extent_io.c 177.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2

3 4 5 6 7 8 9 10 11 12 13
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/bio.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/page-flags.h>
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
14
#include <linux/prefetch.h>
D
Dan Magenheimer 已提交
15
#include <linux/cleancache.h>
16
#include "misc.h"
17
#include "extent_io.h"
18
#include "extent-io-tree.h"
19
#include "extent_map.h"
20 21
#include "ctree.h"
#include "btrfs_inode.h"
22
#include "volumes.h"
23
#include "check-integrity.h"
24
#include "locking.h"
25
#include "rcu-string.h"
26
#include "backref.h"
27
#include "disk-io.h"
28
#include "subpage.h"
29
#include "zoned.h"
30
#include "block-group.h"
31 32 33

static struct kmem_cache *extent_state_cache;
static struct kmem_cache *extent_buffer_cache;
34
static struct bio_set btrfs_bioset;
35

36 37 38 39 40
static inline bool extent_state_in_tree(const struct extent_state *state)
{
	return !RB_EMPTY_NODE(&state->rb_node);
}

41
#ifdef CONFIG_BTRFS_DEBUG
42
static LIST_HEAD(states);
C
Chris Mason 已提交
43
static DEFINE_SPINLOCK(leak_lock);
44

45 46 47
static inline void btrfs_leak_debug_add(spinlock_t *lock,
					struct list_head *new,
					struct list_head *head)
48 49 50
{
	unsigned long flags;

51
	spin_lock_irqsave(lock, flags);
52
	list_add(new, head);
53
	spin_unlock_irqrestore(lock, flags);
54 55
}

56 57
static inline void btrfs_leak_debug_del(spinlock_t *lock,
					struct list_head *entry)
58 59 60
{
	unsigned long flags;

61
	spin_lock_irqsave(lock, flags);
62
	list_del(entry);
63
	spin_unlock_irqrestore(lock, flags);
64 65
}

66
void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
67 68
{
	struct extent_buffer *eb;
69
	unsigned long flags;
70

71 72 73 74 75 76 77
	/*
	 * If we didn't get into open_ctree our allocated_ebs will not be
	 * initialized, so just skip this.
	 */
	if (!fs_info->allocated_ebs.next)
		return;

78 79 80 81
	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
	while (!list_empty(&fs_info->allocated_ebs)) {
		eb = list_first_entry(&fs_info->allocated_ebs,
				      struct extent_buffer, leak_list);
82 83 84 85
		pr_err(
	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
		       btrfs_header_owner(eb));
86 87 88
		list_del(&eb->leak_list);
		kmem_cache_free(extent_buffer_cache, eb);
	}
89
	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
90 91 92 93 94 95
}

static inline void btrfs_extent_state_leak_debug_check(void)
{
	struct extent_state *state;

96 97
	while (!list_empty(&states)) {
		state = list_entry(states.next, struct extent_state, leak_list);
98
		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
99 100
		       state->start, state->end, state->state,
		       extent_state_in_tree(state),
101
		       refcount_read(&state->refs));
102 103 104 105
		list_del(&state->leak_list);
		kmem_cache_free(extent_state_cache, state);
	}
}
106

107 108
#define btrfs_debug_check_extent_io_range(tree, start, end)		\
	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
109
static inline void __btrfs_debug_check_extent_io_range(const char *caller,
110
		struct extent_io_tree *tree, u64 start, u64 end)
111
{
112 113 114 115 116 117 118 119 120 121 122 123
	struct inode *inode = tree->private_data;
	u64 isize;

	if (!inode || !is_data_inode(inode))
		return;

	isize = i_size_read(inode);
	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
	}
124
}
125
#else
126 127
#define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
#define btrfs_leak_debug_del(lock, entry)	do {} while (0)
128
#define btrfs_extent_state_leak_debug_check()	do {} while (0)
129
#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
C
Chris Mason 已提交
130
#endif
131 132 133 134 135 136 137 138 139

struct tree_entry {
	u64 start;
	u64 end;
	struct rb_node rb_node;
};

struct extent_page_data {
	struct bio *bio;
140 141 142
	/* tells writepage not to lock the state bits for this range
	 * it still does the unlocking
	 */
143 144
	unsigned int extent_locked:1;

145
	/* tells the submit_bio code to use REQ_SYNC */
146
	unsigned int sync_io:1;
147 148
};

149
static int add_extent_changeset(struct extent_state *state, u32 bits,
150 151 152 153 154 155
				 struct extent_changeset *changeset,
				 int set)
{
	int ret;

	if (!changeset)
156
		return 0;
157
	if (set && (state->state & bits) == bits)
158
		return 0;
159
	if (!set && (state->state & bits) == 0)
160
		return 0;
161
	changeset->bytes_changed += state->end - state->start + 1;
162
	ret = ulist_add(&changeset->range_changed, state->start, state->end,
163
			GFP_ATOMIC);
164
	return ret;
165 166
}

167 168
int __must_check submit_one_bio(struct bio *bio, int mirror_num,
				unsigned long bio_flags)
169 170 171 172 173 174
{
	blk_status_t ret = 0;
	struct extent_io_tree *tree = bio->bi_private;

	bio->bi_private = NULL;

175 176 177 178
	if (is_data_inode(tree->private_data))
		ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
					    bio_flags);
	else
179 180
		ret = btrfs_submit_metadata_bio(tree->private_data, bio,
						mirror_num, bio_flags);
181 182 183 184

	return blk_status_to_errno(ret);
}

185 186 187 188 189 190 191 192 193 194
/* Cleanup unsubmitted bios */
static void end_write_bio(struct extent_page_data *epd, int ret)
{
	if (epd->bio) {
		epd->bio->bi_status = errno_to_blk_status(ret);
		bio_endio(epd->bio);
		epd->bio = NULL;
	}
}

195 196 197 198 199 200 201
/*
 * Submit bio from extent page data via submit_one_bio
 *
 * Return 0 if everything is OK.
 * Return <0 for error.
 */
static int __must_check flush_write_bio(struct extent_page_data *epd)
202
{
203
	int ret = 0;
204

205
	if (epd->bio) {
206
		ret = submit_one_bio(epd->bio, 0, 0);
207 208 209 210 211 212 213
		/*
		 * Clean up of epd->bio is handled by its endio function.
		 * And endio is either triggered by successful bio execution
		 * or the error handler of submit bio hook.
		 * So at this point, no matter what happened, we don't need
		 * to clean up epd->bio.
		 */
214 215
		epd->bio = NULL;
	}
216
	return ret;
217
}
218

219
int __init extent_state_cache_init(void)
220
{
D
David Sterba 已提交
221
	extent_state_cache = kmem_cache_create("btrfs_extent_state",
222
			sizeof(struct extent_state), 0,
223
			SLAB_MEM_SPREAD, NULL);
224 225
	if (!extent_state_cache)
		return -ENOMEM;
226 227
	return 0;
}
228

229 230
int __init extent_io_init(void)
{
D
David Sterba 已提交
231
	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
232
			sizeof(struct extent_buffer), 0,
233
			SLAB_MEM_SPREAD, NULL);
234
	if (!extent_buffer_cache)
235
		return -ENOMEM;
236

237 238 239
	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
			offsetof(struct btrfs_io_bio, bio),
			BIOSET_NEED_BVECS))
240
		goto free_buffer_cache;
241

242
	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
243 244
		goto free_bioset;

245 246
	return 0;

247
free_bioset:
248
	bioset_exit(&btrfs_bioset);
249

250 251 252
free_buffer_cache:
	kmem_cache_destroy(extent_buffer_cache);
	extent_buffer_cache = NULL;
253 254
	return -ENOMEM;
}
255

256 257 258
void __cold extent_state_cache_exit(void)
{
	btrfs_extent_state_leak_debug_check();
259 260 261
	kmem_cache_destroy(extent_state_cache);
}

262
void __cold extent_io_exit(void)
263
{
264 265 266 267 268
	/*
	 * Make sure all delayed rcu free are flushed before we
	 * destroy caches.
	 */
	rcu_barrier();
269
	kmem_cache_destroy(extent_buffer_cache);
270
	bioset_exit(&btrfs_bioset);
271 272
}

273 274 275 276 277 278 279 280 281
/*
 * For the file_extent_tree, we want to hold the inode lock when we lookup and
 * update the disk_i_size, but lockdep will complain because our io_tree we hold
 * the tree lock and get the inode lock when setting delalloc.  These two things
 * are unrelated, so make a class for the file_extent_tree so we don't get the
 * two locking patterns mixed up.
 */
static struct lock_class_key file_extent_tree_class;

282
void extent_io_tree_init(struct btrfs_fs_info *fs_info,
283 284
			 struct extent_io_tree *tree, unsigned int owner,
			 void *private_data)
285
{
286
	tree->fs_info = fs_info;
287
	tree->state = RB_ROOT;
288
	tree->dirty_bytes = 0;
289
	spin_lock_init(&tree->lock);
290
	tree->private_data = private_data;
291
	tree->owner = owner;
292 293
	if (owner == IO_TREE_INODE_FILE_EXTENT)
		lockdep_set_class(&tree->lock, &file_extent_tree_class);
294 295
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
void extent_io_tree_release(struct extent_io_tree *tree)
{
	spin_lock(&tree->lock);
	/*
	 * Do a single barrier for the waitqueue_active check here, the state
	 * of the waitqueue should not change once extent_io_tree_release is
	 * called.
	 */
	smp_mb();
	while (!RB_EMPTY_ROOT(&tree->state)) {
		struct rb_node *node;
		struct extent_state *state;

		node = rb_first(&tree->state);
		state = rb_entry(node, struct extent_state, rb_node);
		rb_erase(&state->rb_node, &tree->state);
		RB_CLEAR_NODE(&state->rb_node);
		/*
		 * btree io trees aren't supposed to have tasks waiting for
		 * changes in the flags of extent states ever.
		 */
		ASSERT(!waitqueue_active(&state->wq));
		free_extent_state(state);

		cond_resched_lock(&tree->lock);
	}
	spin_unlock(&tree->lock);
}

325
static struct extent_state *alloc_extent_state(gfp_t mask)
326 327 328
{
	struct extent_state *state;

329 330 331 332 333
	/*
	 * The given mask might be not appropriate for the slab allocator,
	 * drop the unsupported bits
	 */
	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
334
	state = kmem_cache_alloc(extent_state_cache, mask);
335
	if (!state)
336 337
		return state;
	state->state = 0;
338
	state->failrec = NULL;
339
	RB_CLEAR_NODE(&state->rb_node);
340
	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
341
	refcount_set(&state->refs, 1);
342
	init_waitqueue_head(&state->wq);
343
	trace_alloc_extent_state(state, mask, _RET_IP_);
344 345 346
	return state;
}

347
void free_extent_state(struct extent_state *state)
348 349 350
{
	if (!state)
		return;
351
	if (refcount_dec_and_test(&state->refs)) {
352
		WARN_ON(extent_state_in_tree(state));
353
		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
354
		trace_free_extent_state(state, _RET_IP_);
355 356 357 358
		kmem_cache_free(extent_state_cache, state);
	}
}

359 360 361
static struct rb_node *tree_insert(struct rb_root *root,
				   struct rb_node *search_start,
				   u64 offset,
362 363 364
				   struct rb_node *node,
				   struct rb_node ***p_in,
				   struct rb_node **parent_in)
365
{
366
	struct rb_node **p;
C
Chris Mason 已提交
367
	struct rb_node *parent = NULL;
368 369
	struct tree_entry *entry;

370 371 372 373 374 375
	if (p_in && parent_in) {
		p = *p_in;
		parent = *parent_in;
		goto do_insert;
	}

376
	p = search_start ? &search_start : &root->rb_node;
C
Chris Mason 已提交
377
	while (*p) {
378 379 380 381 382 383 384 385 386 387 388
		parent = *p;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (offset < entry->start)
			p = &(*p)->rb_left;
		else if (offset > entry->end)
			p = &(*p)->rb_right;
		else
			return parent;
	}

389
do_insert:
390 391 392 393 394
	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
	return NULL;
}

N
Nikolay Borisov 已提交
395
/**
396 397
 * Search @tree for an entry that contains @offset. Such entry would have
 * entry->start <= offset && entry->end >= offset.
N
Nikolay Borisov 已提交
398
 *
399 400 401 402 403 404 405
 * @tree:       the tree to search
 * @offset:     offset that should fall within an entry in @tree
 * @next_ret:   pointer to the first entry whose range ends after @offset
 * @prev_ret:   pointer to the first entry whose range begins before @offset
 * @p_ret:      pointer where new node should be anchored (used when inserting an
 *	        entry in the tree)
 * @parent_ret: points to entry which would have been the parent of the entry,
N
Nikolay Borisov 已提交
406 407 408 409 410 411 412
 *               containing @offset
 *
 * This function returns a pointer to the entry that contains @offset byte
 * address. If no such entry exists, then NULL is returned and the other
 * pointer arguments to the function are filled, otherwise the found entry is
 * returned and other pointers are left untouched.
 */
413
static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
414
				      struct rb_node **next_ret,
415
				      struct rb_node **prev_ret,
416 417
				      struct rb_node ***p_ret,
				      struct rb_node **parent_ret)
418
{
419
	struct rb_root *root = &tree->state;
420
	struct rb_node **n = &root->rb_node;
421 422 423 424 425
	struct rb_node *prev = NULL;
	struct rb_node *orig_prev = NULL;
	struct tree_entry *entry;
	struct tree_entry *prev_entry = NULL;

426 427 428
	while (*n) {
		prev = *n;
		entry = rb_entry(prev, struct tree_entry, rb_node);
429 430 431
		prev_entry = entry;

		if (offset < entry->start)
432
			n = &(*n)->rb_left;
433
		else if (offset > entry->end)
434
			n = &(*n)->rb_right;
C
Chris Mason 已提交
435
		else
436
			return *n;
437 438
	}

439 440 441 442 443
	if (p_ret)
		*p_ret = n;
	if (parent_ret)
		*parent_ret = prev;

444
	if (next_ret) {
445
		orig_prev = prev;
C
Chris Mason 已提交
446
		while (prev && offset > prev_entry->end) {
447 448 449
			prev = rb_next(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
450
		*next_ret = prev;
451 452 453
		prev = orig_prev;
	}

454
	if (prev_ret) {
455
		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
C
Chris Mason 已提交
456
		while (prev && offset < prev_entry->start) {
457 458 459
			prev = rb_prev(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
460
		*prev_ret = prev;
461 462 463 464
	}
	return NULL;
}

465 466 467 468 469
static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree *tree,
		       u64 offset,
		       struct rb_node ***p_ret,
		       struct rb_node **parent_ret)
470
{
471
	struct rb_node *next= NULL;
472
	struct rb_node *ret;
473

474
	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
C
Chris Mason 已提交
475
	if (!ret)
476
		return next;
477 478 479
	return ret;
}

480 481 482 483 484 485
static inline struct rb_node *tree_search(struct extent_io_tree *tree,
					  u64 offset)
{
	return tree_search_for_insert(tree, offset, NULL, NULL);
}

486 487 488 489 490 491 492 493 494
/*
 * utility function to look for merge candidates inside a given range.
 * Any extents with matching state are merged together into a single
 * extent in the tree.  Extents with EXTENT_IO in their state field
 * are not merged because the end_io handlers need to be able to do
 * operations on them without sleeping (or doing allocations/splits).
 *
 * This should be called with the tree lock held.
 */
495 496
static void merge_state(struct extent_io_tree *tree,
		        struct extent_state *state)
497 498 499 500
{
	struct extent_state *other;
	struct rb_node *other_node;

N
Nikolay Borisov 已提交
501
	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
502
		return;
503 504 505 506 507 508

	other_node = rb_prev(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->end == state->start - 1 &&
		    other->state == state->state) {
509 510 511 512
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
513 514
			state->start = other->start;
			rb_erase(&other->rb_node, &tree->state);
515
			RB_CLEAR_NODE(&other->rb_node);
516 517 518 519 520 521 522 523
			free_extent_state(other);
		}
	}
	other_node = rb_next(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->start == state->end + 1 &&
		    other->state == state->state) {
524 525 526 527
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
528 529
			state->end = other->end;
			rb_erase(&other->rb_node, &tree->state);
530
			RB_CLEAR_NODE(&other->rb_node);
531
			free_extent_state(other);
532 533 534 535
		}
	}
}

536
static void set_state_bits(struct extent_io_tree *tree,
537
			   struct extent_state *state, u32 *bits,
538
			   struct extent_changeset *changeset);
539

540 541 542 543 544 545 546 547 548 549 550 551
/*
 * insert an extent_state struct into the tree.  'bits' are set on the
 * struct before it is inserted.
 *
 * This may return -EEXIST if the extent is already there, in which case the
 * state struct is freed.
 *
 * The tree lock is not taken internally.  This is a utility function and
 * probably isn't what you want to call (see set/clear_extent_bit).
 */
static int insert_state(struct extent_io_tree *tree,
			struct extent_state *state, u64 start, u64 end,
552 553
			struct rb_node ***p,
			struct rb_node **parent,
554
			u32 *bits, struct extent_changeset *changeset)
555 556 557
{
	struct rb_node *node;

558 559 560 561 562
	if (end < start) {
		btrfs_err(tree->fs_info,
			"insert state: end < start %llu %llu", end, start);
		WARN_ON(1);
	}
563 564
	state->start = start;
	state->end = end;
J
Josef Bacik 已提交
565

566
	set_state_bits(tree, state, bits, changeset);
567

568
	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
569 570 571
	if (node) {
		struct extent_state *found;
		found = rb_entry(node, struct extent_state, rb_node);
572 573
		btrfs_err(tree->fs_info,
		       "found node %llu %llu on insert of %llu %llu",
574
		       found->start, found->end, start, end);
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
		return -EEXIST;
	}
	merge_state(tree, state);
	return 0;
}

/*
 * split a given extent state struct in two, inserting the preallocated
 * struct 'prealloc' as the newly created second half.  'split' indicates an
 * offset inside 'orig' where it should be split.
 *
 * Before calling,
 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 * are two extent state structs in the tree:
 * prealloc: [orig->start, split - 1]
 * orig: [ split, orig->end ]
 *
 * The tree locks are not taken by this function. They need to be held
 * by the caller.
 */
static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
		       struct extent_state *prealloc, u64 split)
{
	struct rb_node *node;
J
Josef Bacik 已提交
599

600 601
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_split_delalloc_extent(tree->private_data, orig, split);
J
Josef Bacik 已提交
602

603 604 605 606 607
	prealloc->start = orig->start;
	prealloc->end = split - 1;
	prealloc->state = orig->state;
	orig->start = split;

608 609
	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
			   &prealloc->rb_node, NULL, NULL);
610 611 612 613 614 615 616
	if (node) {
		free_extent_state(prealloc);
		return -EEXIST;
	}
	return 0;
}

617 618 619 620 621 622 623 624 625
static struct extent_state *next_state(struct extent_state *state)
{
	struct rb_node *next = rb_next(&state->rb_node);
	if (next)
		return rb_entry(next, struct extent_state, rb_node);
	else
		return NULL;
}

626 627
/*
 * utility function to clear some bits in an extent state struct.
628
 * it will optionally wake up anyone waiting on this state (wake == 1).
629 630 631 632
 *
 * If no bits are set on the state struct after clearing things, the
 * struct is freed and removed from the tree
 */
633 634
static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
					    struct extent_state *state,
635
					    u32 *bits, int wake,
636
					    struct extent_changeset *changeset)
637
{
638
	struct extent_state *next;
639
	u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
640
	int ret;
641

642
	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
643 644 645 646
		u64 range = state->end - state->start + 1;
		WARN_ON(range > tree->dirty_bytes);
		tree->dirty_bytes -= range;
	}
647 648 649 650

	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_clear_delalloc_extent(tree->private_data, state, bits);

651 652
	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
	BUG_ON(ret < 0);
653
	state->state &= ~bits_to_clear;
654 655
	if (wake)
		wake_up(&state->wq);
656
	if (state->state == 0) {
657
		next = next_state(state);
658
		if (extent_state_in_tree(state)) {
659
			rb_erase(&state->rb_node, &tree->state);
660
			RB_CLEAR_NODE(&state->rb_node);
661 662 663 664 665 666
			free_extent_state(state);
		} else {
			WARN_ON(1);
		}
	} else {
		merge_state(tree, state);
667
		next = next_state(state);
668
	}
669
	return next;
670 671
}

672 673 674 675 676 677 678 679 680
static struct extent_state *
alloc_extent_state_atomic(struct extent_state *prealloc)
{
	if (!prealloc)
		prealloc = alloc_extent_state(GFP_ATOMIC);

	return prealloc;
}

681
static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
682
{
683
	btrfs_panic(tree->fs_info, err,
684
	"locking error: extent tree was modified by another thread while locked");
685 686
}

687 688 689 690 691 692 693 694 695 696
/*
 * clear some bits on a range in the tree.  This may require splitting
 * or inserting elements in the tree, so the gfp mask is used to
 * indicate which allocations or sleeping are allowed.
 *
 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 * the given range from the tree regardless of state (ie for truncate).
 *
 * the range [start, end] is inclusive.
 *
697
 * This takes the tree lock, and returns 0 on success and < 0 on error.
698
 */
699
int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
700 701 702
		       u32 bits, int wake, int delete,
		       struct extent_state **cached_state,
		       gfp_t mask, struct extent_changeset *changeset)
703 704
{
	struct extent_state *state;
705
	struct extent_state *cached;
706 707
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
708
	u64 last_end;
709
	int err;
710
	int clear = 0;
711

712
	btrfs_debug_check_extent_io_range(tree, start, end);
713
	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
714

715 716 717
	if (bits & EXTENT_DELALLOC)
		bits |= EXTENT_NORESERVE;

718 719 720
	if (delete)
		bits |= ~EXTENT_CTLBITS;

N
Nikolay Borisov 已提交
721
	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
722
		clear = 1;
723
again:
724
	if (!prealloc && gfpflags_allow_blocking(mask)) {
725 726 727 728 729 730 731
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
732 733 734
		prealloc = alloc_extent_state(mask);
	}

735
	spin_lock(&tree->lock);
736 737
	if (cached_state) {
		cached = *cached_state;
738 739 740 741 742 743

		if (clear) {
			*cached_state = NULL;
			cached_state = NULL;
		}

744 745
		if (cached && extent_state_in_tree(cached) &&
		    cached->start <= start && cached->end > start) {
746
			if (clear)
747
				refcount_dec(&cached->refs);
748
			state = cached;
749
			goto hit_next;
750
		}
751 752
		if (clear)
			free_extent_state(cached);
753
	}
754 755 756 757
	/*
	 * this search will find the extents that end after
	 * our range starts
	 */
758
	node = tree_search(tree, start);
759 760 761
	if (!node)
		goto out;
	state = rb_entry(node, struct extent_state, rb_node);
762
hit_next:
763 764 765
	if (state->start > end)
		goto out;
	WARN_ON(state->end < start);
766
	last_end = state->end;
767

768
	/* the state doesn't have the wanted bits, go ahead */
769 770
	if (!(state->state & bits)) {
		state = next_state(state);
771
		goto next;
772
	}
773

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
	/*
	 *     | ---- desired range ---- |
	 *  | state | or
	 *  | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip
	 * bits on second half.
	 *
	 * If the extent we found extends past our range, we
	 * just split and search again.  It'll get split again
	 * the next time though.
	 *
	 * If the extent we found is inside our range, we clear
	 * the desired bit on it.
	 */

	if (state->start < start) {
791 792
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
793
		err = split_state(tree, state, prealloc, start);
794 795 796
		if (err)
			extent_io_tree_panic(tree, err);

797 798 799 800
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
801 802
			state = clear_state_bit(tree, state, &bits, wake,
						changeset);
803
			goto next;
804 805 806 807 808 809 810 811 812 813
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and clear the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
814 815
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
816
		err = split_state(tree, state, prealloc, end + 1);
817 818 819
		if (err)
			extent_io_tree_panic(tree, err);

820 821
		if (wake)
			wake_up(&state->wq);
822

823
		clear_state_bit(tree, prealloc, &bits, wake, changeset);
J
Josef Bacik 已提交
824

825 826 827
		prealloc = NULL;
		goto out;
	}
828

829
	state = clear_state_bit(tree, state, &bits, wake, changeset);
830
next:
831 832 833
	if (last_end == (u64)-1)
		goto out;
	start = last_end + 1;
834
	if (start <= end && state && !need_resched())
835
		goto hit_next;
836 837 838 839

search_again:
	if (start > end)
		goto out;
840
	spin_unlock(&tree->lock);
841
	if (gfpflags_allow_blocking(mask))
842 843
		cond_resched();
	goto again;
844 845 846 847 848 849 850 851

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return 0;

852 853
}

854 855
static void wait_on_state(struct extent_io_tree *tree,
			  struct extent_state *state)
856 857
		__releases(tree->lock)
		__acquires(tree->lock)
858 859 860
{
	DEFINE_WAIT(wait);
	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
861
	spin_unlock(&tree->lock);
862
	schedule();
863
	spin_lock(&tree->lock);
864 865 866 867 868 869 870 871
	finish_wait(&state->wq, &wait);
}

/*
 * waits for one or more bits to clear on a range in the state tree.
 * The range [start, end] is inclusive.
 * The tree lock is taken by this function
 */
872
static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
873
			    u32 bits)
874 875 876 877
{
	struct extent_state *state;
	struct rb_node *node;

878
	btrfs_debug_check_extent_io_range(tree, start, end);
879

880
	spin_lock(&tree->lock);
881 882 883 884 885 886
again:
	while (1) {
		/*
		 * this search will find all the extents that end after
		 * our range starts
		 */
887
		node = tree_search(tree, start);
888
process_node:
889 890 891 892 893 894 895 896 897 898
		if (!node)
			break;

		state = rb_entry(node, struct extent_state, rb_node);

		if (state->start > end)
			goto out;

		if (state->state & bits) {
			start = state->start;
899
			refcount_inc(&state->refs);
900 901 902 903 904 905 906 907 908
			wait_on_state(tree, state);
			free_extent_state(state);
			goto again;
		}
		start = state->end + 1;

		if (start > end)
			break;

909 910 911 912
		if (!cond_resched_lock(&tree->lock)) {
			node = rb_next(node);
			goto process_node;
		}
913 914
	}
out:
915
	spin_unlock(&tree->lock);
916 917
}

918
static void set_state_bits(struct extent_io_tree *tree,
919
			   struct extent_state *state,
920
			   u32 *bits, struct extent_changeset *changeset)
921
{
922
	u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
923
	int ret;
J
Josef Bacik 已提交
924

925 926 927
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_set_delalloc_extent(tree->private_data, state, bits);

928
	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
929 930 931
		u64 range = state->end - state->start + 1;
		tree->dirty_bytes += range;
	}
932 933
	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
	BUG_ON(ret < 0);
934
	state->state |= bits_to_set;
935 936
}

937 938
static void cache_state_if_flags(struct extent_state *state,
				 struct extent_state **cached_ptr,
939
				 unsigned flags)
940 941
{
	if (cached_ptr && !(*cached_ptr)) {
942
		if (!flags || (state->state & flags)) {
943
			*cached_ptr = state;
944
			refcount_inc(&state->refs);
945 946 947 948
		}
	}
}

949 950 951 952
static void cache_state(struct extent_state *state,
			struct extent_state **cached_ptr)
{
	return cache_state_if_flags(state, cached_ptr,
N
Nikolay Borisov 已提交
953
				    EXTENT_LOCKED | EXTENT_BOUNDARY);
954 955
}

956
/*
957 958
 * set some bits on a range in the tree.  This may require allocations or
 * sleeping, so the gfp mask is used to indicate what is allowed.
959
 *
960 961 962
 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 * part of the range already has the desired bits set.  The start of the
 * existing range is returned in failed_start in this case.
963
 *
964
 * [start, end] is inclusive This takes the tree lock.
965
 */
966 967
int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
		   u32 exclusive_bits, u64 *failed_start,
968 969
		   struct extent_state **cached_state, gfp_t mask,
		   struct extent_changeset *changeset)
970 971 972 973
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
974 975
	struct rb_node **p;
	struct rb_node *parent;
976 977 978
	int err = 0;
	u64 last_start;
	u64 last_end;
979

980
	btrfs_debug_check_extent_io_range(tree, start, end);
981
	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
982

983 984 985 986
	if (exclusive_bits)
		ASSERT(failed_start);
	else
		ASSERT(failed_start == NULL);
987
again:
988
	if (!prealloc && gfpflags_allow_blocking(mask)) {
989 990 991 992 993 994 995
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
996 997 998
		prealloc = alloc_extent_state(mask);
	}

999
	spin_lock(&tree->lock);
1000 1001
	if (cached_state && *cached_state) {
		state = *cached_state;
1002
		if (state->start <= start && state->end > start &&
1003
		    extent_state_in_tree(state)) {
1004 1005 1006 1007
			node = &state->rb_node;
			goto hit_next;
		}
	}
1008 1009 1010 1011
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1012
	node = tree_search_for_insert(tree, start, &p, &parent);
1013
	if (!node) {
1014 1015
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1016
		err = insert_state(tree, prealloc, start, end,
1017
				   &p, &parent, &bits, changeset);
1018 1019 1020
		if (err)
			extent_io_tree_panic(tree, err);

1021
		cache_state(prealloc, cached_state);
1022 1023 1024 1025
		prealloc = NULL;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1026
hit_next:
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1037
		if (state->state & exclusive_bits) {
1038 1039 1040 1041
			*failed_start = state->start;
			err = -EEXIST;
			goto out;
		}
1042

1043
		set_state_bits(tree, state, &bits, changeset);
1044
		cache_state(state, cached_state);
1045
		merge_state(tree, state);
1046 1047 1048
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1049 1050 1051 1052
		state = next_state(state);
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
1073
		if (state->state & exclusive_bits) {
1074 1075 1076 1077
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1078

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
		/*
		 * If this extent already has all the bits we want set, then
		 * skip it, not necessary to split it or do anything with it.
		 */
		if ((state->state & bits) == bits) {
			start = state->end + 1;
			cache_state(state, cached_state);
			goto search_again;
		}

1089 1090
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1091
		err = split_state(tree, state, prealloc, start);
1092 1093 1094
		if (err)
			extent_io_tree_panic(tree, err);

1095 1096 1097 1098
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1099
			set_state_bits(tree, state, &bits, changeset);
1100
			cache_state(state, cached_state);
1101
			merge_state(tree, state);
1102 1103 1104
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1105 1106 1107 1108
			state = next_state(state);
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
C
Chris Mason 已提交
1124
			this_end = last_start - 1;
1125 1126 1127

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1128 1129 1130 1131 1132

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
1133
		err = insert_state(tree, prealloc, start, this_end,
1134
				   NULL, NULL, &bits, changeset);
1135 1136 1137
		if (err)
			extent_io_tree_panic(tree, err);

J
Josef Bacik 已提交
1138 1139
		cache_state(prealloc, cached_state);
		prealloc = NULL;
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
1150
		if (state->state & exclusive_bits) {
1151 1152 1153 1154
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1155 1156 1157

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1158
		err = split_state(tree, state, prealloc, end + 1);
1159 1160
		if (err)
			extent_io_tree_panic(tree, err);
1161

1162
		set_state_bits(tree, prealloc, &bits, changeset);
1163
		cache_state(prealloc, cached_state);
1164 1165 1166 1167 1168
		merge_state(tree, prealloc);
		prealloc = NULL;
		goto out;
	}

1169 1170 1171 1172 1173 1174 1175
search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
	if (gfpflags_allow_blocking(mask))
		cond_resched();
	goto again;
1176 1177

out:
1178
	spin_unlock(&tree->lock);
1179 1180 1181 1182 1183 1184 1185
	if (prealloc)
		free_extent_state(prealloc);

	return err;

}

J
Josef Bacik 已提交
1186
/**
L
Liu Bo 已提交
1187 1188
 * convert_extent_bit - convert all bits in a given range from one bit to
 * 			another
J
Josef Bacik 已提交
1189 1190 1191 1192 1193
 * @tree:	the io tree to search
 * @start:	the start offset in bytes
 * @end:	the end offset in bytes (inclusive)
 * @bits:	the bits to set in this range
 * @clear_bits:	the bits to clear in this range
1194
 * @cached_state:	state that we're going to cache
J
Josef Bacik 已提交
1195 1196 1197 1198 1199 1200
 *
 * This will go through and set bits for the given range.  If any states exist
 * already in this range they are set with the given bit and cleared of the
 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 * boundary bits like LOCK.
1201 1202
 *
 * All allocations are done with GFP_NOFS.
J
Josef Bacik 已提交
1203 1204
 */
int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1205
		       u32 bits, u32 clear_bits,
1206
		       struct extent_state **cached_state)
J
Josef Bacik 已提交
1207 1208 1209 1210
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
1211 1212
	struct rb_node **p;
	struct rb_node *parent;
J
Josef Bacik 已提交
1213 1214 1215
	int err = 0;
	u64 last_start;
	u64 last_end;
1216
	bool first_iteration = true;
J
Josef Bacik 已提交
1217

1218
	btrfs_debug_check_extent_io_range(tree, start, end);
1219 1220
	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
				       clear_bits);
1221

J
Josef Bacik 已提交
1222
again:
1223
	if (!prealloc) {
1224 1225 1226 1227 1228 1229 1230
		/*
		 * Best effort, don't worry if extent state allocation fails
		 * here for the first iteration. We might have a cached state
		 * that matches exactly the target range, in which case no
		 * extent state allocations are needed. We'll only know this
		 * after locking the tree.
		 */
1231
		prealloc = alloc_extent_state(GFP_NOFS);
1232
		if (!prealloc && !first_iteration)
J
Josef Bacik 已提交
1233 1234 1235 1236
			return -ENOMEM;
	}

	spin_lock(&tree->lock);
1237 1238 1239
	if (cached_state && *cached_state) {
		state = *cached_state;
		if (state->start <= start && state->end > start &&
1240
		    extent_state_in_tree(state)) {
1241 1242 1243 1244 1245
			node = &state->rb_node;
			goto hit_next;
		}
	}

J
Josef Bacik 已提交
1246 1247 1248 1249
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1250
	node = tree_search_for_insert(tree, start, &p, &parent);
J
Josef Bacik 已提交
1251 1252
	if (!node) {
		prealloc = alloc_extent_state_atomic(prealloc);
1253 1254 1255 1256
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
1257
		err = insert_state(tree, prealloc, start, end,
1258
				   &p, &parent, &bits, NULL);
1259 1260
		if (err)
			extent_io_tree_panic(tree, err);
1261 1262
		cache_state(prealloc, cached_state);
		prealloc = NULL;
J
Josef Bacik 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
hit_next:
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1277
		set_state_bits(tree, state, &bits, NULL);
1278
		cache_state(state, cached_state);
1279
		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1280 1281 1282
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1283 1284 1285
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
J
Josef Bacik 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
		prealloc = alloc_extent_state_atomic(prealloc);
1307 1308 1309 1310
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1311
		err = split_state(tree, state, prealloc, start);
1312 1313
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1314 1315 1316 1317
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1318
			set_state_bits(tree, state, &bits, NULL);
1319
			cache_state(state, cached_state);
1320 1321
			state = clear_state_bit(tree, state, &clear_bits, 0,
						NULL);
J
Josef Bacik 已提交
1322 1323 1324
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1325 1326 1327
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
J
Josef Bacik 已提交
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
			this_end = last_start - 1;

		prealloc = alloc_extent_state_atomic(prealloc);
1346 1347 1348 1349
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1350 1351 1352 1353 1354 1355

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
		err = insert_state(tree, prealloc, start, this_end,
1356
				   NULL, NULL, &bits, NULL);
1357 1358
		if (err)
			extent_io_tree_panic(tree, err);
1359
		cache_state(prealloc, cached_state);
J
Josef Bacik 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
		prealloc = NULL;
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
		prealloc = alloc_extent_state_atomic(prealloc);
1372 1373 1374 1375
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1376 1377

		err = split_state(tree, state, prealloc, end + 1);
1378 1379
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1380

1381
		set_state_bits(tree, prealloc, &bits, NULL);
1382
		cache_state(prealloc, cached_state);
1383
		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1384 1385 1386 1387 1388 1389 1390 1391
		prealloc = NULL;
		goto out;
	}

search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
1392
	cond_resched();
1393
	first_iteration = false;
J
Josef Bacik 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	goto again;

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return err;
}

1404
/* wrappers around set/clear extent bit */
1405
int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1406
			   u32 bits, struct extent_changeset *changeset)
1407 1408 1409 1410 1411 1412 1413 1414 1415
{
	/*
	 * We don't support EXTENT_LOCKED yet, as current changeset will
	 * record any bits changed, so for EXTENT_LOCKED case, it will
	 * either fail with -EEXIST or changeset will record the whole
	 * range.
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1416 1417
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
			      changeset);
1418 1419
}

1420
int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1421
			   u32 bits)
1422
{
1423 1424
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
			      GFP_NOWAIT, NULL);
1425 1426
}

1427
int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1428
		     u32 bits, int wake, int delete,
1429
		     struct extent_state **cached)
1430 1431
{
	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1432
				  cached, GFP_NOFS, NULL);
1433 1434 1435
}

int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1436
		u32 bits, struct extent_changeset *changeset)
1437 1438 1439 1440 1441 1442 1443
{
	/*
	 * Don't support EXTENT_LOCKED case, same reason as
	 * set_record_extent_bits().
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1444
	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1445 1446 1447
				  changeset);
}

C
Chris Mason 已提交
1448 1449 1450 1451
/*
 * either insert or lock state struct between start and end use mask to tell
 * us if waiting is desired.
 */
1452
int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1453
		     struct extent_state **cached_state)
1454 1455 1456
{
	int err;
	u64 failed_start;
1457

1458
	while (1) {
1459 1460 1461
		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
				     EXTENT_LOCKED, &failed_start,
				     cached_state, GFP_NOFS, NULL);
1462
		if (err == -EEXIST) {
1463 1464
			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
			start = failed_start;
1465
		} else
1466 1467 1468 1469 1470 1471
			break;
		WARN_ON(start > end);
	}
	return err;
}

1472
int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1473 1474 1475 1476
{
	int err;
	u64 failed_start;

1477 1478
	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
			     &failed_start, NULL, GFP_NOFS, NULL);
Y
Yan Zheng 已提交
1479 1480 1481
	if (err == -EEXIST) {
		if (failed_start > start)
			clear_extent_bit(tree, start, failed_start - 1,
1482
					 EXTENT_LOCKED, 1, 0, NULL);
1483
		return 0;
Y
Yan Zheng 已提交
1484
	}
1485 1486 1487
	return 1;
}

1488
void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1489
{
1490 1491
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1492 1493 1494 1495 1496 1497
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		clear_page_dirty_for_io(page);
1498
		put_page(page);
1499 1500 1501 1502
		index++;
	}
}

1503
void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1504
{
1505 1506
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1507 1508 1509 1510 1511 1512
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		__set_page_dirty_nobuffers(page);
1513
		account_page_redirty(page);
1514
		put_page(page);
1515 1516 1517 1518
		index++;
	}
}

C
Chris Mason 已提交
1519 1520 1521 1522
/* find the first state struct with 'bits' set after 'start', and
 * return it.  tree->lock must be held.  NULL will returned if
 * nothing was found after 'start'
 */
1523
static struct extent_state *
1524
find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
C
Chris Mason 已提交
1525 1526 1527 1528 1529 1530 1531 1532 1533
{
	struct rb_node *node;
	struct extent_state *state;

	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
	node = tree_search(tree, start);
C
Chris Mason 已提交
1534
	if (!node)
C
Chris Mason 已提交
1535 1536
		goto out;

C
Chris Mason 已提交
1537
	while (1) {
C
Chris Mason 已提交
1538
		state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1539
		if (state->end >= start && (state->state & bits))
C
Chris Mason 已提交
1540
			return state;
C
Chris Mason 已提交
1541

C
Chris Mason 已提交
1542 1543 1544 1545 1546 1547 1548 1549
		node = rb_next(node);
		if (!node)
			break;
	}
out:
	return NULL;
}

1550
/*
1551
 * Find the first offset in the io tree with one or more @bits set.
1552
 *
1553 1554 1555 1556
 * Note: If there are multiple bits set in @bits, any of them will match.
 *
 * Return 0 if we find something, and update @start_ret and @end_ret.
 * Return 1 if we found nothing.
1557 1558
 */
int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1559
			  u64 *start_ret, u64 *end_ret, u32 bits,
1560
			  struct extent_state **cached_state)
1561 1562 1563 1564 1565
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
1566 1567
	if (cached_state && *cached_state) {
		state = *cached_state;
1568
		if (state->end == start - 1 && extent_state_in_tree(state)) {
1569
			while ((state = next_state(state)) != NULL) {
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
				if (state->state & bits)
					goto got_it;
			}
			free_extent_state(*cached_state);
			*cached_state = NULL;
			goto out;
		}
		free_extent_state(*cached_state);
		*cached_state = NULL;
	}

1581
	state = find_first_extent_bit_state(tree, start, bits);
1582
got_it:
1583
	if (state) {
1584
		cache_state_if_flags(state, cached_state, 0);
1585 1586 1587 1588
		*start_ret = state->start;
		*end_ret = state->end;
		ret = 0;
	}
1589
out:
1590 1591 1592 1593
	spin_unlock(&tree->lock);
	return ret;
}

1594
/**
1595 1596 1597 1598 1599 1600 1601
 * Find a contiguous area of bits
 *
 * @tree:      io tree to check
 * @start:     offset to start the search from
 * @start_ret: the first offset we found with the bits set
 * @end_ret:   the final contiguous range of the bits that were set
 * @bits:      bits to look for
1602 1603 1604 1605 1606 1607 1608 1609 1610
 *
 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
 * to set bits appropriately, and then merge them again.  During this time it
 * will drop the tree->lock, so use this helper if you want to find the actual
 * contiguous area for given bits.  We will search to the first bit we find, and
 * then walk down the tree until we find a non-contiguous area.  The area
 * returned will be the full contiguous area with the bits set.
 */
int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1611
			       u64 *start_ret, u64 *end_ret, u32 bits)
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
	state = find_first_extent_bit_state(tree, start, bits);
	if (state) {
		*start_ret = state->start;
		*end_ret = state->end;
		while ((state = next_state(state)) != NULL) {
			if (state->start > (*end_ret + 1))
				break;
			*end_ret = state->end;
		}
		ret = 0;
	}
	spin_unlock(&tree->lock);
	return ret;
}

1632
/**
1633 1634
 * Find the first range that has @bits not set. This range could start before
 * @start.
1635
 *
1636 1637 1638 1639 1640
 * @tree:      the tree to search
 * @start:     offset at/after which the found extent should start
 * @start_ret: records the beginning of the range
 * @end_ret:   records the end of the range (inclusive)
 * @bits:      the set of bits which must be unset
1641 1642 1643 1644 1645 1646 1647
 *
 * Since unallocated range is also considered one which doesn't have the bits
 * set it's possible that @end_ret contains -1, this happens in case the range
 * spans (last_range_end, end of device]. In this case it's up to the caller to
 * trim @end_ret to the appropriate size.
 */
void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1648
				 u64 *start_ret, u64 *end_ret, u32 bits)
1649 1650 1651 1652 1653 1654 1655 1656 1657
{
	struct extent_state *state;
	struct rb_node *node, *prev = NULL, *next;

	spin_lock(&tree->lock);

	/* Find first extent with bits cleared */
	while (1) {
		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
		if (!node && !next && !prev) {
			/*
			 * Tree is completely empty, send full range and let
			 * caller deal with it
			 */
			*start_ret = 0;
			*end_ret = -1;
			goto out;
		} else if (!node && !next) {
			/*
			 * We are past the last allocated chunk, set start at
			 * the end of the last extent.
			 */
			state = rb_entry(prev, struct extent_state, rb_node);
			*start_ret = state->end + 1;
			*end_ret = -1;
			goto out;
		} else if (!node) {
1676 1677
			node = next;
		}
1678 1679 1680 1681
		/*
		 * At this point 'node' either contains 'start' or start is
		 * before 'node'
		 */
1682
		state = rb_entry(node, struct extent_state, rb_node);
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

		if (in_range(start, state->start, state->end - state->start + 1)) {
			if (state->state & bits) {
				/*
				 * |--range with bits sets--|
				 *    |
				 *    start
				 */
				start = state->end + 1;
			} else {
				/*
				 * 'start' falls within a range that doesn't
				 * have the bits set, so take its start as
				 * the beginning of the desired range
				 *
				 * |--range with bits cleared----|
				 *      |
				 *      start
				 */
				*start_ret = state->start;
				break;
			}
1705
		} else {
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
			/*
			 * |---prev range---|---hole/unset---|---node range---|
			 *                          |
			 *                        start
			 *
			 *                        or
			 *
			 * |---hole/unset--||--first node--|
			 * 0   |
			 *    start
			 */
			if (prev) {
				state = rb_entry(prev, struct extent_state,
						 rb_node);
				*start_ret = state->end + 1;
			} else {
				*start_ret = 0;
			}
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
			break;
		}
	}

	/*
	 * Find the longest stretch from start until an entry which has the
	 * bits set
	 */
	while (1) {
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->end >= start && !(state->state & bits)) {
			*end_ret = state->end;
		} else {
			*end_ret = state->start - 1;
			break;
		}

		node = rb_next(node);
		if (!node)
			break;
	}
out:
	spin_unlock(&tree->lock);
}

C
Chris Mason 已提交
1749 1750 1751 1752
/*
 * find a contiguous range of bytes in the file marked as delalloc, not
 * more than 'max_bytes'.  start and end are used to return the range,
 *
1753
 * true is returned if we find something, false if nothing was in the tree
C
Chris Mason 已提交
1754
 */
J
Josef Bacik 已提交
1755 1756 1757
bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
			       u64 *end, u64 max_bytes,
			       struct extent_state **cached_state)
1758 1759 1760 1761
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
1762
	bool found = false;
1763 1764
	u64 total_bytes = 0;

1765
	spin_lock(&tree->lock);
C
Chris Mason 已提交
1766

1767 1768 1769 1770
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1771
	node = tree_search(tree, cur_start);
1772
	if (!node) {
1773
		*end = (u64)-1;
1774 1775 1776
		goto out;
	}

C
Chris Mason 已提交
1777
	while (1) {
1778
		state = rb_entry(node, struct extent_state, rb_node);
1779 1780
		if (found && (state->start != cur_start ||
			      (state->state & EXTENT_BOUNDARY))) {
1781 1782 1783 1784 1785 1786 1787
			goto out;
		}
		if (!(state->state & EXTENT_DELALLOC)) {
			if (!found)
				*end = state->end;
			goto out;
		}
1788
		if (!found) {
1789
			*start = state->start;
1790
			*cached_state = state;
1791
			refcount_inc(&state->refs);
1792
		}
1793
		found = true;
1794 1795 1796 1797
		*end = state->end;
		cur_start = state->end + 1;
		node = rb_next(node);
		total_bytes += state->end - state->start + 1;
1798
		if (total_bytes >= max_bytes)
1799 1800
			break;
		if (!node)
1801 1802 1803
			break;
	}
out:
1804
	spin_unlock(&tree->lock);
1805 1806 1807
	return found;
}

1808 1809 1810 1811 1812
static int __process_pages_contig(struct address_space *mapping,
				  struct page *locked_page,
				  pgoff_t start_index, pgoff_t end_index,
				  unsigned long page_ops, pgoff_t *index_ret);

1813 1814 1815
static noinline void __unlock_for_delalloc(struct inode *inode,
					   struct page *locked_page,
					   u64 start, u64 end)
C
Chris Mason 已提交
1816
{
1817 1818
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
C
Chris Mason 已提交
1819

1820
	ASSERT(locked_page);
C
Chris Mason 已提交
1821
	if (index == locked_page->index && end_index == index)
1822
		return;
C
Chris Mason 已提交
1823

1824 1825
	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
			       PAGE_UNLOCK, NULL);
C
Chris Mason 已提交
1826 1827 1828 1829 1830 1831 1832
}

static noinline int lock_delalloc_pages(struct inode *inode,
					struct page *locked_page,
					u64 delalloc_start,
					u64 delalloc_end)
{
1833
	unsigned long index = delalloc_start >> PAGE_SHIFT;
1834
	unsigned long index_ret = index;
1835
	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
C
Chris Mason 已提交
1836 1837
	int ret;

1838
	ASSERT(locked_page);
C
Chris Mason 已提交
1839 1840 1841
	if (index == locked_page->index && index == end_index)
		return 0;

1842 1843 1844 1845 1846
	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
				     end_index, PAGE_LOCK, &index_ret);
	if (ret == -EAGAIN)
		__unlock_for_delalloc(inode, locked_page, delalloc_start,
				      (u64)index_ret << PAGE_SHIFT);
C
Chris Mason 已提交
1847 1848 1849 1850
	return ret;
}

/*
1851 1852
 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
 * more than @max_bytes.  @Start and @end are used to return the range,
C
Chris Mason 已提交
1853
 *
1854 1855
 * Return: true if we find something
 *         false if nothing was in the tree
C
Chris Mason 已提交
1856
 */
1857
EXPORT_FOR_TESTS
1858
noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1859
				    struct page *locked_page, u64 *start,
1860
				    u64 *end)
C
Chris Mason 已提交
1861
{
1862
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1863
	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
C
Chris Mason 已提交
1864 1865
	u64 delalloc_start;
	u64 delalloc_end;
1866
	bool found;
1867
	struct extent_state *cached_state = NULL;
C
Chris Mason 已提交
1868 1869 1870 1871 1872 1873 1874
	int ret;
	int loops = 0;

again:
	/* step one, find a bunch of delalloc bytes starting at start */
	delalloc_start = *start;
	delalloc_end = 0;
J
Josef Bacik 已提交
1875 1876
	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
					  max_bytes, &cached_state);
C
Chris Mason 已提交
1877
	if (!found || delalloc_end <= *start) {
C
Chris Mason 已提交
1878 1879
		*start = delalloc_start;
		*end = delalloc_end;
1880
		free_extent_state(cached_state);
1881
		return false;
C
Chris Mason 已提交
1882 1883
	}

C
Chris Mason 已提交
1884 1885 1886 1887 1888
	/*
	 * start comes from the offset of locked_page.  We have to lock
	 * pages in order, so we can't process delalloc bytes before
	 * locked_page
	 */
C
Chris Mason 已提交
1889
	if (delalloc_start < *start)
C
Chris Mason 已提交
1890 1891
		delalloc_start = *start;

C
Chris Mason 已提交
1892 1893 1894
	/*
	 * make sure to limit the number of pages we try to lock down
	 */
1895 1896
	if (delalloc_end + 1 - delalloc_start > max_bytes)
		delalloc_end = delalloc_start + max_bytes - 1;
C
Chris Mason 已提交
1897

C
Chris Mason 已提交
1898 1899 1900
	/* step two, lock all the pages after the page that has start */
	ret = lock_delalloc_pages(inode, locked_page,
				  delalloc_start, delalloc_end);
1901
	ASSERT(!ret || ret == -EAGAIN);
C
Chris Mason 已提交
1902 1903 1904 1905
	if (ret == -EAGAIN) {
		/* some of the pages are gone, lets avoid looping by
		 * shortening the size of the delalloc range we're searching
		 */
1906
		free_extent_state(cached_state);
1907
		cached_state = NULL;
C
Chris Mason 已提交
1908
		if (!loops) {
1909
			max_bytes = PAGE_SIZE;
C
Chris Mason 已提交
1910 1911 1912
			loops = 1;
			goto again;
		} else {
1913
			found = false;
C
Chris Mason 已提交
1914 1915 1916 1917 1918
			goto out_failed;
		}
	}

	/* step three, lock the state bits for the whole range */
1919
	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
C
Chris Mason 已提交
1920 1921 1922

	/* then test to make sure it is all still delalloc */
	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1923
			     EXTENT_DELALLOC, 1, cached_state);
C
Chris Mason 已提交
1924
	if (!ret) {
1925
		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1926
				     &cached_state);
C
Chris Mason 已提交
1927 1928 1929 1930 1931
		__unlock_for_delalloc(inode, locked_page,
			      delalloc_start, delalloc_end);
		cond_resched();
		goto again;
	}
1932
	free_extent_state(cached_state);
C
Chris Mason 已提交
1933 1934 1935 1936 1937 1938
	*start = delalloc_start;
	*end = delalloc_end;
out_failed:
	return found;
}

1939 1940 1941 1942
static int __process_pages_contig(struct address_space *mapping,
				  struct page *locked_page,
				  pgoff_t start_index, pgoff_t end_index,
				  unsigned long page_ops, pgoff_t *index_ret)
C
Chris Mason 已提交
1943
{
1944
	unsigned long nr_pages = end_index - start_index + 1;
1945
	unsigned long pages_processed = 0;
1946
	pgoff_t index = start_index;
C
Chris Mason 已提交
1947
	struct page *pages[16];
1948
	unsigned ret;
1949
	int err = 0;
C
Chris Mason 已提交
1950
	int i;
1951

1952 1953 1954 1955 1956
	if (page_ops & PAGE_LOCK) {
		ASSERT(page_ops == PAGE_LOCK);
		ASSERT(index_ret && *index_ret == start_index);
	}

1957
	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1958
		mapping_set_error(mapping, -EIO);
1959

C
Chris Mason 已提交
1960
	while (nr_pages > 0) {
1961
		ret = find_get_pages_contig(mapping, index,
1962 1963
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
1964 1965 1966 1967 1968 1969
		if (ret == 0) {
			/*
			 * Only if we're going to lock these pages,
			 * can we find nothing at @index.
			 */
			ASSERT(page_ops & PAGE_LOCK);
1970 1971
			err = -EAGAIN;
			goto out;
1972
		}
1973

1974
		for (i = 0; i < ret; i++) {
1975
			if (page_ops & PAGE_SET_PRIVATE2)
1976 1977
				SetPagePrivate2(pages[i]);

1978
			if (locked_page && pages[i] == locked_page) {
1979
				put_page(pages[i]);
1980
				pages_processed++;
C
Chris Mason 已提交
1981 1982
				continue;
			}
1983
			if (page_ops & PAGE_START_WRITEBACK) {
C
Chris Mason 已提交
1984 1985
				clear_page_dirty_for_io(pages[i]);
				set_page_writeback(pages[i]);
1986
			}
1987 1988
			if (page_ops & PAGE_SET_ERROR)
				SetPageError(pages[i]);
1989
			if (page_ops & PAGE_END_WRITEBACK)
C
Chris Mason 已提交
1990
				end_page_writeback(pages[i]);
1991
			if (page_ops & PAGE_UNLOCK)
1992
				unlock_page(pages[i]);
1993 1994 1995 1996 1997
			if (page_ops & PAGE_LOCK) {
				lock_page(pages[i]);
				if (!PageDirty(pages[i]) ||
				    pages[i]->mapping != mapping) {
					unlock_page(pages[i]);
1998 1999
					for (; i < ret; i++)
						put_page(pages[i]);
2000 2001 2002 2003
					err = -EAGAIN;
					goto out;
				}
			}
2004
			put_page(pages[i]);
2005
			pages_processed++;
C
Chris Mason 已提交
2006 2007 2008 2009 2010
		}
		nr_pages -= ret;
		index += ret;
		cond_resched();
	}
2011 2012
out:
	if (err && index_ret)
2013
		*index_ret = start_index + pages_processed - 1;
2014
	return err;
C
Chris Mason 已提交
2015 2016
}

2017
void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2018
				  struct page *locked_page,
2019
				  u32 clear_bits, unsigned long page_ops)
2020
{
2021
	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2022

2023
	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2024
			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2025
			       page_ops, NULL);
2026 2027
}

C
Chris Mason 已提交
2028 2029 2030 2031 2032
/*
 * count the number of bytes in the tree that have a given bit(s)
 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
 * cached.  The total number found is returned.
 */
2033 2034
u64 count_range_bits(struct extent_io_tree *tree,
		     u64 *start, u64 search_end, u64 max_bytes,
2035
		     u32 bits, int contig)
2036 2037 2038 2039 2040
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
	u64 total_bytes = 0;
2041
	u64 last = 0;
2042 2043
	int found = 0;

2044
	if (WARN_ON(search_end <= cur_start))
2045 2046
		return 0;

2047
	spin_lock(&tree->lock);
2048 2049 2050 2051 2052 2053 2054 2055
	if (cur_start == 0 && bits == EXTENT_DIRTY) {
		total_bytes = tree->dirty_bytes;
		goto out;
	}
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2056
	node = tree_search(tree, cur_start);
C
Chris Mason 已提交
2057
	if (!node)
2058 2059
		goto out;

C
Chris Mason 已提交
2060
	while (1) {
2061 2062 2063
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->start > search_end)
			break;
2064 2065 2066
		if (contig && found && state->start > last + 1)
			break;
		if (state->end >= cur_start && (state->state & bits) == bits) {
2067 2068 2069 2070 2071
			total_bytes += min(search_end, state->end) + 1 -
				       max(cur_start, state->start);
			if (total_bytes >= max_bytes)
				break;
			if (!found) {
2072
				*start = max(cur_start, state->start);
2073 2074
				found = 1;
			}
2075 2076 2077
			last = state->end;
		} else if (contig && found) {
			break;
2078 2079 2080 2081 2082 2083
		}
		node = rb_next(node);
		if (!node)
			break;
	}
out:
2084
	spin_unlock(&tree->lock);
2085 2086
	return total_bytes;
}
2087

C
Chris Mason 已提交
2088 2089 2090 2091
/*
 * set the private field for a given byte offset in the tree.  If there isn't
 * an extent_state there already, this does nothing.
 */
2092 2093
int set_state_failrec(struct extent_io_tree *tree, u64 start,
		      struct io_failure_record *failrec)
2094 2095 2096 2097 2098
{
	struct rb_node *node;
	struct extent_state *state;
	int ret = 0;

2099
	spin_lock(&tree->lock);
2100 2101 2102 2103
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2104
	node = tree_search(tree, start);
2105
	if (!node) {
2106 2107 2108 2109 2110 2111 2112 2113
		ret = -ENOENT;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
		ret = -ENOENT;
		goto out;
	}
2114
	state->failrec = failrec;
2115
out:
2116
	spin_unlock(&tree->lock);
2117 2118 2119
	return ret;
}

2120
struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2121 2122 2123
{
	struct rb_node *node;
	struct extent_state *state;
2124
	struct io_failure_record *failrec;
2125

2126
	spin_lock(&tree->lock);
2127 2128 2129 2130
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2131
	node = tree_search(tree, start);
2132
	if (!node) {
2133
		failrec = ERR_PTR(-ENOENT);
2134 2135 2136 2137
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
2138
		failrec = ERR_PTR(-ENOENT);
2139 2140
		goto out;
	}
2141 2142

	failrec = state->failrec;
2143
out:
2144
	spin_unlock(&tree->lock);
2145
	return failrec;
2146 2147 2148 2149
}

/*
 * searches a range in the state tree for a given mask.
2150
 * If 'filled' == 1, this returns 1 only if every extent in the tree
2151 2152 2153 2154
 * has the bits set.  Otherwise, 1 is returned if any bit in the
 * range is found set.
 */
int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2155
		   u32 bits, int filled, struct extent_state *cached)
2156 2157 2158 2159 2160
{
	struct extent_state *state = NULL;
	struct rb_node *node;
	int bitset = 0;

2161
	spin_lock(&tree->lock);
2162
	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2163
	    cached->end > start)
2164 2165 2166
		node = &cached->rb_node;
	else
		node = tree_search(tree, start);
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
	while (node && start <= end) {
		state = rb_entry(node, struct extent_state, rb_node);

		if (filled && state->start > start) {
			bitset = 0;
			break;
		}

		if (state->start > end)
			break;

		if (state->state & bits) {
			bitset = 1;
			if (!filled)
				break;
		} else if (filled) {
			bitset = 0;
			break;
		}
2186 2187 2188 2189

		if (state->end == (u64)-1)
			break;

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
		start = state->end + 1;
		if (start > end)
			break;
		node = rb_next(node);
		if (!node) {
			if (filled)
				bitset = 0;
			break;
		}
	}
2200
	spin_unlock(&tree->lock);
2201 2202 2203 2204 2205 2206 2207
	return bitset;
}

/*
 * helper function to set a given page up to date if all the
 * extents in the tree for that page are up to date
 */
2208
static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2209
{
M
Miao Xie 已提交
2210
	u64 start = page_offset(page);
2211
	u64 end = start + PAGE_SIZE - 1;
2212
	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2213 2214 2215
		SetPageUptodate(page);
}

2216 2217 2218
int free_io_failure(struct extent_io_tree *failure_tree,
		    struct extent_io_tree *io_tree,
		    struct io_failure_record *rec)
2219 2220 2221 2222
{
	int ret;
	int err = 0;

2223
	set_state_failrec(failure_tree, rec->start, NULL);
2224 2225
	ret = clear_extent_bits(failure_tree, rec->start,
				rec->start + rec->len - 1,
2226
				EXTENT_LOCKED | EXTENT_DIRTY);
2227 2228 2229
	if (ret)
		err = ret;

2230
	ret = clear_extent_bits(io_tree, rec->start,
D
David Woodhouse 已提交
2231
				rec->start + rec->len - 1,
2232
				EXTENT_DAMAGED);
D
David Woodhouse 已提交
2233 2234
	if (ret && !err)
		err = ret;
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244

	kfree(rec);
	return err;
}

/*
 * this bypasses the standard btrfs submit functions deliberately, as
 * the standard behavior is to write all copies in a raid setup. here we only
 * want to write the one bad copy. so we do the mapping for ourselves and issue
 * submit_bio directly.
2245
 * to avoid any synchronization issues, wait for the data after writing, which
2246 2247 2248 2249
 * actually prevents the read that triggered the error from finishing.
 * currently, there can be no more than two copies of every data bit. thus,
 * exactly one rewrite is required.
 */
2250 2251 2252
int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
		      u64 length, u64 logical, struct page *page,
		      unsigned int pg_offset, int mirror_num)
2253 2254 2255 2256 2257 2258 2259 2260
{
	struct bio *bio;
	struct btrfs_device *dev;
	u64 map_length = 0;
	u64 sector;
	struct btrfs_bio *bbio = NULL;
	int ret;

2261
	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2262 2263
	BUG_ON(!mirror_num);

2264 2265 2266
	if (btrfs_is_zoned(fs_info))
		return btrfs_repair_one_zone(fs_info, logical);

2267
	bio = btrfs_io_bio_alloc(1);
2268
	bio->bi_iter.bi_size = 0;
2269 2270
	map_length = length;

2271 2272 2273 2274 2275 2276
	/*
	 * Avoid races with device replace and make sure our bbio has devices
	 * associated to its stripes that don't go away while we are doing the
	 * read repair operation.
	 */
	btrfs_bio_counter_inc_blocked(fs_info);
2277
	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
		/*
		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
		 * to update all raid stripes, but here we just want to correct
		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
		 * stripe's dev and sector.
		 */
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
				      &map_length, &bbio, 0);
		if (ret) {
			btrfs_bio_counter_dec(fs_info);
			bio_put(bio);
			return -EIO;
		}
		ASSERT(bbio->mirror_num == 1);
	} else {
		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
				      &map_length, &bbio, mirror_num);
		if (ret) {
			btrfs_bio_counter_dec(fs_info);
			bio_put(bio);
			return -EIO;
		}
		BUG_ON(mirror_num != bbio->mirror_num);
2301
	}
2302 2303

	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2304
	bio->bi_iter.bi_sector = sector;
2305
	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2306
	btrfs_put_bbio(bbio);
2307 2308
	if (!dev || !dev->bdev ||
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2309
		btrfs_bio_counter_dec(fs_info);
2310 2311 2312
		bio_put(bio);
		return -EIO;
	}
2313
	bio_set_dev(bio, dev->bdev);
2314
	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2315
	bio_add_page(bio, page, length, pg_offset);
2316

2317
	if (btrfsic_submit_bio_wait(bio)) {
2318
		/* try to remap that extent elsewhere? */
2319
		btrfs_bio_counter_dec(fs_info);
2320
		bio_put(bio);
2321
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2322 2323 2324
		return -EIO;
	}

2325 2326
	btrfs_info_rl_in_rcu(fs_info,
		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2327
				  ino, start,
2328
				  rcu_str_deref(dev->name), sector);
2329
	btrfs_bio_counter_dec(fs_info);
2330 2331 2332 2333
	bio_put(bio);
	return 0;
}

2334
int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2335
{
2336
	struct btrfs_fs_info *fs_info = eb->fs_info;
2337
	u64 start = eb->start;
2338
	int i, num_pages = num_extent_pages(eb);
2339
	int ret = 0;
2340

2341
	if (sb_rdonly(fs_info->sb))
2342 2343
		return -EROFS;

2344
	for (i = 0; i < num_pages; i++) {
2345
		struct page *p = eb->pages[i];
2346

2347
		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2348
					start - page_offset(p), mirror_num);
2349 2350
		if (ret)
			break;
2351
		start += PAGE_SIZE;
2352 2353 2354 2355 2356
	}

	return ret;
}

2357 2358 2359 2360
/*
 * each time an IO finishes, we do a fast check in the IO failure tree
 * to see if we need to process or clean up an io_failure_record
 */
2361 2362 2363 2364
int clean_io_failure(struct btrfs_fs_info *fs_info,
		     struct extent_io_tree *failure_tree,
		     struct extent_io_tree *io_tree, u64 start,
		     struct page *page, u64 ino, unsigned int pg_offset)
2365 2366 2367 2368 2369 2370 2371 2372
{
	u64 private;
	struct io_failure_record *failrec;
	struct extent_state *state;
	int num_copies;
	int ret;

	private = 0;
2373 2374
	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
			       EXTENT_DIRTY, 0);
2375 2376 2377
	if (!ret)
		return 0;

2378 2379
	failrec = get_state_failrec(failure_tree, start);
	if (IS_ERR(failrec))
2380 2381 2382 2383 2384 2385
		return 0;

	BUG_ON(!failrec->this_mirror);

	if (failrec->in_validation) {
		/* there was no real error, just free the record */
2386 2387 2388
		btrfs_debug(fs_info,
			"clean_io_failure: freeing dummy error at %llu",
			failrec->start);
2389 2390
		goto out;
	}
2391
	if (sb_rdonly(fs_info->sb))
2392
		goto out;
2393

2394 2395
	spin_lock(&io_tree->lock);
	state = find_first_extent_bit_state(io_tree,
2396 2397
					    failrec->start,
					    EXTENT_LOCKED);
2398
	spin_unlock(&io_tree->lock);
2399

2400 2401
	if (state && state->start <= failrec->start &&
	    state->end >= failrec->start + failrec->len - 1) {
2402 2403
		num_copies = btrfs_num_copies(fs_info, failrec->logical,
					      failrec->len);
2404
		if (num_copies > 1)  {
2405 2406 2407
			repair_io_failure(fs_info, ino, start, failrec->len,
					  failrec->logical, page, pg_offset,
					  failrec->failed_mirror);
2408 2409 2410 2411
		}
	}

out:
2412
	free_io_failure(failure_tree, io_tree, failrec);
2413

2414
	return 0;
2415 2416
}

2417 2418 2419 2420 2421 2422
/*
 * Can be called when
 * - hold extent lock
 * - under ordered extent
 * - the inode is freeing
 */
2423
void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2424
{
2425
	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
	struct io_failure_record *failrec;
	struct extent_state *state, *next;

	if (RB_EMPTY_ROOT(&failure_tree->state))
		return;

	spin_lock(&failure_tree->lock);
	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
	while (state) {
		if (state->start > end)
			break;

		ASSERT(state->end <= end);

		next = next_state(state);

2442
		failrec = state->failrec;
2443 2444 2445 2446 2447 2448 2449 2450
		free_extent_state(state);
		kfree(failrec);

		state = next;
	}
	spin_unlock(&failure_tree->lock);
}

2451 2452
static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
							     u64 start, u64 end)
2453
{
2454
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2455
	struct io_failure_record *failrec;
2456 2457 2458 2459 2460 2461 2462
	struct extent_map *em;
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
	int ret;
	u64 logical;

2463
	failrec = get_state_failrec(failure_tree, start);
2464
	if (!IS_ERR(failrec)) {
2465 2466 2467 2468
		btrfs_debug(fs_info,
			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
			failrec->logical, failrec->start, failrec->len,
			failrec->in_validation);
2469 2470 2471 2472 2473
		/*
		 * when data can be on disk more than twice, add to failrec here
		 * (e.g. with a list for failed_mirror) to make
		 * clean_io_failure() clean all those errors at once.
		 */
2474 2475

		return failrec;
2476
	}
2477

2478 2479 2480
	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
	if (!failrec)
		return ERR_PTR(-ENOMEM);
2481

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
	failrec->start = start;
	failrec->len = end - start + 1;
	failrec->this_mirror = 0;
	failrec->bio_flags = 0;
	failrec->in_validation = 0;

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, start, failrec->len);
	if (!em) {
		read_unlock(&em_tree->lock);
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	if (em->start > start || em->start + em->len <= start) {
		free_extent_map(em);
		em = NULL;
	}
	read_unlock(&em_tree->lock);
	if (!em) {
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	logical = start - em->start;
	logical = em->block_start + logical;
	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
		logical = em->block_start;
		failrec->bio_flags = EXTENT_BIO_COMPRESSED;
		extent_set_compress_type(&failrec->bio_flags, em->compress_type);
	}

	btrfs_debug(fs_info,
		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
		    logical, start, failrec->len);

	failrec->logical = logical;
	free_extent_map(em);

	/* Set the bits in the private failure tree */
	ret = set_extent_bits(failure_tree, start, end,
			      EXTENT_LOCKED | EXTENT_DIRTY);
	if (ret >= 0) {
		ret = set_state_failrec(failure_tree, start, failrec);
		/* Set the bits in the inode's tree */
		ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
	} else if (ret < 0) {
		kfree(failrec);
		return ERR_PTR(ret);
	}

	return failrec;
2534 2535
}

2536 2537 2538
static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
				   struct io_failure_record *failrec,
				   int failed_mirror)
2539
{
2540
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2541 2542
	int num_copies;

2543
	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2544 2545 2546 2547 2548 2549
	if (num_copies == 1) {
		/*
		 * we only have a single copy of the data, so don't bother with
		 * all the retry and error correction code that follows. no
		 * matter what the error is, it is very likely to persist.
		 */
2550 2551 2552
		btrfs_debug(fs_info,
			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2553
		return false;
2554 2555 2556 2557 2558 2559 2560
	}

	/*
	 * there are two premises:
	 *	a) deliver good data to the caller
	 *	b) correct the bad sectors on disk
	 */
2561
	if (needs_validation) {
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
		/*
		 * to fulfill b), we need to know the exact failing sectors, as
		 * we don't want to rewrite any more than the failed ones. thus,
		 * we need separate read requests for the failed bio
		 *
		 * if the following BUG_ON triggers, our validation request got
		 * merged. we need separate requests for our algorithm to work.
		 */
		BUG_ON(failrec->in_validation);
		failrec->in_validation = 1;
		failrec->this_mirror = failed_mirror;
	} else {
		/*
		 * we're ready to fulfill a) and b) alongside. get a good copy
		 * of the failed sector and if we succeed, we have setup
		 * everything for repair_io_failure to do the rest for us.
		 */
		if (failrec->in_validation) {
			BUG_ON(failrec->this_mirror != failed_mirror);
			failrec->in_validation = 0;
			failrec->this_mirror = 0;
		}
		failrec->failed_mirror = failed_mirror;
		failrec->this_mirror++;
		if (failrec->this_mirror == failed_mirror)
			failrec->this_mirror++;
	}

2590
	if (failrec->this_mirror > num_copies) {
2591 2592 2593
		btrfs_debug(fs_info,
			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2594
		return false;
2595 2596
	}

2597
	return true;
2598 2599
}

2600
static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2601
{
2602
	u64 len = 0;
2603
	const u32 blocksize = inode->i_sb->s_blocksize;
2604

2605 2606 2607 2608 2609 2610 2611
	/*
	 * If bi_status is BLK_STS_OK, then this was a checksum error, not an
	 * I/O error. In this case, we already know exactly which sector was
	 * bad, so we don't need to validate.
	 */
	if (bio->bi_status == BLK_STS_OK)
		return false;
2612

2613 2614 2615
	/*
	 * We need to validate each sector individually if the failed I/O was
	 * for multiple sectors.
2616 2617 2618 2619 2620 2621 2622 2623 2624
	 *
	 * There are a few possible bios that can end up here:
	 * 1. A buffered read bio, which is not cloned.
	 * 2. A direct I/O read bio, which is cloned.
	 * 3. A (buffered or direct) repair bio, which is not cloned.
	 *
	 * For cloned bios (case 2), we can get the size from
	 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
	 * it from the bvecs.
2625
	 */
2626 2627
	if (bio_flagged(bio, BIO_CLONED)) {
		if (btrfs_io_bio(bio)->iter.bi_size > blocksize)
2628
			return true;
2629 2630 2631
	} else {
		struct bio_vec *bvec;
		int i;
2632

2633 2634 2635 2636 2637
		bio_for_each_bvec_all(bvec, bio, i) {
			len += bvec->bv_len;
			if (len > blocksize)
				return true;
		}
2638
	}
2639
	return false;
2640 2641
}

2642
blk_status_t btrfs_submit_read_repair(struct inode *inode,
2643
				      struct bio *failed_bio, u32 bio_offset,
2644 2645 2646
				      struct page *page, unsigned int pgoff,
				      u64 start, u64 end, int failed_mirror,
				      submit_bio_hook_t *submit_bio_hook)
2647 2648
{
	struct io_failure_record *failrec;
2649
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2650
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2651
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2652
	struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2653
	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2654
	bool need_validation;
2655 2656
	struct bio *repair_bio;
	struct btrfs_io_bio *repair_io_bio;
2657
	blk_status_t status;
2658

2659 2660
	btrfs_debug(fs_info,
		   "repair read error: read error at %llu", start);
2661

2662
	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2663

2664 2665 2666
	failrec = btrfs_get_io_failure_record(inode, start, end);
	if (IS_ERR(failrec))
		return errno_to_blk_status(PTR_ERR(failrec));
2667

2668
	need_validation = btrfs_io_needs_validation(inode, failed_bio);
2669

2670
	if (!btrfs_check_repairable(inode, need_validation, failrec,
2671
				    failed_mirror)) {
2672
		free_io_failure(failure_tree, tree, failrec);
2673
		return BLK_STS_IOERR;
2674 2675
	}

2676 2677 2678
	repair_bio = btrfs_io_bio_alloc(1);
	repair_io_bio = btrfs_io_bio(repair_bio);
	repair_bio->bi_opf = REQ_OP_READ;
2679
	if (need_validation)
2680 2681 2682 2683
		repair_bio->bi_opf |= REQ_FAILFAST_DEV;
	repair_bio->bi_end_io = failed_bio->bi_end_io;
	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
	repair_bio->bi_private = failed_bio->bi_private;
2684

2685
	if (failed_io_bio->csum) {
2686
		const u32 csum_size = fs_info->csum_size;
2687 2688 2689 2690 2691

		repair_io_bio->csum = repair_io_bio->csum_inline;
		memcpy(repair_io_bio->csum,
		       failed_io_bio->csum + csum_size * icsum, csum_size);
	}
2692

2693 2694 2695
	bio_add_page(repair_bio, page, failrec->len, pgoff);
	repair_io_bio->logical = failrec->start;
	repair_io_bio->iter = repair_bio->bi_iter;
2696

2697
	btrfs_debug(btrfs_sb(inode->i_sb),
2698 2699
"repair read error: submitting new read to mirror %d, in_validation=%d",
		    failrec->this_mirror, failrec->in_validation);
2700

2701 2702
	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
				 failrec->bio_flags);
2703
	if (status) {
2704
		free_io_failure(failure_tree, tree, failrec);
2705
		bio_put(repair_bio);
2706
	}
2707
	return status;
2708 2709
}

2710 2711
/* lots and lots of room for performance fixes in the end_bio funcs */

2712
void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2713 2714
{
	int uptodate = (err == 0);
2715
	int ret = 0;
2716

2717
	btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2718 2719 2720 2721

	if (!uptodate) {
		ClearPageUptodate(page);
		SetPageError(page);
2722
		ret = err < 0 ? err : -EIO;
2723
		mapping_set_error(page->mapping, ret);
2724 2725 2726
	}
}

2727 2728 2729 2730 2731 2732 2733 2734 2735
/*
 * after a writepage IO is done, we need to:
 * clear the uptodate bits on error
 * clear the writeback bits in the extent tree for this IO
 * end_page_writeback if the page has no more pending IO
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2736
static void end_bio_extent_writepage(struct bio *bio)
2737
{
2738
	int error = blk_status_to_errno(bio->bi_status);
2739
	struct bio_vec *bvec;
2740 2741
	u64 start;
	u64 end;
2742
	struct bvec_iter_all iter_all;
2743
	bool first_bvec = true;
2744

2745
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2746
	bio_for_each_segment_all(bvec, bio, iter_all) {
2747
		struct page *page = bvec->bv_page;
2748 2749
		struct inode *inode = page->mapping->host;
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2750

2751 2752 2753 2754 2755
		/* We always issue full-page reads, but if some block
		 * in a page fails to read, blk_update_request() will
		 * advance bv_offset and adjust bv_len to compensate.
		 * Print a warning for nonzero offsets, and an error
		 * if they don't add up to a full page.  */
2756 2757
		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2758
				btrfs_err(fs_info,
2759 2760 2761
				   "partial page write in btrfs with offset %u and length %u",
					bvec->bv_offset, bvec->bv_len);
			else
2762
				btrfs_info(fs_info,
J
Jeff Mahoney 已提交
2763
				   "incomplete page write in btrfs with offset %u and length %u",
2764 2765
					bvec->bv_offset, bvec->bv_len);
		}
2766

2767 2768
		start = page_offset(page);
		end = start + bvec->bv_offset + bvec->bv_len - 1;
2769

2770 2771 2772 2773 2774
		if (first_bvec) {
			btrfs_record_physical_zoned(inode, start, bio);
			first_bvec = false;
		}

2775
		end_extent_writepage(page, error, start, end);
2776
		end_page_writeback(page);
2777
	}
2778

2779 2780 2781
	bio_put(bio);
}

2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
/*
 * Record previously processed extent range
 *
 * For endio_readpage_release_extent() to handle a full extent range, reducing
 * the extent io operations.
 */
struct processed_extent {
	struct btrfs_inode *inode;
	/* Start of the range in @inode */
	u64 start;
2792
	/* End of the range in @inode */
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
	u64 end;
	bool uptodate;
};

/*
 * Try to release processed extent range
 *
 * May not release the extent range right now if the current range is
 * contiguous to processed extent.
 *
 * Will release processed extent when any of @inode, @uptodate, the range is
 * no longer contiguous to the processed range.
 *
 * Passing @inode == NULL will force processed extent to be released.
 */
static void endio_readpage_release_extent(struct processed_extent *processed,
			      struct btrfs_inode *inode, u64 start, u64 end,
			      bool uptodate)
2811 2812
{
	struct extent_state *cached = NULL;
2813 2814 2815 2816 2817
	struct extent_io_tree *tree;

	/* The first extent, initialize @processed */
	if (!processed->inode)
		goto update;
2818

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
	/*
	 * Contiguous to processed extent, just uptodate the end.
	 *
	 * Several things to notice:
	 *
	 * - bio can be merged as long as on-disk bytenr is contiguous
	 *   This means we can have page belonging to other inodes, thus need to
	 *   check if the inode still matches.
	 * - bvec can contain range beyond current page for multi-page bvec
	 *   Thus we need to do processed->end + 1 >= start check
	 */
	if (processed->inode == inode && processed->uptodate == uptodate &&
	    processed->end + 1 >= start && end >= processed->end) {
		processed->end = end;
		return;
	}

	tree = &processed->inode->io_tree;
	/*
	 * Now we don't have range contiguous to the processed range, release
	 * the processed range now.
	 */
	if (processed->uptodate && tree->track_uptodate)
		set_extent_uptodate(tree, processed->start, processed->end,
				    &cached, GFP_ATOMIC);
	unlock_extent_cached_atomic(tree, processed->start, processed->end,
				    &cached);

update:
	/* Update processed to current range */
	processed->inode = inode;
	processed->start = start;
	processed->end = end;
	processed->uptodate = uptodate;
2853 2854
}

2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
{
	ASSERT(PageLocked(page));
	if (fs_info->sectorsize == PAGE_SIZE)
		return;

	ASSERT(PagePrivate(page));
	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
}

static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
2866
{
2867 2868 2869 2870 2871
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);

	ASSERT(page_offset(page) <= start &&
		start + len <= page_offset(page) + PAGE_SIZE);

2872
	if (uptodate) {
2873
		btrfs_page_set_uptodate(fs_info, page, start, len);
2874
	} else {
2875 2876
		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
2877
	}
2878 2879 2880

	if (fs_info->sectorsize == PAGE_SIZE)
		unlock_page(page);
2881 2882 2883 2884 2885 2886
	else if (is_data_inode(page->mapping->host))
		/*
		 * For subpage data, unlock the page if we're the last reader.
		 * For subpage metadata, page lock is not utilized for read.
		 */
		btrfs_subpage_end_reader(fs_info, page, start, len);
2887 2888
}

2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
/*
 * Find extent buffer for a givne bytenr.
 *
 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
 * in endio context.
 */
static struct extent_buffer *find_extent_buffer_readpage(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
	struct extent_buffer *eb;

	/*
	 * For regular sectorsize, we can use page->private to grab extent
	 * buffer
	 */
	if (fs_info->sectorsize == PAGE_SIZE) {
		ASSERT(PagePrivate(page) && page->private);
		return (struct extent_buffer *)page->private;
	}

	/* For subpage case, we need to lookup buffer radix tree */
	rcu_read_lock();
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       bytenr >> fs_info->sectorsize_bits);
	rcu_read_unlock();
	ASSERT(eb);
	return eb;
}

2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
/*
 * after a readpage IO is done, we need to:
 * clear the uptodate bits on error
 * set the uptodate bits if things worked
 * set the page up to date if all extents in the tree are uptodate
 * clear the lock bit in the extent tree
 * unlock the page if there are no other extents locked for it
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2929
static void end_bio_extent_readpage(struct bio *bio)
2930
{
2931
	struct bio_vec *bvec;
2932
	int uptodate = !bio->bi_status;
2933
	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2934
	struct extent_io_tree *tree, *failure_tree;
2935
	struct processed_extent processed = { 0 };
2936 2937 2938 2939 2940
	/*
	 * The offset to the beginning of a bio, since one bio can never be
	 * larger than UINT_MAX, u32 here is enough.
	 */
	u32 bio_offset = 0;
2941
	int mirror;
2942
	int ret;
2943
	struct bvec_iter_all iter_all;
2944

2945
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2946
	bio_for_each_segment_all(bvec, bio, iter_all) {
2947
		struct page *page = bvec->bv_page;
2948
		struct inode *inode = page->mapping->host;
2949
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2950 2951 2952 2953
		const u32 sectorsize = fs_info->sectorsize;
		u64 start;
		u64 end;
		u32 len;
2954

2955 2956
		btrfs_debug(fs_info,
			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
D
David Sterba 已提交
2957
			bio->bi_iter.bi_sector, bio->bi_status,
2958
			io_bio->mirror_num);
2959
		tree = &BTRFS_I(inode)->io_tree;
2960
		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2961

2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
		/*
		 * We always issue full-sector reads, but if some block in a
		 * page fails to read, blk_update_request() will advance
		 * bv_offset and adjust bv_len to compensate.  Print a warning
		 * for unaligned offsets, and an error if they don't add up to
		 * a full sector.
		 */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page read in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
				     sectorsize))
			btrfs_info(fs_info,
		"incomplete page read with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
2981
		len = bvec->bv_len;
2982

2983
		mirror = io_bio->mirror_num;
2984
		if (likely(uptodate)) {
2985
			if (is_data_inode(inode))
2986
				ret = btrfs_verify_data_csum(io_bio,
2987
						bio_offset, page, start, end);
2988 2989
			else
				ret = btrfs_validate_metadata_buffer(io_bio,
2990
					page, start, end, mirror);
2991
			if (ret)
2992
				uptodate = 0;
2993
			else
2994 2995 2996 2997
				clean_io_failure(BTRFS_I(inode)->root->fs_info,
						 failure_tree, tree, start,
						 page,
						 btrfs_ino(BTRFS_I(inode)), 0);
2998
		}
2999

3000 3001 3002
		if (likely(uptodate))
			goto readpage_ok;

3003
		if (is_data_inode(inode)) {
L
Liu Bo 已提交
3004

3005
			/*
3006 3007 3008 3009 3010 3011 3012 3013
			 * The generic bio_readpage_error handles errors the
			 * following way: If possible, new read requests are
			 * created and submitted and will end up in
			 * end_bio_extent_readpage as well (if we're lucky,
			 * not in the !uptodate case). In that case it returns
			 * 0 and we just go on with the next page in our bio.
			 * If it can't handle the error it will return -EIO and
			 * we remain responsible for that page.
3014
			 */
3015 3016
			if (!btrfs_submit_read_repair(inode, bio, bio_offset,
						page,
3017 3018
						start - page_offset(page),
						start, end, mirror,
3019
						btrfs_submit_data_bio)) {
3020
				uptodate = !bio->bi_status;
3021 3022
				ASSERT(bio_offset + len > bio_offset);
				bio_offset += len;
3023 3024 3025 3026 3027
				continue;
			}
		} else {
			struct extent_buffer *eb;

3028
			eb = find_extent_buffer_readpage(fs_info, page, start);
3029 3030 3031 3032 3033 3034
			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
			eb->read_mirror = mirror;
			atomic_dec(&eb->io_pages);
			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
					       &eb->bflags))
				btree_readahead_hook(eb, -EIO);
3035
		}
3036
readpage_ok:
3037
		if (likely(uptodate)) {
3038
			loff_t i_size = i_size_read(inode);
3039
			pgoff_t end_index = i_size >> PAGE_SHIFT;
3040

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
			/*
			 * Zero out the remaining part if this range straddles
			 * i_size.
			 *
			 * Here we should only zero the range inside the bvec,
			 * not touch anything else.
			 *
			 * NOTE: i_size is exclusive while end is inclusive.
			 */
			if (page->index == end_index && i_size <= end) {
				u32 zero_start = max(offset_in_page(i_size),
3052
						     offset_in_page(start));
3053 3054 3055 3056

				zero_user_segment(page, zero_start,
						  offset_in_page(end) + 1);
			}
3057
		}
3058 3059
		ASSERT(bio_offset + len > bio_offset);
		bio_offset += len;
3060

3061
		/* Update page status and unlock */
3062
		end_page_read(page, uptodate, start, len);
3063 3064
		endio_readpage_release_extent(&processed, BTRFS_I(inode),
					      start, end, uptodate);
3065
	}
3066 3067
	/* Release the last extent */
	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3068
	btrfs_io_bio_free_csum(io_bio);
3069 3070 3071
	bio_put(bio);
}

3072
/*
3073 3074 3075
 * Initialize the members up to but not including 'bio'. Use after allocating a
 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
 * 'bio' because use of __GFP_ZERO is not supported.
3076
 */
3077
static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
3078
{
3079 3080
	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
}
3081

3082
/*
3083 3084 3085
 * The following helpers allocate a bio. As it's backed by a bioset, it'll
 * never fail.  We're returning a bio right now but you can call btrfs_io_bio
 * for the appropriate container_of magic
3086
 */
3087
struct bio *btrfs_bio_alloc(u64 first_byte)
3088 3089 3090
{
	struct bio *bio;

3091
	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &btrfs_bioset);
3092
	bio->bi_iter.bi_sector = first_byte >> 9;
3093
	btrfs_io_bio_init(btrfs_io_bio(bio));
3094 3095 3096
	return bio;
}

3097
struct bio *btrfs_bio_clone(struct bio *bio)
3098
{
3099 3100
	struct btrfs_io_bio *btrfs_bio;
	struct bio *new;
3101

3102
	/* Bio allocation backed by a bioset does not fail */
3103
	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
3104
	btrfs_bio = btrfs_io_bio(new);
3105
	btrfs_io_bio_init(btrfs_bio);
3106
	btrfs_bio->iter = bio->bi_iter;
3107 3108
	return new;
}
3109

3110
struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
3111
{
3112 3113
	struct bio *bio;

3114
	/* Bio allocation backed by a bioset does not fail */
3115
	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
3116
	btrfs_io_bio_init(btrfs_io_bio(bio));
3117
	return bio;
3118 3119
}

3120
struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
3121 3122 3123 3124 3125
{
	struct bio *bio;
	struct btrfs_io_bio *btrfs_bio;

	/* this will never fail when it's backed by a bioset */
3126
	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3127 3128 3129
	ASSERT(bio);

	btrfs_bio = btrfs_io_bio(bio);
3130
	btrfs_io_bio_init(btrfs_bio);
3131 3132

	bio_trim(bio, offset >> 9, size >> 9);
3133
	btrfs_bio->iter = bio->bi_iter;
3134 3135
	return bio;
}
3136

3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
/**
 * Attempt to add a page to bio
 *
 * @bio:	destination bio
 * @page:	page to add to the bio
 * @disk_bytenr:  offset of the new bio or to check whether we are adding
 *                a contiguous page to the previous one
 * @pg_offset:	starting offset in the page
 * @size:	portion of page that we want to write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
 * @bio_flags:	flags of the current bio to see if we can merge them
 * @return:	true if page was added, false otherwise
 *
 * Attempt to add a page to bio considering stripe alignment etc.
 *
 * Return true if successfully page added. Otherwise, return false.
 */
static bool btrfs_bio_add_page(struct bio *bio, struct page *page,
			       u64 disk_bytenr, unsigned int size,
			       unsigned int pg_offset,
			       unsigned long prev_bio_flags,
			       unsigned long bio_flags)
{
	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
	bool contig;
3162
	int ret;
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176

	if (prev_bio_flags != bio_flags)
		return false;

	if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
		contig = bio->bi_iter.bi_sector == sector;
	else
		contig = bio_end_sector(bio) == sector;
	if (!contig)
		return false;

	if (btrfs_bio_fits_in_stripe(page, size, bio, bio_flags))
		return false;

3177 3178 3179 3180 3181
	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
		struct page *first_page = bio_first_bvec_all(bio)->bv_page;

		if (!btrfs_bio_fits_in_ordered_extent(first_page, bio, size))
			return false;
3182
		ret = bio_add_zone_append_page(bio, page, size, pg_offset);
3183
	} else {
3184
		ret = bio_add_page(bio, page, size, pg_offset);
3185
	}
3186 3187

	return ret == size;
3188 3189
}

3190 3191
/*
 * @opf:	bio REQ_OP_* and REQ_* flags as one value
3192 3193
 * @wbc:	optional writeback control for io accounting
 * @page:	page to add to the bio
3194 3195
 * @disk_bytenr: logical bytenr where the write will be
 * @size:	portion of page that we want to write to
3196 3197
 * @pg_offset:	offset of the new bio or to check whether we are adding
 *              a contiguous page to the previous one
3198
 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3199 3200 3201 3202
 * @end_io_func:     end_io callback for new bio
 * @mirror_num:	     desired mirror to read/write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
 * @bio_flags:	flags of the current bio to see if we can merge them
3203
 */
3204
static int submit_extent_page(unsigned int opf,
3205
			      struct writeback_control *wbc,
3206
			      struct page *page, u64 disk_bytenr,
3207
			      size_t size, unsigned long pg_offset,
3208
			      struct bio **bio_ret,
3209
			      bio_end_io_t end_io_func,
C
Chris Mason 已提交
3210 3211
			      int mirror_num,
			      unsigned long prev_bio_flags,
3212 3213
			      unsigned long bio_flags,
			      bool force_bio_submit)
3214 3215 3216
{
	int ret = 0;
	struct bio *bio;
3217
	size_t io_size = min_t(size_t, size, PAGE_SIZE);
3218 3219 3220
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
	struct extent_io_tree *tree = &inode->io_tree;
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3221

3222 3223 3224
	ASSERT(bio_ret);

	if (*bio_ret) {
3225
		bio = *bio_ret;
3226 3227 3228
		if (force_bio_submit ||
		    !btrfs_bio_add_page(bio, page, disk_bytenr, io_size,
					pg_offset, prev_bio_flags, bio_flags)) {
3229
			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3230 3231
			if (ret < 0) {
				*bio_ret = NULL;
3232
				return ret;
3233
			}
3234 3235
			bio = NULL;
		} else {
3236
			if (wbc)
3237
				wbc_account_cgroup_owner(wbc, page, io_size);
3238 3239 3240
			return 0;
		}
	}
C
Chris Mason 已提交
3241

3242
	bio = btrfs_bio_alloc(disk_bytenr);
3243
	bio_add_page(bio, page, io_size, pg_offset);
3244 3245
	bio->bi_end_io = end_io_func;
	bio->bi_private = tree;
3246
	bio->bi_write_hint = page->mapping->host->i_write_hint;
3247
	bio->bi_opf = opf;
3248
	if (wbc) {
3249 3250
		struct block_device *bdev;

3251
		bdev = fs_info->fs_devices->latest_bdev;
3252
		bio_set_dev(bio, bdev);
3253
		wbc_init_bio(wbc, bio);
3254
		wbc_account_cgroup_owner(wbc, page, io_size);
3255
	}
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
	if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) {
		struct extent_map *em;
		struct map_lookup *map;

		em = btrfs_get_chunk_map(fs_info, disk_bytenr, io_size);
		if (IS_ERR(em))
			return PTR_ERR(em);

		map = em->map_lookup;
		/* We only support single profile for now */
		ASSERT(map->num_stripes == 1);
		btrfs_io_bio(bio)->device = map->stripes[0].dev;

		free_extent_map(em);
	}
3271

3272
	*bio_ret = bio;
3273 3274 3275 3276

	return ret;
}

3277 3278 3279
static int attach_extent_buffer_page(struct extent_buffer *eb,
				     struct page *page,
				     struct btrfs_subpage *prealloc)
3280
{
3281 3282 3283
	struct btrfs_fs_info *fs_info = eb->fs_info;
	int ret = 0;

3284 3285 3286 3287 3288 3289 3290 3291 3292
	/*
	 * If the page is mapped to btree inode, we should hold the private
	 * lock to prevent race.
	 * For cloned or dummy extent buffers, their pages are not mapped and
	 * will not race with any other ebs.
	 */
	if (page->mapping)
		lockdep_assert_held(&page->mapping->private_lock);

3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
	if (fs_info->sectorsize == PAGE_SIZE) {
		if (!PagePrivate(page))
			attach_page_private(page, eb);
		else
			WARN_ON(page->private != (unsigned long)eb);
		return 0;
	}

	/* Already mapped, just free prealloc */
	if (PagePrivate(page)) {
		btrfs_free_subpage(prealloc);
		return 0;
	}

	if (prealloc)
		/* Has preallocated memory for subpage */
		attach_page_private(page, prealloc);
3310
	else
3311 3312 3313 3314
		/* Do new allocation to attach subpage */
		ret = btrfs_attach_subpage(fs_info, page,
					   BTRFS_SUBPAGE_METADATA);
	return ret;
3315 3316
}

3317
int set_page_extent_mapped(struct page *page)
3318
{
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

	if (PagePrivate(page))
		return 0;

	fs_info = btrfs_sb(page->mapping->host->i_sb);

	if (fs_info->sectorsize < PAGE_SIZE)
		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);

	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
	return 0;
}

void clear_page_extent_mapped(struct page *page)
{
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

3341
	if (!PagePrivate(page))
3342 3343 3344 3345 3346 3347 3348
		return;

	fs_info = btrfs_sb(page->mapping->host->i_sb);
	if (fs_info->sectorsize < PAGE_SIZE)
		return btrfs_detach_subpage(fs_info, page);

	detach_page_private(page);
3349 3350
}

3351 3352
static struct extent_map *
__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3353
		 u64 start, u64 len, struct extent_map **em_cached)
3354 3355 3356 3357 3358
{
	struct extent_map *em;

	if (em_cached && *em_cached) {
		em = *em_cached;
3359
		if (extent_map_in_tree(em) && start >= em->start &&
3360
		    start < extent_map_end(em)) {
3361
			refcount_inc(&em->refs);
3362 3363 3364 3365 3366 3367 3368
			return em;
		}

		free_extent_map(em);
		*em_cached = NULL;
	}

3369
	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3370 3371
	if (em_cached && !IS_ERR_OR_NULL(em)) {
		BUG_ON(*em_cached);
3372
		refcount_inc(&em->refs);
3373 3374 3375 3376
		*em_cached = em;
	}
	return em;
}
3377 3378 3379 3380
/*
 * basic readpage implementation.  Locked extent state structs are inserted
 * into the tree that are removed when the IO is done (by the end_io
 * handlers)
3381
 * XXX JDM: This needs looking at to ensure proper page locking
3382
 * return 0 on success, otherwise return error
3383
 */
3384 3385 3386
int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
		      struct bio **bio, unsigned long *bio_flags,
		      unsigned int read_flags, u64 *prev_em_start)
3387 3388
{
	struct inode *inode = page->mapping->host;
3389
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
M
Miao Xie 已提交
3390
	u64 start = page_offset(page);
3391
	const u64 end = start + PAGE_SIZE - 1;
3392 3393 3394 3395 3396 3397
	u64 cur = start;
	u64 extent_offset;
	u64 last_byte = i_size_read(inode);
	u64 block_start;
	u64 cur_end;
	struct extent_map *em;
3398
	int ret = 0;
3399
	int nr = 0;
3400
	size_t pg_offset = 0;
3401 3402
	size_t iosize;
	size_t blocksize = inode->i_sb->s_blocksize;
3403
	unsigned long this_bio_flag = 0;
3404
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3405

3406 3407 3408
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		unlock_extent(tree, start, end);
3409 3410
		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
		unlock_page(page);
3411 3412
		goto out;
	}
3413

D
Dan Magenheimer 已提交
3414 3415 3416
	if (!PageUptodate(page)) {
		if (cleancache_get_page(page) == 0) {
			BUG_ON(blocksize != PAGE_SIZE);
3417
			unlock_extent(tree, start, end);
3418
			unlock_page(page);
D
Dan Magenheimer 已提交
3419 3420 3421 3422
			goto out;
		}
	}

3423
	if (page->index == last_byte >> PAGE_SHIFT) {
C
Chris Mason 已提交
3424
		char *userpage;
3425
		size_t zero_offset = offset_in_page(last_byte);
C
Chris Mason 已提交
3426 3427

		if (zero_offset) {
3428
			iosize = PAGE_SIZE - zero_offset;
3429
			userpage = kmap_atomic(page);
C
Chris Mason 已提交
3430 3431
			memset(userpage + zero_offset, 0, iosize);
			flush_dcache_page(page);
3432
			kunmap_atomic(userpage);
C
Chris Mason 已提交
3433 3434
		}
	}
3435
	begin_page_read(fs_info, page);
3436
	while (cur <= end) {
3437
		bool force_bio_submit = false;
3438
		u64 disk_bytenr;
3439

3440 3441
		if (cur >= last_byte) {
			char *userpage;
3442 3443
			struct extent_state *cached = NULL;

3444
			iosize = PAGE_SIZE - pg_offset;
3445
			userpage = kmap_atomic(page);
3446
			memset(userpage + pg_offset, 0, iosize);
3447
			flush_dcache_page(page);
3448
			kunmap_atomic(userpage);
3449
			set_extent_uptodate(tree, cur, cur + iosize - 1,
3450
					    &cached, GFP_NOFS);
3451
			unlock_extent_cached(tree, cur,
3452
					     cur + iosize - 1, &cached);
3453
			end_page_read(page, true, cur, iosize);
3454 3455
			break;
		}
3456
		em = __get_extent_map(inode, page, pg_offset, cur,
3457
				      end - cur + 1, em_cached);
3458
		if (IS_ERR_OR_NULL(em)) {
3459
			unlock_extent(tree, cur, end);
3460
			end_page_read(page, false, cur, end + 1 - cur);
3461 3462 3463 3464 3465 3466
			break;
		}
		extent_offset = cur - em->start;
		BUG_ON(extent_map_end(em) <= cur);
		BUG_ON(end < cur);

3467
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3468
			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3469 3470 3471
			extent_set_compress_type(&this_bio_flag,
						 em->compress_type);
		}
C
Chris Mason 已提交
3472

3473 3474
		iosize = min(extent_map_end(em) - cur, end - cur + 1);
		cur_end = min(extent_map_end(em) - 1, end);
3475
		iosize = ALIGN(iosize, blocksize);
3476
		if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3477
			disk_bytenr = em->block_start;
3478
		else
3479
			disk_bytenr = em->block_start + extent_offset;
3480
		block_start = em->block_start;
Y
Yan Zheng 已提交
3481 3482
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			block_start = EXTENT_MAP_HOLE;
3483 3484 3485

		/*
		 * If we have a file range that points to a compressed extent
3486
		 * and it's followed by a consecutive file range that points
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
		 * to the same compressed extent (possibly with a different
		 * offset and/or length, so it either points to the whole extent
		 * or only part of it), we must make sure we do not submit a
		 * single bio to populate the pages for the 2 ranges because
		 * this makes the compressed extent read zero out the pages
		 * belonging to the 2nd range. Imagine the following scenario:
		 *
		 *  File layout
		 *  [0 - 8K]                     [8K - 24K]
		 *    |                               |
		 *    |                               |
		 * points to extent X,         points to extent X,
		 * offset 4K, length of 8K     offset 0, length 16K
		 *
		 * [extent X, compressed length = 4K uncompressed length = 16K]
		 *
		 * If the bio to read the compressed extent covers both ranges,
		 * it will decompress extent X into the pages belonging to the
		 * first range and then it will stop, zeroing out the remaining
		 * pages that belong to the other range that points to extent X.
		 * So here we make sure we submit 2 bios, one for the first
		 * range and another one for the third range. Both will target
		 * the same physical extent from disk, but we can't currently
		 * make the compressed bio endio callback populate the pages
		 * for both ranges because each compressed bio is tightly
		 * coupled with a single extent map, and each range can have
		 * an extent map with a different offset value relative to the
		 * uncompressed data of our extent and different lengths. This
		 * is a corner case so we prioritize correctness over
		 * non-optimal behavior (submitting 2 bios for the same extent).
		 */
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
		    prev_em_start && *prev_em_start != (u64)-1 &&
3520
		    *prev_em_start != em->start)
3521 3522 3523
			force_bio_submit = true;

		if (prev_em_start)
3524
			*prev_em_start = em->start;
3525

3526 3527 3528 3529 3530 3531
		free_extent_map(em);
		em = NULL;

		/* we've found a hole, just zero and go on */
		if (block_start == EXTENT_MAP_HOLE) {
			char *userpage;
3532 3533
			struct extent_state *cached = NULL;

3534
			userpage = kmap_atomic(page);
3535
			memset(userpage + pg_offset, 0, iosize);
3536
			flush_dcache_page(page);
3537
			kunmap_atomic(userpage);
3538 3539

			set_extent_uptodate(tree, cur, cur + iosize - 1,
3540
					    &cached, GFP_NOFS);
3541
			unlock_extent_cached(tree, cur,
3542
					     cur + iosize - 1, &cached);
3543
			end_page_read(page, true, cur, iosize);
3544
			cur = cur + iosize;
3545
			pg_offset += iosize;
3546 3547 3548
			continue;
		}
		/* the get_extent function already copied into the page */
3549 3550
		if (test_range_bit(tree, cur, cur_end,
				   EXTENT_UPTODATE, 1, NULL)) {
3551
			check_page_uptodate(tree, page);
3552
			unlock_extent(tree, cur, cur + iosize - 1);
3553
			end_page_read(page, true, cur, iosize);
3554
			cur = cur + iosize;
3555
			pg_offset += iosize;
3556 3557
			continue;
		}
3558 3559 3560 3561
		/* we have an inline extent but it didn't get marked up
		 * to date.  Error out
		 */
		if (block_start == EXTENT_MAP_INLINE) {
3562
			unlock_extent(tree, cur, cur + iosize - 1);
3563
			end_page_read(page, false, cur, iosize);
3564
			cur = cur + iosize;
3565
			pg_offset += iosize;
3566 3567
			continue;
		}
3568

3569
		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3570
					 page, disk_bytenr, iosize,
3571
					 pg_offset, bio,
3572
					 end_bio_extent_readpage, 0,
C
Chris Mason 已提交
3573
					 *bio_flags,
3574 3575
					 this_bio_flag,
					 force_bio_submit);
3576 3577 3578 3579
		if (!ret) {
			nr++;
			*bio_flags = this_bio_flag;
		} else {
3580
			unlock_extent(tree, cur, cur + iosize - 1);
3581
			end_page_read(page, false, cur, iosize);
3582
			goto out;
3583
		}
3584
		cur = cur + iosize;
3585
		pg_offset += iosize;
3586
	}
D
Dan Magenheimer 已提交
3587
out:
3588
	return ret;
3589 3590
}

3591
static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3592
					     u64 start, u64 end,
3593
					     struct extent_map **em_cached,
3594
					     struct bio **bio,
3595
					     unsigned long *bio_flags,
3596
					     u64 *prev_em_start)
3597
{
3598
	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3599 3600
	int index;

3601
	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3602 3603

	for (index = 0; index < nr_pages; index++) {
3604 3605
		btrfs_do_readpage(pages[index], em_cached, bio, bio_flags,
				  REQ_RAHEAD, prev_em_start);
3606
		put_page(pages[index]);
3607 3608 3609
	}
}

3610
static void update_nr_written(struct writeback_control *wbc,
3611
			      unsigned long nr_written)
3612 3613 3614 3615
{
	wbc->nr_to_write -= nr_written;
}

3616
/*
3617 3618
 * helper for __extent_writepage, doing all of the delayed allocation setup.
 *
3619
 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3620 3621 3622 3623 3624
 * to write the page (copy into inline extent).  In this case the IO has
 * been started and the page is already unlocked.
 *
 * This returns 0 if all went well (page still locked)
 * This returns < 0 if there were errors (page still locked)
3625
 */
3626
static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3627 3628
		struct page *page, struct writeback_control *wbc,
		u64 delalloc_start, unsigned long *nr_written)
3629
{
3630
	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3631
	bool found;
3632 3633 3634 3635 3636 3637 3638
	u64 delalloc_to_write = 0;
	u64 delalloc_end = 0;
	int ret;
	int page_started = 0;


	while (delalloc_end < page_end) {
3639
		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3640
					       &delalloc_start,
3641
					       &delalloc_end);
3642
		if (!found) {
3643 3644 3645
			delalloc_start = delalloc_end + 1;
			continue;
		}
3646
		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3647
				delalloc_end, &page_started, nr_written, wbc);
3648 3649
		if (ret) {
			SetPageError(page);
3650 3651 3652 3653 3654
			/*
			 * btrfs_run_delalloc_range should return < 0 for error
			 * but just in case, we use > 0 here meaning the IO is
			 * started, so we don't want to return > 0 unless
			 * things are going well.
3655
			 */
3656
			return ret < 0 ? ret : -EIO;
3657 3658
		}
		/*
3659 3660
		 * delalloc_end is already one less than the total length, so
		 * we don't subtract one from PAGE_SIZE
3661 3662
		 */
		delalloc_to_write += (delalloc_end - delalloc_start +
3663
				      PAGE_SIZE) >> PAGE_SHIFT;
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
		delalloc_start = delalloc_end + 1;
	}
	if (wbc->nr_to_write < delalloc_to_write) {
		int thresh = 8192;

		if (delalloc_to_write < thresh * 2)
			thresh = delalloc_to_write;
		wbc->nr_to_write = min_t(u64, delalloc_to_write,
					 thresh);
	}

	/* did the fill delalloc function already unlock and start
	 * the IO?
	 */
	if (page_started) {
		/*
		 * we've unlocked the page, so we can't update
		 * the mapping's writeback index, just update
		 * nr_to_write.
		 */
		wbc->nr_to_write -= *nr_written;
		return 1;
	}

3688
	return 0;
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
}

/*
 * helper for __extent_writepage.  This calls the writepage start hooks,
 * and does the loop to map the page into extents and bios.
 *
 * We return 1 if the IO is started and the page is unlocked,
 * 0 if all went well (page still locked)
 * < 0 if there were errors (page still locked)
 */
3699
static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3700 3701 3702 3703 3704
				 struct page *page,
				 struct writeback_control *wbc,
				 struct extent_page_data *epd,
				 loff_t i_size,
				 unsigned long nr_written,
3705
				 int *nr_ret)
3706
{
3707
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3708
	struct extent_io_tree *tree = &inode->io_tree;
M
Miao Xie 已提交
3709
	u64 start = page_offset(page);
3710
	u64 end = start + PAGE_SIZE - 1;
3711 3712 3713 3714
	u64 cur = start;
	u64 extent_offset;
	u64 block_start;
	struct extent_map *em;
3715 3716
	int ret = 0;
	int nr = 0;
3717
	u32 opf = REQ_OP_WRITE;
3718
	const unsigned int write_flags = wbc_to_write_flags(wbc);
3719
	bool compressed;
C
Chris Mason 已提交
3720

3721
	ret = btrfs_writepage_cow_fixup(page, start, end);
3722 3723
	if (ret) {
		/* Fixup worker will requeue */
3724
		redirty_page_for_writepage(wbc, page);
3725 3726 3727
		update_nr_written(wbc, nr_written);
		unlock_page(page);
		return 1;
3728 3729
	}

3730 3731 3732 3733
	/*
	 * we don't want to touch the inode after unlocking the page,
	 * so we update the mapping writeback index now
	 */
3734
	update_nr_written(wbc, nr_written + 1);
3735

3736
	while (cur <= end) {
3737
		u64 disk_bytenr;
3738
		u64 em_end;
3739
		u32 iosize;
3740

3741
		if (cur >= i_size) {
3742
			btrfs_writepage_endio_finish_ordered(page, cur, end, 1);
3743 3744
			break;
		}
3745
		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3746
		if (IS_ERR_OR_NULL(em)) {
3747
			SetPageError(page);
3748
			ret = PTR_ERR_OR_ZERO(em);
3749 3750 3751 3752
			break;
		}

		extent_offset = cur - em->start;
3753
		em_end = extent_map_end(em);
3754 3755 3756 3757
		ASSERT(cur <= em_end);
		ASSERT(cur < end);
		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
3758
		block_start = em->block_start;
C
Chris Mason 已提交
3759
		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3760 3761 3762 3763
		disk_bytenr = em->block_start + extent_offset;

		/* Note that em_end from extent_map_end() is exclusive */
		iosize = min(em_end, end + 1) - cur;
3764 3765 3766 3767

		if (btrfs_use_zone_append(inode, em))
			opf = REQ_OP_ZONE_APPEND;

3768 3769 3770
		free_extent_map(em);
		em = NULL;

C
Chris Mason 已提交
3771 3772 3773 3774 3775
		/*
		 * compressed and inline extents are written through other
		 * paths in the FS
		 */
		if (compressed || block_start == EXTENT_MAP_HOLE ||
3776
		    block_start == EXTENT_MAP_INLINE) {
3777
			if (compressed)
C
Chris Mason 已提交
3778
				nr++;
3779 3780 3781
			else
				btrfs_writepage_endio_finish_ordered(page, cur,
							cur + iosize - 1, 1);
C
Chris Mason 已提交
3782
			cur += iosize;
3783 3784
			continue;
		}
C
Chris Mason 已提交
3785

3786
		btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3787
		if (!PageWriteback(page)) {
3788
			btrfs_err(inode->root->fs_info,
3789 3790
				   "page %lu not writeback, cur %llu end %llu",
			       page->index, cur, end);
3791
		}
3792

3793 3794
		ret = submit_extent_page(opf | write_flags, wbc, page,
					 disk_bytenr, iosize,
3795
					 cur - page_offset(page), &epd->bio,
3796 3797
					 end_bio_extent_writepage,
					 0, 0, 0, false);
3798
		if (ret) {
3799
			SetPageError(page);
3800 3801 3802
			if (PageWriteback(page))
				end_page_writeback(page);
		}
3803

3804
		cur += iosize;
3805 3806
		nr++;
	}
3807 3808 3809 3810 3811 3812 3813 3814 3815
	*nr_ret = nr;
	return ret;
}

/*
 * the writepage semantics are similar to regular writepage.  extent
 * records are inserted to lock ranges in the tree, and as dirty areas
 * are found, they are marked writeback.  Then the lock bits are removed
 * and the end_io handler clears the writeback ranges
3816 3817 3818
 *
 * Return 0 if everything goes well.
 * Return <0 for error.
3819 3820
 */
static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3821
			      struct extent_page_data *epd)
3822 3823 3824
{
	struct inode *inode = page->mapping->host;
	u64 start = page_offset(page);
3825
	u64 page_end = start + PAGE_SIZE - 1;
3826 3827
	int ret;
	int nr = 0;
3828
	size_t pg_offset;
3829
	loff_t i_size = i_size_read(inode);
3830
	unsigned long end_index = i_size >> PAGE_SHIFT;
3831 3832 3833 3834 3835 3836 3837 3838
	unsigned long nr_written = 0;

	trace___extent_writepage(page, inode, wbc);

	WARN_ON(!PageLocked(page));

	ClearPageError(page);

3839
	pg_offset = offset_in_page(i_size);
3840 3841
	if (page->index > end_index ||
	   (page->index == end_index && !pg_offset)) {
3842
		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3843 3844 3845 3846 3847 3848 3849 3850 3851
		unlock_page(page);
		return 0;
	}

	if (page->index == end_index) {
		char *userpage;

		userpage = kmap_atomic(page);
		memset(userpage + pg_offset, 0,
3852
		       PAGE_SIZE - pg_offset);
3853 3854 3855 3856
		kunmap_atomic(userpage);
		flush_dcache_page(page);
	}

3857 3858 3859 3860 3861
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		SetPageError(page);
		goto done;
	}
3862

3863
	if (!epd->extent_locked) {
3864 3865
		ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
					 &nr_written);
3866
		if (ret == 1)
3867
			return 0;
3868 3869 3870
		if (ret)
			goto done;
	}
3871

3872 3873
	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
				    nr_written, &nr);
3874
	if (ret == 1)
3875
		return 0;
3876

3877 3878 3879 3880 3881 3882
done:
	if (nr == 0) {
		/* make sure the mapping tag for page dirty gets cleared */
		set_page_writeback(page);
		end_page_writeback(page);
	}
3883 3884 3885 3886
	if (PageError(page)) {
		ret = ret < 0 ? ret : -EIO;
		end_extent_writepage(page, ret, start, page_end);
	}
3887
	unlock_page(page);
3888
	ASSERT(ret <= 0);
3889
	return ret;
3890 3891
}

3892
void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3893
{
3894 3895
	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
		       TASK_UNINTERRUPTIBLE);
3896 3897
}

3898 3899 3900 3901 3902 3903 3904
static void end_extent_buffer_writeback(struct extent_buffer *eb)
{
	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
	smp_mb__after_atomic();
	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
}

3905
/*
3906
 * Lock extent buffer status and pages for writeback.
3907
 *
3908 3909 3910 3911 3912 3913
 * May try to flush write bio if we can't get the lock.
 *
 * Return  0 if the extent buffer doesn't need to be submitted.
 *           (E.g. the extent buffer is not dirty)
 * Return >0 is the extent buffer is submitted to bio.
 * Return <0 if something went wrong, no page is locked.
3914
 */
3915
static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3916
			  struct extent_page_data *epd)
3917
{
3918
	struct btrfs_fs_info *fs_info = eb->fs_info;
3919
	int i, num_pages, failed_page_nr;
3920 3921 3922 3923
	int flush = 0;
	int ret = 0;

	if (!btrfs_try_tree_write_lock(eb)) {
3924
		ret = flush_write_bio(epd);
3925 3926 3927
		if (ret < 0)
			return ret;
		flush = 1;
3928 3929 3930 3931 3932 3933 3934 3935
		btrfs_tree_lock(eb);
	}

	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
		btrfs_tree_unlock(eb);
		if (!epd->sync_io)
			return 0;
		if (!flush) {
3936
			ret = flush_write_bio(epd);
3937 3938
			if (ret < 0)
				return ret;
3939 3940
			flush = 1;
		}
C
Chris Mason 已提交
3941 3942 3943 3944 3945
		while (1) {
			wait_on_extent_buffer_writeback(eb);
			btrfs_tree_lock(eb);
			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
				break;
3946 3947 3948 3949
			btrfs_tree_unlock(eb);
		}
	}

3950 3951 3952 3953 3954 3955
	/*
	 * We need to do this to prevent races in people who check if the eb is
	 * under IO since we can end up having no IO bits set for a short period
	 * of time.
	 */
	spin_lock(&eb->refs_lock);
3956 3957
	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3958
		spin_unlock(&eb->refs_lock);
3959
		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3960 3961 3962
		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
					 -eb->len,
					 fs_info->dirty_metadata_batch);
3963
		ret = 1;
3964 3965
	} else {
		spin_unlock(&eb->refs_lock);
3966 3967 3968 3969 3970 3971 3972
	}

	btrfs_tree_unlock(eb);

	if (!ret)
		return ret;

3973
	num_pages = num_extent_pages(eb);
3974
	for (i = 0; i < num_pages; i++) {
3975
		struct page *p = eb->pages[i];
3976 3977 3978

		if (!trylock_page(p)) {
			if (!flush) {
3979 3980 3981 3982 3983
				int err;

				err = flush_write_bio(epd);
				if (err < 0) {
					ret = err;
3984 3985 3986
					failed_page_nr = i;
					goto err_unlock;
				}
3987 3988 3989 3990 3991 3992 3993
				flush = 1;
			}
			lock_page(p);
		}
	}

	return ret;
3994 3995 3996 3997
err_unlock:
	/* Unlock already locked pages */
	for (i = 0; i < failed_page_nr; i++)
		unlock_page(eb->pages[i]);
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
	/*
	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
	 * be made and undo everything done before.
	 */
	btrfs_tree_lock(eb);
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
	end_extent_buffer_writeback(eb);
	spin_unlock(&eb->refs_lock);
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
				 fs_info->dirty_metadata_batch);
	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
	btrfs_tree_unlock(eb);
4012
	return ret;
4013 4014
}

4015 4016 4017
static void set_btree_ioerr(struct page *page)
{
	struct extent_buffer *eb = (struct extent_buffer *)page->private;
4018
	struct btrfs_fs_info *fs_info;
4019 4020 4021 4022 4023

	SetPageError(page);
	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
		return;

4024 4025 4026 4027 4028 4029 4030 4031
	/*
	 * If we error out, we should add back the dirty_metadata_bytes
	 * to make it consistent.
	 */
	fs_info = eb->fs_info;
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
				 eb->len, fs_info->dirty_metadata_batch);

4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
	/*
	 * If writeback for a btree extent that doesn't belong to a log tree
	 * failed, increment the counter transaction->eb_write_errors.
	 * We do this because while the transaction is running and before it's
	 * committing (when we call filemap_fdata[write|wait]_range against
	 * the btree inode), we might have
	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
	 * returns an error or an error happens during writeback, when we're
	 * committing the transaction we wouldn't know about it, since the pages
	 * can be no longer dirty nor marked anymore for writeback (if a
	 * subsequent modification to the extent buffer didn't happen before the
	 * transaction commit), which makes filemap_fdata[write|wait]_range not
	 * able to find the pages tagged with SetPageError at transaction
	 * commit time. So if this happens we must abort the transaction,
	 * otherwise we commit a super block with btree roots that point to
	 * btree nodes/leafs whose content on disk is invalid - either garbage
	 * or the content of some node/leaf from a past generation that got
	 * cowed or deleted and is no longer valid.
	 *
	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
	 * not be enough - we need to distinguish between log tree extents vs
	 * non-log tree extents, and the next filemap_fdatawait_range() call
	 * will catch and clear such errors in the mapping - and that call might
	 * be from a log sync and not from a transaction commit. Also, checking
	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
	 * not done and would not be reliable - the eb might have been released
	 * from memory and reading it back again means that flag would not be
	 * set (since it's a runtime flag, not persisted on disk).
	 *
	 * Using the flags below in the btree inode also makes us achieve the
	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
	 * writeback for all dirty pages and before filemap_fdatawait_range()
	 * is called, the writeback for all dirty pages had already finished
	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
	 * filemap_fdatawait_range() would return success, as it could not know
	 * that writeback errors happened (the pages were no longer tagged for
	 * writeback).
	 */
	switch (eb->log_index) {
	case -1:
4072
		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
4073 4074
		break;
	case 0:
4075
		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
4076 4077
		break;
	case 1:
4078
		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
4079 4080 4081 4082 4083 4084
		break;
	default:
		BUG(); /* unexpected, logic error */
	}
}

4085
static void end_bio_extent_buffer_writepage(struct bio *bio)
4086
{
4087
	struct bio_vec *bvec;
4088
	struct extent_buffer *eb;
4089
	int done;
4090
	struct bvec_iter_all iter_all;
4091

4092
	ASSERT(!bio_flagged(bio, BIO_CLONED));
4093
	bio_for_each_segment_all(bvec, bio, iter_all) {
4094 4095 4096 4097 4098 4099
		struct page *page = bvec->bv_page;

		eb = (struct extent_buffer *)page->private;
		BUG_ON(!eb);
		done = atomic_dec_and_test(&eb->io_pages);

4100
		if (bio->bi_status ||
4101
		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4102
			ClearPageUptodate(page);
4103
			set_btree_ioerr(page);
4104 4105 4106 4107 4108 4109 4110 4111
		}

		end_page_writeback(page);

		if (!done)
			continue;

		end_extent_buffer_writeback(eb);
4112
	}
4113 4114 4115 4116

	bio_put(bio);
}

4117
static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4118 4119 4120
			struct writeback_control *wbc,
			struct extent_page_data *epd)
{
4121
	u64 disk_bytenr = eb->start;
4122
	u32 nritems;
4123
	int i, num_pages;
4124
	unsigned long start, end;
4125
	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4126
	int ret = 0;
4127

4128
	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
4129
	num_pages = num_extent_pages(eb);
4130
	atomic_set(&eb->io_pages, num_pages);
4131

4132 4133
	/* set btree blocks beyond nritems with 0 to avoid stale content. */
	nritems = btrfs_header_nritems(eb);
4134 4135 4136
	if (btrfs_header_level(eb) > 0) {
		end = btrfs_node_key_ptr_offset(nritems);

4137
		memzero_extent_buffer(eb, end, eb->len - end);
4138 4139 4140 4141 4142 4143
	} else {
		/*
		 * leaf:
		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
		 */
		start = btrfs_item_nr_offset(nritems);
4144
		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
4145
		memzero_extent_buffer(eb, start, end - start);
4146 4147
	}

4148
	for (i = 0; i < num_pages; i++) {
4149
		struct page *p = eb->pages[i];
4150 4151 4152

		clear_page_dirty_for_io(p);
		set_page_writeback(p);
4153
		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4154
					 p, disk_bytenr, PAGE_SIZE, 0,
4155
					 &epd->bio,
4156
					 end_bio_extent_buffer_writepage,
4157
					 0, 0, 0, false);
4158
		if (ret) {
4159
			set_btree_ioerr(p);
4160 4161
			if (PageWriteback(p))
				end_page_writeback(p);
4162 4163 4164 4165 4166
			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
				end_extent_buffer_writeback(eb);
			ret = -EIO;
			break;
		}
4167
		disk_bytenr += PAGE_SIZE;
4168
		update_nr_written(wbc, 1);
4169 4170 4171 4172 4173
		unlock_page(p);
	}

	if (unlikely(ret)) {
		for (; i < num_pages; i++) {
4174
			struct page *p = eb->pages[i];
4175
			clear_page_dirty_for_io(p);
4176 4177 4178 4179 4180 4181 4182
			unlock_page(p);
		}
	}

	return ret;
}

4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
/*
 * Submit all page(s) of one extent buffer.
 *
 * @page:	the page of one extent buffer
 * @eb_context:	to determine if we need to submit this page, if current page
 *		belongs to this eb, we don't need to submit
 *
 * The caller should pass each page in their bytenr order, and here we use
 * @eb_context to determine if we have submitted pages of one extent buffer.
 *
 * If we have, we just skip until we hit a new page that doesn't belong to
 * current @eb_context.
 *
 * If not, we submit all the page(s) of the extent buffer.
 *
 * Return >0 if we have submitted the extent buffer successfully.
 * Return 0 if we don't need to submit the page, as it's already submitted by
 * previous call.
 * Return <0 for fatal error.
 */
static int submit_eb_page(struct page *page, struct writeback_control *wbc,
			  struct extent_page_data *epd,
			  struct extent_buffer **eb_context)
{
	struct address_space *mapping = page->mapping;
4208
	struct btrfs_block_group *cache = NULL;
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
	struct extent_buffer *eb;
	int ret;

	if (!PagePrivate(page))
		return 0;

	spin_lock(&mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	eb = (struct extent_buffer *)page->private;

	/*
	 * Shouldn't happen and normally this would be a BUG_ON but no point
	 * crashing the machine for something we can survive anyway.
	 */
	if (WARN_ON(!eb)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	if (eb == *eb_context) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}
	ret = atomic_inc_not_zero(&eb->refs);
	spin_unlock(&mapping->private_lock);
	if (!ret)
		return 0;

4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
		/*
		 * If for_sync, this hole will be filled with
		 * trasnsaction commit.
		 */
		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
			ret = -EAGAIN;
		else
			ret = 0;
		free_extent_buffer(eb);
		return ret;
	}

4254 4255 4256 4257
	*eb_context = eb;

	ret = lock_extent_buffer_for_io(eb, epd);
	if (ret <= 0) {
4258 4259 4260
		btrfs_revert_meta_write_pointer(cache, eb);
		if (cache)
			btrfs_put_block_group(cache);
4261 4262 4263
		free_extent_buffer(eb);
		return ret;
	}
4264 4265
	if (cache)
		btrfs_put_block_group(cache);
4266 4267 4268 4269 4270 4271 4272
	ret = write_one_eb(eb, wbc, epd);
	free_extent_buffer(eb);
	if (ret < 0)
		return ret;
	return 1;
}

4273 4274 4275
int btree_write_cache_pages(struct address_space *mapping,
				   struct writeback_control *wbc)
{
4276
	struct extent_buffer *eb_context = NULL;
4277 4278 4279 4280 4281
	struct extent_page_data epd = {
		.bio = NULL,
		.extent_locked = 0,
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
	};
4282
	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4283 4284 4285 4286 4287 4288 4289 4290
	int ret = 0;
	int done = 0;
	int nr_to_write_done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	int scanned = 0;
M
Matthew Wilcox 已提交
4291
	xa_mark_t tag;
4292

4293
	pagevec_init(&pvec);
4294 4295 4296
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4297 4298 4299 4300 4301
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4302
	} else {
4303 4304
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4305 4306 4307 4308 4309 4310
		scanned = 1;
	}
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4311
	btrfs_zoned_meta_io_lock(fs_info);
4312 4313 4314 4315
retry:
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);
	while (!done && !nr_to_write_done && (index <= end) &&
J
Jan Kara 已提交
4316
	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4317
			tag))) {
4318 4319 4320 4321 4322
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4323 4324
			ret = submit_eb_page(page, wbc, &epd, &eb_context);
			if (ret == 0)
4325
				continue;
4326
			if (ret < 0) {
4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
				done = 1;
				break;
			}

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	if (!scanned && !done) {
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
		goto retry;
	}
4350 4351
	if (ret < 0) {
		end_write_bio(&epd, ret);
4352
		goto out;
4353
	}
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
	/*
	 * If something went wrong, don't allow any metadata write bio to be
	 * submitted.
	 *
	 * This would prevent use-after-free if we had dirty pages not
	 * cleaned up, which can still happen by fuzzed images.
	 *
	 * - Bad extent tree
	 *   Allowing existing tree block to be allocated for other trees.
	 *
	 * - Log tree operations
	 *   Exiting tree blocks get allocated to log tree, bumps its
	 *   generation, then get cleaned in tree re-balance.
	 *   Such tree block will not be written back, since it's clean,
	 *   thus no WRITTEN flag set.
	 *   And after log writes back, this tree block is not traced by
	 *   any dirty extent_io_tree.
	 *
	 * - Offending tree block gets re-dirtied from its original owner
	 *   Since it has bumped generation, no WRITTEN flag, it can be
	 *   reused without COWing. This tree block will not be traced
	 *   by btrfs_transaction::dirty_pages.
	 *
	 *   Now such dirty tree block will not be cleaned by any dirty
	 *   extent io tree. Thus we don't want to submit such wild eb
	 *   if the fs already has error.
	 */
	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
		ret = flush_write_bio(&epd);
	} else {
4384
		ret = -EROFS;
4385 4386
		end_write_bio(&epd, ret);
	}
4387 4388
out:
	btrfs_zoned_meta_io_unlock(fs_info);
4389 4390 4391
	return ret;
}

4392
/**
4393 4394
 * Walk the list of dirty pages of the given address space and write all of them.
 *
4395
 * @mapping: address space structure to write
4396 4397
 * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
 * @epd:     holds context for the write, namely the bio
4398 4399 4400 4401 4402 4403 4404 4405 4406
 *
 * If a page is already under I/O, write_cache_pages() skips it, even
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
 */
4407
static int extent_write_cache_pages(struct address_space *mapping,
C
Chris Mason 已提交
4408
			     struct writeback_control *wbc,
4409
			     struct extent_page_data *epd)
4410
{
4411
	struct inode *inode = mapping->host;
4412 4413
	int ret = 0;
	int done = 0;
4414
	int nr_to_write_done = 0;
4415 4416 4417 4418
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
4419 4420
	pgoff_t done_index;
	int range_whole = 0;
4421
	int scanned = 0;
M
Matthew Wilcox 已提交
4422
	xa_mark_t tag;
4423

4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435
	/*
	 * We have to hold onto the inode so that ordered extents can do their
	 * work when the IO finishes.  The alternative to this is failing to add
	 * an ordered extent if the igrab() fails there and that is a huge pain
	 * to deal with, so instead just hold onto the inode throughout the
	 * writepages operation.  If it fails here we are freeing up the inode
	 * anyway and we'd rather not waste our time writing out stuff that is
	 * going to be truncated anyway.
	 */
	if (!igrab(inode))
		return 0;

4436
	pagevec_init(&pvec);
4437 4438 4439
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4440 4441 4442 4443 4444
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4445
	} else {
4446 4447
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4448 4449
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
4450 4451
		scanned = 1;
	}
4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465

	/*
	 * We do the tagged writepage as long as the snapshot flush bit is set
	 * and we are the first one who do the filemap_flush() on this inode.
	 *
	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
	 * not race in and drop the bit.
	 */
	if (range_whole && wbc->nr_to_write == LONG_MAX &&
	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
			       &BTRFS_I(inode)->runtime_flags))
		wbc->tagged_writepages = 1;

	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4466 4467 4468
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4469
retry:
4470
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4471
		tag_pages_for_writeback(mapping, index, end);
4472
	done_index = index;
4473
	while (!done && !nr_to_write_done && (index <= end) &&
4474 4475
			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
						&index, end, tag))) {
4476 4477 4478 4479 4480
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4481
			done_index = page->index + 1;
4482
			/*
M
Matthew Wilcox 已提交
4483 4484 4485 4486 4487
			 * At this point we hold neither the i_pages lock nor
			 * the page lock: the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to
			 * tmpfs file mapping
4488
			 */
4489
			if (!trylock_page(page)) {
4490 4491
				ret = flush_write_bio(epd);
				BUG_ON(ret < 0);
4492
				lock_page(page);
4493
			}
4494 4495 4496 4497 4498 4499

			if (unlikely(page->mapping != mapping)) {
				unlock_page(page);
				continue;
			}

C
Chris Mason 已提交
4500
			if (wbc->sync_mode != WB_SYNC_NONE) {
4501 4502 4503 4504
				if (PageWriteback(page)) {
					ret = flush_write_bio(epd);
					BUG_ON(ret < 0);
				}
4505
				wait_on_page_writeback(page);
C
Chris Mason 已提交
4506
			}
4507 4508 4509 4510 4511 4512 4513

			if (PageWriteback(page) ||
			    !clear_page_dirty_for_io(page)) {
				unlock_page(page);
				continue;
			}

4514
			ret = __extent_writepage(page, wbc, epd);
4515 4516 4517 4518
			if (ret < 0) {
				done = 1;
				break;
			}
4519 4520 4521 4522 4523 4524 4525

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
4526 4527 4528 4529
		}
		pagevec_release(&pvec);
		cond_resched();
	}
4530
	if (!scanned && !done) {
4531 4532 4533 4534 4535 4536
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
4537 4538 4539 4540 4541 4542 4543 4544 4545 4546

		/*
		 * If we're looping we could run into a page that is locked by a
		 * writer and that writer could be waiting on writeback for a
		 * page in our current bio, and thus deadlock, so flush the
		 * write bio here.
		 */
		ret = flush_write_bio(epd);
		if (!ret)
			goto retry;
4547
	}
4548 4549 4550 4551

	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
		mapping->writeback_index = done_index;

4552
	btrfs_add_delayed_iput(inode);
4553
	return ret;
4554 4555
}

4556
int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4557 4558 4559 4560
{
	int ret;
	struct extent_page_data epd = {
		.bio = NULL,
4561
		.extent_locked = 0,
4562
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4563 4564 4565
	};

	ret = __extent_writepage(page, wbc, &epd);
4566 4567 4568 4569 4570
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
4571

4572 4573
	ret = flush_write_bio(&epd);
	ASSERT(ret <= 0);
4574 4575 4576
	return ret;
}

4577
int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4578 4579 4580 4581 4582
			      int mode)
{
	int ret = 0;
	struct address_space *mapping = inode->i_mapping;
	struct page *page;
4583 4584
	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
		PAGE_SHIFT;
4585 4586 4587 4588

	struct extent_page_data epd = {
		.bio = NULL,
		.extent_locked = 1,
4589
		.sync_io = mode == WB_SYNC_ALL,
4590 4591 4592 4593 4594 4595
	};
	struct writeback_control wbc_writepages = {
		.sync_mode	= mode,
		.nr_to_write	= nr_pages * 2,
		.range_start	= start,
		.range_end	= end + 1,
4596 4597 4598
		/* We're called from an async helper function */
		.punt_to_cgroup	= 1,
		.no_cgroup_owner = 1,
4599 4600
	};

4601
	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
C
Chris Mason 已提交
4602
	while (start <= end) {
4603
		page = find_get_page(mapping, start >> PAGE_SHIFT);
4604 4605 4606
		if (clear_page_dirty_for_io(page))
			ret = __extent_writepage(page, &wbc_writepages, &epd);
		else {
4607
			btrfs_writepage_endio_finish_ordered(page, start,
4608
						    start + PAGE_SIZE - 1, 1);
4609 4610
			unlock_page(page);
		}
4611 4612
		put_page(page);
		start += PAGE_SIZE;
4613 4614
	}

4615
	ASSERT(ret <= 0);
4616 4617 4618
	if (ret == 0)
		ret = flush_write_bio(&epd);
	else
4619
		end_write_bio(&epd, ret);
4620 4621

	wbc_detach_inode(&wbc_writepages);
4622 4623
	return ret;
}
4624

4625
int extent_writepages(struct address_space *mapping,
4626 4627 4628 4629 4630
		      struct writeback_control *wbc)
{
	int ret = 0;
	struct extent_page_data epd = {
		.bio = NULL,
4631
		.extent_locked = 0,
4632
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4633 4634
	};

4635
	ret = extent_write_cache_pages(mapping, wbc, &epd);
4636 4637 4638 4639 4640 4641
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
	ret = flush_write_bio(&epd);
4642 4643 4644
	return ret;
}

4645
void extent_readahead(struct readahead_control *rac)
4646 4647
{
	struct bio *bio = NULL;
C
Chris Mason 已提交
4648
	unsigned long bio_flags = 0;
L
Liu Bo 已提交
4649
	struct page *pagepool[16];
4650
	struct extent_map *em_cached = NULL;
4651
	u64 prev_em_start = (u64)-1;
4652
	int nr;
4653

4654 4655 4656
	while ((nr = readahead_page_batch(rac, pagepool))) {
		u64 contig_start = page_offset(pagepool[0]);
		u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1;
4657

4658
		ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4659

4660 4661
		contiguous_readpages(pagepool, nr, contig_start, contig_end,
				&em_cached, &bio, &bio_flags, &prev_em_start);
4662
	}
L
Liu Bo 已提交
4663

4664 4665 4666
	if (em_cached)
		free_extent_map(em_cached);

4667 4668 4669 4670
	if (bio) {
		if (submit_one_bio(bio, 0, bio_flags))
			return;
	}
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680
}

/*
 * basic invalidatepage code, this waits on any locked or writeback
 * ranges corresponding to the page, and then deletes any extent state
 * records from the tree
 */
int extent_invalidatepage(struct extent_io_tree *tree,
			  struct page *page, unsigned long offset)
{
4681
	struct extent_state *cached_state = NULL;
M
Miao Xie 已提交
4682
	u64 start = page_offset(page);
4683
	u64 end = start + PAGE_SIZE - 1;
4684 4685
	size_t blocksize = page->mapping->host->i_sb->s_blocksize;

4686 4687 4688
	/* This function is only called for the btree inode */
	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);

4689
	start += ALIGN(offset, blocksize);
4690 4691 4692
	if (start > end)
		return 0;

4693
	lock_extent_bits(tree, start, end, &cached_state);
4694
	wait_on_page_writeback(page);
4695 4696 4697 4698 4699 4700 4701

	/*
	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
	 * so here we only need to unlock the extent range to free any
	 * existing extent state.
	 */
	unlock_extent_cached(tree, start, end, &cached_state);
4702 4703 4704
	return 0;
}

4705 4706 4707 4708 4709
/*
 * a helper for releasepage, this tests for areas of the page that
 * are locked or under IO and drops the related state bits if it is safe
 * to drop the page.
 */
4710
static int try_release_extent_state(struct extent_io_tree *tree,
4711
				    struct page *page, gfp_t mask)
4712
{
M
Miao Xie 已提交
4713
	u64 start = page_offset(page);
4714
	u64 end = start + PAGE_SIZE - 1;
4715 4716
	int ret = 1;

N
Nikolay Borisov 已提交
4717
	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4718
		ret = 0;
N
Nikolay Borisov 已提交
4719
	} else {
4720
		/*
4721 4722 4723 4724
		 * At this point we can safely clear everything except the
		 * locked bit, the nodatasum bit and the delalloc new bit.
		 * The delalloc new bit will be cleared by ordered extent
		 * completion.
4725
		 */
4726
		ret = __clear_extent_bit(tree, start, end,
4727 4728
			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
			 0, 0, NULL, mask, NULL);
4729 4730 4731 4732 4733 4734 4735 4736

		/* if clear_extent_bit failed for enomem reasons,
		 * we can't allow the release to continue.
		 */
		if (ret < 0)
			ret = 0;
		else
			ret = 1;
4737 4738 4739 4740
	}
	return ret;
}

4741 4742 4743 4744 4745
/*
 * a helper for releasepage.  As long as there are no locked extents
 * in the range corresponding to the page, both state records and extent
 * map records are removed
 */
4746
int try_release_extent_mapping(struct page *page, gfp_t mask)
4747 4748
{
	struct extent_map *em;
M
Miao Xie 已提交
4749
	u64 start = page_offset(page);
4750
	u64 end = start + PAGE_SIZE - 1;
4751 4752 4753
	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
	struct extent_io_tree *tree = &btrfs_inode->io_tree;
	struct extent_map_tree *map = &btrfs_inode->extent_tree;
4754

4755
	if (gfpflags_allow_blocking(mask) &&
4756
	    page->mapping->host->i_size > SZ_16M) {
4757
		u64 len;
4758
		while (start <= end) {
4759 4760 4761
			struct btrfs_fs_info *fs_info;
			u64 cur_gen;

4762
			len = end - start + 1;
4763
			write_lock(&map->lock);
4764
			em = lookup_extent_mapping(map, start, len);
4765
			if (!em) {
4766
				write_unlock(&map->lock);
4767 4768
				break;
			}
4769 4770
			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
			    em->start != start) {
4771
				write_unlock(&map->lock);
4772 4773 4774
				free_extent_map(em);
				break;
			}
4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
			if (test_range_bit(tree, em->start,
					   extent_map_end(em) - 1,
					   EXTENT_LOCKED, 0, NULL))
				goto next;
			/*
			 * If it's not in the list of modified extents, used
			 * by a fast fsync, we can remove it. If it's being
			 * logged we can safely remove it since fsync took an
			 * extra reference on the em.
			 */
			if (list_empty(&em->list) ||
4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801
			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
				goto remove_em;
			/*
			 * If it's in the list of modified extents, remove it
			 * only if its generation is older then the current one,
			 * in which case we don't need it for a fast fsync.
			 * Otherwise don't remove it, we could be racing with an
			 * ongoing fast fsync that could miss the new extent.
			 */
			fs_info = btrfs_inode->root->fs_info;
			spin_lock(&fs_info->trans_lock);
			cur_gen = fs_info->generation;
			spin_unlock(&fs_info->trans_lock);
			if (em->generation >= cur_gen)
				goto next;
remove_em:
4802 4803 4804 4805 4806 4807 4808 4809
			/*
			 * We only remove extent maps that are not in the list of
			 * modified extents or that are in the list but with a
			 * generation lower then the current generation, so there
			 * is no need to set the full fsync flag on the inode (it
			 * hurts the fsync performance for workloads with a data
			 * size that exceeds or is close to the system's memory).
			 */
4810 4811 4812
			remove_extent_mapping(map, em);
			/* once for the rb tree */
			free_extent_map(em);
4813
next:
4814
			start = extent_map_end(em);
4815
			write_unlock(&map->lock);
4816 4817

			/* once for us */
4818
			free_extent_map(em);
4819 4820

			cond_resched(); /* Allow large-extent preemption. */
4821 4822
		}
	}
4823
	return try_release_extent_state(tree, page, mask);
4824 4825
}

4826 4827 4828 4829
/*
 * helper function for fiemap, which doesn't want to see any holes.
 * This maps until we find something past 'last'
 */
4830
static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
4831
						u64 offset, u64 last)
4832
{
4833
	u64 sectorsize = btrfs_inode_sectorsize(inode);
4834 4835 4836 4837 4838 4839
	struct extent_map *em;
	u64 len;

	if (offset >= last)
		return NULL;

4840
	while (1) {
4841 4842 4843
		len = last - offset;
		if (len == 0)
			break;
4844
		len = ALIGN(len, sectorsize);
4845
		em = btrfs_get_extent_fiemap(inode, offset, len);
4846
		if (IS_ERR_OR_NULL(em))
4847 4848 4849
			return em;

		/* if this isn't a hole return it */
4850
		if (em->block_start != EXTENT_MAP_HOLE)
4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861
			return em;

		/* this is a hole, advance to the next extent */
		offset = extent_map_end(em);
		free_extent_map(em);
		if (offset >= last)
			break;
	}
	return NULL;
}

4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
/*
 * To cache previous fiemap extent
 *
 * Will be used for merging fiemap extent
 */
struct fiemap_cache {
	u64 offset;
	u64 phys;
	u64 len;
	u32 flags;
	bool cached;
};

/*
 * Helper to submit fiemap extent.
 *
 * Will try to merge current fiemap extent specified by @offset, @phys,
 * @len and @flags with cached one.
 * And only when we fails to merge, cached one will be submitted as
 * fiemap extent.
 *
 * Return value is the same as fiemap_fill_next_extent().
 */
static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
				struct fiemap_cache *cache,
				u64 offset, u64 phys, u64 len, u32 flags)
{
	int ret = 0;

	if (!cache->cached)
		goto assign;

	/*
	 * Sanity check, extent_fiemap() should have ensured that new
4896
	 * fiemap extent won't overlap with cached one.
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947
	 * Not recoverable.
	 *
	 * NOTE: Physical address can overlap, due to compression
	 */
	if (cache->offset + cache->len > offset) {
		WARN_ON(1);
		return -EINVAL;
	}

	/*
	 * Only merges fiemap extents if
	 * 1) Their logical addresses are continuous
	 *
	 * 2) Their physical addresses are continuous
	 *    So truly compressed (physical size smaller than logical size)
	 *    extents won't get merged with each other
	 *
	 * 3) Share same flags except FIEMAP_EXTENT_LAST
	 *    So regular extent won't get merged with prealloc extent
	 */
	if (cache->offset + cache->len  == offset &&
	    cache->phys + cache->len == phys  &&
	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
			(flags & ~FIEMAP_EXTENT_LAST)) {
		cache->len += len;
		cache->flags |= flags;
		goto try_submit_last;
	}

	/* Not mergeable, need to submit cached one */
	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret)
		return ret;
assign:
	cache->cached = true;
	cache->offset = offset;
	cache->phys = phys;
	cache->len = len;
	cache->flags = flags;
try_submit_last:
	if (cache->flags & FIEMAP_EXTENT_LAST) {
		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
				cache->phys, cache->len, cache->flags);
		cache->cached = false;
	}
	return ret;
}

/*
4948
 * Emit last fiemap cache
4949
 *
4950 4951 4952 4953 4954 4955 4956
 * The last fiemap cache may still be cached in the following case:
 * 0		      4k		    8k
 * |<- Fiemap range ->|
 * |<------------  First extent ----------->|
 *
 * In this case, the first extent range will be cached but not emitted.
 * So we must emit it before ending extent_fiemap().
4957
 */
4958
static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4959
				  struct fiemap_cache *cache)
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973
{
	int ret;

	if (!cache->cached)
		return 0;

	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret > 0)
		ret = 0;
	return ret;
}

4974
int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
4975
		  u64 start, u64 len)
Y
Yehuda Sadeh 已提交
4976
{
J
Josef Bacik 已提交
4977
	int ret = 0;
Y
Yehuda Sadeh 已提交
4978 4979 4980
	u64 off = start;
	u64 max = start + len;
	u32 flags = 0;
J
Josef Bacik 已提交
4981 4982
	u32 found_type;
	u64 last;
4983
	u64 last_for_get_extent = 0;
Y
Yehuda Sadeh 已提交
4984
	u64 disko = 0;
4985
	u64 isize = i_size_read(&inode->vfs_inode);
J
Josef Bacik 已提交
4986
	struct btrfs_key found_key;
Y
Yehuda Sadeh 已提交
4987
	struct extent_map *em = NULL;
4988
	struct extent_state *cached_state = NULL;
J
Josef Bacik 已提交
4989
	struct btrfs_path *path;
4990
	struct btrfs_root *root = inode->root;
4991
	struct fiemap_cache cache = { 0 };
4992 4993
	struct ulist *roots;
	struct ulist *tmp_ulist;
Y
Yehuda Sadeh 已提交
4994
	int end = 0;
4995 4996 4997
	u64 em_start = 0;
	u64 em_len = 0;
	u64 em_end = 0;
Y
Yehuda Sadeh 已提交
4998 4999 5000 5001

	if (len == 0)
		return -EINVAL;

J
Josef Bacik 已提交
5002 5003 5004 5005
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

5006 5007 5008 5009 5010 5011 5012
	roots = ulist_alloc(GFP_KERNEL);
	tmp_ulist = ulist_alloc(GFP_KERNEL);
	if (!roots || !tmp_ulist) {
		ret = -ENOMEM;
		goto out_free_ulist;
	}

5013 5014
	start = round_down(start, btrfs_inode_sectorsize(inode));
	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5015

5016 5017 5018 5019
	/*
	 * lookup the last file extent.  We're not using i_size here
	 * because there might be preallocation past i_size
	 */
5020 5021
	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
				       0);
J
Josef Bacik 已提交
5022
	if (ret < 0) {
5023
		goto out_free_ulist;
5024 5025 5026 5027
	} else {
		WARN_ON(!ret);
		if (ret == 1)
			ret = 0;
J
Josef Bacik 已提交
5028
	}
5029

J
Josef Bacik 已提交
5030 5031
	path->slots[0]--;
	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5032
	found_type = found_key.type;
J
Josef Bacik 已提交
5033

5034
	/* No extents, but there might be delalloc bits */
5035
	if (found_key.objectid != btrfs_ino(inode) ||
J
Josef Bacik 已提交
5036
	    found_type != BTRFS_EXTENT_DATA_KEY) {
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
		/* have to trust i_size as the end */
		last = (u64)-1;
		last_for_get_extent = isize;
	} else {
		/*
		 * remember the start of the last extent.  There are a
		 * bunch of different factors that go into the length of the
		 * extent, so its much less complex to remember where it started
		 */
		last = found_key.offset;
		last_for_get_extent = last + 1;
J
Josef Bacik 已提交
5048
	}
5049
	btrfs_release_path(path);
J
Josef Bacik 已提交
5050

5051 5052 5053 5054 5055 5056 5057 5058 5059 5060
	/*
	 * we might have some extents allocated but more delalloc past those
	 * extents.  so, we trust isize unless the start of the last extent is
	 * beyond isize
	 */
	if (last < isize) {
		last = (u64)-1;
		last_for_get_extent = isize;
	}

5061
	lock_extent_bits(&inode->io_tree, start, start + len - 1,
5062
			 &cached_state);
5063

5064
	em = get_extent_skip_holes(inode, start, last_for_get_extent);
Y
Yehuda Sadeh 已提交
5065 5066 5067 5068 5069 5070
	if (!em)
		goto out;
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out;
	}
J
Josef Bacik 已提交
5071

Y
Yehuda Sadeh 已提交
5072
	while (!end) {
5073
		u64 offset_in_extent = 0;
5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085

		/* break if the extent we found is outside the range */
		if (em->start >= max || extent_map_end(em) < off)
			break;

		/*
		 * get_extent may return an extent that starts before our
		 * requested range.  We have to make sure the ranges
		 * we return to fiemap always move forward and don't
		 * overlap, so adjust the offsets here
		 */
		em_start = max(em->start, off);
Y
Yehuda Sadeh 已提交
5086

5087 5088
		/*
		 * record the offset from the start of the extent
5089 5090 5091
		 * for adjusting the disk offset below.  Only do this if the
		 * extent isn't compressed since our in ram offset may be past
		 * what we have actually allocated on disk.
5092
		 */
5093 5094
		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			offset_in_extent = em_start - em->start;
5095
		em_end = extent_map_end(em);
5096
		em_len = em_end - em_start;
Y
Yehuda Sadeh 已提交
5097
		flags = 0;
5098 5099 5100 5101
		if (em->block_start < EXTENT_MAP_LAST_BYTE)
			disko = em->block_start + offset_in_extent;
		else
			disko = 0;
Y
Yehuda Sadeh 已提交
5102

5103 5104 5105 5106 5107 5108 5109
		/*
		 * bump off for our next call to get_extent
		 */
		off = extent_map_end(em);
		if (off >= max)
			end = 1;

5110
		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
Y
Yehuda Sadeh 已提交
5111 5112
			end = 1;
			flags |= FIEMAP_EXTENT_LAST;
5113
		} else if (em->block_start == EXTENT_MAP_INLINE) {
Y
Yehuda Sadeh 已提交
5114 5115
			flags |= (FIEMAP_EXTENT_DATA_INLINE |
				  FIEMAP_EXTENT_NOT_ALIGNED);
5116
		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
Y
Yehuda Sadeh 已提交
5117 5118
			flags |= (FIEMAP_EXTENT_DELALLOC |
				  FIEMAP_EXTENT_UNKNOWN);
5119 5120 5121
		} else if (fieinfo->fi_extents_max) {
			u64 bytenr = em->block_start -
				(em->start - em->orig_start);
5122 5123 5124 5125

			/*
			 * As btrfs supports shared space, this information
			 * can be exported to userspace tools via
5126 5127 5128
			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
			 * then we're just getting a count and we can skip the
			 * lookup stuff.
5129
			 */
5130
			ret = btrfs_check_shared(root, btrfs_ino(inode),
5131
						 bytenr, roots, tmp_ulist);
5132
			if (ret < 0)
5133
				goto out_free;
5134
			if (ret)
5135
				flags |= FIEMAP_EXTENT_SHARED;
5136
			ret = 0;
Y
Yehuda Sadeh 已提交
5137 5138 5139
		}
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			flags |= FIEMAP_EXTENT_ENCODED;
5140 5141
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			flags |= FIEMAP_EXTENT_UNWRITTEN;
Y
Yehuda Sadeh 已提交
5142 5143 5144

		free_extent_map(em);
		em = NULL;
5145 5146
		if ((em_start >= last) || em_len == (u64)-1 ||
		   (last == (u64)-1 && isize <= em_end)) {
Y
Yehuda Sadeh 已提交
5147 5148 5149 5150
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}

5151
		/* now scan forward to see if this is really the last extent. */
5152
		em = get_extent_skip_holes(inode, off, last_for_get_extent);
5153 5154 5155 5156 5157
		if (IS_ERR(em)) {
			ret = PTR_ERR(em);
			goto out;
		}
		if (!em) {
J
Josef Bacik 已提交
5158 5159 5160
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}
5161 5162
		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
					   em_len, flags);
5163 5164 5165
		if (ret) {
			if (ret == 1)
				ret = 0;
5166
			goto out_free;
5167
		}
Y
Yehuda Sadeh 已提交
5168 5169
	}
out_free:
5170
	if (!ret)
5171
		ret = emit_last_fiemap_cache(fieinfo, &cache);
Y
Yehuda Sadeh 已提交
5172 5173
	free_extent_map(em);
out:
5174
	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5175
			     &cached_state);
5176 5177

out_free_ulist:
5178
	btrfs_free_path(path);
5179 5180
	ulist_free(roots);
	ulist_free(tmp_ulist);
Y
Yehuda Sadeh 已提交
5181 5182 5183
	return ret;
}

5184 5185 5186 5187 5188
static void __free_extent_buffer(struct extent_buffer *eb)
{
	kmem_cache_free(extent_buffer_cache, eb);
}

5189
int extent_buffer_under_io(const struct extent_buffer *eb)
5190 5191 5192 5193 5194 5195
{
	return (atomic_read(&eb->io_pages) ||
		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
}

5196
static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5197
{
5198
	struct btrfs_subpage *subpage;
5199

5200
	lockdep_assert_held(&page->mapping->private_lock);
5201

5202 5203 5204 5205 5206 5207 5208
	if (PagePrivate(page)) {
		subpage = (struct btrfs_subpage *)page->private;
		if (atomic_read(&subpage->eb_refs))
			return true;
	}
	return false;
}
5209

5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);

	/*
	 * For mapped eb, we're going to change the page private, which should
	 * be done under the private_lock.
	 */
	if (mapped)
		spin_lock(&page->mapping->private_lock);

	if (!PagePrivate(page)) {
5223
		if (mapped)
5224 5225 5226 5227 5228
			spin_unlock(&page->mapping->private_lock);
		return;
	}

	if (fs_info->sectorsize == PAGE_SIZE) {
5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
		/*
		 * We do this since we'll remove the pages after we've
		 * removed the eb from the radix tree, so we could race
		 * and have this page now attached to the new eb.  So
		 * only clear page_private if it's still connected to
		 * this eb.
		 */
		if (PagePrivate(page) &&
		    page->private == (unsigned long)eb) {
			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
			BUG_ON(PageDirty(page));
			BUG_ON(PageWriteback(page));
5241
			/*
5242 5243
			 * We need to make sure we haven't be attached
			 * to a new eb.
5244
			 */
5245
			detach_page_private(page);
5246
		}
5247 5248
		if (mapped)
			spin_unlock(&page->mapping->private_lock);
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289
		return;
	}

	/*
	 * For subpage, we can have dummy eb with page private.  In this case,
	 * we can directly detach the private as such page is only attached to
	 * one dummy eb, no sharing.
	 */
	if (!mapped) {
		btrfs_detach_subpage(fs_info, page);
		return;
	}

	btrfs_page_dec_eb_refs(fs_info, page);

	/*
	 * We can only detach the page private if there are no other ebs in the
	 * page range.
	 */
	if (!page_range_has_eb(fs_info, page))
		btrfs_detach_subpage(fs_info, page);

	spin_unlock(&page->mapping->private_lock);
}

/* Release all pages attached to the extent buffer */
static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
{
	int i;
	int num_pages;

	ASSERT(!extent_buffer_under_io(eb));

	num_pages = num_extent_pages(eb);
	for (i = 0; i < num_pages; i++) {
		struct page *page = eb->pages[i];

		if (!page)
			continue;

		detach_extent_buffer_page(eb, page);
5290

5291
		/* One for when we allocated the page */
5292
		put_page(page);
5293
	}
5294 5295 5296 5297 5298 5299 5300
}

/*
 * Helper for releasing the extent buffer.
 */
static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
{
5301
	btrfs_release_extent_buffer_pages(eb);
5302
	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5303 5304 5305
	__free_extent_buffer(eb);
}

5306 5307
static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5308
		      unsigned long len)
5309 5310 5311
{
	struct extent_buffer *eb = NULL;

5312
	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5313 5314
	eb->start = start;
	eb->len = len;
5315
	eb->fs_info = fs_info;
5316
	eb->bflags = 0;
5317
	init_rwsem(&eb->lock);
5318

5319 5320
	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
			     &fs_info->allocated_ebs);
5321
	INIT_LIST_HEAD(&eb->release_list);
5322

5323
	spin_lock_init(&eb->refs_lock);
5324
	atomic_set(&eb->refs, 1);
5325
	atomic_set(&eb->io_pages, 0);
5326

5327
	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5328 5329 5330 5331

	return eb;
}

5332
struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5333
{
5334
	int i;
5335 5336
	struct page *p;
	struct extent_buffer *new;
5337
	int num_pages = num_extent_pages(src);
5338

5339
	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5340 5341 5342
	if (new == NULL)
		return NULL;

5343 5344 5345 5346 5347 5348 5349
	/*
	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
	 * btrfs_release_extent_buffer() have different behavior for
	 * UNMAPPED subpage extent buffer.
	 */
	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);

5350
	for (i = 0; i < num_pages; i++) {
5351 5352
		int ret;

5353
		p = alloc_page(GFP_NOFS);
5354 5355 5356 5357
		if (!p) {
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5358 5359 5360 5361 5362 5363
		ret = attach_extent_buffer_page(new, p, NULL);
		if (ret < 0) {
			put_page(p);
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5364 5365
		WARN_ON(PageDirty(p));
		new->pages[i] = p;
5366
		copy_page(page_address(p), page_address(src->pages[i]));
5367
	}
5368
	set_extent_buffer_uptodate(new);
5369 5370 5371 5372

	return new;
}

5373 5374
struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
						  u64 start, unsigned long len)
5375 5376
{
	struct extent_buffer *eb;
5377 5378
	int num_pages;
	int i;
5379

5380
	eb = __alloc_extent_buffer(fs_info, start, len);
5381 5382 5383
	if (!eb)
		return NULL;

5384
	num_pages = num_extent_pages(eb);
5385
	for (i = 0; i < num_pages; i++) {
5386 5387
		int ret;

5388
		eb->pages[i] = alloc_page(GFP_NOFS);
5389 5390
		if (!eb->pages[i])
			goto err;
5391 5392 5393
		ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
		if (ret < 0)
			goto err;
5394 5395 5396
	}
	set_extent_buffer_uptodate(eb);
	btrfs_set_header_nritems(eb, 0);
5397
	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5398 5399 5400

	return eb;
err:
5401 5402
	for (; i > 0; i--) {
		detach_extent_buffer_page(eb, eb->pages[i - 1]);
5403
		__free_page(eb->pages[i - 1]);
5404
	}
5405 5406 5407 5408
	__free_extent_buffer(eb);
	return NULL;
}

5409
struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5410
						u64 start)
5411
{
5412
	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5413 5414
}

5415 5416
static void check_buffer_tree_ref(struct extent_buffer *eb)
{
5417
	int refs;
5418 5419 5420 5421
	/*
	 * The TREE_REF bit is first set when the extent_buffer is added
	 * to the radix tree. It is also reset, if unset, when a new reference
	 * is created by find_extent_buffer.
5422
	 *
5423 5424 5425
	 * It is only cleared in two cases: freeing the last non-tree
	 * reference to the extent_buffer when its STALE bit is set or
	 * calling releasepage when the tree reference is the only reference.
5426
	 *
5427 5428 5429 5430 5431
	 * In both cases, care is taken to ensure that the extent_buffer's
	 * pages are not under io. However, releasepage can be concurrently
	 * called with creating new references, which is prone to race
	 * conditions between the calls to check_buffer_tree_ref in those
	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5432
	 *
5433 5434 5435 5436 5437 5438 5439
	 * The actual lifetime of the extent_buffer in the radix tree is
	 * adequately protected by the refcount, but the TREE_REF bit and
	 * its corresponding reference are not. To protect against this
	 * class of races, we call check_buffer_tree_ref from the codepaths
	 * which trigger io after they set eb->io_pages. Note that once io is
	 * initiated, TREE_REF can no longer be cleared, so that is the
	 * moment at which any such race is best fixed.
5440
	 */
5441 5442 5443 5444
	refs = atomic_read(&eb->refs);
	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		return;

5445 5446
	spin_lock(&eb->refs_lock);
	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5447
		atomic_inc(&eb->refs);
5448
	spin_unlock(&eb->refs_lock);
5449 5450
}

5451 5452
static void mark_extent_buffer_accessed(struct extent_buffer *eb,
		struct page *accessed)
5453
{
5454
	int num_pages, i;
5455

5456 5457
	check_buffer_tree_ref(eb);

5458
	num_pages = num_extent_pages(eb);
5459
	for (i = 0; i < num_pages; i++) {
5460 5461
		struct page *p = eb->pages[i];

5462 5463
		if (p != accessed)
			mark_page_accessed(p);
5464 5465 5466
	}
}

5467 5468
struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
					 u64 start)
5469 5470 5471 5472
{
	struct extent_buffer *eb;

	rcu_read_lock();
5473
	eb = radix_tree_lookup(&fs_info->buffer_radix,
5474
			       start >> fs_info->sectorsize_bits);
5475 5476
	if (eb && atomic_inc_not_zero(&eb->refs)) {
		rcu_read_unlock();
5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
		/*
		 * Lock our eb's refs_lock to avoid races with
		 * free_extent_buffer. When we get our eb it might be flagged
		 * with EXTENT_BUFFER_STALE and another task running
		 * free_extent_buffer might have seen that flag set,
		 * eb->refs == 2, that the buffer isn't under IO (dirty and
		 * writeback flags not set) and it's still in the tree (flag
		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
		 * of decrementing the extent buffer's reference count twice.
		 * So here we could race and increment the eb's reference count,
		 * clear its stale flag, mark it as dirty and drop our reference
		 * before the other task finishes executing free_extent_buffer,
		 * which would later result in an attempt to free an extent
		 * buffer that is dirty.
		 */
		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
			spin_lock(&eb->refs_lock);
			spin_unlock(&eb->refs_lock);
		}
5496
		mark_extent_buffer_accessed(eb, NULL);
5497 5498 5499 5500 5501 5502 5503
		return eb;
	}
	rcu_read_unlock();

	return NULL;
}

5504 5505
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5506
					u64 start)
5507 5508 5509 5510 5511 5512 5513
{
	struct extent_buffer *eb, *exists = NULL;
	int ret;

	eb = find_extent_buffer(fs_info, start);
	if (eb)
		return eb;
5514
	eb = alloc_dummy_extent_buffer(fs_info, start);
5515
	if (!eb)
5516
		return ERR_PTR(-ENOMEM);
5517 5518
	eb->fs_info = fs_info;
again:
5519
	ret = radix_tree_preload(GFP_NOFS);
5520 5521
	if (ret) {
		exists = ERR_PTR(ret);
5522
		goto free_eb;
5523
	}
5524 5525
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
5526
				start >> fs_info->sectorsize_bits, eb);
5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545
	spin_unlock(&fs_info->buffer_lock);
	radix_tree_preload_end();
	if (ret == -EEXIST) {
		exists = find_extent_buffer(fs_info, start);
		if (exists)
			goto free_eb;
		else
			goto again;
	}
	check_buffer_tree_ref(eb);
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);

	return eb;
free_eb:
	btrfs_release_extent_buffer(eb);
	return exists;
}
#endif

5546 5547
static struct extent_buffer *grab_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page)
5548 5549 5550
{
	struct extent_buffer *exists;

5551 5552 5553 5554 5555 5556 5557 5558
	/*
	 * For subpage case, we completely rely on radix tree to ensure we
	 * don't try to insert two ebs for the same bytenr.  So here we always
	 * return NULL and just continue.
	 */
	if (fs_info->sectorsize < PAGE_SIZE)
		return NULL;

5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
	/* Page not yet attached to an extent buffer */
	if (!PagePrivate(page))
		return NULL;

	/*
	 * We could have already allocated an eb for this page and attached one
	 * so lets see if we can get a ref on the existing eb, and if we can we
	 * know it's good and we can just return that one, else we know we can
	 * just overwrite page->private.
	 */
	exists = (struct extent_buffer *)page->private;
	if (atomic_inc_not_zero(&exists->refs))
		return exists;

	WARN_ON(PageDirty(page));
	detach_page_private(page);
	return NULL;
}

5578
struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5579
					  u64 start, u64 owner_root, int level)
5580
{
5581
	unsigned long len = fs_info->nodesize;
5582 5583
	int num_pages;
	int i;
5584
	unsigned long index = start >> PAGE_SHIFT;
5585
	struct extent_buffer *eb;
5586
	struct extent_buffer *exists = NULL;
5587
	struct page *p;
5588
	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5589
	int uptodate = 1;
5590
	int ret;
5591

5592
	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5593 5594 5595 5596
		btrfs_err(fs_info, "bad tree block start %llu", start);
		return ERR_PTR(-EINVAL);
	}

5597 5598 5599 5600 5601 5602 5603 5604
	if (fs_info->sectorsize < PAGE_SIZE &&
	    offset_in_page(start) + len > PAGE_SIZE) {
		btrfs_err(fs_info,
		"tree block crosses page boundary, start %llu nodesize %lu",
			  start, len);
		return ERR_PTR(-EINVAL);
	}

5605
	eb = find_extent_buffer(fs_info, start);
5606
	if (eb)
5607 5608
		return eb;

5609
	eb = __alloc_extent_buffer(fs_info, start, len);
5610
	if (!eb)
5611
		return ERR_PTR(-ENOMEM);
5612
	btrfs_set_buffer_lockdep_class(owner_root, eb, level);
5613

5614
	num_pages = num_extent_pages(eb);
5615
	for (i = 0; i < num_pages; i++, index++) {
5616 5617
		struct btrfs_subpage *prealloc = NULL;

5618
		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5619 5620
		if (!p) {
			exists = ERR_PTR(-ENOMEM);
5621
			goto free_eb;
5622
		}
J
Josef Bacik 已提交
5623

5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
		/*
		 * Preallocate page->private for subpage case, so that we won't
		 * allocate memory with private_lock hold.  The memory will be
		 * freed by attach_extent_buffer_page() or freed manually if
		 * we exit earlier.
		 *
		 * Although we have ensured one subpage eb can only have one
		 * page, but it may change in the future for 16K page size
		 * support, so we still preallocate the memory in the loop.
		 */
		ret = btrfs_alloc_subpage(fs_info, &prealloc,
					  BTRFS_SUBPAGE_METADATA);
		if (ret < 0) {
			unlock_page(p);
			put_page(p);
			exists = ERR_PTR(ret);
			goto free_eb;
		}

J
Josef Bacik 已提交
5643
		spin_lock(&mapping->private_lock);
5644
		exists = grab_extent_buffer(fs_info, p);
5645 5646 5647 5648 5649
		if (exists) {
			spin_unlock(&mapping->private_lock);
			unlock_page(p);
			put_page(p);
			mark_extent_buffer_accessed(exists, p);
5650
			btrfs_free_subpage(prealloc);
5651
			goto free_eb;
5652
		}
5653 5654 5655
		/* Should not fail, as we have preallocated the memory */
		ret = attach_extent_buffer_page(eb, p, prealloc);
		ASSERT(!ret);
5656 5657 5658 5659 5660 5661 5662 5663 5664 5665
		/*
		 * To inform we have extra eb under allocation, so that
		 * detach_extent_buffer_page() won't release the page private
		 * when the eb hasn't yet been inserted into radix tree.
		 *
		 * The ref will be decreased when the eb released the page, in
		 * detach_extent_buffer_page().
		 * Thus needs no special handling in error path.
		 */
		btrfs_page_inc_eb_refs(fs_info, p);
J
Josef Bacik 已提交
5666
		spin_unlock(&mapping->private_lock);
5667

5668
		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
5669
		eb->pages[i] = p;
5670 5671
		if (!PageUptodate(p))
			uptodate = 0;
C
Chris Mason 已提交
5672 5673

		/*
5674 5675 5676 5677 5678
		 * We can't unlock the pages just yet since the extent buffer
		 * hasn't been properly inserted in the radix tree, this
		 * opens a race with btree_releasepage which can free a page
		 * while we are still filling in all pages for the buffer and
		 * we could crash.
C
Chris Mason 已提交
5679
		 */
5680 5681
	}
	if (uptodate)
5682
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5683
again:
5684
	ret = radix_tree_preload(GFP_NOFS);
5685 5686
	if (ret) {
		exists = ERR_PTR(ret);
5687
		goto free_eb;
5688
	}
5689

5690 5691
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
5692
				start >> fs_info->sectorsize_bits, eb);
5693
	spin_unlock(&fs_info->buffer_lock);
5694
	radix_tree_preload_end();
5695
	if (ret == -EEXIST) {
5696
		exists = find_extent_buffer(fs_info, start);
5697 5698 5699
		if (exists)
			goto free_eb;
		else
5700
			goto again;
5701 5702
	}
	/* add one reference for the tree */
5703
	check_buffer_tree_ref(eb);
5704
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
C
Chris Mason 已提交
5705 5706

	/*
5707 5708 5709
	 * Now it's safe to unlock the pages because any calls to
	 * btree_releasepage will correctly detect that a page belongs to a
	 * live buffer and won't free them prematurely.
C
Chris Mason 已提交
5710
	 */
5711 5712
	for (i = 0; i < num_pages; i++)
		unlock_page(eb->pages[i]);
5713 5714
	return eb;

5715
free_eb:
5716
	WARN_ON(!atomic_dec_and_test(&eb->refs));
5717 5718 5719 5720
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i])
			unlock_page(eb->pages[i]);
	}
C
Chris Mason 已提交
5721

5722
	btrfs_release_extent_buffer(eb);
5723
	return exists;
5724 5725
}

5726 5727 5728 5729 5730 5731 5732 5733
static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
{
	struct extent_buffer *eb =
			container_of(head, struct extent_buffer, rcu_head);

	__free_extent_buffer(eb);
}

5734
static int release_extent_buffer(struct extent_buffer *eb)
5735
	__releases(&eb->refs_lock)
5736
{
5737 5738
	lockdep_assert_held(&eb->refs_lock);

5739 5740
	WARN_ON(atomic_read(&eb->refs) == 0);
	if (atomic_dec_and_test(&eb->refs)) {
5741
		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5742
			struct btrfs_fs_info *fs_info = eb->fs_info;
5743

5744
			spin_unlock(&eb->refs_lock);
5745

5746 5747
			spin_lock(&fs_info->buffer_lock);
			radix_tree_delete(&fs_info->buffer_radix,
5748
					  eb->start >> fs_info->sectorsize_bits);
5749
			spin_unlock(&fs_info->buffer_lock);
5750 5751
		} else {
			spin_unlock(&eb->refs_lock);
5752
		}
5753

5754
		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5755
		/* Should be safe to release our pages at this point */
5756
		btrfs_release_extent_buffer_pages(eb);
5757
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5758
		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5759 5760 5761 5762
			__free_extent_buffer(eb);
			return 1;
		}
#endif
5763
		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5764
		return 1;
5765 5766
	}
	spin_unlock(&eb->refs_lock);
5767 5768

	return 0;
5769 5770
}

5771 5772
void free_extent_buffer(struct extent_buffer *eb)
{
5773 5774
	int refs;
	int old;
5775 5776 5777
	if (!eb)
		return;

5778 5779
	while (1) {
		refs = atomic_read(&eb->refs);
5780 5781 5782
		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
			refs == 1))
5783 5784 5785 5786 5787 5788
			break;
		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
		if (old == refs)
			return;
	}

5789 5790 5791
	spin_lock(&eb->refs_lock);
	if (atomic_read(&eb->refs) == 2 &&
	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5792
	    !extent_buffer_under_io(eb) &&
5793 5794 5795 5796 5797 5798 5799
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);

	/*
	 * I know this is terrible, but it's temporary until we stop tracking
	 * the uptodate bits and such for the extent buffers.
	 */
5800
	release_extent_buffer(eb);
5801 5802 5803 5804 5805
}

void free_extent_buffer_stale(struct extent_buffer *eb)
{
	if (!eb)
5806 5807
		return;

5808 5809 5810
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);

5811
	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5812 5813
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);
5814
	release_extent_buffer(eb);
5815 5816
}

5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844
static void btree_clear_page_dirty(struct page *page)
{
	ASSERT(PageDirty(page));
	ASSERT(PageLocked(page));
	clear_page_dirty_for_io(page);
	xa_lock_irq(&page->mapping->i_pages);
	if (!PageDirty(page))
		__xa_clear_mark(&page->mapping->i_pages,
				page_index(page), PAGECACHE_TAG_DIRTY);
	xa_unlock_irq(&page->mapping->i_pages);
}

static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
	bool last;

	/* btree_clear_page_dirty() needs page locked */
	lock_page(page);
	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
						  eb->len);
	if (last)
		btree_clear_page_dirty(page);
	unlock_page(page);
	WARN_ON(atomic_read(&eb->refs) == 0);
}

5845
void clear_extent_buffer_dirty(const struct extent_buffer *eb)
5846
{
5847 5848
	int i;
	int num_pages;
5849 5850
	struct page *page;

5851 5852 5853
	if (eb->fs_info->sectorsize < PAGE_SIZE)
		return clear_subpage_extent_buffer_dirty(eb);

5854
	num_pages = num_extent_pages(eb);
5855 5856

	for (i = 0; i < num_pages; i++) {
5857
		page = eb->pages[i];
5858
		if (!PageDirty(page))
C
Chris Mason 已提交
5859
			continue;
5860
		lock_page(page);
5861
		btree_clear_page_dirty(page);
5862
		ClearPageError(page);
5863
		unlock_page(page);
5864
	}
5865
	WARN_ON(atomic_read(&eb->refs) == 0);
5866 5867
}

5868
bool set_extent_buffer_dirty(struct extent_buffer *eb)
5869
{
5870 5871
	int i;
	int num_pages;
5872
	bool was_dirty;
5873

5874 5875
	check_buffer_tree_ref(eb);

5876
	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5877

5878
	num_pages = num_extent_pages(eb);
5879
	WARN_ON(atomic_read(&eb->refs) == 0);
5880 5881
	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));

5882 5883
	if (!was_dirty) {
		bool subpage = eb->fs_info->sectorsize < PAGE_SIZE;
5884

5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903
		/*
		 * For subpage case, we can have other extent buffers in the
		 * same page, and in clear_subpage_extent_buffer_dirty() we
		 * have to clear page dirty without subpage lock held.
		 * This can cause race where our page gets dirty cleared after
		 * we just set it.
		 *
		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
		 * its page for other reasons, we can use page lock to prevent
		 * the above race.
		 */
		if (subpage)
			lock_page(eb->pages[0]);
		for (i = 0; i < num_pages; i++)
			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
					     eb->start, eb->len);
		if (subpage)
			unlock_page(eb->pages[0]);
	}
5904 5905 5906 5907 5908
#ifdef CONFIG_BTRFS_DEBUG
	for (i = 0; i < num_pages; i++)
		ASSERT(PageDirty(eb->pages[i]));
#endif

5909
	return was_dirty;
5910 5911
}

5912
void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5913
{
5914
	struct btrfs_fs_info *fs_info = eb->fs_info;
5915
	struct page *page;
5916
	int num_pages;
5917
	int i;
5918

5919
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5920
	num_pages = num_extent_pages(eb);
5921
	for (i = 0; i < num_pages; i++) {
5922
		page = eb->pages[i];
C
Chris Mason 已提交
5923
		if (page)
5924 5925
			btrfs_page_clear_uptodate(fs_info, page,
						  eb->start, eb->len);
5926 5927 5928
	}
}

5929
void set_extent_buffer_uptodate(struct extent_buffer *eb)
5930
{
5931
	struct btrfs_fs_info *fs_info = eb->fs_info;
5932
	struct page *page;
5933
	int num_pages;
5934
	int i;
5935

5936
	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5937
	num_pages = num_extent_pages(eb);
5938
	for (i = 0; i < num_pages; i++) {
5939
		page = eb->pages[i];
5940
		btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
5941 5942 5943
	}
}

5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010
static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
				      int mirror_num)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct extent_io_tree *io_tree;
	struct page *page = eb->pages[0];
	struct bio *bio = NULL;
	int ret = 0;

	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
	ASSERT(PagePrivate(page));
	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;

	if (wait == WAIT_NONE) {
		ret = try_lock_extent(io_tree, eb->start,
				      eb->start + eb->len - 1);
		if (ret <= 0)
			return ret;
	} else {
		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		if (ret < 0)
			return ret;
	}

	ret = 0;
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
	    PageUptodate(page) ||
	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		return ret;
	}

	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
	eb->read_mirror = 0;
	atomic_set(&eb->io_pages, 1);
	check_buffer_tree_ref(eb);
	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);

	ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, page, eb->start,
				 eb->len, eb->start - page_offset(page), &bio,
				 end_bio_extent_readpage, mirror_num, 0, 0,
				 true);
	if (ret) {
		/*
		 * In the endio function, if we hit something wrong we will
		 * increase the io_pages, so here we need to decrease it for
		 * error path.
		 */
		atomic_dec(&eb->io_pages);
	}
	if (bio) {
		int tmp;

		tmp = submit_one_bio(bio, mirror_num, 0);
		if (tmp < 0)
			return tmp;
	}
	if (ret || wait != WAIT_COMPLETE)
		return ret;

	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
		ret = -EIO;
	return ret;
}

6011
int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6012
{
6013
	int i;
6014 6015 6016
	struct page *page;
	int err;
	int ret = 0;
6017 6018
	int locked_pages = 0;
	int all_uptodate = 1;
6019
	int num_pages;
6020
	unsigned long num_reads = 0;
6021
	struct bio *bio = NULL;
C
Chris Mason 已提交
6022
	unsigned long bio_flags = 0;
6023

6024
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6025 6026
		return 0;

6027 6028 6029
	if (eb->fs_info->sectorsize < PAGE_SIZE)
		return read_extent_buffer_subpage(eb, wait, mirror_num);

6030
	num_pages = num_extent_pages(eb);
6031
	for (i = 0; i < num_pages; i++) {
6032
		page = eb->pages[i];
6033
		if (wait == WAIT_NONE) {
6034 6035 6036 6037 6038 6039 6040
			/*
			 * WAIT_NONE is only utilized by readahead. If we can't
			 * acquire the lock atomically it means either the eb
			 * is being read out or under modification.
			 * Either way the eb will be or has been cached,
			 * readahead can exit safely.
			 */
6041
			if (!trylock_page(page))
6042
				goto unlock_exit;
6043 6044 6045
		} else {
			lock_page(page);
		}
6046
		locked_pages++;
6047 6048 6049 6050 6051 6052
	}
	/*
	 * We need to firstly lock all pages to make sure that
	 * the uptodate bit of our pages won't be affected by
	 * clear_extent_buffer_uptodate().
	 */
6053
	for (i = 0; i < num_pages; i++) {
6054
		page = eb->pages[i];
6055 6056
		if (!PageUptodate(page)) {
			num_reads++;
6057
			all_uptodate = 0;
6058
		}
6059
	}
6060

6061
	if (all_uptodate) {
6062
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6063 6064 6065
		goto unlock_exit;
	}

6066
	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6067
	eb->read_mirror = 0;
6068
	atomic_set(&eb->io_pages, num_reads);
6069 6070 6071 6072 6073
	/*
	 * It is possible for releasepage to clear the TREE_REF bit before we
	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
	 */
	check_buffer_tree_ref(eb);
6074
	for (i = 0; i < num_pages; i++) {
6075
		page = eb->pages[i];
6076

6077
		if (!PageUptodate(page)) {
6078 6079 6080 6081 6082 6083
			if (ret) {
				atomic_dec(&eb->io_pages);
				unlock_page(page);
				continue;
			}

6084
			ClearPageError(page);
6085 6086 6087 6088
			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
					 page, page_offset(page), PAGE_SIZE, 0,
					 &bio, end_bio_extent_readpage,
					 mirror_num, 0, 0, false);
6089 6090
			if (err) {
				/*
6091 6092 6093
				 * We failed to submit the bio so it's the
				 * caller's responsibility to perform cleanup
				 * i.e unlock page/set error bit.
6094
				 */
6095 6096 6097
				ret = err;
				SetPageError(page);
				unlock_page(page);
6098 6099
				atomic_dec(&eb->io_pages);
			}
6100 6101 6102 6103 6104
		} else {
			unlock_page(page);
		}
	}

6105
	if (bio) {
6106
		err = submit_one_bio(bio, mirror_num, bio_flags);
6107 6108
		if (err)
			return err;
6109
	}
6110

6111
	if (ret || wait != WAIT_COMPLETE)
6112
		return ret;
C
Chris Mason 已提交
6113

6114
	for (i = 0; i < num_pages; i++) {
6115
		page = eb->pages[i];
6116
		wait_on_page_locked(page);
C
Chris Mason 已提交
6117
		if (!PageUptodate(page))
6118 6119
			ret = -EIO;
	}
C
Chris Mason 已提交
6120

6121
	return ret;
6122 6123

unlock_exit:
C
Chris Mason 已提交
6124
	while (locked_pages > 0) {
6125
		locked_pages--;
6126 6127
		page = eb->pages[locked_pages];
		unlock_page(page);
6128 6129
	}
	return ret;
6130 6131
}

6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161
static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
			    unsigned long len)
{
	btrfs_warn(eb->fs_info,
		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
		eb->start, eb->len, start, len);
	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));

	return true;
}

/*
 * Check if the [start, start + len) range is valid before reading/writing
 * the eb.
 * NOTE: @start and @len are offset inside the eb, not logical address.
 *
 * Caller should not touch the dst/src memory if this function returns error.
 */
static inline int check_eb_range(const struct extent_buffer *eb,
				 unsigned long start, unsigned long len)
{
	unsigned long offset;

	/* start, start + len should not go beyond eb->len nor overflow */
	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
		return report_eb_range(eb, start, len);

	return false;
}

6162 6163
void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
			unsigned long start, unsigned long len)
6164 6165 6166 6167 6168 6169
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *dst = (char *)dstv;
6170
	unsigned long i = get_eb_page_index(start);
6171

6172
	if (check_eb_range(eb, start, len))
6173
		return;
6174

6175
	offset = get_eb_offset_in_page(eb, start);
6176

C
Chris Mason 已提交
6177
	while (len > 0) {
6178
		page = eb->pages[i];
6179

6180
		cur = min(len, (PAGE_SIZE - offset));
6181
		kaddr = page_address(page);
6182 6183 6184 6185 6186 6187 6188 6189 6190
		memcpy(dst, kaddr + offset, cur);

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6191 6192 6193
int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
				       void __user *dstv,
				       unsigned long start, unsigned long len)
6194 6195 6196 6197 6198 6199
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char __user *dst = (char __user *)dstv;
6200
	unsigned long i = get_eb_page_index(start);
6201 6202 6203 6204 6205
	int ret = 0;

	WARN_ON(start > eb->len);
	WARN_ON(start + len > eb->start + eb->len);

6206
	offset = get_eb_offset_in_page(eb, start);
6207 6208

	while (len > 0) {
6209
		page = eb->pages[i];
6210

6211
		cur = min(len, (PAGE_SIZE - offset));
6212
		kaddr = page_address(page);
6213
		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226
			ret = -EFAULT;
			break;
		}

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}

	return ret;
}

6227 6228
int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
			 unsigned long start, unsigned long len)
6229 6230 6231 6232 6233 6234
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *ptr = (char *)ptrv;
6235
	unsigned long i = get_eb_page_index(start);
6236 6237
	int ret = 0;

6238 6239
	if (check_eb_range(eb, start, len))
		return -EINVAL;
6240

6241
	offset = get_eb_offset_in_page(eb, start);
6242

C
Chris Mason 已提交
6243
	while (len > 0) {
6244
		page = eb->pages[i];
6245

6246
		cur = min(len, (PAGE_SIZE - offset));
6247

6248
		kaddr = page_address(page);
6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260
		ret = memcmp(ptr, kaddr + offset, cur);
		if (ret)
			break;

		ptr += cur;
		len -= cur;
		offset = 0;
		i++;
	}
	return ret;
}

6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282
/*
 * Check that the extent buffer is uptodate.
 *
 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
 */
static void assert_eb_page_uptodate(const struct extent_buffer *eb,
				    struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;

	if (fs_info->sectorsize < PAGE_SIZE) {
		bool uptodate;

		uptodate = btrfs_subpage_test_uptodate(fs_info, page,
						       eb->start, eb->len);
		WARN_ON(!uptodate);
	} else {
		WARN_ON(!PageUptodate(page));
	}
}

6283
void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6284 6285 6286 6287
		const void *srcv)
{
	char *kaddr;

6288
	assert_eb_page_uptodate(eb, eb->pages[0]);
6289
	kaddr = page_address(eb->pages[0]) + get_eb_offset_in_page(eb, 0);
6290 6291 6292 6293
	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
			BTRFS_FSID_SIZE);
}

6294
void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6295 6296 6297
{
	char *kaddr;

6298
	assert_eb_page_uptodate(eb, eb->pages[0]);
6299
	kaddr = page_address(eb->pages[0]) + get_eb_offset_in_page(eb, 0);
6300 6301 6302 6303
	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
			BTRFS_FSID_SIZE);
}

6304
void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6305 6306 6307 6308 6309 6310 6311
			 unsigned long start, unsigned long len)
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *src = (char *)srcv;
6312
	unsigned long i = get_eb_page_index(start);
6313

6314 6315
	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));

6316 6317
	if (check_eb_range(eb, start, len))
		return;
6318

6319
	offset = get_eb_offset_in_page(eb, start);
6320

C
Chris Mason 已提交
6321
	while (len > 0) {
6322
		page = eb->pages[i];
6323
		assert_eb_page_uptodate(eb, page);
6324

6325
		cur = min(len, PAGE_SIZE - offset);
6326
		kaddr = page_address(page);
6327 6328 6329 6330 6331 6332 6333 6334 6335
		memcpy(kaddr + offset, src, cur);

		src += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6336
void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6337
		unsigned long len)
6338 6339 6340 6341 6342
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
6343
	unsigned long i = get_eb_page_index(start);
6344

6345 6346
	if (check_eb_range(eb, start, len))
		return;
6347

6348
	offset = get_eb_offset_in_page(eb, start);
6349

C
Chris Mason 已提交
6350
	while (len > 0) {
6351
		page = eb->pages[i];
6352
		assert_eb_page_uptodate(eb, page);
6353

6354
		cur = min(len, PAGE_SIZE - offset);
6355
		kaddr = page_address(page);
6356
		memset(kaddr + offset, 0, cur);
6357 6358 6359 6360 6361 6362 6363

		len -= cur;
		offset = 0;
		i++;
	}
}

6364 6365
void copy_extent_buffer_full(const struct extent_buffer *dst,
			     const struct extent_buffer *src)
6366 6367
{
	int i;
6368
	int num_pages;
6369 6370 6371

	ASSERT(dst->len == src->len);

6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385
	if (dst->fs_info->sectorsize == PAGE_SIZE) {
		num_pages = num_extent_pages(dst);
		for (i = 0; i < num_pages; i++)
			copy_page(page_address(dst->pages[i]),
				  page_address(src->pages[i]));
	} else {
		size_t src_offset = get_eb_offset_in_page(src, 0);
		size_t dst_offset = get_eb_offset_in_page(dst, 0);

		ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
		memcpy(page_address(dst->pages[0]) + dst_offset,
		       page_address(src->pages[0]) + src_offset,
		       src->len);
	}
6386 6387
}

6388 6389
void copy_extent_buffer(const struct extent_buffer *dst,
			const struct extent_buffer *src,
6390 6391 6392 6393 6394 6395 6396 6397
			unsigned long dst_offset, unsigned long src_offset,
			unsigned long len)
{
	u64 dst_len = dst->len;
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
6398
	unsigned long i = get_eb_page_index(dst_offset);
6399

6400 6401 6402 6403
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(src, src_offset, len))
		return;

6404 6405
	WARN_ON(src->len != dst_len);

6406
	offset = get_eb_offset_in_page(dst, dst_offset);
6407

C
Chris Mason 已提交
6408
	while (len > 0) {
6409
		page = dst->pages[i];
6410
		assert_eb_page_uptodate(dst, page);
6411

6412
		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
6413

6414
		kaddr = page_address(page);
6415 6416 6417 6418 6419 6420 6421 6422 6423
		read_extent_buffer(src, kaddr + offset, src_offset, cur);

		src_offset += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436
/*
 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
 * given bit number
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number
 * @page_index: return index of the page in the extent buffer that contains the
 * given bit number
 * @page_offset: return offset into the page given by page_index
 *
 * This helper hides the ugliness of finding the byte in an extent buffer which
 * contains a given bit.
 */
6437
static inline void eb_bitmap_offset(const struct extent_buffer *eb,
6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449
				    unsigned long start, unsigned long nr,
				    unsigned long *page_index,
				    size_t *page_offset)
{
	size_t byte_offset = BIT_BYTE(nr);
	size_t offset;

	/*
	 * The byte we want is the offset of the extent buffer + the offset of
	 * the bitmap item in the extent buffer + the offset of the byte in the
	 * bitmap item.
	 */
6450
	offset = start + offset_in_page(eb->start) + byte_offset;
6451

6452
	*page_index = offset >> PAGE_SHIFT;
6453
	*page_offset = offset_in_page(offset);
6454 6455 6456 6457 6458 6459 6460 6461
}

/**
 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number to test
 */
6462
int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
6463 6464
			   unsigned long nr)
{
6465
	u8 *kaddr;
6466 6467 6468 6469 6470 6471
	struct page *page;
	unsigned long i;
	size_t offset;

	eb_bitmap_offset(eb, start, nr, &i, &offset);
	page = eb->pages[i];
6472
	assert_eb_page_uptodate(eb, page);
6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483
	kaddr = page_address(page);
	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
}

/**
 * extent_buffer_bitmap_set - set an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to set
 */
6484
void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
6485 6486
			      unsigned long pos, unsigned long len)
{
6487
	u8 *kaddr;
6488 6489 6490 6491 6492
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6493
	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
6494 6495 6496

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
6497
	assert_eb_page_uptodate(eb, page);
6498 6499 6500 6501 6502 6503
	kaddr = page_address(page);

	while (len >= bits_to_set) {
		kaddr[offset] |= mask_to_set;
		len -= bits_to_set;
		bits_to_set = BITS_PER_BYTE;
D
Dan Carpenter 已提交
6504
		mask_to_set = ~0;
6505
		if (++offset >= PAGE_SIZE && len > 0) {
6506 6507
			offset = 0;
			page = eb->pages[++i];
6508
			assert_eb_page_uptodate(eb, page);
6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] |= mask_to_set;
	}
}


/**
 * extent_buffer_bitmap_clear - clear an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to clear
 */
6526 6527 6528
void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
				unsigned long start, unsigned long pos,
				unsigned long len)
6529
{
6530
	u8 *kaddr;
6531 6532 6533 6534 6535
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6536
	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
6537 6538 6539

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
6540
	assert_eb_page_uptodate(eb, page);
6541 6542 6543 6544 6545 6546
	kaddr = page_address(page);

	while (len >= bits_to_clear) {
		kaddr[offset] &= ~mask_to_clear;
		len -= bits_to_clear;
		bits_to_clear = BITS_PER_BYTE;
D
Dan Carpenter 已提交
6547
		mask_to_clear = ~0;
6548
		if (++offset >= PAGE_SIZE && len > 0) {
6549 6550
			offset = 0;
			page = eb->pages[++i];
6551
			assert_eb_page_uptodate(eb, page);
6552 6553 6554 6555 6556 6557 6558 6559 6560
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] &= ~mask_to_clear;
	}
}

6561 6562 6563 6564 6565 6566
static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
{
	unsigned long distance = (src > dst) ? src - dst : dst - src;
	return distance < len;
}

6567 6568 6569 6570
static void copy_pages(struct page *dst_page, struct page *src_page,
		       unsigned long dst_off, unsigned long src_off,
		       unsigned long len)
{
6571
	char *dst_kaddr = page_address(dst_page);
6572
	char *src_kaddr;
6573
	int must_memmove = 0;
6574

6575
	if (dst_page != src_page) {
6576
		src_kaddr = page_address(src_page);
6577
	} else {
6578
		src_kaddr = dst_kaddr;
6579 6580
		if (areas_overlap(src_off, dst_off, len))
			must_memmove = 1;
6581
	}
6582

6583 6584 6585 6586
	if (must_memmove)
		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
	else
		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6587 6588
}

6589 6590 6591
void memcpy_extent_buffer(const struct extent_buffer *dst,
			  unsigned long dst_offset, unsigned long src_offset,
			  unsigned long len)
6592 6593 6594 6595 6596 6597 6598
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_i;
	unsigned long src_i;

6599 6600 6601
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
6602

C
Chris Mason 已提交
6603
	while (len > 0) {
6604 6605
		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
6606

6607 6608
		dst_i = get_eb_page_index(dst_offset);
		src_i = get_eb_page_index(src_offset);
6609

6610
		cur = min(len, (unsigned long)(PAGE_SIZE -
6611 6612
					       src_off_in_page));
		cur = min_t(unsigned long, cur,
6613
			(unsigned long)(PAGE_SIZE - dst_off_in_page));
6614

6615
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6616 6617 6618 6619 6620 6621 6622 6623
			   dst_off_in_page, src_off_in_page, cur);

		src_offset += cur;
		dst_offset += cur;
		len -= cur;
	}
}

6624 6625 6626
void memmove_extent_buffer(const struct extent_buffer *dst,
			   unsigned long dst_offset, unsigned long src_offset,
			   unsigned long len)
6627 6628 6629 6630 6631 6632 6633 6634 6635
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_end = dst_offset + len - 1;
	unsigned long src_end = src_offset + len - 1;
	unsigned long dst_i;
	unsigned long src_i;

6636 6637 6638
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
6639
	if (dst_offset < src_offset) {
6640 6641 6642
		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
		return;
	}
C
Chris Mason 已提交
6643
	while (len > 0) {
6644 6645
		dst_i = get_eb_page_index(dst_end);
		src_i = get_eb_page_index(src_end);
6646

6647 6648
		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
		src_off_in_page = get_eb_offset_in_page(dst, src_end);
6649 6650 6651

		cur = min_t(unsigned long, len, src_off_in_page + 1);
		cur = min(cur, dst_off_in_page + 1);
6652
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6653 6654 6655 6656 6657 6658 6659 6660
			   dst_off_in_page - cur + 1,
			   src_off_in_page - cur + 1, cur);

		dst_end -= cur;
		src_end -= cur;
		len -= cur;
	}
}
6661

6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760
static struct extent_buffer *get_next_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
	struct extent_buffer *gang[BTRFS_SUBPAGE_BITMAP_SIZE];
	struct extent_buffer *found = NULL;
	u64 page_start = page_offset(page);
	int ret;
	int i;

	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
	ASSERT(PAGE_SIZE / fs_info->nodesize <= BTRFS_SUBPAGE_BITMAP_SIZE);
	lockdep_assert_held(&fs_info->buffer_lock);

	ret = radix_tree_gang_lookup(&fs_info->buffer_radix, (void **)gang,
			bytenr >> fs_info->sectorsize_bits,
			PAGE_SIZE / fs_info->nodesize);
	for (i = 0; i < ret; i++) {
		/* Already beyond page end */
		if (gang[i]->start >= page_start + PAGE_SIZE)
			break;
		/* Found one */
		if (gang[i]->start >= bytenr) {
			found = gang[i];
			break;
		}
	}
	return found;
}

static int try_release_subpage_extent_buffer(struct page *page)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	u64 cur = page_offset(page);
	const u64 end = page_offset(page) + PAGE_SIZE;
	int ret;

	while (cur < end) {
		struct extent_buffer *eb = NULL;

		/*
		 * Unlike try_release_extent_buffer() which uses page->private
		 * to grab buffer, for subpage case we rely on radix tree, thus
		 * we need to ensure radix tree consistency.
		 *
		 * We also want an atomic snapshot of the radix tree, thus go
		 * with spinlock rather than RCU.
		 */
		spin_lock(&fs_info->buffer_lock);
		eb = get_next_extent_buffer(fs_info, page, cur);
		if (!eb) {
			/* No more eb in the page range after or at cur */
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		cur = eb->start + eb->len;

		/*
		 * The same as try_release_extent_buffer(), to ensure the eb
		 * won't disappear out from under us.
		 */
		spin_lock(&eb->refs_lock);
		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
			spin_unlock(&eb->refs_lock);
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		spin_unlock(&fs_info->buffer_lock);

		/*
		 * If tree ref isn't set then we know the ref on this eb is a
		 * real ref, so just return, this eb will likely be freed soon
		 * anyway.
		 */
		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
			spin_unlock(&eb->refs_lock);
			break;
		}

		/*
		 * Here we don't care about the return value, we will always
		 * check the page private at the end.  And
		 * release_extent_buffer() will release the refs_lock.
		 */
		release_extent_buffer(eb);
	}
	/*
	 * Finally to check if we have cleared page private, as if we have
	 * released all ebs in the page, the page private should be cleared now.
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page))
		ret = 1;
	else
		ret = 0;
	spin_unlock(&page->mapping->private_lock);
	return ret;

}

6761
int try_release_extent_buffer(struct page *page)
6762
{
6763 6764
	struct extent_buffer *eb;

6765 6766 6767
	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
		return try_release_subpage_extent_buffer(page);

6768
	/*
6769 6770
	 * We need to make sure nobody is changing page->private, as we rely on
	 * page->private as the pointer to extent buffer.
6771 6772 6773 6774
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&page->mapping->private_lock);
J
Josef Bacik 已提交
6775
		return 1;
6776
	}
6777

6778 6779
	eb = (struct extent_buffer *)page->private;
	BUG_ON(!eb);
6780 6781

	/*
6782 6783 6784
	 * This is a little awful but should be ok, we need to make sure that
	 * the eb doesn't disappear out from under us while we're looking at
	 * this page.
6785
	 */
6786
	spin_lock(&eb->refs_lock);
6787
	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6788 6789 6790
		spin_unlock(&eb->refs_lock);
		spin_unlock(&page->mapping->private_lock);
		return 0;
6791
	}
6792
	spin_unlock(&page->mapping->private_lock);
6793

6794
	/*
6795 6796
	 * If tree ref isn't set then we know the ref on this eb is a real ref,
	 * so just return, this page will likely be freed soon anyway.
6797
	 */
6798 6799 6800
	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
		spin_unlock(&eb->refs_lock);
		return 0;
6801
	}
6802

6803
	return release_extent_buffer(eb);
6804
}
6805 6806 6807 6808 6809

/*
 * btrfs_readahead_tree_block - attempt to readahead a child block
 * @fs_info:	the fs_info
 * @bytenr:	bytenr to read
6810
 * @owner_root: objectid of the root that owns this eb
6811
 * @gen:	generation for the uptodate check, can be 0
6812
 * @level:	level for the eb
6813 6814 6815 6816 6817 6818
 *
 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
 * normal uptodate check of the eb, without checking the generation.  If we have
 * to read the block we will not block on anything.
 */
void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
6819
				u64 bytenr, u64 owner_root, u64 gen, int level)
6820 6821 6822 6823
{
	struct extent_buffer *eb;
	int ret;

6824
	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851
	if (IS_ERR(eb))
		return;

	if (btrfs_buffer_uptodate(eb, gen, 1)) {
		free_extent_buffer(eb);
		return;
	}

	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
	if (ret < 0)
		free_extent_buffer_stale(eb);
	else
		free_extent_buffer(eb);
}

/*
 * btrfs_readahead_node_child - readahead a node's child block
 * @node:	parent node we're reading from
 * @slot:	slot in the parent node for the child we want to read
 *
 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
 * the slot in the node provided.
 */
void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
{
	btrfs_readahead_tree_block(node->fs_info,
				   btrfs_node_blockptr(node, slot),
6852 6853 6854
				   btrfs_header_owner(node),
				   btrfs_node_ptr_generation(node, slot),
				   btrfs_header_level(node) - 1);
6855
}