_off_in_page - cur + 1, cur);

		dst_end -= cur;
		src_end -= cur;
		len -= cur;
	}
}
7186

7187
#define GANG_LOOKUP_SIZE	16
7188 7189 7190
static struct extent_buffer *get_next_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
7191 7192
	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
	struct extent_buffer *found = NULL;
7193
	u64 page_start = page_offset(page);
7194
	u64 cur = page_start;
7195 7196 7197 7198

	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
	lockdep_assert_held(&fs_info->buffer_lock);

7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219
	while (cur < page_start + PAGE_SIZE) {
		int ret;
		int i;

		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
				(void **)gang, cur >> fs_info->sectorsize_bits,
				min_t(unsigned int, GANG_LOOKUP_SIZE,
				      PAGE_SIZE / fs_info->nodesize));
		if (ret == 0)
			goto out;
		for (i = 0; i < ret; i++) {
			/* Already beyond page end */
			if (gang[i]->start >= page_start + PAGE_SIZE)
				goto out;
			/* Found one */
			if (gang[i]->start >= bytenr) {
				found = gang[i];
				goto out;
			}
		}
		cur = gang[ret - 1]->start + gang[ret - 1]->len;
7220
	}
7221 7222
out:
	return found;
7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294
}

static int try_release_subpage_extent_buffer(struct page *page)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	u64 cur = page_offset(page);
	const u64 end = page_offset(page) + PAGE_SIZE;
	int ret;

	while (cur < end) {
		struct extent_buffer *eb = NULL;

		/*
		 * Unlike try_release_extent_buffer() which uses page->private
		 * to grab buffer, for subpage case we rely on radix tree, thus
		 * we need to ensure radix tree consistency.
		 *
		 * We also want an atomic snapshot of the radix tree, thus go
		 * with spinlock rather than RCU.
		 */
		spin_lock(&fs_info->buffer_lock);
		eb = get_next_extent_buffer(fs_info, page, cur);
		if (!eb) {
			/* No more eb in the page range after or at cur */
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		cur = eb->start + eb->len;

		/*
		 * The same as try_release_extent_buffer(), to ensure the eb
		 * won't disappear out from under us.
		 */
		spin_lock(&eb->refs_lock);
		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
			spin_unlock(&eb->refs_lock);
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		spin_unlock(&fs_info->buffer_lock);

		/*
		 * If tree ref isn't set then we know the ref on this eb is a
		 * real ref, so just return, this eb will likely be freed soon
		 * anyway.
		 */
		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
			spin_unlock(&eb->refs_lock);
			break;
		}

		/*
		 * Here we don't care about the return value, we will always
		 * check the page private at the end.  And
		 * release_extent_buffer() will release the refs_lock.
		 */
		release_extent_buffer(eb);
	}
	/*
	 * Finally to check if we have cleared page private, as if we have
	 * released all ebs in the page, the page private should be cleared now.
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page))
		ret = 1;
	else
		ret = 0;
	spin_unlock(&page->mapping->private_lock);
	return ret;

}

7295
int try_release_extent_buffer(struct page *page)
7296
{
7297 7298
	struct extent_buffer *eb;

7299
	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
7300 7301
		return try_release_subpage_extent_buffer(page);

7302
	/*
7303 7304
	 * We need to make sure nobody is changing page->private, as we rely on
	 * page->private as the pointer to extent buffer.
7305 7306 7307 7308
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&page->mapping->private_lock);
J
Josef Bacik 已提交
7309
		return 1;
7310
	}
7311

7312 7313
	eb = (struct extent_buffer *)page->private;
	BUG_ON(!eb);
7314 7315

	/*
7316 7317 7318
	 * This is a little awful but should be ok, we need to make sure that
	 * the eb doesn't disappear out from under us while we're looking at
	 * this page.
7319
	 */
7320
	spin_lock(&eb->refs_lock);
7321
	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7322 7323 7324
		spin_unlock(&eb->refs_lock);
		spin_unlock(&page->mapping->private_lock);
		return 0;
7325
	}
7326
	spin_unlock(&page->mapping->private_lock);
7327

7328
	/*
7329 7330
	 * If tree ref isn't set then we know the ref on this eb is a real ref,
	 * so just return, this page will likely be freed soon anyway.
7331
	 */
7332 7333 7334
	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
		spin_unlock(&eb->refs_lock);
		return 0;
7335
	}
7336

7337
	return release_extent_buffer(eb);
7338
}
7339 7340 7341 7342 7343

/*
 * btrfs_readahead_tree_block - attempt to readahead a child block
 * @fs_info:	the fs_info
 * @bytenr:	bytenr to read
7344
 * @owner_root: objectid of the root that owns this eb
7345
 * @gen:	generation for the uptodate check, can be 0
7346
 * @level:	level for the eb
7347 7348 7349 7350 7351 7352
 *
 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
 * normal uptodate check of the eb, without checking the generation.  If we have
 * to read the block we will not block on anything.
 */
void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7353
				u64 bytenr, u64 owner_root, u64 gen, int level)
7354 7355 7356 7357
{
	struct extent_buffer *eb;
	int ret;

7358
	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385
	if (IS_ERR(eb))
		return;

	if (btrfs_buffer_uptodate(eb, gen, 1)) {
		free_extent_buffer(eb);
		return;
	}

	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
	if (ret < 0)
		free_extent_buffer_stale(eb);
	else
		free_extent_buffer(eb);
}

/*
 * btrfs_readahead_node_child - readahead a node's child block
 * @node:	parent node we're reading from
 * @slot:	slot in the parent node for the child we want to read
 *
 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
 * the slot in the node provided.
 */
void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
{
	btrfs_readahead_tree_block(node->fs_info,
				   btrfs_node_blockptr(node, slot),
7386 7387 7388
				   btrfs_header_owner(node),
				   btrfs_node_ptr_generation(node, slot),
				   btrfs_header_level(node) - 1);
7389
}