extent_io.c 197.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2

3 4 5 6 7 8
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/bio.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/page-flags.h>
9
#include <linux/sched/mm.h>
10 11 12 13 14
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
15
#include <linux/prefetch.h>
B
Boris Burkov 已提交
16
#include <linux/fsverity.h>
17
#include "misc.h"
18
#include "extent_io.h"
19
#include "extent-io-tree.h"
20
#include "extent_map.h"
21 22
#include "ctree.h"
#include "btrfs_inode.h"
23
#include "volumes.h"
24
#include "check-integrity.h"
25
#include "locking.h"
26
#include "rcu-string.h"
27
#include "backref.h"
28
#include "disk-io.h"
29
#include "subpage.h"
30
#include "zoned.h"
31
#include "block-group.h"
32
#include "compression.h"
33 34 35

static struct kmem_cache *extent_state_cache;
static struct kmem_cache *extent_buffer_cache;
36
static struct bio_set btrfs_bioset;
37

38 39 40 41 42
static inline bool extent_state_in_tree(const struct extent_state *state)
{
	return !RB_EMPTY_NODE(&state->rb_node);
}

43
#ifdef CONFIG_BTRFS_DEBUG
44
static LIST_HEAD(states);
C
Chris Mason 已提交
45
static DEFINE_SPINLOCK(leak_lock);
46

47 48 49
static inline void btrfs_leak_debug_add(spinlock_t *lock,
					struct list_head *new,
					struct list_head *head)
50 51 52
{
	unsigned long flags;

53
	spin_lock_irqsave(lock, flags);
54
	list_add(new, head);
55
	spin_unlock_irqrestore(lock, flags);
56 57
}

58 59
static inline void btrfs_leak_debug_del(spinlock_t *lock,
					struct list_head *entry)
60 61 62
{
	unsigned long flags;

63
	spin_lock_irqsave(lock, flags);
64
	list_del(entry);
65
	spin_unlock_irqrestore(lock, flags);
66 67
}

68
void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
69 70
{
	struct extent_buffer *eb;
71
	unsigned long flags;
72

73 74 75 76 77 78 79
	/*
	 * If we didn't get into open_ctree our allocated_ebs will not be
	 * initialized, so just skip this.
	 */
	if (!fs_info->allocated_ebs.next)
		return;

80
	WARN_ON(!list_empty(&fs_info->allocated_ebs));
81 82 83 84
	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
	while (!list_empty(&fs_info->allocated_ebs)) {
		eb = list_first_entry(&fs_info->allocated_ebs,
				      struct extent_buffer, leak_list);
85 86 87 88
		pr_err(
	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
		       btrfs_header_owner(eb));
89 90 91
		list_del(&eb->leak_list);
		kmem_cache_free(extent_buffer_cache, eb);
	}
92
	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
93 94 95 96 97 98
}

static inline void btrfs_extent_state_leak_debug_check(void)
{
	struct extent_state *state;

99 100
	while (!list_empty(&states)) {
		state = list_entry(states.next, struct extent_state, leak_list);
101
		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
102 103
		       state->start, state->end, state->state,
		       extent_state_in_tree(state),
104
		       refcount_read(&state->refs));
105 106 107 108
		list_del(&state->leak_list);
		kmem_cache_free(extent_state_cache, state);
	}
}
109

110 111
#define btrfs_debug_check_extent_io_range(tree, start, end)		\
	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
112
static inline void __btrfs_debug_check_extent_io_range(const char *caller,
113
		struct extent_io_tree *tree, u64 start, u64 end)
114
{
115 116 117 118 119 120 121 122 123 124 125 126
	struct inode *inode = tree->private_data;
	u64 isize;

	if (!inode || !is_data_inode(inode))
		return;

	isize = i_size_read(inode);
	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
	}
127
}
128
#else
129 130
#define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
#define btrfs_leak_debug_del(lock, entry)	do {} while (0)
131
#define btrfs_extent_state_leak_debug_check()	do {} while (0)
132
#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
C
Chris Mason 已提交
133
#endif
134 135 136 137 138 139 140

struct tree_entry {
	u64 start;
	u64 end;
	struct rb_node rb_node;
};

141 142 143 144 145 146
/*
 * Structure to record info about the bio being assembled, and other info like
 * how many bytes are there before stripe/ordered extent boundary.
 */
struct btrfs_bio_ctrl {
	struct bio *bio;
147
	int mirror_num;
148
	enum btrfs_compression_type compress_type;
149 150 151 152
	u32 len_to_stripe_boundary;
	u32 len_to_oe_boundary;
};

153
struct extent_page_data {
154
	struct btrfs_bio_ctrl bio_ctrl;
155 156 157
	/* tells writepage not to lock the state bits for this range
	 * it still does the unlocking
	 */
158 159
	unsigned int extent_locked:1;

160
	/* tells the submit_bio code to use REQ_SYNC */
161
	unsigned int sync_io:1;
162 163
};

164
static int add_extent_changeset(struct extent_state *state, u32 bits,
165 166 167 168 169 170
				 struct extent_changeset *changeset,
				 int set)
{
	int ret;

	if (!changeset)
171
		return 0;
172
	if (set && (state->state & bits) == bits)
173
		return 0;
174
	if (!set && (state->state & bits) == 0)
175
		return 0;
176
	changeset->bytes_changed += state->end - state->start + 1;
177
	ret = ulist_add(&changeset->range_changed, state->start, state->end,
178
			GFP_ATOMIC);
179
	return ret;
180 181
}

182
static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
183
{
184 185 186 187 188 189 190 191 192 193
	struct bio *bio;
	struct inode *inode;
	int mirror_num;

	if (!bio_ctrl->bio)
		return;

	bio = bio_ctrl->bio;
	inode = bio_first_page_all(bio)->mapping->host;
	mirror_num = bio_ctrl->mirror_num;
194

195 196
	/* Caller should ensure the bio has at least some range added */
	ASSERT(bio->bi_iter.bi_size);
197

198 199 200 201
	if (!is_data_inode(inode))
		btrfs_submit_metadata_bio(inode, bio, mirror_num);
	else if (btrfs_op(bio) == BTRFS_MAP_WRITE)
		btrfs_submit_data_write_bio(inode, bio, mirror_num);
202
	else
203 204
		btrfs_submit_data_read_bio(inode, bio, mirror_num,
					   bio_ctrl->compress_type);
205

206 207
	/* The bio is owned by the bi_end_io handler now */
	bio_ctrl->bio = NULL;
208 209
}

210
/*
211
 * Submit or fail the current bio in an extent_page_data structure.
212
 */
213
static void submit_write_bio(struct extent_page_data *epd, int ret)
214
{
215
	struct bio *bio = epd->bio_ctrl.bio;
216

217 218 219 220 221 222 223
	if (!bio)
		return;

	if (ret) {
		ASSERT(ret < 0);
		bio->bi_status = errno_to_blk_status(ret);
		bio_endio(bio);
224 225
		/* The bio is owned by the bi_end_io handler now */
		epd->bio_ctrl.bio = NULL;
226
	} else {
227
		submit_one_bio(&epd->bio_ctrl);
228 229
	}
}
230

231
int __init extent_state_cache_init(void)
232
{
D
David Sterba 已提交
233
	extent_state_cache = kmem_cache_create("btrfs_extent_state",
234
			sizeof(struct extent_state), 0,
235
			SLAB_MEM_SPREAD, NULL);
236 237
	if (!extent_state_cache)
		return -ENOMEM;
238 239
	return 0;
}
240

241 242
int __init extent_io_init(void)
{
D
David Sterba 已提交
243
	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
244
			sizeof(struct extent_buffer), 0,
245
			SLAB_MEM_SPREAD, NULL);
246
	if (!extent_buffer_cache)
247
		return -ENOMEM;
248

249
	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
250
			offsetof(struct btrfs_bio, bio),
251
			BIOSET_NEED_BVECS))
252
		goto free_buffer_cache;
253

254
	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
255 256
		goto free_bioset;

257 258
	return 0;

259
free_bioset:
260
	bioset_exit(&btrfs_bioset);
261

262 263 264
free_buffer_cache:
	kmem_cache_destroy(extent_buffer_cache);
	extent_buffer_cache = NULL;
265 266
	return -ENOMEM;
}
267

268 269 270
void __cold extent_state_cache_exit(void)
{
	btrfs_extent_state_leak_debug_check();
271 272 273
	kmem_cache_destroy(extent_state_cache);
}

274
void __cold extent_io_exit(void)
275
{
276 277 278 279 280
	/*
	 * Make sure all delayed rcu free are flushed before we
	 * destroy caches.
	 */
	rcu_barrier();
281
	kmem_cache_destroy(extent_buffer_cache);
282
	bioset_exit(&btrfs_bioset);
283 284
}

285 286 287 288 289 290 291 292 293
/*
 * For the file_extent_tree, we want to hold the inode lock when we lookup and
 * update the disk_i_size, but lockdep will complain because our io_tree we hold
 * the tree lock and get the inode lock when setting delalloc.  These two things
 * are unrelated, so make a class for the file_extent_tree so we don't get the
 * two locking patterns mixed up.
 */
static struct lock_class_key file_extent_tree_class;

294
void extent_io_tree_init(struct btrfs_fs_info *fs_info,
295 296
			 struct extent_io_tree *tree, unsigned int owner,
			 void *private_data)
297
{
298
	tree->fs_info = fs_info;
299
	tree->state = RB_ROOT;
300
	tree->dirty_bytes = 0;
301
	spin_lock_init(&tree->lock);
302
	tree->private_data = private_data;
303
	tree->owner = owner;
304 305
	if (owner == IO_TREE_INODE_FILE_EXTENT)
		lockdep_set_class(&tree->lock, &file_extent_tree_class);
306 307
}

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
void extent_io_tree_release(struct extent_io_tree *tree)
{
	spin_lock(&tree->lock);
	/*
	 * Do a single barrier for the waitqueue_active check here, the state
	 * of the waitqueue should not change once extent_io_tree_release is
	 * called.
	 */
	smp_mb();
	while (!RB_EMPTY_ROOT(&tree->state)) {
		struct rb_node *node;
		struct extent_state *state;

		node = rb_first(&tree->state);
		state = rb_entry(node, struct extent_state, rb_node);
		rb_erase(&state->rb_node, &tree->state);
		RB_CLEAR_NODE(&state->rb_node);
		/*
		 * btree io trees aren't supposed to have tasks waiting for
		 * changes in the flags of extent states ever.
		 */
		ASSERT(!waitqueue_active(&state->wq));
		free_extent_state(state);

		cond_resched_lock(&tree->lock);
	}
	spin_unlock(&tree->lock);
}

337
static struct extent_state *alloc_extent_state(gfp_t mask)
338 339 340
{
	struct extent_state *state;

341 342 343 344 345
	/*
	 * The given mask might be not appropriate for the slab allocator,
	 * drop the unsupported bits
	 */
	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
346
	state = kmem_cache_alloc(extent_state_cache, mask);
347
	if (!state)
348 349
		return state;
	state->state = 0;
350
	state->failrec = NULL;
351
	RB_CLEAR_NODE(&state->rb_node);
352
	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
353
	refcount_set(&state->refs, 1);
354
	init_waitqueue_head(&state->wq);
355
	trace_alloc_extent_state(state, mask, _RET_IP_);
356 357 358
	return state;
}

359
void free_extent_state(struct extent_state *state)
360 361 362
{
	if (!state)
		return;
363
	if (refcount_dec_and_test(&state->refs)) {
364
		WARN_ON(extent_state_in_tree(state));
365
		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
366
		trace_free_extent_state(state, _RET_IP_);
367 368 369 370
		kmem_cache_free(extent_state_cache, state);
	}
}

371 372 373
static struct rb_node *tree_insert(struct rb_root *root,
				   struct rb_node *search_start,
				   u64 offset,
374 375 376
				   struct rb_node *node,
				   struct rb_node ***p_in,
				   struct rb_node **parent_in)
377
{
378
	struct rb_node **p;
C
Chris Mason 已提交
379
	struct rb_node *parent = NULL;
380 381
	struct tree_entry *entry;

382 383 384 385 386 387
	if (p_in && parent_in) {
		p = *p_in;
		parent = *parent_in;
		goto do_insert;
	}

388
	p = search_start ? &search_start : &root->rb_node;
C
Chris Mason 已提交
389
	while (*p) {
390 391 392 393 394 395 396 397 398 399 400
		parent = *p;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (offset < entry->start)
			p = &(*p)->rb_left;
		else if (offset > entry->end)
			p = &(*p)->rb_right;
		else
			return parent;
	}

401
do_insert:
402 403 404 405 406
	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
	return NULL;
}

N
Nikolay Borisov 已提交
407
/**
408 409
 * Search @tree for an entry that contains @offset. Such entry would have
 * entry->start <= offset && entry->end >= offset.
N
Nikolay Borisov 已提交
410
 *
411 412 413 414 415 416 417
 * @tree:       the tree to search
 * @offset:     offset that should fall within an entry in @tree
 * @next_ret:   pointer to the first entry whose range ends after @offset
 * @prev_ret:   pointer to the first entry whose range begins before @offset
 * @p_ret:      pointer where new node should be anchored (used when inserting an
 *	        entry in the tree)
 * @parent_ret: points to entry which would have been the parent of the entry,
N
Nikolay Borisov 已提交
418 419 420 421 422 423 424
 *               containing @offset
 *
 * This function returns a pointer to the entry that contains @offset byte
 * address. If no such entry exists, then NULL is returned and the other
 * pointer arguments to the function are filled, otherwise the found entry is
 * returned and other pointers are left untouched.
 */
425
static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
426
				      struct rb_node **next_ret,
427
				      struct rb_node **prev_ret,
428 429
				      struct rb_node ***p_ret,
				      struct rb_node **parent_ret)
430
{
431
	struct rb_root *root = &tree->state;
432
	struct rb_node **n = &root->rb_node;
433 434 435 436 437
	struct rb_node *prev = NULL;
	struct rb_node *orig_prev = NULL;
	struct tree_entry *entry;
	struct tree_entry *prev_entry = NULL;

438 439 440
	while (*n) {
		prev = *n;
		entry = rb_entry(prev, struct tree_entry, rb_node);
441 442 443
		prev_entry = entry;

		if (offset < entry->start)
444
			n = &(*n)->rb_left;
445
		else if (offset > entry->end)
446
			n = &(*n)->rb_right;
C
Chris Mason 已提交
447
		else
448
			return *n;
449 450
	}

451 452 453 454 455
	if (p_ret)
		*p_ret = n;
	if (parent_ret)
		*parent_ret = prev;

456
	if (next_ret) {
457
		orig_prev = prev;
C
Chris Mason 已提交
458
		while (prev && offset > prev_entry->end) {
459 460 461
			prev = rb_next(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
462
		*next_ret = prev;
463 464 465
		prev = orig_prev;
	}

466
	if (prev_ret) {
467
		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
C
Chris Mason 已提交
468
		while (prev && offset < prev_entry->start) {
469 470 471
			prev = rb_prev(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
472
		*prev_ret = prev;
473 474 475 476
	}
	return NULL;
}

477 478 479 480 481
static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree *tree,
		       u64 offset,
		       struct rb_node ***p_ret,
		       struct rb_node **parent_ret)
482
{
483
	struct rb_node *next= NULL;
484
	struct rb_node *ret;
485

486
	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
C
Chris Mason 已提交
487
	if (!ret)
488
		return next;
489 490 491
	return ret;
}

492 493 494 495 496 497
static inline struct rb_node *tree_search(struct extent_io_tree *tree,
					  u64 offset)
{
	return tree_search_for_insert(tree, offset, NULL, NULL);
}

498 499 500 501 502 503 504 505 506
/*
 * utility function to look for merge candidates inside a given range.
 * Any extents with matching state are merged together into a single
 * extent in the tree.  Extents with EXTENT_IO in their state field
 * are not merged because the end_io handlers need to be able to do
 * operations on them without sleeping (or doing allocations/splits).
 *
 * This should be called with the tree lock held.
 */
507 508
static void merge_state(struct extent_io_tree *tree,
		        struct extent_state *state)
509 510 511 512
{
	struct extent_state *other;
	struct rb_node *other_node;

N
Nikolay Borisov 已提交
513
	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
514
		return;
515 516 517 518 519 520

	other_node = rb_prev(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->end == state->start - 1 &&
		    other->state == state->state) {
521 522 523 524
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
525 526
			state->start = other->start;
			rb_erase(&other->rb_node, &tree->state);
527
			RB_CLEAR_NODE(&other->rb_node);
528 529 530 531 532 533 534 535
			free_extent_state(other);
		}
	}
	other_node = rb_next(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->start == state->end + 1 &&
		    other->state == state->state) {
536 537 538 539
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
540 541
			state->end = other->end;
			rb_erase(&other->rb_node, &tree->state);
542
			RB_CLEAR_NODE(&other->rb_node);
543
			free_extent_state(other);
544 545 546 547
		}
	}
}

548
static void set_state_bits(struct extent_io_tree *tree,
549
			   struct extent_state *state, u32 *bits,
550
			   struct extent_changeset *changeset);
551

552 553 554 555 556 557 558 559 560 561 562 563
/*
 * insert an extent_state struct into the tree.  'bits' are set on the
 * struct before it is inserted.
 *
 * This may return -EEXIST if the extent is already there, in which case the
 * state struct is freed.
 *
 * The tree lock is not taken internally.  This is a utility function and
 * probably isn't what you want to call (see set/clear_extent_bit).
 */
static int insert_state(struct extent_io_tree *tree,
			struct extent_state *state, u64 start, u64 end,
564 565
			struct rb_node ***p,
			struct rb_node **parent,
566
			u32 *bits, struct extent_changeset *changeset)
567 568 569
{
	struct rb_node *node;

570 571 572 573 574
	if (end < start) {
		btrfs_err(tree->fs_info,
			"insert state: end < start %llu %llu", end, start);
		WARN_ON(1);
	}
575 576
	state->start = start;
	state->end = end;
J
Josef Bacik 已提交
577

578
	set_state_bits(tree, state, bits, changeset);
579

580
	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
581 582 583
	if (node) {
		struct extent_state *found;
		found = rb_entry(node, struct extent_state, rb_node);
584 585
		btrfs_err(tree->fs_info,
		       "found node %llu %llu on insert of %llu %llu",
586
		       found->start, found->end, start, end);
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
		return -EEXIST;
	}
	merge_state(tree, state);
	return 0;
}

/*
 * split a given extent state struct in two, inserting the preallocated
 * struct 'prealloc' as the newly created second half.  'split' indicates an
 * offset inside 'orig' where it should be split.
 *
 * Before calling,
 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 * are two extent state structs in the tree:
 * prealloc: [orig->start, split - 1]
 * orig: [ split, orig->end ]
 *
 * The tree locks are not taken by this function. They need to be held
 * by the caller.
 */
static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
		       struct extent_state *prealloc, u64 split)
{
	struct rb_node *node;
J
Josef Bacik 已提交
611

612 613
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_split_delalloc_extent(tree->private_data, orig, split);
J
Josef Bacik 已提交
614

615 616 617 618 619
	prealloc->start = orig->start;
	prealloc->end = split - 1;
	prealloc->state = orig->state;
	orig->start = split;

620 621
	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
			   &prealloc->rb_node, NULL, NULL);
622 623 624 625 626 627 628
	if (node) {
		free_extent_state(prealloc);
		return -EEXIST;
	}
	return 0;
}

629 630 631 632 633 634 635 636 637
static struct extent_state *next_state(struct extent_state *state)
{
	struct rb_node *next = rb_next(&state->rb_node);
	if (next)
		return rb_entry(next, struct extent_state, rb_node);
	else
		return NULL;
}

638 639
/*
 * utility function to clear some bits in an extent state struct.
640
 * it will optionally wake up anyone waiting on this state (wake == 1).
641 642 643 644
 *
 * If no bits are set on the state struct after clearing things, the
 * struct is freed and removed from the tree
 */
645 646
static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
					    struct extent_state *state,
647
					    u32 *bits, int wake,
648
					    struct extent_changeset *changeset)
649
{
650
	struct extent_state *next;
651
	u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
652
	int ret;
653

654
	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
655 656 657 658
		u64 range = state->end - state->start + 1;
		WARN_ON(range > tree->dirty_bytes);
		tree->dirty_bytes -= range;
	}
659 660 661 662

	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_clear_delalloc_extent(tree->private_data, state, bits);

663 664
	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
	BUG_ON(ret < 0);
665
	state->state &= ~bits_to_clear;
666 667
	if (wake)
		wake_up(&state->wq);
668
	if (state->state == 0) {
669
		next = next_state(state);
670
		if (extent_state_in_tree(state)) {
671
			rb_erase(&state->rb_node, &tree->state);
672
			RB_CLEAR_NODE(&state->rb_node);
673 674 675 676 677 678
			free_extent_state(state);
		} else {
			WARN_ON(1);
		}
	} else {
		merge_state(tree, state);
679
		next = next_state(state);
680
	}
681
	return next;
682 683
}

684 685 686 687 688 689 690 691 692
static struct extent_state *
alloc_extent_state_atomic(struct extent_state *prealloc)
{
	if (!prealloc)
		prealloc = alloc_extent_state(GFP_ATOMIC);

	return prealloc;
}

693
static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
694
{
695
	btrfs_panic(tree->fs_info, err,
696
	"locking error: extent tree was modified by another thread while locked");
697 698
}

699 700 701 702 703 704 705 706 707 708
/*
 * clear some bits on a range in the tree.  This may require splitting
 * or inserting elements in the tree, so the gfp mask is used to
 * indicate which allocations or sleeping are allowed.
 *
 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 * the given range from the tree regardless of state (ie for truncate).
 *
 * the range [start, end] is inclusive.
 *
709
 * This takes the tree lock, and returns 0 on success and < 0 on error.
710
 */
711
int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
712 713 714
		       u32 bits, int wake, int delete,
		       struct extent_state **cached_state,
		       gfp_t mask, struct extent_changeset *changeset)
715 716
{
	struct extent_state *state;
717
	struct extent_state *cached;
718 719
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
720
	u64 last_end;
721
	int err;
722
	int clear = 0;
723

724
	btrfs_debug_check_extent_io_range(tree, start, end);
725
	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
726

727 728 729
	if (bits & EXTENT_DELALLOC)
		bits |= EXTENT_NORESERVE;

730 731 732
	if (delete)
		bits |= ~EXTENT_CTLBITS;

N
Nikolay Borisov 已提交
733
	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
734
		clear = 1;
735
again:
736
	if (!prealloc && gfpflags_allow_blocking(mask)) {
737 738 739 740 741 742 743
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
744 745 746
		prealloc = alloc_extent_state(mask);
	}

747
	spin_lock(&tree->lock);
748 749
	if (cached_state) {
		cached = *cached_state;
750 751 752 753 754 755

		if (clear) {
			*cached_state = NULL;
			cached_state = NULL;
		}

756 757
		if (cached && extent_state_in_tree(cached) &&
		    cached->start <= start && cached->end > start) {
758
			if (clear)
759
				refcount_dec(&cached->refs);
760
			state = cached;
761
			goto hit_next;
762
		}
763 764
		if (clear)
			free_extent_state(cached);
765
	}
766 767 768 769
	/*
	 * this search will find the extents that end after
	 * our range starts
	 */
770
	node = tree_search(tree, start);
771 772 773
	if (!node)
		goto out;
	state = rb_entry(node, struct extent_state, rb_node);
774
hit_next:
775 776 777
	if (state->start > end)
		goto out;
	WARN_ON(state->end < start);
778
	last_end = state->end;
779

780
	/* the state doesn't have the wanted bits, go ahead */
781 782
	if (!(state->state & bits)) {
		state = next_state(state);
783
		goto next;
784
	}
785

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
	/*
	 *     | ---- desired range ---- |
	 *  | state | or
	 *  | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip
	 * bits on second half.
	 *
	 * If the extent we found extends past our range, we
	 * just split and search again.  It'll get split again
	 * the next time though.
	 *
	 * If the extent we found is inside our range, we clear
	 * the desired bit on it.
	 */

	if (state->start < start) {
803 804
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
805
		err = split_state(tree, state, prealloc, start);
806 807 808
		if (err)
			extent_io_tree_panic(tree, err);

809 810 811 812
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
813 814
			state = clear_state_bit(tree, state, &bits, wake,
						changeset);
815
			goto next;
816 817 818 819 820 821 822 823 824 825
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and clear the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
826 827
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
828
		err = split_state(tree, state, prealloc, end + 1);
829 830 831
		if (err)
			extent_io_tree_panic(tree, err);

832 833
		if (wake)
			wake_up(&state->wq);
834

835
		clear_state_bit(tree, prealloc, &bits, wake, changeset);
J
Josef Bacik 已提交
836

837 838 839
		prealloc = NULL;
		goto out;
	}
840

841
	state = clear_state_bit(tree, state, &bits, wake, changeset);
842
next:
843 844 845
	if (last_end == (u64)-1)
		goto out;
	start = last_end + 1;
846
	if (start <= end && state && !need_resched())
847
		goto hit_next;
848 849 850 851

search_again:
	if (start > end)
		goto out;
852
	spin_unlock(&tree->lock);
853
	if (gfpflags_allow_blocking(mask))
854 855
		cond_resched();
	goto again;
856 857 858 859 860 861 862 863

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return 0;

864 865
}

866 867
static void wait_on_state(struct extent_io_tree *tree,
			  struct extent_state *state)
868 869
		__releases(tree->lock)
		__acquires(tree->lock)
870 871 872
{
	DEFINE_WAIT(wait);
	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
873
	spin_unlock(&tree->lock);
874
	schedule();
875
	spin_lock(&tree->lock);
876 877 878 879 880 881 882 883
	finish_wait(&state->wq, &wait);
}

/*
 * waits for one or more bits to clear on a range in the state tree.
 * The range [start, end] is inclusive.
 * The tree lock is taken by this function
 */
884
static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
885
			    u32 bits)
886 887 888 889
{
	struct extent_state *state;
	struct rb_node *node;

890
	btrfs_debug_check_extent_io_range(tree, start, end);
891

892
	spin_lock(&tree->lock);
893 894 895 896 897 898
again:
	while (1) {
		/*
		 * this search will find all the extents that end after
		 * our range starts
		 */
899
		node = tree_search(tree, start);
900
process_node:
901 902 903 904 905 906 907 908 909 910
		if (!node)
			break;

		state = rb_entry(node, struct extent_state, rb_node);

		if (state->start > end)
			goto out;

		if (state->state & bits) {
			start = state->start;
911
			refcount_inc(&state->refs);
912 913 914 915 916 917 918 919 920
			wait_on_state(tree, state);
			free_extent_state(state);
			goto again;
		}
		start = state->end + 1;

		if (start > end)
			break;

921 922 923 924
		if (!cond_resched_lock(&tree->lock)) {
			node = rb_next(node);
			goto process_node;
		}
925 926
	}
out:
927
	spin_unlock(&tree->lock);
928 929
}

930
static void set_state_bits(struct extent_io_tree *tree,
931
			   struct extent_state *state,
932
			   u32 *bits, struct extent_changeset *changeset)
933
{
934
	u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
935
	int ret;
J
Josef Bacik 已提交
936

937 938 939
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_set_delalloc_extent(tree->private_data, state, bits);

940
	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
941 942 943
		u64 range = state->end - state->start + 1;
		tree->dirty_bytes += range;
	}
944 945
	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
	BUG_ON(ret < 0);
946
	state->state |= bits_to_set;
947 948
}

949 950
static void cache_state_if_flags(struct extent_state *state,
				 struct extent_state **cached_ptr,
951
				 unsigned flags)
952 953
{
	if (cached_ptr && !(*cached_ptr)) {
954
		if (!flags || (state->state & flags)) {
955
			*cached_ptr = state;
956
			refcount_inc(&state->refs);
957 958 959 960
		}
	}
}

961 962 963 964
static void cache_state(struct extent_state *state,
			struct extent_state **cached_ptr)
{
	return cache_state_if_flags(state, cached_ptr,
N
Nikolay Borisov 已提交
965
				    EXTENT_LOCKED | EXTENT_BOUNDARY);
966 967
}

968
/*
969 970
 * set some bits on a range in the tree.  This may require allocations or
 * sleeping, so the gfp mask is used to indicate what is allowed.
971
 *
972 973 974
 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 * part of the range already has the desired bits set.  The start of the
 * existing range is returned in failed_start in this case.
975
 *
976
 * [start, end] is inclusive This takes the tree lock.
977
 */
978 979
int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
		   u32 exclusive_bits, u64 *failed_start,
980 981
		   struct extent_state **cached_state, gfp_t mask,
		   struct extent_changeset *changeset)
982 983 984 985
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
986 987
	struct rb_node **p;
	struct rb_node *parent;
988 989 990
	int err = 0;
	u64 last_start;
	u64 last_end;
991

992
	btrfs_debug_check_extent_io_range(tree, start, end);
993
	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
994

995 996 997 998
	if (exclusive_bits)
		ASSERT(failed_start);
	else
		ASSERT(failed_start == NULL);
999
again:
1000
	if (!prealloc && gfpflags_allow_blocking(mask)) {
1001 1002 1003 1004 1005 1006 1007
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
1008 1009 1010
		prealloc = alloc_extent_state(mask);
	}

1011
	spin_lock(&tree->lock);
1012 1013
	if (cached_state && *cached_state) {
		state = *cached_state;
1014
		if (state->start <= start && state->end > start &&
1015
		    extent_state_in_tree(state)) {
1016 1017 1018 1019
			node = &state->rb_node;
			goto hit_next;
		}
	}
1020 1021 1022 1023
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1024
	node = tree_search_for_insert(tree, start, &p, &parent);
1025
	if (!node) {
1026 1027
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1028
		err = insert_state(tree, prealloc, start, end,
1029
				   &p, &parent, &bits, changeset);
1030 1031 1032
		if (err)
			extent_io_tree_panic(tree, err);

1033
		cache_state(prealloc, cached_state);
1034 1035 1036 1037
		prealloc = NULL;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1038
hit_next:
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1049
		if (state->state & exclusive_bits) {
1050 1051 1052 1053
			*failed_start = state->start;
			err = -EEXIST;
			goto out;
		}
1054

1055
		set_state_bits(tree, state, &bits, changeset);
1056
		cache_state(state, cached_state);
1057
		merge_state(tree, state);
1058 1059 1060
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1061 1062 1063 1064
		state = next_state(state);
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
1085
		if (state->state & exclusive_bits) {
1086 1087 1088 1089
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1090

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
		/*
		 * If this extent already has all the bits we want set, then
		 * skip it, not necessary to split it or do anything with it.
		 */
		if ((state->state & bits) == bits) {
			start = state->end + 1;
			cache_state(state, cached_state);
			goto search_again;
		}

1101 1102
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1103
		err = split_state(tree, state, prealloc, start);
1104 1105 1106
		if (err)
			extent_io_tree_panic(tree, err);

1107 1108 1109 1110
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1111
			set_state_bits(tree, state, &bits, changeset);
1112
			cache_state(state, cached_state);
1113
			merge_state(tree, state);
1114 1115 1116
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1117 1118 1119 1120
			state = next_state(state);
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
C
Chris Mason 已提交
1136
			this_end = last_start - 1;
1137 1138 1139

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1140 1141 1142 1143 1144

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
1145
		err = insert_state(tree, prealloc, start, this_end,
1146
				   NULL, NULL, &bits, changeset);
1147 1148 1149
		if (err)
			extent_io_tree_panic(tree, err);

J
Josef Bacik 已提交
1150 1151
		cache_state(prealloc, cached_state);
		prealloc = NULL;
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
1162
		if (state->state & exclusive_bits) {
1163 1164 1165 1166
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1167 1168 1169

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1170
		err = split_state(tree, state, prealloc, end + 1);
1171 1172
		if (err)
			extent_io_tree_panic(tree, err);
1173

1174
		set_state_bits(tree, prealloc, &bits, changeset);
1175
		cache_state(prealloc, cached_state);
1176 1177 1178 1179 1180
		merge_state(tree, prealloc);
		prealloc = NULL;
		goto out;
	}

1181 1182 1183 1184 1185 1186 1187
search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
	if (gfpflags_allow_blocking(mask))
		cond_resched();
	goto again;
1188 1189

out:
1190
	spin_unlock(&tree->lock);
1191 1192 1193 1194 1195 1196 1197
	if (prealloc)
		free_extent_state(prealloc);

	return err;

}

J
Josef Bacik 已提交
1198
/**
L
Liu Bo 已提交
1199 1200
 * convert_extent_bit - convert all bits in a given range from one bit to
 * 			another
J
Josef Bacik 已提交
1201 1202 1203 1204 1205
 * @tree:	the io tree to search
 * @start:	the start offset in bytes
 * @end:	the end offset in bytes (inclusive)
 * @bits:	the bits to set in this range
 * @clear_bits:	the bits to clear in this range
1206
 * @cached_state:	state that we're going to cache
J
Josef Bacik 已提交
1207 1208 1209 1210 1211 1212
 *
 * This will go through and set bits for the given range.  If any states exist
 * already in this range they are set with the given bit and cleared of the
 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 * boundary bits like LOCK.
1213 1214
 *
 * All allocations are done with GFP_NOFS.
J
Josef Bacik 已提交
1215 1216
 */
int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1217
		       u32 bits, u32 clear_bits,
1218
		       struct extent_state **cached_state)
J
Josef Bacik 已提交
1219 1220 1221 1222
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
1223 1224
	struct rb_node **p;
	struct rb_node *parent;
J
Josef Bacik 已提交
1225 1226 1227
	int err = 0;
	u64 last_start;
	u64 last_end;
1228
	bool first_iteration = true;
J
Josef Bacik 已提交
1229

1230
	btrfs_debug_check_extent_io_range(tree, start, end);
1231 1232
	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
				       clear_bits);
1233

J
Josef Bacik 已提交
1234
again:
1235
	if (!prealloc) {
1236 1237 1238 1239 1240 1241 1242
		/*
		 * Best effort, don't worry if extent state allocation fails
		 * here for the first iteration. We might have a cached state
		 * that matches exactly the target range, in which case no
		 * extent state allocations are needed. We'll only know this
		 * after locking the tree.
		 */
1243
		prealloc = alloc_extent_state(GFP_NOFS);
1244
		if (!prealloc && !first_iteration)
J
Josef Bacik 已提交
1245 1246 1247 1248
			return -ENOMEM;
	}

	spin_lock(&tree->lock);
1249 1250 1251
	if (cached_state && *cached_state) {
		state = *cached_state;
		if (state->start <= start && state->end > start &&
1252
		    extent_state_in_tree(state)) {
1253 1254 1255 1256 1257
			node = &state->rb_node;
			goto hit_next;
		}
	}

J
Josef Bacik 已提交
1258 1259 1260 1261
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1262
	node = tree_search_for_insert(tree, start, &p, &parent);
J
Josef Bacik 已提交
1263 1264
	if (!node) {
		prealloc = alloc_extent_state_atomic(prealloc);
1265 1266 1267 1268
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
1269
		err = insert_state(tree, prealloc, start, end,
1270
				   &p, &parent, &bits, NULL);
1271 1272
		if (err)
			extent_io_tree_panic(tree, err);
1273 1274
		cache_state(prealloc, cached_state);
		prealloc = NULL;
J
Josef Bacik 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
hit_next:
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1289
		set_state_bits(tree, state, &bits, NULL);
1290
		cache_state(state, cached_state);
1291
		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1292 1293 1294
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1295 1296 1297
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
J
Josef Bacik 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
		prealloc = alloc_extent_state_atomic(prealloc);
1319 1320 1321 1322
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1323
		err = split_state(tree, state, prealloc, start);
1324 1325
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1326 1327 1328 1329
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1330
			set_state_bits(tree, state, &bits, NULL);
1331
			cache_state(state, cached_state);
1332 1333
			state = clear_state_bit(tree, state, &clear_bits, 0,
						NULL);
J
Josef Bacik 已提交
1334 1335 1336
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1337 1338 1339
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
J
Josef Bacik 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
			this_end = last_start - 1;

		prealloc = alloc_extent_state_atomic(prealloc);
1358 1359 1360 1361
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1362 1363 1364 1365 1366 1367

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
		err = insert_state(tree, prealloc, start, this_end,
1368
				   NULL, NULL, &bits, NULL);
1369 1370
		if (err)
			extent_io_tree_panic(tree, err);
1371
		cache_state(prealloc, cached_state);
J
Josef Bacik 已提交
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
		prealloc = NULL;
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
		prealloc = alloc_extent_state_atomic(prealloc);
1384 1385 1386 1387
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1388 1389

		err = split_state(tree, state, prealloc, end + 1);
1390 1391
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1392

1393
		set_state_bits(tree, prealloc, &bits, NULL);
1394
		cache_state(prealloc, cached_state);
1395
		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1396 1397 1398 1399 1400 1401 1402 1403
		prealloc = NULL;
		goto out;
	}

search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
1404
	cond_resched();
1405
	first_iteration = false;
J
Josef Bacik 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
	goto again;

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return err;
}

1416
/* wrappers around set/clear extent bit */
1417
int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1418
			   u32 bits, struct extent_changeset *changeset)
1419 1420 1421 1422 1423 1424 1425 1426 1427
{
	/*
	 * We don't support EXTENT_LOCKED yet, as current changeset will
	 * record any bits changed, so for EXTENT_LOCKED case, it will
	 * either fail with -EEXIST or changeset will record the whole
	 * range.
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1428 1429
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
			      changeset);
1430 1431
}

1432
int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1433
			   u32 bits)
1434
{
1435 1436
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
			      GFP_NOWAIT, NULL);
1437 1438
}

1439
int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1440
		     u32 bits, int wake, int delete,
1441
		     struct extent_state **cached)
1442 1443
{
	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1444
				  cached, GFP_NOFS, NULL);
1445 1446 1447
}

int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1448
		u32 bits, struct extent_changeset *changeset)
1449 1450 1451 1452 1453 1454 1455
{
	/*
	 * Don't support EXTENT_LOCKED case, same reason as
	 * set_record_extent_bits().
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1456
	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1457 1458 1459
				  changeset);
}

C
Chris Mason 已提交
1460 1461 1462 1463
/*
 * either insert or lock state struct between start and end use mask to tell
 * us if waiting is desired.
 */
1464
int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1465
		     struct extent_state **cached_state)
1466 1467 1468
{
	int err;
	u64 failed_start;
1469

1470
	while (1) {
1471 1472 1473
		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
				     EXTENT_LOCKED, &failed_start,
				     cached_state, GFP_NOFS, NULL);
1474
		if (err == -EEXIST) {
1475 1476
			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
			start = failed_start;
1477
		} else
1478 1479 1480 1481 1482 1483
			break;
		WARN_ON(start > end);
	}
	return err;
}

1484
int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1485 1486 1487 1488
{
	int err;
	u64 failed_start;

1489 1490
	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
			     &failed_start, NULL, GFP_NOFS, NULL);
Y
Yan Zheng 已提交
1491 1492 1493
	if (err == -EEXIST) {
		if (failed_start > start)
			clear_extent_bit(tree, start, failed_start - 1,
1494
					 EXTENT_LOCKED, 1, 0, NULL);
1495
		return 0;
Y
Yan Zheng 已提交
1496
	}
1497 1498 1499
	return 1;
}

1500
void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1501
{
1502 1503
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1504 1505 1506 1507 1508 1509
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		clear_page_dirty_for_io(page);
1510
		put_page(page);
1511 1512 1513 1514
		index++;
	}
}

1515
void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1516
{
1517
	struct address_space *mapping = inode->i_mapping;
1518 1519
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1520
	struct folio *folio;
1521 1522

	while (index <= end_index) {
1523 1524 1525 1526 1527
		folio = filemap_get_folio(mapping, index);
		filemap_dirty_folio(mapping, folio);
		folio_account_redirty(folio);
		index += folio_nr_pages(folio);
		folio_put(folio);
1528 1529 1530
	}
}

C
Chris Mason 已提交
1531 1532 1533 1534
/* find the first state struct with 'bits' set after 'start', and
 * return it.  tree->lock must be held.  NULL will returned if
 * nothing was found after 'start'
 */
1535
static struct extent_state *
1536
find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
C
Chris Mason 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545
{
	struct rb_node *node;
	struct extent_state *state;

	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
	node = tree_search(tree, start);
C
Chris Mason 已提交
1546
	if (!node)
C
Chris Mason 已提交
1547 1548
		goto out;

C
Chris Mason 已提交
1549
	while (1) {
C
Chris Mason 已提交
1550
		state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1551
		if (state->end >= start && (state->state & bits))
C
Chris Mason 已提交
1552
			return state;
C
Chris Mason 已提交
1553

C
Chris Mason 已提交
1554 1555 1556 1557 1558 1559 1560 1561
		node = rb_next(node);
		if (!node)
			break;
	}
out:
	return NULL;
}

1562
/*
1563
 * Find the first offset in the io tree with one or more @bits set.
1564
 *
1565 1566 1567 1568
 * Note: If there are multiple bits set in @bits, any of them will match.
 *
 * Return 0 if we find something, and update @start_ret and @end_ret.
 * Return 1 if we found nothing.
1569 1570
 */
int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1571
			  u64 *start_ret, u64 *end_ret, u32 bits,
1572
			  struct extent_state **cached_state)
1573 1574 1575 1576 1577
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
1578 1579
	if (cached_state && *cached_state) {
		state = *cached_state;
1580
		if (state->end == start - 1 && extent_state_in_tree(state)) {
1581
			while ((state = next_state(state)) != NULL) {
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
				if (state->state & bits)
					goto got_it;
			}
			free_extent_state(*cached_state);
			*cached_state = NULL;
			goto out;
		}
		free_extent_state(*cached_state);
		*cached_state = NULL;
	}

1593
	state = find_first_extent_bit_state(tree, start, bits);
1594
got_it:
1595
	if (state) {
1596
		cache_state_if_flags(state, cached_state, 0);
1597 1598 1599 1600
		*start_ret = state->start;
		*end_ret = state->end;
		ret = 0;
	}
1601
out:
1602 1603 1604 1605
	spin_unlock(&tree->lock);
	return ret;
}

1606
/**
1607 1608 1609 1610 1611 1612 1613
 * Find a contiguous area of bits
 *
 * @tree:      io tree to check
 * @start:     offset to start the search from
 * @start_ret: the first offset we found with the bits set
 * @end_ret:   the final contiguous range of the bits that were set
 * @bits:      bits to look for
1614 1615 1616 1617 1618 1619 1620 1621 1622
 *
 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
 * to set bits appropriately, and then merge them again.  During this time it
 * will drop the tree->lock, so use this helper if you want to find the actual
 * contiguous area for given bits.  We will search to the first bit we find, and
 * then walk down the tree until we find a non-contiguous area.  The area
 * returned will be the full contiguous area with the bits set.
 */
int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1623
			       u64 *start_ret, u64 *end_ret, u32 bits)
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
	state = find_first_extent_bit_state(tree, start, bits);
	if (state) {
		*start_ret = state->start;
		*end_ret = state->end;
		while ((state = next_state(state)) != NULL) {
			if (state->start > (*end_ret + 1))
				break;
			*end_ret = state->end;
		}
		ret = 0;
	}
	spin_unlock(&tree->lock);
	return ret;
}

1644
/**
1645 1646
 * Find the first range that has @bits not set. This range could start before
 * @start.
1647
 *
1648 1649 1650 1651 1652
 * @tree:      the tree to search
 * @start:     offset at/after which the found extent should start
 * @start_ret: records the beginning of the range
 * @end_ret:   records the end of the range (inclusive)
 * @bits:      the set of bits which must be unset
1653 1654 1655 1656 1657 1658 1659
 *
 * Since unallocated range is also considered one which doesn't have the bits
 * set it's possible that @end_ret contains -1, this happens in case the range
 * spans (last_range_end, end of device]. In this case it's up to the caller to
 * trim @end_ret to the appropriate size.
 */
void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1660
				 u64 *start_ret, u64 *end_ret, u32 bits)
1661 1662 1663 1664 1665 1666 1667 1668 1669
{
	struct extent_state *state;
	struct rb_node *node, *prev = NULL, *next;

	spin_lock(&tree->lock);

	/* Find first extent with bits cleared */
	while (1) {
		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
		if (!node && !next && !prev) {
			/*
			 * Tree is completely empty, send full range and let
			 * caller deal with it
			 */
			*start_ret = 0;
			*end_ret = -1;
			goto out;
		} else if (!node && !next) {
			/*
			 * We are past the last allocated chunk, set start at
			 * the end of the last extent.
			 */
			state = rb_entry(prev, struct extent_state, rb_node);
			*start_ret = state->end + 1;
			*end_ret = -1;
			goto out;
		} else if (!node) {
1688 1689
			node = next;
		}
1690 1691 1692 1693
		/*
		 * At this point 'node' either contains 'start' or start is
		 * before 'node'
		 */
1694
		state = rb_entry(node, struct extent_state, rb_node);
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716

		if (in_range(start, state->start, state->end - state->start + 1)) {
			if (state->state & bits) {
				/*
				 * |--range with bits sets--|
				 *    |
				 *    start
				 */
				start = state->end + 1;
			} else {
				/*
				 * 'start' falls within a range that doesn't
				 * have the bits set, so take its start as
				 * the beginning of the desired range
				 *
				 * |--range with bits cleared----|
				 *      |
				 *      start
				 */
				*start_ret = state->start;
				break;
			}
1717
		} else {
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
			/*
			 * |---prev range---|---hole/unset---|---node range---|
			 *                          |
			 *                        start
			 *
			 *                        or
			 *
			 * |---hole/unset--||--first node--|
			 * 0   |
			 *    start
			 */
			if (prev) {
				state = rb_entry(prev, struct extent_state,
						 rb_node);
				*start_ret = state->end + 1;
			} else {
				*start_ret = 0;
			}
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
			break;
		}
	}

	/*
	 * Find the longest stretch from start until an entry which has the
	 * bits set
	 */
	while (1) {
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->end >= start && !(state->state & bits)) {
			*end_ret = state->end;
		} else {
			*end_ret = state->start - 1;
			break;
		}

		node = rb_next(node);
		if (!node)
			break;
	}
out:
	spin_unlock(&tree->lock);
}

C
Chris Mason 已提交
1761 1762 1763 1764
/*
 * find a contiguous range of bytes in the file marked as delalloc, not
 * more than 'max_bytes'.  start and end are used to return the range,
 *
1765
 * true is returned if we find something, false if nothing was in the tree
C
Chris Mason 已提交
1766
 */
J
Josef Bacik 已提交
1767 1768 1769
bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
			       u64 *end, u64 max_bytes,
			       struct extent_state **cached_state)
1770 1771 1772 1773
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
1774
	bool found = false;
1775 1776
	u64 total_bytes = 0;

1777
	spin_lock(&tree->lock);
C
Chris Mason 已提交
1778

1779 1780 1781 1782
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1783
	node = tree_search(tree, cur_start);
1784
	if (!node) {
1785
		*end = (u64)-1;
1786 1787 1788
		goto out;
	}

C
Chris Mason 已提交
1789
	while (1) {
1790
		state = rb_entry(node, struct extent_state, rb_node);
1791 1792
		if (found && (state->start != cur_start ||
			      (state->state & EXTENT_BOUNDARY))) {
1793 1794 1795 1796 1797 1798 1799
			goto out;
		}
		if (!(state->state & EXTENT_DELALLOC)) {
			if (!found)
				*end = state->end;
			goto out;
		}
1800
		if (!found) {
1801
			*start = state->start;
1802
			*cached_state = state;
1803
			refcount_inc(&state->refs);
1804
		}
1805
		found = true;
1806 1807 1808 1809
		*end = state->end;
		cur_start = state->end + 1;
		node = rb_next(node);
		total_bytes += state->end - state->start + 1;
1810
		if (total_bytes >= max_bytes)
1811 1812
			break;
		if (!node)
1813 1814 1815
			break;
	}
out:
1816
	spin_unlock(&tree->lock);
1817 1818 1819
	return found;
}

1820 1821 1822 1823 1824 1825 1826 1827
/*
 * Process one page for __process_pages_contig().
 *
 * Return >0 if we hit @page == @locked_page.
 * Return 0 if we updated the page status.
 * Return -EGAIN if the we need to try again.
 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
 */
1828 1829
static int process_one_page(struct btrfs_fs_info *fs_info,
			    struct address_space *mapping,
1830
			    struct page *page, struct page *locked_page,
1831
			    unsigned long page_ops, u64 start, u64 end)
1832
{
1833 1834 1835 1836 1837
	u32 len;

	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
	len = end + 1 - start;

1838
	if (page_ops & PAGE_SET_ORDERED)
1839
		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1840
	if (page_ops & PAGE_SET_ERROR)
1841
		btrfs_page_clamp_set_error(fs_info, page, start, len);
1842
	if (page_ops & PAGE_START_WRITEBACK) {
1843 1844
		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1845 1846
	}
	if (page_ops & PAGE_END_WRITEBACK)
1847
		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1848 1849 1850 1851

	if (page == locked_page)
		return 1;

1852
	if (page_ops & PAGE_LOCK) {
1853 1854 1855 1856 1857
		int ret;

		ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
		if (ret)
			return ret;
1858
		if (!PageDirty(page) || page->mapping != mapping) {
1859
			btrfs_page_end_writer_lock(fs_info, page, start, len);
1860 1861 1862 1863
			return -EAGAIN;
		}
	}
	if (page_ops & PAGE_UNLOCK)
1864
		btrfs_page_end_writer_lock(fs_info, page, start, len);
1865 1866 1867
	return 0;
}

1868 1869
static int __process_pages_contig(struct address_space *mapping,
				  struct page *locked_page,
1870
				  u64 start, u64 end, unsigned long page_ops,
1871 1872
				  u64 *processed_end)
{
1873
	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
	pgoff_t start_index = start >> PAGE_SHIFT;
	pgoff_t end_index = end >> PAGE_SHIFT;
	pgoff_t index = start_index;
	unsigned long nr_pages = end_index - start_index + 1;
	unsigned long pages_processed = 0;
	struct page *pages[16];
	int err = 0;
	int i;

	if (page_ops & PAGE_LOCK) {
		ASSERT(page_ops == PAGE_LOCK);
		ASSERT(processed_end && *processed_end == start);
	}

	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
		mapping_set_error(mapping, -EIO);

	while (nr_pages > 0) {
		int found_pages;

		found_pages = find_get_pages_contig(mapping, index,
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
		if (found_pages == 0) {
			/*
			 * Only if we're going to lock these pages, we can find
			 * nothing at @index.
			 */
			ASSERT(page_ops & PAGE_LOCK);
			err = -EAGAIN;
			goto out;
		}

		for (i = 0; i < found_pages; i++) {
			int process_ret;

1910 1911 1912
			process_ret = process_one_page(fs_info, mapping,
					pages[i], locked_page, page_ops,
					start, end);
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
			if (process_ret < 0) {
				for (; i < found_pages; i++)
					put_page(pages[i]);
				err = -EAGAIN;
				goto out;
			}
			put_page(pages[i]);
			pages_processed++;
		}
		nr_pages -= found_pages;
		index += found_pages;
		cond_resched();
	}
out:
	if (err && processed_end) {
		/*
		 * Update @processed_end. I know this is awful since it has
		 * two different return value patterns (inclusive vs exclusive).
		 *
		 * But the exclusive pattern is necessary if @start is 0, or we
		 * underflow and check against processed_end won't work as
		 * expected.
		 */
		if (pages_processed)
			*processed_end = min(end,
			((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
		else
			*processed_end = start;
	}
	return err;
}
1944

1945 1946 1947
static noinline void __unlock_for_delalloc(struct inode *inode,
					   struct page *locked_page,
					   u64 start, u64 end)
C
Chris Mason 已提交
1948
{
1949 1950
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
C
Chris Mason 已提交
1951

1952
	ASSERT(locked_page);
C
Chris Mason 已提交
1953
	if (index == locked_page->index && end_index == index)
1954
		return;
C
Chris Mason 已提交
1955

1956
	__process_pages_contig(inode->i_mapping, locked_page, start, end,
1957
			       PAGE_UNLOCK, NULL);
C
Chris Mason 已提交
1958 1959 1960 1961 1962 1963 1964
}

static noinline int lock_delalloc_pages(struct inode *inode,
					struct page *locked_page,
					u64 delalloc_start,
					u64 delalloc_end)
{
1965 1966
	unsigned long index = delalloc_start >> PAGE_SHIFT;
	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1967
	u64 processed_end = delalloc_start;
C
Chris Mason 已提交
1968 1969
	int ret;

1970
	ASSERT(locked_page);
C
Chris Mason 已提交
1971 1972 1973
	if (index == locked_page->index && index == end_index)
		return 0;

1974 1975 1976
	ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
				     delalloc_end, PAGE_LOCK, &processed_end);
	if (ret == -EAGAIN && processed_end > delalloc_start)
1977
		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1978
				      processed_end);
C
Chris Mason 已提交
1979 1980 1981 1982
	return ret;
}

/*
1983
 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1984
 * more than @max_bytes.
C
Chris Mason 已提交
1985
 *
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
 * @start:	The original start bytenr to search.
 *		Will store the extent range start bytenr.
 * @end:	The original end bytenr of the search range
 *		Will store the extent range end bytenr.
 *
 * Return true if we find a delalloc range which starts inside the original
 * range, and @start/@end will store the delalloc range start/end.
 *
 * Return false if we can't find any delalloc range which starts inside the
 * original range, and @start/@end will be the non-delalloc range start/end.
C
Chris Mason 已提交
1996
 */
1997
EXPORT_FOR_TESTS
1998
noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1999
				    struct page *locked_page, u64 *start,
2000
				    u64 *end)
C
Chris Mason 已提交
2001
{
2002
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2003 2004
	const u64 orig_start = *start;
	const u64 orig_end = *end;
2005
	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
C
Chris Mason 已提交
2006 2007
	u64 delalloc_start;
	u64 delalloc_end;
2008
	bool found;
2009
	struct extent_state *cached_state = NULL;
C
Chris Mason 已提交
2010 2011 2012
	int ret;
	int loops = 0;

2013 2014 2015 2016 2017 2018
	/* Caller should pass a valid @end to indicate the search range end */
	ASSERT(orig_end > orig_start);

	/* The range should at least cover part of the page */
	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
		 orig_end <= page_offset(locked_page)));
C
Chris Mason 已提交
2019 2020 2021 2022
again:
	/* step one, find a bunch of delalloc bytes starting at start */
	delalloc_start = *start;
	delalloc_end = 0;
J
Josef Bacik 已提交
2023 2024
	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
					  max_bytes, &cached_state);
2025
	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
C
Chris Mason 已提交
2026
		*start = delalloc_start;
2027 2028 2029

		/* @delalloc_end can be -1, never go beyond @orig_end */
		*end = min(delalloc_end, orig_end);
2030
		free_extent_state(cached_state);
2031
		return false;
C
Chris Mason 已提交
2032 2033
	}

C
Chris Mason 已提交
2034 2035 2036 2037 2038
	/*
	 * start comes from the offset of locked_page.  We have to lock
	 * pages in order, so we can't process delalloc bytes before
	 * locked_page
	 */
C
Chris Mason 已提交
2039
	if (delalloc_start < *start)
C
Chris Mason 已提交
2040 2041
		delalloc_start = *start;

C
Chris Mason 已提交
2042 2043 2044
	/*
	 * make sure to limit the number of pages we try to lock down
	 */
2045 2046
	if (delalloc_end + 1 - delalloc_start > max_bytes)
		delalloc_end = delalloc_start + max_bytes - 1;
C
Chris Mason 已提交
2047

C
Chris Mason 已提交
2048 2049 2050
	/* step two, lock all the pages after the page that has start */
	ret = lock_delalloc_pages(inode, locked_page,
				  delalloc_start, delalloc_end);
2051
	ASSERT(!ret || ret == -EAGAIN);
C
Chris Mason 已提交
2052 2053 2054 2055
	if (ret == -EAGAIN) {
		/* some of the pages are gone, lets avoid looping by
		 * shortening the size of the delalloc range we're searching
		 */
2056
		free_extent_state(cached_state);
2057
		cached_state = NULL;
C
Chris Mason 已提交
2058
		if (!loops) {
2059
			max_bytes = PAGE_SIZE;
C
Chris Mason 已提交
2060 2061 2062
			loops = 1;
			goto again;
		} else {
2063
			found = false;
C
Chris Mason 已提交
2064 2065 2066 2067 2068
			goto out_failed;
		}
	}

	/* step three, lock the state bits for the whole range */
2069
	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
C
Chris Mason 已提交
2070 2071 2072

	/* then test to make sure it is all still delalloc */
	ret = test_range_bit(tree, delalloc_start, delalloc_end,
2073
			     EXTENT_DELALLOC, 1, cached_state);
C
Chris Mason 已提交
2074
	if (!ret) {
2075
		unlock_extent_cached(tree, delalloc_start, delalloc_end,
2076
				     &cached_state);
C
Chris Mason 已提交
2077 2078 2079 2080 2081
		__unlock_for_delalloc(inode, locked_page,
			      delalloc_start, delalloc_end);
		cond_resched();
		goto again;
	}
2082
	free_extent_state(cached_state);
C
Chris Mason 已提交
2083 2084 2085 2086 2087 2088
	*start = delalloc_start;
	*end = delalloc_end;
out_failed:
	return found;
}

2089
void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2090
				  struct page *locked_page,
2091
				  u32 clear_bits, unsigned long page_ops)
2092
{
2093
	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2094

2095
	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2096
			       start, end, page_ops, NULL);
2097 2098
}

C
Chris Mason 已提交
2099 2100 2101 2102 2103
/*
 * count the number of bytes in the tree that have a given bit(s)
 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
 * cached.  The total number found is returned.
 */
2104 2105
u64 count_range_bits(struct extent_io_tree *tree,
		     u64 *start, u64 search_end, u64 max_bytes,
2106
		     u32 bits, int contig)
2107 2108 2109 2110 2111
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
	u64 total_bytes = 0;
2112
	u64 last = 0;
2113 2114
	int found = 0;

2115
	if (WARN_ON(search_end <= cur_start))
2116 2117
		return 0;

2118
	spin_lock(&tree->lock);
2119 2120 2121 2122 2123 2124 2125 2126
	if (cur_start == 0 && bits == EXTENT_DIRTY) {
		total_bytes = tree->dirty_bytes;
		goto out;
	}
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2127
	node = tree_search(tree, cur_start);
C
Chris Mason 已提交
2128
	if (!node)
2129 2130
		goto out;

C
Chris Mason 已提交
2131
	while (1) {
2132 2133 2134
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->start > search_end)
			break;
2135 2136 2137
		if (contig && found && state->start > last + 1)
			break;
		if (state->end >= cur_start && (state->state & bits) == bits) {
2138 2139 2140 2141 2142
			total_bytes += min(search_end, state->end) + 1 -
				       max(cur_start, state->start);
			if (total_bytes >= max_bytes)
				break;
			if (!found) {
2143
				*start = max(cur_start, state->start);
2144 2145
				found = 1;
			}
2146 2147 2148
			last = state->end;
		} else if (contig && found) {
			break;
2149 2150 2151 2152 2153 2154
		}
		node = rb_next(node);
		if (!node)
			break;
	}
out:
2155
	spin_unlock(&tree->lock);
2156 2157
	return total_bytes;
}
2158

C
Chris Mason 已提交
2159 2160 2161 2162
/*
 * set the private field for a given byte offset in the tree.  If there isn't
 * an extent_state there already, this does nothing.
 */
2163 2164
int set_state_failrec(struct extent_io_tree *tree, u64 start,
		      struct io_failure_record *failrec)
2165 2166 2167 2168 2169
{
	struct rb_node *node;
	struct extent_state *state;
	int ret = 0;

2170
	spin_lock(&tree->lock);
2171 2172 2173 2174
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2175
	node = tree_search(tree, start);
2176
	if (!node) {
2177 2178 2179 2180 2181 2182 2183 2184
		ret = -ENOENT;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
		ret = -ENOENT;
		goto out;
	}
2185
	state->failrec = failrec;
2186
out:
2187
	spin_unlock(&tree->lock);
2188 2189 2190
	return ret;
}

2191
struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2192 2193 2194
{
	struct rb_node *node;
	struct extent_state *state;
2195
	struct io_failure_record *failrec;
2196

2197
	spin_lock(&tree->lock);
2198 2199 2200 2201
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2202
	node = tree_search(tree, start);
2203
	if (!node) {
2204
		failrec = ERR_PTR(-ENOENT);
2205 2206 2207 2208
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
2209
		failrec = ERR_PTR(-ENOENT);
2210 2211
		goto out;
	}
2212 2213

	failrec = state->failrec;
2214
out:
2215
	spin_unlock(&tree->lock);
2216
	return failrec;
2217 2218 2219 2220
}

/*
 * searches a range in the state tree for a given mask.
2221
 * If 'filled' == 1, this returns 1 only if every extent in the tree
2222 2223 2224 2225
 * has the bits set.  Otherwise, 1 is returned if any bit in the
 * range is found set.
 */
int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2226
		   u32 bits, int filled, struct extent_state *cached)
2227 2228 2229 2230 2231
{
	struct extent_state *state = NULL;
	struct rb_node *node;
	int bitset = 0;

2232
	spin_lock(&tree->lock);
2233
	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2234
	    cached->end > start)
2235 2236 2237
		node = &cached->rb_node;
	else
		node = tree_search(tree, start);
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
	while (node && start <= end) {
		state = rb_entry(node, struct extent_state, rb_node);

		if (filled && state->start > start) {
			bitset = 0;
			break;
		}

		if (state->start > end)
			break;

		if (state->state & bits) {
			bitset = 1;
			if (!filled)
				break;
		} else if (filled) {
			bitset = 0;
			break;
		}
2257 2258 2259 2260

		if (state->end == (u64)-1)
			break;

2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
		start = state->end + 1;
		if (start > end)
			break;
		node = rb_next(node);
		if (!node) {
			if (filled)
				bitset = 0;
			break;
		}
	}
2271
	spin_unlock(&tree->lock);
2272 2273 2274
	return bitset;
}

2275 2276 2277
int free_io_failure(struct extent_io_tree *failure_tree,
		    struct extent_io_tree *io_tree,
		    struct io_failure_record *rec)
2278 2279 2280 2281
{
	int ret;
	int err = 0;

2282
	set_state_failrec(failure_tree, rec->start, NULL);
2283 2284
	ret = clear_extent_bits(failure_tree, rec->start,
				rec->start + rec->len - 1,
2285
				EXTENT_LOCKED | EXTENT_DIRTY);
2286 2287 2288
	if (ret)
		err = ret;

2289
	ret = clear_extent_bits(io_tree, rec->start,
D
David Woodhouse 已提交
2290
				rec->start + rec->len - 1,
2291
				EXTENT_DAMAGED);
D
David Woodhouse 已提交
2292 2293
	if (ret && !err)
		err = ret;
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

	kfree(rec);
	return err;
}

/*
 * this bypasses the standard btrfs submit functions deliberately, as
 * the standard behavior is to write all copies in a raid setup. here we only
 * want to write the one bad copy. so we do the mapping for ourselves and issue
 * submit_bio directly.
2304
 * to avoid any synchronization issues, wait for the data after writing, which
2305 2306 2307 2308
 * actually prevents the read that triggered the error from finishing.
 * currently, there can be no more than two copies of every data bit. thus,
 * exactly one rewrite is required.
 */
Q
Qu Wenruo 已提交
2309 2310 2311
static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
			     u64 length, u64 logical, struct page *page,
			     unsigned int pg_offset, int mirror_num)
2312 2313
{
	struct btrfs_device *dev;
2314 2315
	struct bio_vec bvec;
	struct bio bio;
2316 2317
	u64 map_length = 0;
	u64 sector;
2318
	struct btrfs_io_context *bioc = NULL;
2319
	int ret = 0;
2320

2321
	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2322 2323
	BUG_ON(!mirror_num);

2324 2325
	if (btrfs_repair_one_zone(fs_info, logical))
		return 0;
2326

2327 2328
	map_length = length;

2329
	/*
2330
	 * Avoid races with device replace and make sure our bioc has devices
2331 2332 2333 2334
	 * associated to its stripes that don't go away while we are doing the
	 * read repair operation.
	 */
	btrfs_bio_counter_inc_blocked(fs_info);
2335
	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2336 2337 2338 2339 2340 2341 2342
		/*
		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
		 * to update all raid stripes, but here we just want to correct
		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
		 * stripe's dev and sector.
		 */
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2343
				      &map_length, &bioc, 0);
2344 2345
		if (ret)
			goto out_counter_dec;
2346
		ASSERT(bioc->mirror_num == 1);
2347 2348
	} else {
		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2349
				      &map_length, &bioc, mirror_num);
2350 2351
		if (ret)
			goto out_counter_dec;
2352
		BUG_ON(mirror_num != bioc->mirror_num);
2353
	}
2354

2355 2356 2357
	sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
	dev = bioc->stripes[bioc->mirror_num - 1].dev;
	btrfs_put_bioc(bioc);
2358

2359 2360
	if (!dev || !dev->bdev ||
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2361 2362
		ret = -EIO;
		goto out_counter_dec;
2363 2364
	}

2365 2366 2367 2368 2369 2370 2371
	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
	bio.bi_iter.bi_sector = sector;
	__bio_add_page(&bio, page, length, pg_offset);

	btrfsic_check_bio(&bio);
	ret = submit_bio_wait(&bio);
	if (ret) {
2372
		/* try to remap that extent elsewhere? */
2373
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2374
		goto out_bio_uninit;
2375 2376
	}

2377 2378
	btrfs_info_rl_in_rcu(fs_info,
		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2379
				  ino, start,
2380
				  rcu_str_deref(dev->name), sector);
2381 2382 2383 2384 2385
	ret = 0;

out_bio_uninit:
	bio_uninit(&bio);
out_counter_dec:
2386
	btrfs_bio_counter_dec(fs_info);
2387
	return ret;
2388 2389
}

2390
int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2391
{
2392
	struct btrfs_fs_info *fs_info = eb->fs_info;
2393
	u64 start = eb->start;
2394
	int i, num_pages = num_extent_pages(eb);
2395
	int ret = 0;
2396

2397
	if (sb_rdonly(fs_info->sb))
2398 2399
		return -EROFS;

2400
	for (i = 0; i < num_pages; i++) {
2401
		struct page *p = eb->pages[i];
2402

2403
		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2404
					start - page_offset(p), mirror_num);
2405 2406
		if (ret)
			break;
2407
		start += PAGE_SIZE;
2408 2409 2410 2411 2412
	}

	return ret;
}

2413 2414 2415 2416
/*
 * each time an IO finishes, we do a fast check in the IO failure tree
 * to see if we need to process or clean up an io_failure_record
 */
2417 2418 2419 2420
int clean_io_failure(struct btrfs_fs_info *fs_info,
		     struct extent_io_tree *failure_tree,
		     struct extent_io_tree *io_tree, u64 start,
		     struct page *page, u64 ino, unsigned int pg_offset)
2421 2422 2423 2424 2425 2426 2427 2428
{
	u64 private;
	struct io_failure_record *failrec;
	struct extent_state *state;
	int num_copies;
	int ret;

	private = 0;
2429 2430
	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
			       EXTENT_DIRTY, 0);
2431 2432 2433
	if (!ret)
		return 0;

2434 2435
	failrec = get_state_failrec(failure_tree, start);
	if (IS_ERR(failrec))
2436 2437 2438 2439
		return 0;

	BUG_ON(!failrec->this_mirror);

2440
	if (sb_rdonly(fs_info->sb))
2441
		goto out;
2442

2443 2444
	spin_lock(&io_tree->lock);
	state = find_first_extent_bit_state(io_tree,
2445 2446
					    failrec->start,
					    EXTENT_LOCKED);
2447
	spin_unlock(&io_tree->lock);
2448

2449 2450
	if (state && state->start <= failrec->start &&
	    state->end >= failrec->start + failrec->len - 1) {
2451 2452
		num_copies = btrfs_num_copies(fs_info, failrec->logical,
					      failrec->len);
2453
		if (num_copies > 1)  {
2454 2455 2456
			repair_io_failure(fs_info, ino, start, failrec->len,
					  failrec->logical, page, pg_offset,
					  failrec->failed_mirror);
2457 2458 2459 2460
		}
	}

out:
2461
	free_io_failure(failure_tree, io_tree, failrec);
2462

2463
	return 0;
2464 2465
}

2466 2467 2468 2469 2470 2471
/*
 * Can be called when
 * - hold extent lock
 * - under ordered extent
 * - the inode is freeing
 */
2472
void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2473
{
2474
	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
	struct io_failure_record *failrec;
	struct extent_state *state, *next;

	if (RB_EMPTY_ROOT(&failure_tree->state))
		return;

	spin_lock(&failure_tree->lock);
	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
	while (state) {
		if (state->start > end)
			break;

		ASSERT(state->end <= end);

		next = next_state(state);

2491
		failrec = state->failrec;
2492 2493 2494 2495 2496 2497 2498 2499
		free_extent_state(state);
		kfree(failrec);

		state = next;
	}
	spin_unlock(&failure_tree->lock);
}

2500
static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2501
							     u64 start)
2502
{
2503
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2504
	struct io_failure_record *failrec;
2505 2506 2507 2508
	struct extent_map *em;
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2509
	const u32 sectorsize = fs_info->sectorsize;
2510 2511 2512
	int ret;
	u64 logical;

2513
	failrec = get_state_failrec(failure_tree, start);
2514
	if (!IS_ERR(failrec)) {
2515
		btrfs_debug(fs_info,
2516 2517
	"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
			failrec->logical, failrec->start, failrec->len);
2518 2519 2520 2521 2522
		/*
		 * when data can be on disk more than twice, add to failrec here
		 * (e.g. with a list for failed_mirror) to make
		 * clean_io_failure() clean all those errors at once.
		 */
2523 2524

		return failrec;
2525
	}
2526

2527 2528 2529
	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
	if (!failrec)
		return ERR_PTR(-ENOMEM);
2530

2531
	failrec->start = start;
2532
	failrec->len = sectorsize;
2533
	failrec->this_mirror = 0;
2534
	failrec->compress_type = BTRFS_COMPRESS_NONE;
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, start, failrec->len);
	if (!em) {
		read_unlock(&em_tree->lock);
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	if (em->start > start || em->start + em->len <= start) {
		free_extent_map(em);
		em = NULL;
	}
	read_unlock(&em_tree->lock);
	if (!em) {
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	logical = start - em->start;
	logical = em->block_start + logical;
	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
		logical = em->block_start;
2558
		failrec->compress_type = em->compress_type;
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
	}

	btrfs_debug(fs_info,
		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
		    logical, start, failrec->len);

	failrec->logical = logical;
	free_extent_map(em);

	/* Set the bits in the private failure tree */
2569
	ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2570 2571 2572 2573
			      EXTENT_LOCKED | EXTENT_DIRTY);
	if (ret >= 0) {
		ret = set_state_failrec(failure_tree, start, failrec);
		/* Set the bits in the inode's tree */
2574 2575
		ret = set_extent_bits(tree, start, start + sectorsize - 1,
				      EXTENT_DAMAGED);
2576 2577 2578 2579 2580 2581
	} else if (ret < 0) {
		kfree(failrec);
		return ERR_PTR(ret);
	}

	return failrec;
2582 2583
}

2584
static bool btrfs_check_repairable(struct inode *inode,
2585 2586
				   struct io_failure_record *failrec,
				   int failed_mirror)
2587
{
2588
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2589 2590
	int num_copies;

2591
	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2592 2593 2594 2595 2596 2597
	if (num_copies == 1) {
		/*
		 * we only have a single copy of the data, so don't bother with
		 * all the retry and error correction code that follows. no
		 * matter what the error is, it is very likely to persist.
		 */
2598 2599 2600
		btrfs_debug(fs_info,
			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2601
		return false;
2602 2603
	}

2604 2605 2606
	/* The failure record should only contain one sector */
	ASSERT(failrec->len == fs_info->sectorsize);

2607
	/*
2608 2609 2610 2611 2612 2613 2614
	 * There are two premises:
	 * a) deliver good data to the caller
	 * b) correct the bad sectors on disk
	 *
	 * Since we're only doing repair for one sector, we only need to get
	 * a good copy of the failed sector and if we succeed, we have setup
	 * everything for repair_io_failure to do the rest for us.
2615
	 */
2616
	ASSERT(failed_mirror);
2617 2618 2619
	failrec->failed_mirror = failed_mirror;
	failrec->this_mirror++;
	if (failrec->this_mirror == failed_mirror)
2620 2621
		failrec->this_mirror++;

2622
	if (failrec->this_mirror > num_copies) {
2623 2624 2625
		btrfs_debug(fs_info,
			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2626
		return false;
2627 2628
	}

2629
	return true;
2630 2631
}

2632 2633 2634 2635 2636
int btrfs_repair_one_sector(struct inode *inode,
			    struct bio *failed_bio, u32 bio_offset,
			    struct page *page, unsigned int pgoff,
			    u64 start, int failed_mirror,
			    submit_bio_hook_t *submit_bio_hook)
2637 2638
{
	struct io_failure_record *failrec;
2639
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2640
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2641
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2642
	struct btrfs_bio *failed_bbio = btrfs_bio(failed_bio);
2643
	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2644
	struct bio *repair_bio;
2645
	struct btrfs_bio *repair_bbio;
2646

2647 2648
	btrfs_debug(fs_info,
		   "repair read error: read error at %llu", start);
2649

2650
	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2651

2652
	failrec = btrfs_get_io_failure_record(inode, start);
2653
	if (IS_ERR(failrec))
2654
		return PTR_ERR(failrec);
2655

2656 2657

	if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
2658
		free_io_failure(failure_tree, tree, failrec);
2659
		return -EIO;
2660 2661
	}

2662 2663
	repair_bio = btrfs_bio_alloc(1);
	repair_bbio = btrfs_bio(repair_bio);
2664
	repair_bbio->file_offset = start;
2665 2666 2667 2668
	repair_bio->bi_opf = REQ_OP_READ;
	repair_bio->bi_end_io = failed_bio->bi_end_io;
	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
	repair_bio->bi_private = failed_bio->bi_private;
2669

2670
	if (failed_bbio->csum) {
2671
		const u32 csum_size = fs_info->csum_size;
2672

2673 2674 2675
		repair_bbio->csum = repair_bbio->csum_inline;
		memcpy(repair_bbio->csum,
		       failed_bbio->csum + csum_size * icsum, csum_size);
2676
	}
2677

2678
	bio_add_page(repair_bio, page, failrec->len, pgoff);
2679
	repair_bbio->iter = repair_bio->bi_iter;
2680

2681
	btrfs_debug(btrfs_sb(inode->i_sb),
2682 2683
		    "repair read error: submitting new read to mirror %d",
		    failrec->this_mirror);
2684

2685 2686 2687 2688 2689
	/*
	 * At this point we have a bio, so any errors from submit_bio_hook()
	 * will be handled by the endio on the repair_bio, so we can't return an
	 * error here.
	 */
2690
	submit_bio_hook(inode, repair_bio, failrec->this_mirror, failrec->compress_type);
2691
	return BLK_STS_OK;
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
}

static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);

	ASSERT(page_offset(page) <= start &&
	       start + len <= page_offset(page) + PAGE_SIZE);

	if (uptodate) {
B
Boris Burkov 已提交
2702 2703 2704 2705 2706 2707 2708 2709 2710
		if (fsverity_active(page->mapping->host) &&
		    !PageError(page) &&
		    !PageUptodate(page) &&
		    start < i_size_read(page->mapping->host) &&
		    !fsverity_verify_page(page)) {
			btrfs_page_set_error(fs_info, page, start, len);
		} else {
			btrfs_page_set_uptodate(fs_info, page, start, len);
		}
2711 2712 2713 2714 2715
	} else {
		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
	}

2716
	if (!btrfs_is_subpage(fs_info, page))
2717
		unlock_page(page);
2718
	else
2719 2720 2721
		btrfs_subpage_end_reader(fs_info, page, start, len);
}

2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
static void end_sector_io(struct page *page, u64 offset, bool uptodate)
{
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
	const u32 sectorsize = inode->root->fs_info->sectorsize;
	struct extent_state *cached = NULL;

	end_page_read(page, uptodate, offset, sectorsize);
	if (uptodate)
		set_extent_uptodate(&inode->io_tree, offset,
				    offset + sectorsize - 1, &cached, GFP_ATOMIC);
	unlock_extent_cached_atomic(&inode->io_tree, offset,
				    offset + sectorsize - 1, &cached);
}

2736 2737 2738
static void submit_data_read_repair(struct inode *inode, struct bio *failed_bio,
				    u32 bio_offset, const struct bio_vec *bvec,
				    int failed_mirror, unsigned int error_bitmap)
2739
{
2740
	const unsigned int pgoff = bvec->bv_offset;
2741
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2742 2743 2744
	struct page *page = bvec->bv_page;
	const u64 start = page_offset(bvec->bv_page) + bvec->bv_offset;
	const u64 end = start + bvec->bv_len - 1;
2745 2746 2747 2748 2749 2750
	const u32 sectorsize = fs_info->sectorsize;
	const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
	int i;

	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);

2751 2752 2753
	/* This repair is only for data */
	ASSERT(is_data_inode(inode));

2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
	/* We're here because we had some read errors or csum mismatch */
	ASSERT(error_bitmap);

	/*
	 * We only get called on buffered IO, thus page must be mapped and bio
	 * must not be cloned.
	 */
	ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));

	/* Iterate through all the sectors in the range */
	for (i = 0; i < nr_bits; i++) {
		const unsigned int offset = i * sectorsize;
		bool uptodate = false;
		int ret;

		if (!(error_bitmap & (1U << i))) {
			/*
			 * This sector has no error, just end the page read
			 * and unlock the range.
			 */
			uptodate = true;
			goto next;
		}

		ret = btrfs_repair_one_sector(inode, failed_bio,
				bio_offset + offset,
				page, pgoff + offset, start + offset,
2781
				failed_mirror, btrfs_submit_data_read_bio);
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
		if (!ret) {
			/*
			 * We have submitted the read repair, the page release
			 * will be handled by the endio function of the
			 * submitted repair bio.
			 * Thus we don't need to do any thing here.
			 */
			continue;
		}
		/*
2792 2793
		 * Continue on failed repair, otherwise the remaining sectors
		 * will not be properly unlocked.
2794 2795
		 */
next:
2796
		end_sector_io(page, start + offset, uptodate);
2797
	}
2798 2799
}

2800 2801
/* lots and lots of room for performance fixes in the end_bio funcs */

2802
void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2803
{
2804
	struct btrfs_inode *inode;
2805
	const bool uptodate = (err == 0);
2806
	int ret = 0;
2807

2808 2809 2810
	ASSERT(page && page->mapping);
	inode = BTRFS_I(page->mapping->host);
	btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2811 2812

	if (!uptodate) {
2813 2814 2815 2816 2817 2818 2819 2820
		const struct btrfs_fs_info *fs_info = inode->root->fs_info;
		u32 len;

		ASSERT(end + 1 - start <= U32_MAX);
		len = end + 1 - start;

		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
2821
		ret = err < 0 ? err : -EIO;
2822
		mapping_set_error(page->mapping, ret);
2823 2824 2825
	}
}

2826 2827 2828 2829 2830 2831 2832 2833 2834
/*
 * after a writepage IO is done, we need to:
 * clear the uptodate bits on error
 * clear the writeback bits in the extent tree for this IO
 * end_page_writeback if the page has no more pending IO
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2835
static void end_bio_extent_writepage(struct bio *bio)
2836
{
2837
	int error = blk_status_to_errno(bio->bi_status);
2838
	struct bio_vec *bvec;
2839 2840
	u64 start;
	u64 end;
2841
	struct bvec_iter_all iter_all;
2842
	bool first_bvec = true;
2843

2844
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2845
	bio_for_each_segment_all(bvec, bio, iter_all) {
2846
		struct page *page = bvec->bv_page;
2847 2848
		struct inode *inode = page->mapping->host;
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
		const u32 sectorsize = fs_info->sectorsize;

		/* Our read/write should always be sector aligned. */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page write in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
			btrfs_info(fs_info,
		"incomplete page write with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
2863

2864 2865 2866 2867 2868
		if (first_bvec) {
			btrfs_record_physical_zoned(inode, start, bio);
			first_bvec = false;
		}

2869
		end_extent_writepage(page, error, start, end);
2870 2871

		btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2872
	}
2873

2874 2875 2876
	bio_put(bio);
}

2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
/*
 * Record previously processed extent range
 *
 * For endio_readpage_release_extent() to handle a full extent range, reducing
 * the extent io operations.
 */
struct processed_extent {
	struct btrfs_inode *inode;
	/* Start of the range in @inode */
	u64 start;
2887
	/* End of the range in @inode */
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
	u64 end;
	bool uptodate;
};

/*
 * Try to release processed extent range
 *
 * May not release the extent range right now if the current range is
 * contiguous to processed extent.
 *
 * Will release processed extent when any of @inode, @uptodate, the range is
 * no longer contiguous to the processed range.
 *
 * Passing @inode == NULL will force processed extent to be released.
 */
static void endio_readpage_release_extent(struct processed_extent *processed,
			      struct btrfs_inode *inode, u64 start, u64 end,
			      bool uptodate)
2906 2907
{
	struct extent_state *cached = NULL;
2908 2909 2910 2911 2912
	struct extent_io_tree *tree;

	/* The first extent, initialize @processed */
	if (!processed->inode)
		goto update;
2913

2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
	/*
	 * Contiguous to processed extent, just uptodate the end.
	 *
	 * Several things to notice:
	 *
	 * - bio can be merged as long as on-disk bytenr is contiguous
	 *   This means we can have page belonging to other inodes, thus need to
	 *   check if the inode still matches.
	 * - bvec can contain range beyond current page for multi-page bvec
	 *   Thus we need to do processed->end + 1 >= start check
	 */
	if (processed->inode == inode && processed->uptodate == uptodate &&
	    processed->end + 1 >= start && end >= processed->end) {
		processed->end = end;
		return;
	}

	tree = &processed->inode->io_tree;
	/*
	 * Now we don't have range contiguous to the processed range, release
	 * the processed range now.
	 */
	if (processed->uptodate && tree->track_uptodate)
		set_extent_uptodate(tree, processed->start, processed->end,
				    &cached, GFP_ATOMIC);
	unlock_extent_cached_atomic(tree, processed->start, processed->end,
				    &cached);

update:
	/* Update processed to current range */
	processed->inode = inode;
	processed->start = start;
	processed->end = end;
	processed->uptodate = uptodate;
2948 2949
}

2950 2951 2952
static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
{
	ASSERT(PageLocked(page));
2953
	if (!btrfs_is_subpage(fs_info, page))
2954 2955 2956 2957 2958 2959
		return;

	ASSERT(PagePrivate(page));
	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
}

2960
/*
2961
 * Find extent buffer for a givne bytenr.
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
 *
 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
 * in endio context.
 */
static struct extent_buffer *find_extent_buffer_readpage(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
	struct extent_buffer *eb;

	/*
	 * For regular sectorsize, we can use page->private to grab extent
	 * buffer
	 */
2975
	if (fs_info->nodesize >= PAGE_SIZE) {
2976 2977 2978 2979
		ASSERT(PagePrivate(page) && page->private);
		return (struct extent_buffer *)page->private;
	}

2980 2981 2982 2983 2984
	/* For subpage case, we need to lookup buffer radix tree */
	rcu_read_lock();
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       bytenr >> fs_info->sectorsize_bits);
	rcu_read_unlock();
2985 2986 2987 2988
	ASSERT(eb);
	return eb;
}

2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
/*
 * after a readpage IO is done, we need to:
 * clear the uptodate bits on error
 * set the uptodate bits if things worked
 * set the page up to date if all extents in the tree are uptodate
 * clear the lock bit in the extent tree
 * unlock the page if there are no other extents locked for it
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
3000
static void end_bio_extent_readpage(struct bio *bio)
3001
{
3002
	struct bio_vec *bvec;
3003
	struct btrfs_bio *bbio = btrfs_bio(bio);
3004
	struct extent_io_tree *tree, *failure_tree;
3005
	struct processed_extent processed = { 0 };
3006 3007 3008 3009 3010
	/*
	 * The offset to the beginning of a bio, since one bio can never be
	 * larger than UINT_MAX, u32 here is enough.
	 */
	u32 bio_offset = 0;
3011
	int mirror;
3012
	struct bvec_iter_all iter_all;
3013

3014
	ASSERT(!bio_flagged(bio, BIO_CLONED));
3015
	bio_for_each_segment_all(bvec, bio, iter_all) {
3016
		bool uptodate = !bio->bi_status;
3017
		struct page *page = bvec->bv_page;
3018
		struct inode *inode = page->mapping->host;
3019
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3020
		const u32 sectorsize = fs_info->sectorsize;
3021
		unsigned int error_bitmap = (unsigned int)-1;
3022
		bool repair = false;
3023 3024 3025
		u64 start;
		u64 end;
		u32 len;
3026

3027 3028
		btrfs_debug(fs_info,
			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
D
David Sterba 已提交
3029
			bio->bi_iter.bi_sector, bio->bi_status,
3030
			bbio->mirror_num);
3031
		tree = &BTRFS_I(inode)->io_tree;
3032
		failure_tree = &BTRFS_I(inode)->io_failure_tree;
3033

3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
		/*
		 * We always issue full-sector reads, but if some block in a
		 * page fails to read, blk_update_request() will advance
		 * bv_offset and adjust bv_len to compensate.  Print a warning
		 * for unaligned offsets, and an error if they don't add up to
		 * a full sector.
		 */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page read in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
				     sectorsize))
			btrfs_info(fs_info,
		"incomplete page read with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
3053
		len = bvec->bv_len;
3054

3055
		mirror = bbio->mirror_num;
3056
		if (likely(uptodate)) {
3057
			if (is_data_inode(inode)) {
3058
				error_bitmap = btrfs_verify_data_csum(bbio,
3059
						bio_offset, page, start, end);
3060 3061
				if (error_bitmap)
					uptodate = false;
3062
			} else {
3063 3064 3065
				if (btrfs_validate_metadata_buffer(bbio,
						page, start, end, mirror))
					uptodate = false;
3066
			}
3067
		}
3068

3069
		if (likely(uptodate)) {
3070
			loff_t i_size = i_size_read(inode);
3071
			pgoff_t end_index = i_size >> PAGE_SHIFT;
3072

3073 3074 3075 3076
			clean_io_failure(BTRFS_I(inode)->root->fs_info,
					 failure_tree, tree, start, page,
					 btrfs_ino(BTRFS_I(inode)), 0);

3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
			/*
			 * Zero out the remaining part if this range straddles
			 * i_size.
			 *
			 * Here we should only zero the range inside the bvec,
			 * not touch anything else.
			 *
			 * NOTE: i_size is exclusive while end is inclusive.
			 */
			if (page->index == end_index && i_size <= end) {
				u32 zero_start = max(offset_in_page(i_size),
3088
						     offset_in_page(start));
3089 3090 3091 3092

				zero_user_segment(page, zero_start,
						  offset_in_page(end) + 1);
			}
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
		} else if (is_data_inode(inode)) {
			/*
			 * Only try to repair bios that actually made it to a
			 * device.  If the bio failed to be submitted mirror
			 * is 0 and we need to fail it without retrying.
			 */
			if (mirror > 0)
				repair = true;
		} else {
			struct extent_buffer *eb;

			eb = find_extent_buffer_readpage(fs_info, page, start);
			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
			eb->read_mirror = mirror;
			atomic_dec(&eb->io_pages);
3108
		}
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123

		if (repair) {
			/*
			 * submit_data_read_repair() will handle all the good
			 * and bad sectors, we just continue to the next bvec.
			 */
			submit_data_read_repair(inode, bio, bio_offset, bvec,
						mirror, error_bitmap);
		} else {
			/* Update page status and unlock */
			end_page_read(page, uptodate, start, len);
			endio_readpage_release_extent(&processed, BTRFS_I(inode),
					start, end, PageUptodate(page));
		}

3124 3125
		ASSERT(bio_offset + len > bio_offset);
		bio_offset += len;
3126

3127
	}
3128 3129
	/* Release the last extent */
	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3130
	btrfs_bio_free_csum(bbio);
3131 3132 3133
	bio_put(bio);
}

3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
/**
 * Populate every free slot in a provided array with pages.
 *
 * @nr_pages:   number of pages to allocate
 * @page_array: the array to fill with pages; any existing non-null entries in
 * 		the array will be skipped
 *
 * Return: 0        if all pages were able to be allocated;
 *         -ENOMEM  otherwise, and the caller is responsible for freeing all
 *                  non-null page pointers in the array.
 */
int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
{
3147
	unsigned int allocated;
3148

3149 3150
	for (allocated = 0; allocated < nr_pages;) {
		unsigned int last = allocated;
3151

3152 3153
		allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);

3154 3155 3156
		if (allocated == nr_pages)
			return 0;

3157 3158 3159 3160 3161 3162
		/*
		 * During this iteration, no page could be allocated, even
		 * though alloc_pages_bulk_array() falls back to alloc_page()
		 * if  it could not bulk-allocate. So we must be out of memory.
		 */
		if (allocated == last)
3163
			return -ENOMEM;
3164 3165

		memalloc_retry_wait(GFP_NOFS);
3166 3167 3168 3169
	}
	return 0;
}

3170
/*
3171 3172 3173
 * Initialize the members up to but not including 'bio'. Use after allocating a
 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
 * 'bio' because use of __GFP_ZERO is not supported.
3174
 */
3175
static inline void btrfs_bio_init(struct btrfs_bio *bbio)
3176
{
3177
	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
3178
}
3179

3180
/*
Q
Qu Wenruo 已提交
3181 3182 3183
 * Allocate a btrfs_io_bio, with @nr_iovecs as maximum number of iovecs.
 *
 * The bio allocation is backed by bioset and does not fail.
3184
 */
3185
struct bio *btrfs_bio_alloc(unsigned int nr_iovecs)
3186 3187 3188
{
	struct bio *bio;

Q
Qu Wenruo 已提交
3189
	ASSERT(0 < nr_iovecs && nr_iovecs <= BIO_MAX_VECS);
3190
	bio = bio_alloc_bioset(NULL, nr_iovecs, 0, GFP_NOFS, &btrfs_bioset);
3191
	btrfs_bio_init(btrfs_bio(bio));
3192 3193 3194
	return bio;
}

3195
struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size)
3196 3197
{
	struct bio *bio;
3198
	struct btrfs_bio *bbio;
3199

3200 3201
	ASSERT(offset <= UINT_MAX && size <= UINT_MAX);

3202
	/* this will never fail when it's backed by a bioset */
3203
	bio = bio_alloc_clone(orig->bi_bdev, orig, GFP_NOFS, &btrfs_bioset);
3204 3205
	ASSERT(bio);

3206 3207
	bbio = btrfs_bio(bio);
	btrfs_bio_init(bbio);
3208 3209

	bio_trim(bio, offset >> 9, size >> 9);
3210
	bbio->iter = bio->bi_iter;
3211 3212
	return bio;
}
3213

3214 3215 3216
/**
 * Attempt to add a page to bio
 *
3217
 * @bio_ctrl:	record both the bio, and its bio_flags
3218 3219 3220 3221
 * @page:	page to add to the bio
 * @disk_bytenr:  offset of the new bio or to check whether we are adding
 *                a contiguous page to the previous one
 * @size:	portion of page that we want to write
3222
 * @pg_offset:	starting offset in the page
3223
 * @compress_type:   compression type of the current bio to see if we can merge them
3224 3225 3226
 *
 * Attempt to add a page to bio considering stripe alignment etc.
 *
3227 3228 3229
 * Return >= 0 for the number of bytes added to the bio.
 * Can return 0 if the current bio is already at stripe/zone boundary.
 * Return <0 for error.
3230
 */
3231 3232 3233 3234
static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
			      struct page *page,
			      u64 disk_bytenr, unsigned int size,
			      unsigned int pg_offset,
3235
			      enum btrfs_compression_type compress_type)
3236
{
3237 3238
	struct bio *bio = bio_ctrl->bio;
	u32 bio_size = bio->bi_iter.bi_size;
3239
	u32 real_size;
3240 3241
	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
	bool contig;
3242
	int ret;
3243

3244 3245 3246
	ASSERT(bio);
	/* The limit should be calculated when bio_ctrl->bio is allocated */
	ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
3247
	if (bio_ctrl->compress_type != compress_type)
3248
		return 0;
3249

3250
	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
3251 3252 3253 3254
		contig = bio->bi_iter.bi_sector == sector;
	else
		contig = bio_end_sector(bio) == sector;
	if (!contig)
3255
		return 0;
3256

3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
	real_size = min(bio_ctrl->len_to_oe_boundary,
			bio_ctrl->len_to_stripe_boundary) - bio_size;
	real_size = min(real_size, size);

	/*
	 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
	 * bio will still execute its endio function on the page!
	 */
	if (real_size == 0)
		return 0;
3267

3268
	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3269
		ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
3270
	else
3271
		ret = bio_add_page(bio, page, real_size, pg_offset);
3272

3273
	return ret;
3274 3275
}

3276
static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
3277
			       struct btrfs_inode *inode, u64 file_offset)
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct btrfs_io_geometry geom;
	struct btrfs_ordered_extent *ordered;
	struct extent_map *em;
	u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
	int ret;

	/*
	 * Pages for compressed extent are never submitted to disk directly,
	 * thus it has no real boundary, just set them to U32_MAX.
	 *
	 * The split happens for real compressed bio, which happens in
	 * btrfs_submit_compressed_read/write().
	 */
3293
	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
		return 0;
	}
	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
	if (IS_ERR(em))
		return PTR_ERR(em);
	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
				    logical, &geom);
	free_extent_map(em);
	if (ret < 0) {
		return ret;
	}
	if (geom.len > U32_MAX)
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
	else
		bio_ctrl->len_to_stripe_boundary = (u32)geom.len;

3312
	if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
3313 3314 3315 3316 3317
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	/* Ordered extent not yet created, so we're good */
3318
	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
	if (!ordered) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
		ordered->disk_bytenr + ordered->disk_num_bytes - logical);
	btrfs_put_ordered_extent(ordered);
	return 0;
}

3330 3331 3332 3333 3334
static int alloc_new_bio(struct btrfs_inode *inode,
			 struct btrfs_bio_ctrl *bio_ctrl,
			 struct writeback_control *wbc,
			 unsigned int opf,
			 bio_end_io_t end_io_func,
3335
			 u64 disk_bytenr, u32 offset, u64 file_offset,
3336
			 enum btrfs_compression_type compress_type)
3337 3338 3339 3340 3341
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct bio *bio;
	int ret;

3342
	bio = btrfs_bio_alloc(BIO_MAX_VECS);
3343 3344 3345 3346
	/*
	 * For compressed page range, its disk_bytenr is always @disk_bytenr
	 * passed in, no matter if we have added any range into previous bio.
	 */
3347
	if (compress_type != BTRFS_COMPRESS_NONE)
Q
Qu Wenruo 已提交
3348
		bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
3349
	else
Q
Qu Wenruo 已提交
3350
		bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
3351
	bio_ctrl->bio = bio;
3352
	bio_ctrl->compress_type = compress_type;
3353 3354
	bio->bi_end_io = end_io_func;
	bio->bi_opf = opf;
3355 3356 3357
	ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
	if (ret < 0)
		goto error;
3358

3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
	if (wbc) {
		/*
		 * For Zone append we need the correct block_device that we are
		 * going to write to set in the bio to be able to respect the
		 * hardware limitation.  Look it up here:
		 */
		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
			struct btrfs_device *dev;

			dev = btrfs_zoned_get_device(fs_info, disk_bytenr,
						     fs_info->sectorsize);
			if (IS_ERR(dev)) {
				ret = PTR_ERR(dev);
				goto error;
			}
3374

3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
			bio_set_dev(bio, dev->bdev);
		} else {
			/*
			 * Otherwise pick the last added device to support
			 * cgroup writeback.  For multi-device file systems this
			 * means blk-cgroup policies have to always be set on the
			 * last added/replaced device.  This is a bit odd but has
			 * been like that for a long time.
			 */
			bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev);
3385
		}
3386 3387 3388
		wbc_init_bio(wbc, bio);
	} else {
		ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND);
3389 3390 3391 3392 3393 3394 3395 3396 3397
	}
	return 0;
error:
	bio_ctrl->bio = NULL;
	bio->bi_status = errno_to_blk_status(ret);
	bio_endio(bio);
	return ret;
}

3398 3399
/*
 * @opf:	bio REQ_OP_* and REQ_* flags as one value
3400 3401
 * @wbc:	optional writeback control for io accounting
 * @page:	page to add to the bio
3402 3403
 * @disk_bytenr: logical bytenr where the write will be
 * @size:	portion of page that we want to write to
3404 3405
 * @pg_offset:	offset of the new bio or to check whether we are adding
 *              a contiguous page to the previous one
3406
 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3407 3408 3409
 * @end_io_func:     end_io callback for new bio
 * @mirror_num:	     desired mirror to read/write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3410
 * @compress_type:   compress type for current bio
3411
 */
3412
static int submit_extent_page(unsigned int opf,
3413
			      struct writeback_control *wbc,
3414
			      struct btrfs_bio_ctrl *bio_ctrl,
3415
			      struct page *page, u64 disk_bytenr,
3416
			      size_t size, unsigned long pg_offset,
3417
			      bio_end_io_t end_io_func,
3418
			      enum btrfs_compression_type compress_type,
3419
			      bool force_bio_submit)
3420 3421
{
	int ret = 0;
3422
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3423
	unsigned int cur = pg_offset;
3424

3425
	ASSERT(bio_ctrl);
3426

3427 3428
	ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
	       pg_offset + size <= PAGE_SIZE);
3429 3430
	if (force_bio_submit)
		submit_one_bio(bio_ctrl);
3431 3432 3433 3434 3435 3436 3437 3438 3439

	while (cur < pg_offset + size) {
		u32 offset = cur - pg_offset;
		int added;

		/* Allocate new bio if needed */
		if (!bio_ctrl->bio) {
			ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
					    end_io_func, disk_bytenr, offset,
3440
					    page_offset(page) + cur,
3441
					    compress_type);
3442 3443 3444 3445 3446 3447 3448
			if (ret < 0)
				return ret;
		}
		/*
		 * We must go through btrfs_bio_add_page() to ensure each
		 * page range won't cross various boundaries.
		 */
3449
		if (compress_type != BTRFS_COMPRESS_NONE)
3450 3451
			added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
					size - offset, pg_offset + offset,
3452
					compress_type);
3453 3454 3455
		else
			added = btrfs_bio_add_page(bio_ctrl, page,
					disk_bytenr + offset, size - offset,
3456
					pg_offset + offset, compress_type);
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469

		/* Metadata page range should never be split */
		if (!is_data_inode(&inode->vfs_inode))
			ASSERT(added == 0 || added == size - offset);

		/* At least we added some page, update the account */
		if (wbc && added)
			wbc_account_cgroup_owner(wbc, page, added);

		/* We have reached boundary, submit right now */
		if (added < size - offset) {
			/* The bio should contain some page(s) */
			ASSERT(bio_ctrl->bio->bi_iter.bi_size);
3470
			submit_one_bio(bio_ctrl);
3471
		}
3472
		cur += added;
3473
	}
3474
	return 0;
3475 3476
}

3477 3478 3479
static int attach_extent_buffer_page(struct extent_buffer *eb,
				     struct page *page,
				     struct btrfs_subpage *prealloc)
3480
{
3481 3482 3483
	struct btrfs_fs_info *fs_info = eb->fs_info;
	int ret = 0;

3484 3485 3486 3487 3488 3489 3490 3491 3492
	/*
	 * If the page is mapped to btree inode, we should hold the private
	 * lock to prevent race.
	 * For cloned or dummy extent buffers, their pages are not mapped and
	 * will not race with any other ebs.
	 */
	if (page->mapping)
		lockdep_assert_held(&page->mapping->private_lock);

3493
	if (fs_info->nodesize >= PAGE_SIZE) {
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
		if (!PagePrivate(page))
			attach_page_private(page, eb);
		else
			WARN_ON(page->private != (unsigned long)eb);
		return 0;
	}

	/* Already mapped, just free prealloc */
	if (PagePrivate(page)) {
		btrfs_free_subpage(prealloc);
		return 0;
	}

	if (prealloc)
		/* Has preallocated memory for subpage */
		attach_page_private(page, prealloc);
3510
	else
3511 3512 3513 3514
		/* Do new allocation to attach subpage */
		ret = btrfs_attach_subpage(fs_info, page,
					   BTRFS_SUBPAGE_METADATA);
	return ret;
3515 3516
}

3517
int set_page_extent_mapped(struct page *page)
3518
{
3519 3520 3521 3522 3523 3524 3525 3526 3527
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

	if (PagePrivate(page))
		return 0;

	fs_info = btrfs_sb(page->mapping->host->i_sb);

3528
	if (btrfs_is_subpage(fs_info, page))
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);

	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
	return 0;
}

void clear_page_extent_mapped(struct page *page)
{
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

3541
	if (!PagePrivate(page))
3542 3543 3544
		return;

	fs_info = btrfs_sb(page->mapping->host->i_sb);
3545
	if (btrfs_is_subpage(fs_info, page))
3546 3547 3548
		return btrfs_detach_subpage(fs_info, page);

	detach_page_private(page);
3549 3550
}

3551 3552
static struct extent_map *
__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3553
		 u64 start, u64 len, struct extent_map **em_cached)
3554 3555 3556 3557 3558
{
	struct extent_map *em;

	if (em_cached && *em_cached) {
		em = *em_cached;
3559
		if (extent_map_in_tree(em) && start >= em->start &&
3560
		    start < extent_map_end(em)) {
3561
			refcount_inc(&em->refs);
3562 3563 3564 3565 3566 3567 3568
			return em;
		}

		free_extent_map(em);
		*em_cached = NULL;
	}

3569
	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3570
	if (em_cached && !IS_ERR(em)) {
3571
		BUG_ON(*em_cached);
3572
		refcount_inc(&em->refs);
3573 3574 3575 3576
		*em_cached = em;
	}
	return em;
}
3577 3578 3579 3580
/*
 * basic readpage implementation.  Locked extent state structs are inserted
 * into the tree that are removed when the IO is done (by the end_io
 * handlers)
3581
 * XXX JDM: This needs looking at to ensure proper page locking
3582
 * return 0 on success, otherwise return error
3583
 */
3584
static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3585
		      struct btrfs_bio_ctrl *bio_ctrl,
3586
		      unsigned int read_flags, u64 *prev_em_start)
3587 3588
{
	struct inode *inode = page->mapping->host;
3589
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
M
Miao Xie 已提交
3590
	u64 start = page_offset(page);
3591
	const u64 end = start + PAGE_SIZE - 1;
3592 3593 3594 3595 3596 3597
	u64 cur = start;
	u64 extent_offset;
	u64 last_byte = i_size_read(inode);
	u64 block_start;
	u64 cur_end;
	struct extent_map *em;
3598
	int ret = 0;
3599
	size_t pg_offset = 0;
3600 3601
	size_t iosize;
	size_t blocksize = inode->i_sb->s_blocksize;
3602
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3603

3604 3605 3606
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		unlock_extent(tree, start, end);
3607 3608
		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
		unlock_page(page);
3609 3610
		goto out;
	}
3611

3612
	if (page->index == last_byte >> PAGE_SHIFT) {
3613
		size_t zero_offset = offset_in_page(last_byte);
C
Chris Mason 已提交
3614 3615

		if (zero_offset) {
3616
			iosize = PAGE_SIZE - zero_offset;
3617
			memzero_page(page, zero_offset, iosize);
C
Chris Mason 已提交
3618 3619
		}
	}
3620
	begin_page_read(fs_info, page);
3621
	while (cur <= end) {
3622
		unsigned long this_bio_flag = 0;
3623
		bool force_bio_submit = false;
3624
		u64 disk_bytenr;
3625

3626
		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
3627
		if (cur >= last_byte) {
3628 3629
			struct extent_state *cached = NULL;

3630
			iosize = PAGE_SIZE - pg_offset;
3631
			memzero_page(page, pg_offset, iosize);
3632
			set_extent_uptodate(tree, cur, cur + iosize - 1,
3633
					    &cached, GFP_NOFS);
3634
			unlock_extent_cached(tree, cur,
3635
					     cur + iosize - 1, &cached);
3636
			end_page_read(page, true, cur, iosize);
3637 3638
			break;
		}
3639
		em = __get_extent_map(inode, page, pg_offset, cur,
3640
				      end - cur + 1, em_cached);
3641
		if (IS_ERR(em)) {
3642
			unlock_extent(tree, cur, end);
3643
			end_page_read(page, false, cur, end + 1 - cur);
3644
			ret = PTR_ERR(em);
3645 3646 3647 3648 3649 3650
			break;
		}
		extent_offset = cur - em->start;
		BUG_ON(extent_map_end(em) <= cur);
		BUG_ON(end < cur);

3651 3652
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			this_bio_flag = em->compress_type;
C
Chris Mason 已提交
3653

3654 3655
		iosize = min(extent_map_end(em) - cur, end - cur + 1);
		cur_end = min(extent_map_end(em) - 1, end);
3656
		iosize = ALIGN(iosize, blocksize);
3657
		if (this_bio_flag != BTRFS_COMPRESS_NONE)
3658
			disk_bytenr = em->block_start;
3659
		else
3660
			disk_bytenr = em->block_start + extent_offset;
3661
		block_start = em->block_start;
Y
Yan Zheng 已提交
3662 3663
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			block_start = EXTENT_MAP_HOLE;
3664 3665 3666

		/*
		 * If we have a file range that points to a compressed extent
3667
		 * and it's followed by a consecutive file range that points
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
		 * to the same compressed extent (possibly with a different
		 * offset and/or length, so it either points to the whole extent
		 * or only part of it), we must make sure we do not submit a
		 * single bio to populate the pages for the 2 ranges because
		 * this makes the compressed extent read zero out the pages
		 * belonging to the 2nd range. Imagine the following scenario:
		 *
		 *  File layout
		 *  [0 - 8K]                     [8K - 24K]
		 *    |                               |
		 *    |                               |
		 * points to extent X,         points to extent X,
		 * offset 4K, length of 8K     offset 0, length 16K
		 *
		 * [extent X, compressed length = 4K uncompressed length = 16K]
		 *
		 * If the bio to read the compressed extent covers both ranges,
		 * it will decompress extent X into the pages belonging to the
		 * first range and then it will stop, zeroing out the remaining
		 * pages that belong to the other range that points to extent X.
		 * So here we make sure we submit 2 bios, one for the first
		 * range and another one for the third range. Both will target
		 * the same physical extent from disk, but we can't currently
		 * make the compressed bio endio callback populate the pages
		 * for both ranges because each compressed bio is tightly
		 * coupled with a single extent map, and each range can have
		 * an extent map with a different offset value relative to the
		 * uncompressed data of our extent and different lengths. This
		 * is a corner case so we prioritize correctness over
		 * non-optimal behavior (submitting 2 bios for the same extent).
		 */
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
		    prev_em_start && *prev_em_start != (u64)-1 &&
3701
		    *prev_em_start != em->start)
3702 3703 3704
			force_bio_submit = true;

		if (prev_em_start)
3705
			*prev_em_start = em->start;
3706

3707 3708 3709 3710 3711
		free_extent_map(em);
		em = NULL;

		/* we've found a hole, just zero and go on */
		if (block_start == EXTENT_MAP_HOLE) {
3712 3713
			struct extent_state *cached = NULL;

3714
			memzero_page(page, pg_offset, iosize);
3715 3716

			set_extent_uptodate(tree, cur, cur + iosize - 1,
3717
					    &cached, GFP_NOFS);
3718
			unlock_extent_cached(tree, cur,
3719
					     cur + iosize - 1, &cached);
3720
			end_page_read(page, true, cur, iosize);
3721
			cur = cur + iosize;
3722
			pg_offset += iosize;
3723 3724 3725
			continue;
		}
		/* the get_extent function already copied into the page */
3726 3727
		if (test_range_bit(tree, cur, cur_end,
				   EXTENT_UPTODATE, 1, NULL)) {
3728
			unlock_extent(tree, cur, cur + iosize - 1);
3729
			end_page_read(page, true, cur, iosize);
3730
			cur = cur + iosize;
3731
			pg_offset += iosize;
3732 3733
			continue;
		}
3734 3735 3736 3737
		/* we have an inline extent but it didn't get marked up
		 * to date.  Error out
		 */
		if (block_start == EXTENT_MAP_INLINE) {
3738
			unlock_extent(tree, cur, cur + iosize - 1);
3739
			end_page_read(page, false, cur, iosize);
3740
			cur = cur + iosize;
3741
			pg_offset += iosize;
3742 3743
			continue;
		}
3744

3745
		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3746
					 bio_ctrl, page, disk_bytenr, iosize,
3747 3748
					 pg_offset, end_bio_extent_readpage,
					 this_bio_flag, force_bio_submit);
3749
		if (ret) {
3750 3751 3752 3753 3754 3755
			/*
			 * We have to unlock the remaining range, or the page
			 * will never be unlocked.
			 */
			unlock_extent(tree, cur, end);
			end_page_read(page, false, cur, end + 1 - cur);
3756
			goto out;
3757
		}
3758
		cur = cur + iosize;
3759
		pg_offset += iosize;
3760
	}
D
Dan Magenheimer 已提交
3761
out:
3762
	return ret;
3763 3764
}

3765
int btrfs_read_folio(struct file *file, struct folio *folio)
3766
{
3767
	struct page *page = &folio->page;
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
	u64 start = page_offset(page);
	u64 end = start + PAGE_SIZE - 1;
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
	int ret;

	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);

	ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
	/*
	 * If btrfs_do_readpage() failed we will want to submit the assembled
	 * bio to do the cleanup.
	 */
3781
	submit_one_bio(&bio_ctrl);
3782 3783 3784
	return ret;
}

3785
static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3786 3787 3788 3789
					u64 start, u64 end,
					struct extent_map **em_cached,
					struct btrfs_bio_ctrl *bio_ctrl,
					u64 *prev_em_start)
3790
{
3791
	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3792 3793
	int index;

3794
	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3795 3796

	for (index = 0; index < nr_pages; index++) {
3797
		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3798
				  REQ_RAHEAD, prev_em_start);
3799
		put_page(pages[index]);
3800 3801 3802
	}
}

3803
/*
3804 3805
 * helper for __extent_writepage, doing all of the delayed allocation setup.
 *
3806
 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3807 3808 3809 3810 3811
 * to write the page (copy into inline extent).  In this case the IO has
 * been started and the page is already unlocked.
 *
 * This returns 0 if all went well (page still locked)
 * This returns < 0 if there were errors (page still locked)
3812
 */
3813
static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3814
		struct page *page, struct writeback_control *wbc)
3815
{
3816
	const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
3817
	u64 delalloc_start = page_offset(page);
3818
	u64 delalloc_to_write = 0;
3819 3820
	/* How many pages are started by btrfs_run_delalloc_range() */
	unsigned long nr_written = 0;
3821 3822 3823
	int ret;
	int page_started = 0;

3824 3825 3826
	while (delalloc_start < page_end) {
		u64 delalloc_end = page_end;
		bool found;
3827

3828
		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3829
					       &delalloc_start,
3830
					       &delalloc_end);
3831
		if (!found) {
3832 3833 3834
			delalloc_start = delalloc_end + 1;
			continue;
		}
3835
		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3836
				delalloc_end, &page_started, &nr_written, wbc);
3837
		if (ret) {
3838 3839
			btrfs_page_set_error(inode->root->fs_info, page,
					     page_offset(page), PAGE_SIZE);
3840
			return ret;
3841 3842
		}
		/*
3843 3844
		 * delalloc_end is already one less than the total length, so
		 * we don't subtract one from PAGE_SIZE
3845 3846
		 */
		delalloc_to_write += (delalloc_end - delalloc_start +
3847
				      PAGE_SIZE) >> PAGE_SHIFT;
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
		delalloc_start = delalloc_end + 1;
	}
	if (wbc->nr_to_write < delalloc_to_write) {
		int thresh = 8192;

		if (delalloc_to_write < thresh * 2)
			thresh = delalloc_to_write;
		wbc->nr_to_write = min_t(u64, delalloc_to_write,
					 thresh);
	}

3859
	/* Did btrfs_run_dealloc_range() already unlock and start the IO? */
3860 3861
	if (page_started) {
		/*
3862 3863
		 * We've unlocked the page, so we can't update the mapping's
		 * writeback index, just update nr_to_write.
3864
		 */
3865
		wbc->nr_to_write -= nr_written;
3866 3867 3868
		return 1;
	}

3869
	return 0;
3870 3871
}

3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
/*
 * Find the first byte we need to write.
 *
 * For subpage, one page can contain several sectors, and
 * __extent_writepage_io() will just grab all extent maps in the page
 * range and try to submit all non-inline/non-compressed extents.
 *
 * This is a big problem for subpage, we shouldn't re-submit already written
 * data at all.
 * This function will lookup subpage dirty bit to find which range we really
 * need to submit.
 *
 * Return the next dirty range in [@start, @end).
 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
 */
static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
				 struct page *page, u64 *start, u64 *end)
{
	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
3891
	struct btrfs_subpage_info *spi = fs_info->subpage_info;
3892 3893 3894
	u64 orig_start = *start;
	/* Declare as unsigned long so we can use bitmap ops */
	unsigned long flags;
3895
	int range_start_bit;
3896 3897 3898 3899 3900 3901
	int range_end_bit;

	/*
	 * For regular sector size == page size case, since one page only
	 * contains one sector, we return the page offset directly.
	 */
3902
	if (!btrfs_is_subpage(fs_info, page)) {
3903 3904 3905 3906 3907
		*start = page_offset(page);
		*end = page_offset(page) + PAGE_SIZE;
		return;
	}

3908 3909 3910
	range_start_bit = spi->dirty_offset +
			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);

3911 3912
	/* We should have the page locked, but just in case */
	spin_lock_irqsave(&subpage->lock, flags);
3913 3914
	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
			       spi->dirty_offset + spi->bitmap_nr_bits);
3915 3916
	spin_unlock_irqrestore(&subpage->lock, flags);

3917 3918 3919
	range_start_bit -= spi->dirty_offset;
	range_end_bit -= spi->dirty_offset;

3920 3921 3922 3923
	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
}

3924 3925 3926 3927 3928 3929 3930 3931
/*
 * helper for __extent_writepage.  This calls the writepage start hooks,
 * and does the loop to map the page into extents and bios.
 *
 * We return 1 if the IO is started and the page is unlocked,
 * 0 if all went well (page still locked)
 * < 0 if there were errors (page still locked)
 */
3932
static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3933 3934 3935 3936
				 struct page *page,
				 struct writeback_control *wbc,
				 struct extent_page_data *epd,
				 loff_t i_size,
3937
				 int *nr_ret)
3938
{
3939
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3940 3941
	u64 cur = page_offset(page);
	u64 end = cur + PAGE_SIZE - 1;
3942 3943 3944
	u64 extent_offset;
	u64 block_start;
	struct extent_map *em;
3945
	int saved_ret = 0;
3946 3947
	int ret = 0;
	int nr = 0;
3948
	u32 opf = REQ_OP_WRITE;
3949
	const unsigned int write_flags = wbc_to_write_flags(wbc);
3950
	bool has_error = false;
3951
	bool compressed;
C
Chris Mason 已提交
3952

3953
	ret = btrfs_writepage_cow_fixup(page);
3954 3955
	if (ret) {
		/* Fixup worker will requeue */
3956
		redirty_page_for_writepage(wbc, page);
3957 3958
		unlock_page(page);
		return 1;
3959 3960
	}

3961 3962 3963 3964
	/*
	 * we don't want to touch the inode after unlocking the page,
	 * so we update the mapping writeback index now
	 */
3965
	wbc->nr_to_write--;
3966

3967
	while (cur <= end) {
3968
		u64 disk_bytenr;
3969
		u64 em_end;
3970 3971
		u64 dirty_range_start = cur;
		u64 dirty_range_end;
3972
		u32 iosize;
3973

3974
		if (cur >= i_size) {
3975
			btrfs_writepage_endio_finish_ordered(inode, page, cur,
3976
							     end, true);
3977 3978 3979 3980 3981 3982 3983 3984 3985
			/*
			 * This range is beyond i_size, thus we don't need to
			 * bother writing back.
			 * But we still need to clear the dirty subpage bit, or
			 * the next time the page gets dirtied, we will try to
			 * writeback the sectors with subpage dirty bits,
			 * causing writeback without ordered extent.
			 */
			btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
3986 3987
			break;
		}
3988 3989 3990 3991 3992 3993 3994 3995

		find_next_dirty_byte(fs_info, page, &dirty_range_start,
				     &dirty_range_end);
		if (cur < dirty_range_start) {
			cur = dirty_range_start;
			continue;
		}

3996
		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3997
		if (IS_ERR(em)) {
3998
			btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
3999
			ret = PTR_ERR_OR_ZERO(em);
4000 4001 4002
			has_error = true;
			if (!saved_ret)
				saved_ret = ret;
4003 4004 4005 4006
			break;
		}

		extent_offset = cur - em->start;
4007
		em_end = extent_map_end(em);
4008 4009 4010 4011
		ASSERT(cur <= em_end);
		ASSERT(cur < end);
		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
4012
		block_start = em->block_start;
C
Chris Mason 已提交
4013
		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4014 4015
		disk_bytenr = em->block_start + extent_offset;

4016 4017 4018 4019 4020
		/*
		 * Note that em_end from extent_map_end() and dirty_range_end from
		 * find_next_dirty_byte() are all exclusive
		 */
		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
4021

4022
		if (btrfs_use_zone_append(inode, em->block_start))
4023 4024
			opf = REQ_OP_ZONE_APPEND;

4025 4026 4027
		free_extent_map(em);
		em = NULL;

C
Chris Mason 已提交
4028 4029 4030 4031 4032
		/*
		 * compressed and inline extents are written through other
		 * paths in the FS
		 */
		if (compressed || block_start == EXTENT_MAP_HOLE ||
4033
		    block_start == EXTENT_MAP_INLINE) {
4034
			if (compressed)
C
Chris Mason 已提交
4035
				nr++;
4036
			else
4037
				btrfs_writepage_endio_finish_ordered(inode,
4038
						page, cur, cur + iosize - 1, true);
4039
			btrfs_page_clear_dirty(fs_info, page, cur, iosize);
C
Chris Mason 已提交
4040
			cur += iosize;
4041 4042
			continue;
		}
C
Chris Mason 已提交
4043

4044
		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
4045
		if (!PageWriteback(page)) {
4046
			btrfs_err(inode->root->fs_info,
4047 4048
				   "page %lu not writeback, cur %llu end %llu",
			       page->index, cur, end);
4049
		}
4050

4051 4052 4053 4054 4055 4056 4057 4058
		/*
		 * Although the PageDirty bit is cleared before entering this
		 * function, subpage dirty bit is not cleared.
		 * So clear subpage dirty bit here so next time we won't submit
		 * page for range already written to disk.
		 */
		btrfs_page_clear_dirty(fs_info, page, cur, iosize);

4059 4060
		ret = submit_extent_page(opf | write_flags, wbc,
					 &epd->bio_ctrl, page,
4061
					 disk_bytenr, iosize,
4062
					 cur - page_offset(page),
4063
					 end_bio_extent_writepage,
4064
					 0, false);
4065
		if (ret) {
4066 4067 4068 4069
			has_error = true;
			if (!saved_ret)
				saved_ret = ret;

4070
			btrfs_page_set_error(fs_info, page, cur, iosize);
4071
			if (PageWriteback(page))
4072 4073
				btrfs_page_clear_writeback(fs_info, page, cur,
							   iosize);
4074
		}
4075

4076
		cur += iosize;
4077 4078
		nr++;
	}
4079 4080 4081 4082
	/*
	 * If we finish without problem, we should not only clear page dirty,
	 * but also empty subpage dirty bits
	 */
4083
	if (!has_error)
4084
		btrfs_page_assert_not_dirty(fs_info, page);
4085 4086
	else
		ret = saved_ret;
4087 4088 4089 4090 4091 4092 4093 4094 4095
	*nr_ret = nr;
	return ret;
}

/*
 * the writepage semantics are similar to regular writepage.  extent
 * records are inserted to lock ranges in the tree, and as dirty areas
 * are found, they are marked writeback.  Then the lock bits are removed
 * and the end_io handler clears the writeback ranges
4096 4097 4098
 *
 * Return 0 if everything goes well.
 * Return <0 for error.
4099 4100
 */
static int __extent_writepage(struct page *page, struct writeback_control *wbc,
4101
			      struct extent_page_data *epd)
4102
{
4103
	struct folio *folio = page_folio(page);
4104
	struct inode *inode = page->mapping->host;
4105
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4106 4107
	const u64 page_start = page_offset(page);
	const u64 page_end = page_start + PAGE_SIZE - 1;
4108 4109
	int ret;
	int nr = 0;
4110
	size_t pg_offset;
4111
	loff_t i_size = i_size_read(inode);
4112
	unsigned long end_index = i_size >> PAGE_SHIFT;
4113 4114 4115 4116 4117

	trace___extent_writepage(page, inode, wbc);

	WARN_ON(!PageLocked(page));

4118 4119
	btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
			       page_offset(page), PAGE_SIZE);
4120

4121
	pg_offset = offset_in_page(i_size);
4122 4123
	if (page->index > end_index ||
	   (page->index == end_index && !pg_offset)) {
4124 4125
		folio_invalidate(folio, 0, folio_size(folio));
		folio_unlock(folio);
4126 4127 4128
		return 0;
	}

4129
	if (page->index == end_index)
4130
		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
4131

4132 4133 4134 4135 4136
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		SetPageError(page);
		goto done;
	}
4137

4138
	if (!epd->extent_locked) {
4139
		ret = writepage_delalloc(BTRFS_I(inode), page, wbc);
4140
		if (ret == 1)
4141
			return 0;
4142 4143 4144
		if (ret)
			goto done;
	}
4145

4146
	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
4147
				    &nr);
4148
	if (ret == 1)
4149
		return 0;
4150

4151 4152 4153 4154 4155 4156
done:
	if (nr == 0) {
		/* make sure the mapping tag for page dirty gets cleared */
		set_page_writeback(page);
		end_page_writeback(page);
	}
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188
	/*
	 * Here we used to have a check for PageError() and then set @ret and
	 * call end_extent_writepage().
	 *
	 * But in fact setting @ret here will cause different error paths
	 * between subpage and regular sectorsize.
	 *
	 * For regular page size, we never submit current page, but only add
	 * current page to current bio.
	 * The bio submission can only happen in next page.
	 * Thus if we hit the PageError() branch, @ret is already set to
	 * non-zero value and will not get updated for regular sectorsize.
	 *
	 * But for subpage case, it's possible we submit part of current page,
	 * thus can get PageError() set by submitted bio of the same page,
	 * while our @ret is still 0.
	 *
	 * So here we unify the behavior and don't set @ret.
	 * Error can still be properly passed to higher layer as page will
	 * be set error, here we just don't handle the IO failure.
	 *
	 * NOTE: This is just a hotfix for subpage.
	 * The root fix will be properly ending ordered extent when we hit
	 * an error during writeback.
	 *
	 * But that needs a bigger refactoring, as we not only need to grab the
	 * submitted OE, but also need to know exactly at which bytenr we hit
	 * the error.
	 * Currently the full page based __extent_writepage_io() is not
	 * capable of that.
	 */
	if (PageError(page))
4189
		end_extent_writepage(page, ret, page_start, page_end);
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
	if (epd->extent_locked) {
		/*
		 * If epd->extent_locked, it's from extent_write_locked_range(),
		 * the page can either be locked by lock_page() or
		 * process_one_page().
		 * Let btrfs_page_unlock_writer() handle both cases.
		 */
		ASSERT(wbc);
		btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
					 wbc->range_end + 1 - wbc->range_start);
	} else {
		unlock_page(page);
	}
4203
	ASSERT(ret <= 0);
4204
	return ret;
4205 4206
}

4207
void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
4208
{
4209 4210
	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
		       TASK_UNINTERRUPTIBLE);
4211 4212
}

4213 4214 4215 4216 4217 4218 4219
static void end_extent_buffer_writeback(struct extent_buffer *eb)
{
	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
	smp_mb__after_atomic();
	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
}

4220
/*
4221
 * Lock extent buffer status and pages for writeback.
4222
 *
4223 4224 4225 4226 4227 4228
 * May try to flush write bio if we can't get the lock.
 *
 * Return  0 if the extent buffer doesn't need to be submitted.
 *           (E.g. the extent buffer is not dirty)
 * Return >0 is the extent buffer is submitted to bio.
 * Return <0 if something went wrong, no page is locked.
4229
 */
4230
static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
4231
			  struct extent_page_data *epd)
4232
{
4233
	struct btrfs_fs_info *fs_info = eb->fs_info;
4234
	int i, num_pages;
4235 4236 4237 4238
	int flush = 0;
	int ret = 0;

	if (!btrfs_try_tree_write_lock(eb)) {
4239
		submit_write_bio(epd, 0);
4240
		flush = 1;
4241 4242 4243 4244 4245 4246 4247 4248
		btrfs_tree_lock(eb);
	}

	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
		btrfs_tree_unlock(eb);
		if (!epd->sync_io)
			return 0;
		if (!flush) {
4249
			submit_write_bio(epd, 0);
4250 4251
			flush = 1;
		}
C
Chris Mason 已提交
4252 4253 4254 4255 4256
		while (1) {
			wait_on_extent_buffer_writeback(eb);
			btrfs_tree_lock(eb);
			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
				break;
4257 4258 4259 4260
			btrfs_tree_unlock(eb);
		}
	}

4261 4262 4263 4264 4265 4266
	/*
	 * We need to do this to prevent races in people who check if the eb is
	 * under IO since we can end up having no IO bits set for a short period
	 * of time.
	 */
	spin_lock(&eb->refs_lock);
4267 4268
	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4269
		spin_unlock(&eb->refs_lock);
4270
		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4271 4272 4273
		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
					 -eb->len,
					 fs_info->dirty_metadata_batch);
4274
		ret = 1;
4275 4276
	} else {
		spin_unlock(&eb->refs_lock);
4277 4278 4279 4280
	}

	btrfs_tree_unlock(eb);

4281 4282 4283 4284 4285 4286
	/*
	 * Either we don't need to submit any tree block, or we're submitting
	 * subpage eb.
	 * Subpage metadata doesn't use page locking at all, so we can skip
	 * the page locking.
	 */
4287
	if (!ret || fs_info->nodesize < PAGE_SIZE)
4288 4289
		return ret;

4290
	num_pages = num_extent_pages(eb);
4291
	for (i = 0; i < num_pages; i++) {
4292
		struct page *p = eb->pages[i];
4293 4294 4295

		if (!trylock_page(p)) {
			if (!flush) {
4296
				submit_write_bio(epd, 0);
4297 4298 4299 4300 4301 4302
				flush = 1;
			}
			lock_page(p);
		}
	}

4303
	return ret;
4304 4305
}

4306
static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4307
{
4308
	struct btrfs_fs_info *fs_info = eb->fs_info;
4309

4310
	btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4311 4312 4313
	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
		return;

4314 4315 4316 4317 4318 4319
	/*
	 * A read may stumble upon this buffer later, make sure that it gets an
	 * error and knows there was an error.
	 */
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);

4320 4321 4322 4323 4324 4325 4326 4327
	/*
	 * We need to set the mapping with the io error as well because a write
	 * error will flip the file system readonly, and then syncfs() will
	 * return a 0 because we are readonly if we don't modify the err seq for
	 * the superblock.
	 */
	mapping_set_error(page->mapping, -EIO);

4328 4329 4330 4331 4332 4333 4334
	/*
	 * If we error out, we should add back the dirty_metadata_bytes
	 * to make it consistent.
	 */
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
				 eb->len, fs_info->dirty_metadata_batch);

4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
	/*
	 * If writeback for a btree extent that doesn't belong to a log tree
	 * failed, increment the counter transaction->eb_write_errors.
	 * We do this because while the transaction is running and before it's
	 * committing (when we call filemap_fdata[write|wait]_range against
	 * the btree inode), we might have
	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
	 * returns an error or an error happens during writeback, when we're
	 * committing the transaction we wouldn't know about it, since the pages
	 * can be no longer dirty nor marked anymore for writeback (if a
	 * subsequent modification to the extent buffer didn't happen before the
	 * transaction commit), which makes filemap_fdata[write|wait]_range not
	 * able to find the pages tagged with SetPageError at transaction
	 * commit time. So if this happens we must abort the transaction,
	 * otherwise we commit a super block with btree roots that point to
	 * btree nodes/leafs whose content on disk is invalid - either garbage
	 * or the content of some node/leaf from a past generation that got
	 * cowed or deleted and is no longer valid.
	 *
	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
	 * not be enough - we need to distinguish between log tree extents vs
	 * non-log tree extents, and the next filemap_fdatawait_range() call
	 * will catch and clear such errors in the mapping - and that call might
	 * be from a log sync and not from a transaction commit. Also, checking
	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
	 * not done and would not be reliable - the eb might have been released
	 * from memory and reading it back again means that flag would not be
	 * set (since it's a runtime flag, not persisted on disk).
	 *
	 * Using the flags below in the btree inode also makes us achieve the
	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
	 * writeback for all dirty pages and before filemap_fdatawait_range()
	 * is called, the writeback for all dirty pages had already finished
	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
	 * filemap_fdatawait_range() would return success, as it could not know
	 * that writeback errors happened (the pages were no longer tagged for
	 * writeback).
	 */
	switch (eb->log_index) {
	case -1:
4375
		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4376 4377
		break;
	case 0:
4378
		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4379 4380
		break;
	case 1:
4381
		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4382 4383 4384 4385 4386 4387
		break;
	default:
		BUG(); /* unexpected, logic error */
	}
}

4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
/*
 * The endio specific version which won't touch any unsafe spinlock in endio
 * context.
 */
static struct extent_buffer *find_extent_buffer_nolock(
		struct btrfs_fs_info *fs_info, u64 start)
{
	struct extent_buffer *eb;

	rcu_read_lock();
4398 4399
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       start >> fs_info->sectorsize_bits);
4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
	if (eb && atomic_inc_not_zero(&eb->refs)) {
		rcu_read_unlock();
		return eb;
	}
	rcu_read_unlock();
	return NULL;
}

/*
 * The endio function for subpage extent buffer write.
 *
 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
 * after all extent buffers in the page has finished their writeback.
 */
4414
static void end_bio_subpage_eb_writepage(struct bio *bio)
4415
{
4416
	struct btrfs_fs_info *fs_info;
4417 4418 4419
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

4420
	fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
4421
	ASSERT(fs_info->nodesize < PAGE_SIZE);
4422

4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
	ASSERT(!bio_flagged(bio, BIO_CLONED));
	bio_for_each_segment_all(bvec, bio, iter_all) {
		struct page *page = bvec->bv_page;
		u64 bvec_start = page_offset(page) + bvec->bv_offset;
		u64 bvec_end = bvec_start + bvec->bv_len - 1;
		u64 cur_bytenr = bvec_start;

		ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));

		/* Iterate through all extent buffers in the range */
		while (cur_bytenr <= bvec_end) {
			struct extent_buffer *eb;
			int done;

			/*
			 * Here we can't use find_extent_buffer(), as it may
			 * try to lock eb->refs_lock, which is not safe in endio
			 * context.
			 */
			eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
			ASSERT(eb);

			cur_bytenr = eb->start + eb->len;

			ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
			done = atomic_dec_and_test(&eb->io_pages);
			ASSERT(done);

			if (bio->bi_status ||
			    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
				ClearPageUptodate(page);
				set_btree_ioerr(page, eb);
			}

			btrfs_subpage_clear_writeback(fs_info, page, eb->start,
						      eb->len);
			end_extent_buffer_writeback(eb);
			/*
			 * free_extent_buffer() will grab spinlock which is not
			 * safe in endio context. Thus here we manually dec
			 * the ref.
			 */
			atomic_dec(&eb->refs);
		}
	}
	bio_put(bio);
}

4471
static void end_bio_extent_buffer_writepage(struct bio *bio)
4472
{
4473
	struct bio_vec *bvec;
4474
	struct extent_buffer *eb;
4475
	int done;
4476
	struct bvec_iter_all iter_all;
4477

4478
	ASSERT(!bio_flagged(bio, BIO_CLONED));
4479
	bio_for_each_segment_all(bvec, bio, iter_all) {
4480 4481 4482 4483 4484 4485
		struct page *page = bvec->bv_page;

		eb = (struct extent_buffer *)page->private;
		BUG_ON(!eb);
		done = atomic_dec_and_test(&eb->io_pages);

4486
		if (bio->bi_status ||
4487
		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4488
			ClearPageUptodate(page);
4489
			set_btree_ioerr(page, eb);
4490 4491 4492 4493 4494 4495 4496 4497
		}

		end_page_writeback(page);

		if (!done)
			continue;

		end_extent_buffer_writeback(eb);
4498
	}
4499 4500 4501 4502

	bio_put(bio);
}

4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
static void prepare_eb_write(struct extent_buffer *eb)
{
	u32 nritems;
	unsigned long start;
	unsigned long end;

	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
	atomic_set(&eb->io_pages, num_extent_pages(eb));

	/* Set btree blocks beyond nritems with 0 to avoid stale content */
	nritems = btrfs_header_nritems(eb);
	if (btrfs_header_level(eb) > 0) {
		end = btrfs_node_key_ptr_offset(nritems);
		memzero_extent_buffer(eb, end, eb->len - end);
	} else {
		/*
		 * Leaf:
		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
		 */
		start = btrfs_item_nr_offset(nritems);
		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
		memzero_extent_buffer(eb, start, end - start);
	}
}

4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
/*
 * Unlike the work in write_one_eb(), we rely completely on extent locking.
 * Page locking is only utilized at minimum to keep the VMM code happy.
 */
static int write_one_subpage_eb(struct extent_buffer *eb,
				struct writeback_control *wbc,
				struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
4538
	unsigned int write_flags = wbc_to_write_flags(wbc);
4539 4540 4541
	bool no_dirty_ebs = false;
	int ret;

4542 4543
	prepare_eb_write(eb);

4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
	/* clear_page_dirty_for_io() in subpage helper needs page locked */
	lock_page(page);
	btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);

	/* Check if this is the last dirty bit to update nr_written */
	no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
							  eb->start, eb->len);
	if (no_dirty_ebs)
		clear_page_dirty_for_io(page);

4554 4555 4556
	ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
			&epd->bio_ctrl, page, eb->start, eb->len,
			eb->start - page_offset(page),
4557
			end_bio_subpage_eb_writepage, 0, false);
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
	if (ret) {
		btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
		set_btree_ioerr(page, eb);
		unlock_page(page);

		if (atomic_dec_and_test(&eb->io_pages))
			end_extent_buffer_writeback(eb);
		return -EIO;
	}
	unlock_page(page);
	/*
	 * Submission finished without problem, if no range of the page is
	 * dirty anymore, we have submitted a page.  Update nr_written in wbc.
	 */
	if (no_dirty_ebs)
4573
		wbc->nr_to_write--;
4574 4575 4576
	return ret;
}

4577
static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4578 4579 4580
			struct writeback_control *wbc,
			struct extent_page_data *epd)
{
4581
	u64 disk_bytenr = eb->start;
4582
	int i, num_pages;
4583
	unsigned int write_flags = wbc_to_write_flags(wbc);
4584
	int ret = 0;
4585

4586
	prepare_eb_write(eb);
4587

4588
	num_pages = num_extent_pages(eb);
4589
	for (i = 0; i < num_pages; i++) {
4590
		struct page *p = eb->pages[i];
4591 4592 4593

		clear_page_dirty_for_io(p);
		set_page_writeback(p);
4594
		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4595 4596
					 &epd->bio_ctrl, p, disk_bytenr,
					 PAGE_SIZE, 0,
4597
					 end_bio_extent_buffer_writepage,
4598
					 0, false);
4599
		if (ret) {
4600
			set_btree_ioerr(p, eb);
4601 4602
			if (PageWriteback(p))
				end_page_writeback(p);
4603 4604 4605 4606 4607
			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
				end_extent_buffer_writeback(eb);
			ret = -EIO;
			break;
		}
4608
		disk_bytenr += PAGE_SIZE;
4609
		wbc->nr_to_write--;
4610 4611 4612 4613 4614
		unlock_page(p);
	}

	if (unlikely(ret)) {
		for (; i < num_pages; i++) {
4615
			struct page *p = eb->pages[i];
4616
			clear_page_dirty_for_io(p);
4617 4618 4619 4620 4621 4622 4623
			unlock_page(p);
		}
	}

	return ret;
}

4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
/*
 * Submit one subpage btree page.
 *
 * The main difference to submit_eb_page() is:
 * - Page locking
 *   For subpage, we don't rely on page locking at all.
 *
 * - Flush write bio
 *   We only flush bio if we may be unable to fit current extent buffers into
 *   current bio.
 *
 * Return >=0 for the number of submitted extent buffers.
 * Return <0 for fatal error.
 */
static int submit_eb_subpage(struct page *page,
			     struct writeback_control *wbc,
			     struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	int submitted = 0;
	u64 page_start = page_offset(page);
	int bit_start = 0;
	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
	int ret;

	/* Lock and write each dirty extent buffers in the range */
4650
	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
		struct extent_buffer *eb;
		unsigned long flags;
		u64 start;

		/*
		 * Take private lock to ensure the subpage won't be detached
		 * in the meantime.
		 */
		spin_lock(&page->mapping->private_lock);
		if (!PagePrivate(page)) {
			spin_unlock(&page->mapping->private_lock);
			break;
		}
		spin_lock_irqsave(&subpage->lock, flags);
4666 4667
		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
			      subpage->bitmaps)) {
4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
			spin_unlock_irqrestore(&subpage->lock, flags);
			spin_unlock(&page->mapping->private_lock);
			bit_start++;
			continue;
		}

		start = page_start + bit_start * fs_info->sectorsize;
		bit_start += sectors_per_node;

		/*
		 * Here we just want to grab the eb without touching extra
		 * spin locks, so call find_extent_buffer_nolock().
		 */
		eb = find_extent_buffer_nolock(fs_info, start);
		spin_unlock_irqrestore(&subpage->lock, flags);
		spin_unlock(&page->mapping->private_lock);

		/*
		 * The eb has already reached 0 refs thus find_extent_buffer()
		 * doesn't return it. We don't need to write back such eb
		 * anyway.
		 */
		if (!eb)
			continue;

		ret = lock_extent_buffer_for_io(eb, epd);
		if (ret == 0) {
			free_extent_buffer(eb);
			continue;
		}
		if (ret < 0) {
			free_extent_buffer(eb);
			goto cleanup;
		}
4702
		ret = write_one_subpage_eb(eb, wbc, epd);
4703 4704 4705 4706 4707 4708 4709 4710 4711
		free_extent_buffer(eb);
		if (ret < 0)
			goto cleanup;
		submitted++;
	}
	return submitted;

cleanup:
	/* We hit error, end bio for the submitted extent buffers */
4712
	submit_write_bio(epd, ret);
4713 4714 4715
	return ret;
}

4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
/*
 * Submit all page(s) of one extent buffer.
 *
 * @page:	the page of one extent buffer
 * @eb_context:	to determine if we need to submit this page, if current page
 *		belongs to this eb, we don't need to submit
 *
 * The caller should pass each page in their bytenr order, and here we use
 * @eb_context to determine if we have submitted pages of one extent buffer.
 *
 * If we have, we just skip until we hit a new page that doesn't belong to
 * current @eb_context.
 *
 * If not, we submit all the page(s) of the extent buffer.
 *
 * Return >0 if we have submitted the extent buffer successfully.
 * Return 0 if we don't need to submit the page, as it's already submitted by
 * previous call.
 * Return <0 for fatal error.
 */
static int submit_eb_page(struct page *page, struct writeback_control *wbc,
			  struct extent_page_data *epd,
			  struct extent_buffer **eb_context)
{
	struct address_space *mapping = page->mapping;
4741
	struct btrfs_block_group *cache = NULL;
4742 4743 4744 4745 4746 4747
	struct extent_buffer *eb;
	int ret;

	if (!PagePrivate(page))
		return 0;

4748
	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
4749 4750
		return submit_eb_subpage(page, wbc, epd);

4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776
	spin_lock(&mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	eb = (struct extent_buffer *)page->private;

	/*
	 * Shouldn't happen and normally this would be a BUG_ON but no point
	 * crashing the machine for something we can survive anyway.
	 */
	if (WARN_ON(!eb)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	if (eb == *eb_context) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}
	ret = atomic_inc_not_zero(&eb->refs);
	spin_unlock(&mapping->private_lock);
	if (!ret)
		return 0;

4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
		/*
		 * If for_sync, this hole will be filled with
		 * trasnsaction commit.
		 */
		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
			ret = -EAGAIN;
		else
			ret = 0;
		free_extent_buffer(eb);
		return ret;
	}

4790 4791 4792 4793
	*eb_context = eb;

	ret = lock_extent_buffer_for_io(eb, epd);
	if (ret <= 0) {
4794 4795 4796
		btrfs_revert_meta_write_pointer(cache, eb);
		if (cache)
			btrfs_put_block_group(cache);
4797 4798 4799
		free_extent_buffer(eb);
		return ret;
	}
4800
	if (cache) {
4801 4802 4803
		/*
		 * Implies write in zoned mode. Mark the last eb in a block group.
		 */
4804
		btrfs_schedule_zone_finish_bg(cache, eb);
4805
		btrfs_put_block_group(cache);
4806
	}
4807 4808 4809 4810 4811 4812 4813
	ret = write_one_eb(eb, wbc, epd);
	free_extent_buffer(eb);
	if (ret < 0)
		return ret;
	return 1;
}

4814 4815 4816
int btree_write_cache_pages(struct address_space *mapping,
				   struct writeback_control *wbc)
{
4817
	struct extent_buffer *eb_context = NULL;
4818
	struct extent_page_data epd = {
4819
		.bio_ctrl = { 0 },
4820 4821 4822
		.extent_locked = 0,
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
	};
4823
	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4824 4825 4826 4827 4828 4829 4830 4831
	int ret = 0;
	int done = 0;
	int nr_to_write_done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	int scanned = 0;
M
Matthew Wilcox 已提交
4832
	xa_mark_t tag;
4833

4834
	pagevec_init(&pvec);
4835 4836 4837
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4838 4839 4840 4841 4842
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4843
	} else {
4844 4845
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4846 4847 4848 4849 4850 4851
		scanned = 1;
	}
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4852
	btrfs_zoned_meta_io_lock(fs_info);
4853 4854 4855 4856
retry:
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);
	while (!done && !nr_to_write_done && (index <= end) &&
J
Jan Kara 已提交
4857
	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4858
			tag))) {
4859 4860 4861 4862 4863
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4864 4865
			ret = submit_eb_page(page, wbc, &epd, &eb_context);
			if (ret == 0)
4866
				continue;
4867
			if (ret < 0) {
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
				done = 1;
				break;
			}

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	if (!scanned && !done) {
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
		goto retry;
	}
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916
	/*
	 * If something went wrong, don't allow any metadata write bio to be
	 * submitted.
	 *
	 * This would prevent use-after-free if we had dirty pages not
	 * cleaned up, which can still happen by fuzzed images.
	 *
	 * - Bad extent tree
	 *   Allowing existing tree block to be allocated for other trees.
	 *
	 * - Log tree operations
	 *   Exiting tree blocks get allocated to log tree, bumps its
	 *   generation, then get cleaned in tree re-balance.
	 *   Such tree block will not be written back, since it's clean,
	 *   thus no WRITTEN flag set.
	 *   And after log writes back, this tree block is not traced by
	 *   any dirty extent_io_tree.
	 *
	 * - Offending tree block gets re-dirtied from its original owner
	 *   Since it has bumped generation, no WRITTEN flag, it can be
	 *   reused without COWing. This tree block will not be traced
	 *   by btrfs_transaction::dirty_pages.
	 *
	 *   Now such dirty tree block will not be cleaned by any dirty
	 *   extent io tree. Thus we don't want to submit such wild eb
	 *   if the fs already has error.
4917
	 *
4918 4919 4920 4921 4922
	 * We can get ret > 0 from submit_extent_page() indicating how many ebs
	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
	 */
	if (ret > 0)
		ret = 0;
4923 4924 4925 4926 4927
	if (!ret && BTRFS_FS_ERROR(fs_info))
		ret = -EROFS;
	submit_write_bio(&epd, ret);

	btrfs_zoned_meta_io_unlock(fs_info);
4928 4929 4930
	return ret;
}

4931
/**
4932 4933
 * Walk the list of dirty pages of the given address space and write all of them.
 *
4934
 * @mapping: address space structure to write
4935 4936
 * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
 * @epd:     holds context for the write, namely the bio
4937 4938 4939 4940 4941 4942 4943 4944 4945
 *
 * If a page is already under I/O, write_cache_pages() skips it, even
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
 */
4946
static int extent_write_cache_pages(struct address_space *mapping,
C
Chris Mason 已提交
4947
			     struct writeback_control *wbc,
4948
			     struct extent_page_data *epd)
4949
{
4950
	struct inode *inode = mapping->host;
4951 4952
	int ret = 0;
	int done = 0;
4953
	int nr_to_write_done = 0;
4954 4955 4956 4957
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
4958 4959
	pgoff_t done_index;
	int range_whole = 0;
4960
	int scanned = 0;
M
Matthew Wilcox 已提交
4961
	xa_mark_t tag;
4962

4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
	/*
	 * We have to hold onto the inode so that ordered extents can do their
	 * work when the IO finishes.  The alternative to this is failing to add
	 * an ordered extent if the igrab() fails there and that is a huge pain
	 * to deal with, so instead just hold onto the inode throughout the
	 * writepages operation.  If it fails here we are freeing up the inode
	 * anyway and we'd rather not waste our time writing out stuff that is
	 * going to be truncated anyway.
	 */
	if (!igrab(inode))
		return 0;

4975
	pagevec_init(&pvec);
4976 4977 4978
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4979 4980 4981 4982 4983
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4984
	} else {
4985 4986
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4987 4988
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
4989 4990
		scanned = 1;
	}
4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004

	/*
	 * We do the tagged writepage as long as the snapshot flush bit is set
	 * and we are the first one who do the filemap_flush() on this inode.
	 *
	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
	 * not race in and drop the bit.
	 */
	if (range_whole && wbc->nr_to_write == LONG_MAX &&
	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
			       &BTRFS_I(inode)->runtime_flags))
		wbc->tagged_writepages = 1;

	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5005 5006 5007
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
5008
retry:
5009
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5010
		tag_pages_for_writeback(mapping, index, end);
5011
	done_index = index;
5012
	while (!done && !nr_to_write_done && (index <= end) &&
5013 5014
			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
						&index, end, tag))) {
5015 5016 5017 5018 5019
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

5020
			done_index = page->index + 1;
5021
			/*
M
Matthew Wilcox 已提交
5022 5023 5024 5025 5026
			 * At this point we hold neither the i_pages lock nor
			 * the page lock: the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to
			 * tmpfs file mapping
5027
			 */
5028
			if (!trylock_page(page)) {
5029
				submit_write_bio(epd, 0);
5030
				lock_page(page);
5031
			}
5032 5033 5034 5035 5036 5037

			if (unlikely(page->mapping != mapping)) {
				unlock_page(page);
				continue;
			}

C
Chris Mason 已提交
5038
			if (wbc->sync_mode != WB_SYNC_NONE) {
5039
				if (PageWriteback(page))
5040
					submit_write_bio(epd, 0);
5041
				wait_on_page_writeback(page);
C
Chris Mason 已提交
5042
			}
5043 5044 5045 5046 5047 5048 5049

			if (PageWriteback(page) ||
			    !clear_page_dirty_for_io(page)) {
				unlock_page(page);
				continue;
			}

5050
			ret = __extent_writepage(page, wbc, epd);
5051 5052 5053 5054
			if (ret < 0) {
				done = 1;
				break;
			}
5055 5056 5057 5058 5059 5060 5061

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
5062 5063 5064 5065
		}
		pagevec_release(&pvec);
		cond_resched();
	}
5066
	if (!scanned && !done) {
5067 5068 5069 5070 5071 5072
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
5073 5074 5075 5076 5077 5078 5079

		/*
		 * If we're looping we could run into a page that is locked by a
		 * writer and that writer could be waiting on writeback for a
		 * page in our current bio, and thus deadlock, so flush the
		 * write bio here.
		 */
5080
		submit_write_bio(epd, 0);
5081
		goto retry;
5082
	}
5083 5084 5085 5086

	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
		mapping->writeback_index = done_index;

5087
	btrfs_add_delayed_iput(inode);
5088
	return ret;
5089 5090
}

5091
int extent_write_full_page(struct page *page, struct writeback_control *wbc)
5092 5093 5094
{
	int ret;
	struct extent_page_data epd = {
5095
		.bio_ctrl = { 0 },
5096
		.extent_locked = 0,
5097
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5098 5099 5100
	};

	ret = __extent_writepage(page, wbc, &epd);
5101
	submit_write_bio(&epd, ret);
5102 5103 5104
	return ret;
}

5105 5106 5107 5108 5109 5110
/*
 * Submit the pages in the range to bio for call sites which delalloc range has
 * already been ran (aka, ordered extent inserted) and all pages are still
 * locked.
 */
int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
5111
{
5112 5113
	bool found_error = false;
	int first_error = 0;
5114 5115 5116
	int ret = 0;
	struct address_space *mapping = inode->i_mapping;
	struct page *page;
5117
	u64 cur = start;
5118 5119
	unsigned long nr_pages;
	const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
5120
	struct extent_page_data epd = {
5121
		.bio_ctrl = { 0 },
5122
		.extent_locked = 1,
5123
		.sync_io = 1,
5124 5125
	};
	struct writeback_control wbc_writepages = {
5126
		.sync_mode	= WB_SYNC_ALL,
5127 5128
		.range_start	= start,
		.range_end	= end + 1,
5129 5130 5131
		/* We're called from an async helper function */
		.punt_to_cgroup	= 1,
		.no_cgroup_owner = 1,
5132 5133
	};

5134 5135 5136 5137 5138
	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
	nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
		   PAGE_SHIFT;
	wbc_writepages.nr_to_write = nr_pages * 2;

5139
	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
5140
	while (cur <= end) {
5141 5142
		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);

5143 5144 5145 5146 5147 5148
		page = find_get_page(mapping, cur >> PAGE_SHIFT);
		/*
		 * All pages in the range are locked since
		 * btrfs_run_delalloc_range(), thus there is no way to clear
		 * the page dirty flag.
		 */
5149
		ASSERT(PageLocked(page));
5150 5151 5152 5153 5154 5155 5156
		ASSERT(PageDirty(page));
		clear_page_dirty_for_io(page);
		ret = __extent_writepage(page, &wbc_writepages, &epd);
		ASSERT(ret <= 0);
		if (ret < 0) {
			found_error = true;
			first_error = ret;
5157
		}
5158
		put_page(page);
5159
		cur = cur_end + 1;
5160 5161
	}

5162
	submit_write_bio(&epd, found_error ? ret : 0);
5163 5164

	wbc_detach_inode(&wbc_writepages);
5165 5166
	if (found_error)
		return first_error;
5167 5168
	return ret;
}
5169

5170
int extent_writepages(struct address_space *mapping,
5171 5172
		      struct writeback_control *wbc)
{
5173
	struct inode *inode = mapping->host;
5174 5175
	int ret = 0;
	struct extent_page_data epd = {
5176
		.bio_ctrl = { 0 },
5177
		.extent_locked = 0,
5178
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5179 5180
	};

5181 5182 5183 5184
	/*
	 * Allow only a single thread to do the reloc work in zoned mode to
	 * protect the write pointer updates.
	 */
5185
	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
5186
	ret = extent_write_cache_pages(mapping, wbc, &epd);
5187
	submit_write_bio(&epd, ret);
5188
	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
5189 5190 5191
	return ret;
}

5192
void extent_readahead(struct readahead_control *rac)
5193
{
5194
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
L
Liu Bo 已提交
5195
	struct page *pagepool[16];
5196
	struct extent_map *em_cached = NULL;
5197
	u64 prev_em_start = (u64)-1;
5198
	int nr;
5199

5200
	while ((nr = readahead_page_batch(rac, pagepool))) {
5201 5202
		u64 contig_start = readahead_pos(rac);
		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
5203

5204
		contiguous_readpages(pagepool, nr, contig_start, contig_end,
5205
				&em_cached, &bio_ctrl, &prev_em_start);
5206
	}
L
Liu Bo 已提交
5207

5208 5209
	if (em_cached)
		free_extent_map(em_cached);
5210
	submit_one_bio(&bio_ctrl);
5211 5212 5213
}

/*
5214 5215
 * basic invalidate_folio code, this waits on any locked or writeback
 * ranges corresponding to the folio, and then deletes any extent state
5216 5217
 * records from the tree
 */
5218 5219
int extent_invalidate_folio(struct extent_io_tree *tree,
			  struct folio *folio, size_t offset)
5220
{
5221
	struct extent_state *cached_state = NULL;
5222 5223 5224
	u64 start = folio_pos(folio);
	u64 end = start + folio_size(folio) - 1;
	size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
5225

5226 5227 5228
	/* This function is only called for the btree inode */
	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);

5229
	start += ALIGN(offset, blocksize);
5230 5231 5232
	if (start > end)
		return 0;

5233
	lock_extent_bits(tree, start, end, &cached_state);
5234
	folio_wait_writeback(folio);
5235 5236 5237 5238 5239 5240 5241

	/*
	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
	 * so here we only need to unlock the extent range to free any
	 * existing extent state.
	 */
	unlock_extent_cached(tree, start, end, &cached_state);
5242 5243 5244
	return 0;
}

5245
/*
5246
 * a helper for release_folio, this tests for areas of the page that
5247 5248 5249
 * are locked or under IO and drops the related state bits if it is safe
 * to drop the page.
 */
5250
static int try_release_extent_state(struct extent_io_tree *tree,
5251
				    struct page *page, gfp_t mask)
5252
{
M
Miao Xie 已提交
5253
	u64 start = page_offset(page);
5254
	u64 end = start + PAGE_SIZE - 1;
5255 5256
	int ret = 1;

N
Nikolay Borisov 已提交
5257
	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
5258
		ret = 0;
N
Nikolay Borisov 已提交
5259
	} else {
5260
		/*
5261 5262 5263 5264
		 * At this point we can safely clear everything except the
		 * locked bit, the nodatasum bit and the delalloc new bit.
		 * The delalloc new bit will be cleared by ordered extent
		 * completion.
5265
		 */
5266
		ret = __clear_extent_bit(tree, start, end,
5267 5268
			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
			 0, 0, NULL, mask, NULL);
5269 5270 5271 5272 5273 5274 5275 5276

		/* if clear_extent_bit failed for enomem reasons,
		 * we can't allow the release to continue.
		 */
		if (ret < 0)
			ret = 0;
		else
			ret = 1;
5277 5278 5279 5280
	}
	return ret;
}

5281
/*
5282
 * a helper for release_folio.  As long as there are no locked extents
5283 5284 5285
 * in the range corresponding to the page, both state records and extent
 * map records are removed
 */
5286
int try_release_extent_mapping(struct page *page, gfp_t mask)
5287 5288
{
	struct extent_map *em;
M
Miao Xie 已提交
5289
	u64 start = page_offset(page);
5290
	u64 end = start + PAGE_SIZE - 1;
5291 5292 5293
	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
	struct extent_io_tree *tree = &btrfs_inode->io_tree;
	struct extent_map_tree *map = &btrfs_inode->extent_tree;
5294

5295
	if (gfpflags_allow_blocking(mask) &&
5296
	    page->mapping->host->i_size > SZ_16M) {
5297
		u64 len;
5298
		while (start <= end) {
5299 5300 5301
			struct btrfs_fs_info *fs_info;
			u64 cur_gen;

5302
			len = end - start + 1;
5303
			write_lock(&map->lock);
5304
			em = lookup_extent_mapping(map, start, len);
5305
			if (!em) {
5306
				write_unlock(&map->lock);
5307 5308
				break;
			}
5309 5310
			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
			    em->start != start) {
5311
				write_unlock(&map->lock);
5312 5313 5314
				free_extent_map(em);
				break;
			}
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325
			if (test_range_bit(tree, em->start,
					   extent_map_end(em) - 1,
					   EXTENT_LOCKED, 0, NULL))
				goto next;
			/*
			 * If it's not in the list of modified extents, used
			 * by a fast fsync, we can remove it. If it's being
			 * logged we can safely remove it since fsync took an
			 * extra reference on the em.
			 */
			if (list_empty(&em->list) ||
5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
				goto remove_em;
			/*
			 * If it's in the list of modified extents, remove it
			 * only if its generation is older then the current one,
			 * in which case we don't need it for a fast fsync.
			 * Otherwise don't remove it, we could be racing with an
			 * ongoing fast fsync that could miss the new extent.
			 */
			fs_info = btrfs_inode->root->fs_info;
			spin_lock(&fs_info->trans_lock);
			cur_gen = fs_info->generation;
			spin_unlock(&fs_info->trans_lock);
			if (em->generation >= cur_gen)
				goto next;
remove_em:
5342 5343 5344 5345 5346 5347 5348 5349
			/*
			 * We only remove extent maps that are not in the list of
			 * modified extents or that are in the list but with a
			 * generation lower then the current generation, so there
			 * is no need to set the full fsync flag on the inode (it
			 * hurts the fsync performance for workloads with a data
			 * size that exceeds or is close to the system's memory).
			 */
5350 5351 5352
			remove_extent_mapping(map, em);
			/* once for the rb tree */
			free_extent_map(em);
5353
next:
5354
			start = extent_map_end(em);
5355
			write_unlock(&map->lock);
5356 5357

			/* once for us */
5358
			free_extent_map(em);
5359 5360

			cond_resched(); /* Allow large-extent preemption. */
5361 5362
		}
	}
5363
	return try_release_extent_state(tree, page, mask);
5364 5365
}

5366 5367 5368 5369
/*
 * helper function for fiemap, which doesn't want to see any holes.
 * This maps until we find something past 'last'
 */
5370
static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
5371
						u64 offset, u64 last)
5372
{
5373
	u64 sectorsize = btrfs_inode_sectorsize(inode);
5374 5375 5376 5377 5378 5379
	struct extent_map *em;
	u64 len;

	if (offset >= last)
		return NULL;

5380
	while (1) {
5381 5382 5383
		len = last - offset;
		if (len == 0)
			break;
5384
		len = ALIGN(len, sectorsize);
5385
		em = btrfs_get_extent_fiemap(inode, offset, len);
5386
		if (IS_ERR(em))
5387 5388 5389
			return em;

		/* if this isn't a hole return it */
5390
		if (em->block_start != EXTENT_MAP_HOLE)
5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
			return em;

		/* this is a hole, advance to the next extent */
		offset = extent_map_end(em);
		free_extent_map(em);
		if (offset >= last)
			break;
	}
	return NULL;
}

5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435
/*
 * To cache previous fiemap extent
 *
 * Will be used for merging fiemap extent
 */
struct fiemap_cache {
	u64 offset;
	u64 phys;
	u64 len;
	u32 flags;
	bool cached;
};

/*
 * Helper to submit fiemap extent.
 *
 * Will try to merge current fiemap extent specified by @offset, @phys,
 * @len and @flags with cached one.
 * And only when we fails to merge, cached one will be submitted as
 * fiemap extent.
 *
 * Return value is the same as fiemap_fill_next_extent().
 */
static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
				struct fiemap_cache *cache,
				u64 offset, u64 phys, u64 len, u32 flags)
{
	int ret = 0;

	if (!cache->cached)
		goto assign;

	/*
	 * Sanity check, extent_fiemap() should have ensured that new
5436
	 * fiemap extent won't overlap with cached one.
5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487
	 * Not recoverable.
	 *
	 * NOTE: Physical address can overlap, due to compression
	 */
	if (cache->offset + cache->len > offset) {
		WARN_ON(1);
		return -EINVAL;
	}

	/*
	 * Only merges fiemap extents if
	 * 1) Their logical addresses are continuous
	 *
	 * 2) Their physical addresses are continuous
	 *    So truly compressed (physical size smaller than logical size)
	 *    extents won't get merged with each other
	 *
	 * 3) Share same flags except FIEMAP_EXTENT_LAST
	 *    So regular extent won't get merged with prealloc extent
	 */
	if (cache->offset + cache->len  == offset &&
	    cache->phys + cache->len == phys  &&
	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
			(flags & ~FIEMAP_EXTENT_LAST)) {
		cache->len += len;
		cache->flags |= flags;
		goto try_submit_last;
	}

	/* Not mergeable, need to submit cached one */
	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret)
		return ret;
assign:
	cache->cached = true;
	cache->offset = offset;
	cache->phys = phys;
	cache->len = len;
	cache->flags = flags;
try_submit_last:
	if (cache->flags & FIEMAP_EXTENT_LAST) {
		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
				cache->phys, cache->len, cache->flags);
		cache->cached = false;
	}
	return ret;
}

/*
5488
 * Emit last fiemap cache
5489
 *
5490 5491 5492 5493 5494 5495 5496
 * The last fiemap cache may still be cached in the following case:
 * 0		      4k		    8k
 * |<- Fiemap range ->|
 * |<------------  First extent ----------->|
 *
 * In this case, the first extent range will be cached but not emitted.
 * So we must emit it before ending extent_fiemap().
5497
 */
5498
static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5499
				  struct fiemap_cache *cache)
5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513
{
	int ret;

	if (!cache->cached)
		return 0;

	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret > 0)
		ret = 0;
	return ret;
}

5514
int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
5515
		  u64 start, u64 len)
Y
Yehuda Sadeh 已提交
5516
{
J
Josef Bacik 已提交
5517
	int ret = 0;
5518
	u64 off;
Y
Yehuda Sadeh 已提交
5519 5520
	u64 max = start + len;
	u32 flags = 0;
J
Josef Bacik 已提交
5521 5522
	u32 found_type;
	u64 last;
5523
	u64 last_for_get_extent = 0;
Y
Yehuda Sadeh 已提交
5524
	u64 disko = 0;
5525
	u64 isize = i_size_read(&inode->vfs_inode);
J
Josef Bacik 已提交
5526
	struct btrfs_key found_key;
Y
Yehuda Sadeh 已提交
5527
	struct extent_map *em = NULL;
5528
	struct extent_state *cached_state = NULL;
J
Josef Bacik 已提交
5529
	struct btrfs_path *path;
5530
	struct btrfs_root *root = inode->root;
5531
	struct fiemap_cache cache = { 0 };
5532 5533
	struct ulist *roots;
	struct ulist *tmp_ulist;
Y
Yehuda Sadeh 已提交
5534
	int end = 0;
5535 5536 5537
	u64 em_start = 0;
	u64 em_len = 0;
	u64 em_end = 0;
Y
Yehuda Sadeh 已提交
5538 5539 5540 5541

	if (len == 0)
		return -EINVAL;

J
Josef Bacik 已提交
5542 5543 5544 5545
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

5546 5547 5548 5549 5550 5551 5552
	roots = ulist_alloc(GFP_KERNEL);
	tmp_ulist = ulist_alloc(GFP_KERNEL);
	if (!roots || !tmp_ulist) {
		ret = -ENOMEM;
		goto out_free_ulist;
	}

5553 5554 5555 5556 5557
	/*
	 * We can't initialize that to 'start' as this could miss extents due
	 * to extent item merging
	 */
	off = 0;
5558 5559
	start = round_down(start, btrfs_inode_sectorsize(inode));
	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5560

5561 5562 5563 5564
	/*
	 * lookup the last file extent.  We're not using i_size here
	 * because there might be preallocation past i_size
	 */
5565 5566
	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
				       0);
J
Josef Bacik 已提交
5567
	if (ret < 0) {
5568
		goto out_free_ulist;
5569 5570 5571 5572
	} else {
		WARN_ON(!ret);
		if (ret == 1)
			ret = 0;
J
Josef Bacik 已提交
5573
	}
5574

J
Josef Bacik 已提交
5575 5576
	path->slots[0]--;
	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5577
	found_type = found_key.type;
J
Josef Bacik 已提交
5578

5579
	/* No extents, but there might be delalloc bits */
5580
	if (found_key.objectid != btrfs_ino(inode) ||
J
Josef Bacik 已提交
5581
	    found_type != BTRFS_EXTENT_DATA_KEY) {
5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
		/* have to trust i_size as the end */
		last = (u64)-1;
		last_for_get_extent = isize;
	} else {
		/*
		 * remember the start of the last extent.  There are a
		 * bunch of different factors that go into the length of the
		 * extent, so its much less complex to remember where it started
		 */
		last = found_key.offset;
		last_for_get_extent = last + 1;
J
Josef Bacik 已提交
5593
	}
5594
	btrfs_release_path(path);
J
Josef Bacik 已提交
5595

5596 5597 5598 5599 5600 5601 5602 5603 5604 5605
	/*
	 * we might have some extents allocated but more delalloc past those
	 * extents.  so, we trust isize unless the start of the last extent is
	 * beyond isize
	 */
	if (last < isize) {
		last = (u64)-1;
		last_for_get_extent = isize;
	}

5606
	lock_extent_bits(&inode->io_tree, start, start + len - 1,
5607
			 &cached_state);
5608

5609
	em = get_extent_skip_holes(inode, start, last_for_get_extent);
Y
Yehuda Sadeh 已提交
5610 5611 5612 5613 5614 5615
	if (!em)
		goto out;
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out;
	}
J
Josef Bacik 已提交
5616

Y
Yehuda Sadeh 已提交
5617
	while (!end) {
5618
		u64 offset_in_extent = 0;
5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630

		/* break if the extent we found is outside the range */
		if (em->start >= max || extent_map_end(em) < off)
			break;

		/*
		 * get_extent may return an extent that starts before our
		 * requested range.  We have to make sure the ranges
		 * we return to fiemap always move forward and don't
		 * overlap, so adjust the offsets here
		 */
		em_start = max(em->start, off);
Y
Yehuda Sadeh 已提交
5631

5632 5633
		/*
		 * record the offset from the start of the extent
5634 5635 5636
		 * for adjusting the disk offset below.  Only do this if the
		 * extent isn't compressed since our in ram offset may be past
		 * what we have actually allocated on disk.
5637
		 */
5638 5639
		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			offset_in_extent = em_start - em->start;
5640
		em_end = extent_map_end(em);
5641
		em_len = em_end - em_start;
Y
Yehuda Sadeh 已提交
5642
		flags = 0;
5643 5644 5645 5646
		if (em->block_start < EXTENT_MAP_LAST_BYTE)
			disko = em->block_start + offset_in_extent;
		else
			disko = 0;
Y
Yehuda Sadeh 已提交
5647

5648 5649 5650 5651 5652 5653 5654
		/*
		 * bump off for our next call to get_extent
		 */
		off = extent_map_end(em);
		if (off >= max)
			end = 1;

5655
		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
Y
Yehuda Sadeh 已提交
5656 5657
			end = 1;
			flags |= FIEMAP_EXTENT_LAST;
5658
		} else if (em->block_start == EXTENT_MAP_INLINE) {
Y
Yehuda Sadeh 已提交
5659 5660
			flags |= (FIEMAP_EXTENT_DATA_INLINE |
				  FIEMAP_EXTENT_NOT_ALIGNED);
5661
		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
Y
Yehuda Sadeh 已提交
5662 5663
			flags |= (FIEMAP_EXTENT_DELALLOC |
				  FIEMAP_EXTENT_UNKNOWN);
5664 5665 5666
		} else if (fieinfo->fi_extents_max) {
			u64 bytenr = em->block_start -
				(em->start - em->orig_start);
5667 5668 5669 5670

			/*
			 * As btrfs supports shared space, this information
			 * can be exported to userspace tools via
5671 5672 5673
			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
			 * then we're just getting a count and we can skip the
			 * lookup stuff.
5674
			 */
5675
			ret = btrfs_check_shared(root, btrfs_ino(inode),
5676
						 bytenr, roots, tmp_ulist);
5677
			if (ret < 0)
5678
				goto out_free;
5679
			if (ret)
5680
				flags |= FIEMAP_EXTENT_SHARED;
5681
			ret = 0;
Y
Yehuda Sadeh 已提交
5682 5683 5684
		}
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			flags |= FIEMAP_EXTENT_ENCODED;
5685 5686
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			flags |= FIEMAP_EXTENT_UNWRITTEN;
Y
Yehuda Sadeh 已提交
5687 5688 5689

		free_extent_map(em);
		em = NULL;
5690 5691
		if ((em_start >= last) || em_len == (u64)-1 ||
		   (last == (u64)-1 && isize <= em_end)) {
Y
Yehuda Sadeh 已提交
5692 5693 5694 5695
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}

5696
		/* now scan forward to see if this is really the last extent. */
5697
		em = get_extent_skip_holes(inode, off, last_for_get_extent);
5698 5699 5700 5701 5702
		if (IS_ERR(em)) {
			ret = PTR_ERR(em);
			goto out;
		}
		if (!em) {
J
Josef Bacik 已提交
5703 5704 5705
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}
5706 5707
		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
					   em_len, flags);
5708 5709 5710
		if (ret) {
			if (ret == 1)
				ret = 0;
5711
			goto out_free;
5712
		}
Y
Yehuda Sadeh 已提交
5713 5714
	}
out_free:
5715
	if (!ret)
5716
		ret = emit_last_fiemap_cache(fieinfo, &cache);
Y
Yehuda Sadeh 已提交
5717 5718
	free_extent_map(em);
out:
5719
	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5720
			     &cached_state);
5721 5722

out_free_ulist:
5723
	btrfs_free_path(path);
5724 5725
	ulist_free(roots);
	ulist_free(tmp_ulist);
Y
Yehuda Sadeh 已提交
5726 5727 5728
	return ret;
}

5729 5730 5731 5732 5733
static void __free_extent_buffer(struct extent_buffer *eb)
{
	kmem_cache_free(extent_buffer_cache, eb);
}

5734
int extent_buffer_under_io(const struct extent_buffer *eb)
5735 5736 5737 5738 5739 5740
{
	return (atomic_read(&eb->io_pages) ||
		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
}

5741
static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5742
{
5743
	struct btrfs_subpage *subpage;
5744

5745
	lockdep_assert_held(&page->mapping->private_lock);
5746

5747 5748 5749 5750
	if (PagePrivate(page)) {
		subpage = (struct btrfs_subpage *)page->private;
		if (atomic_read(&subpage->eb_refs))
			return true;
5751 5752 5753 5754 5755 5756
		/*
		 * Even there is no eb refs here, we may still have
		 * end_page_read() call relying on page::private.
		 */
		if (atomic_read(&subpage->readers))
			return true;
5757 5758 5759
	}
	return false;
}
5760

5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773
static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);

	/*
	 * For mapped eb, we're going to change the page private, which should
	 * be done under the private_lock.
	 */
	if (mapped)
		spin_lock(&page->mapping->private_lock);

	if (!PagePrivate(page)) {
5774
		if (mapped)
5775 5776 5777 5778
			spin_unlock(&page->mapping->private_lock);
		return;
	}

5779
	if (fs_info->nodesize >= PAGE_SIZE) {
5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791
		/*
		 * We do this since we'll remove the pages after we've
		 * removed the eb from the radix tree, so we could race
		 * and have this page now attached to the new eb.  So
		 * only clear page_private if it's still connected to
		 * this eb.
		 */
		if (PagePrivate(page) &&
		    page->private == (unsigned long)eb) {
			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
			BUG_ON(PageDirty(page));
			BUG_ON(PageWriteback(page));
5792
			/*
5793 5794
			 * We need to make sure we haven't be attached
			 * to a new eb.
5795
			 */
5796
			detach_page_private(page);
5797
		}
5798 5799
		if (mapped)
			spin_unlock(&page->mapping->private_lock);
5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816
		return;
	}

	/*
	 * For subpage, we can have dummy eb with page private.  In this case,
	 * we can directly detach the private as such page is only attached to
	 * one dummy eb, no sharing.
	 */
	if (!mapped) {
		btrfs_detach_subpage(fs_info, page);
		return;
	}

	btrfs_page_dec_eb_refs(fs_info, page);

	/*
	 * We can only detach the page private if there are no other ebs in the
5817
	 * page range and no unfinished IO.
5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840
	 */
	if (!page_range_has_eb(fs_info, page))
		btrfs_detach_subpage(fs_info, page);

	spin_unlock(&page->mapping->private_lock);
}

/* Release all pages attached to the extent buffer */
static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
{
	int i;
	int num_pages;

	ASSERT(!extent_buffer_under_io(eb));

	num_pages = num_extent_pages(eb);
	for (i = 0; i < num_pages; i++) {
		struct page *page = eb->pages[i];

		if (!page)
			continue;

		detach_extent_buffer_page(eb, page);
5841

5842
		/* One for when we allocated the page */
5843
		put_page(page);
5844
	}
5845 5846 5847 5848 5849 5850 5851
}

/*
 * Helper for releasing the extent buffer.
 */
static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
{
5852
	btrfs_release_extent_buffer_pages(eb);
5853
	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5854 5855 5856
	__free_extent_buffer(eb);
}

5857 5858
static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5859
		      unsigned long len)
5860 5861 5862
{
	struct extent_buffer *eb = NULL;

5863
	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5864 5865
	eb->start = start;
	eb->len = len;
5866
	eb->fs_info = fs_info;
5867
	eb->bflags = 0;
5868
	init_rwsem(&eb->lock);
5869

5870 5871
	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
			     &fs_info->allocated_ebs);
5872
	INIT_LIST_HEAD(&eb->release_list);
5873

5874
	spin_lock_init(&eb->refs_lock);
5875
	atomic_set(&eb->refs, 1);
5876
	atomic_set(&eb->io_pages, 0);
5877

5878
	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5879 5880 5881 5882

	return eb;
}

5883
struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5884
{
5885
	int i;
5886
	struct extent_buffer *new;
5887
	int num_pages = num_extent_pages(src);
5888
	int ret;
5889

5890
	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5891 5892 5893
	if (new == NULL)
		return NULL;

5894 5895 5896 5897 5898 5899 5900
	/*
	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
	 * btrfs_release_extent_buffer() have different behavior for
	 * UNMAPPED subpage extent buffer.
	 */
	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);

5901 5902 5903 5904 5905 5906 5907
	memset(new->pages, 0, sizeof(*new->pages) * num_pages);
	ret = btrfs_alloc_page_array(num_pages, new->pages);
	if (ret) {
		btrfs_release_extent_buffer(new);
		return NULL;
	}

5908
	for (i = 0; i < num_pages; i++) {
5909
		int ret;
5910
		struct page *p = new->pages[i];
5911 5912 5913 5914 5915 5916

		ret = attach_extent_buffer_page(new, p, NULL);
		if (ret < 0) {
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5917
		WARN_ON(PageDirty(p));
5918
		copy_page(page_address(p), page_address(src->pages[i]));
5919
	}
5920
	set_extent_buffer_uptodate(new);
5921 5922 5923 5924

	return new;
}

5925 5926
struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
						  u64 start, unsigned long len)
5927 5928
{
	struct extent_buffer *eb;
5929 5930
	int num_pages;
	int i;
5931
	int ret;
5932

5933
	eb = __alloc_extent_buffer(fs_info, start, len);
5934 5935 5936
	if (!eb)
		return NULL;

5937
	num_pages = num_extent_pages(eb);
5938 5939 5940 5941
	ret = btrfs_alloc_page_array(num_pages, eb->pages);
	if (ret)
		goto err;

5942
	for (i = 0; i < num_pages; i++) {
5943
		struct page *p = eb->pages[i];
5944

5945
		ret = attach_extent_buffer_page(eb, p, NULL);
5946 5947
		if (ret < 0)
			goto err;
5948
	}
5949

5950 5951
	set_extent_buffer_uptodate(eb);
	btrfs_set_header_nritems(eb, 0);
5952
	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5953 5954 5955

	return eb;
err:
5956 5957 5958 5959 5960
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i]) {
			detach_extent_buffer_page(eb, eb->pages[i]);
			__free_page(eb->pages[i]);
		}
5961
	}
5962 5963 5964 5965
	__free_extent_buffer(eb);
	return NULL;
}

5966
struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5967
						u64 start)
5968
{
5969
	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5970 5971
}

5972 5973
static void check_buffer_tree_ref(struct extent_buffer *eb)
{
5974
	int refs;
5975 5976 5977 5978
	/*
	 * The TREE_REF bit is first set when the extent_buffer is added
	 * to the radix tree. It is also reset, if unset, when a new reference
	 * is created by find_extent_buffer.
5979
	 *
5980 5981
	 * It is only cleared in two cases: freeing the last non-tree
	 * reference to the extent_buffer when its STALE bit is set or
5982
	 * calling release_folio when the tree reference is the only reference.
5983
	 *
5984
	 * In both cases, care is taken to ensure that the extent_buffer's
5985
	 * pages are not under io. However, release_folio can be concurrently
5986 5987 5988
	 * called with creating new references, which is prone to race
	 * conditions between the calls to check_buffer_tree_ref in those
	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5989
	 *
5990 5991 5992 5993 5994 5995 5996
	 * The actual lifetime of the extent_buffer in the radix tree is
	 * adequately protected by the refcount, but the TREE_REF bit and
	 * its corresponding reference are not. To protect against this
	 * class of races, we call check_buffer_tree_ref from the codepaths
	 * which trigger io after they set eb->io_pages. Note that once io is
	 * initiated, TREE_REF can no longer be cleared, so that is the
	 * moment at which any such race is best fixed.
5997
	 */
5998 5999 6000 6001
	refs = atomic_read(&eb->refs);
	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		return;

6002 6003
	spin_lock(&eb->refs_lock);
	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6004
		atomic_inc(&eb->refs);
6005
	spin_unlock(&eb->refs_lock);
6006 6007
}

6008 6009
static void mark_extent_buffer_accessed(struct extent_buffer *eb,
		struct page *accessed)
6010
{
6011
	int num_pages, i;
6012

6013 6014
	check_buffer_tree_ref(eb);

6015
	num_pages = num_extent_pages(eb);
6016
	for (i = 0; i < num_pages; i++) {
6017 6018
		struct page *p = eb->pages[i];

6019 6020
		if (p != accessed)
			mark_page_accessed(p);
6021 6022 6023
	}
}

6024 6025
struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
					 u64 start)
6026 6027 6028
{
	struct extent_buffer *eb;

6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047
	eb = find_extent_buffer_nolock(fs_info, start);
	if (!eb)
		return NULL;
	/*
	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
	 * another task running free_extent_buffer() might have seen that flag
	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
	 * writeback flags not set) and it's still in the tree (flag
	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
	 * decrementing the extent buffer's reference count twice.  So here we
	 * could race and increment the eb's reference count, clear its stale
	 * flag, mark it as dirty and drop our reference before the other task
	 * finishes executing free_extent_buffer, which would later result in
	 * an attempt to free an extent buffer that is dirty.
	 */
	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
		spin_lock(&eb->refs_lock);
		spin_unlock(&eb->refs_lock);
6048
	}
6049 6050
	mark_extent_buffer_accessed(eb, NULL);
	return eb;
6051 6052
}

6053 6054
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
6055
					u64 start)
6056 6057 6058 6059 6060 6061 6062
{
	struct extent_buffer *eb, *exists = NULL;
	int ret;

	eb = find_extent_buffer(fs_info, start);
	if (eb)
		return eb;
6063
	eb = alloc_dummy_extent_buffer(fs_info, start);
6064
	if (!eb)
6065
		return ERR_PTR(-ENOMEM);
6066
	eb->fs_info = fs_info;
6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080
again:
	ret = radix_tree_preload(GFP_NOFS);
	if (ret) {
		exists = ERR_PTR(ret);
		goto free_eb;
	}
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
				start >> fs_info->sectorsize_bits, eb);
	spin_unlock(&fs_info->buffer_lock);
	radix_tree_preload_end();
	if (ret == -EEXIST) {
		exists = find_extent_buffer(fs_info, start);
		if (exists)
6081
			goto free_eb;
6082 6083 6084
		else
			goto again;
	}
6085 6086 6087 6088 6089 6090 6091 6092 6093 6094
	check_buffer_tree_ref(eb);
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);

	return eb;
free_eb:
	btrfs_release_extent_buffer(eb);
	return exists;
}
#endif

6095 6096
static struct extent_buffer *grab_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page)
6097 6098 6099
{
	struct extent_buffer *exists;

6100 6101 6102 6103 6104
	/*
	 * For subpage case, we completely rely on radix tree to ensure we
	 * don't try to insert two ebs for the same bytenr.  So here we always
	 * return NULL and just continue.
	 */
6105
	if (fs_info->nodesize < PAGE_SIZE)
6106 6107
		return NULL;

6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126
	/* Page not yet attached to an extent buffer */
	if (!PagePrivate(page))
		return NULL;

	/*
	 * We could have already allocated an eb for this page and attached one
	 * so lets see if we can get a ref on the existing eb, and if we can we
	 * know it's good and we can just return that one, else we know we can
	 * just overwrite page->private.
	 */
	exists = (struct extent_buffer *)page->private;
	if (atomic_inc_not_zero(&exists->refs))
		return exists;

	WARN_ON(PageDirty(page));
	detach_page_private(page);
	return NULL;
}

6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141
static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
{
	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
		btrfs_err(fs_info, "bad tree block start %llu", start);
		return -EINVAL;
	}

	if (fs_info->nodesize < PAGE_SIZE &&
	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
		btrfs_err(fs_info,
		"tree block crosses page boundary, start %llu nodesize %u",
			  start, fs_info->nodesize);
		return -EINVAL;
	}
	if (fs_info->nodesize >= PAGE_SIZE &&
6142
	    !PAGE_ALIGNED(start)) {
6143 6144 6145 6146 6147 6148 6149 6150
		btrfs_err(fs_info,
		"tree block is not page aligned, start %llu nodesize %u",
			  start, fs_info->nodesize);
		return -EINVAL;
	}
	return 0;
}

6151
struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
6152
					  u64 start, u64 owner_root, int level)
6153
{
6154
	unsigned long len = fs_info->nodesize;
6155 6156
	int num_pages;
	int i;
6157
	unsigned long index = start >> PAGE_SHIFT;
6158
	struct extent_buffer *eb;
6159
	struct extent_buffer *exists = NULL;
6160
	struct page *p;
6161
	struct address_space *mapping = fs_info->btree_inode->i_mapping;
6162
	int uptodate = 1;
6163
	int ret;
6164

6165
	if (check_eb_alignment(fs_info, start))
6166 6167
		return ERR_PTR(-EINVAL);

6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178
#if BITS_PER_LONG == 32
	if (start >= MAX_LFS_FILESIZE) {
		btrfs_err_rl(fs_info,
		"extent buffer %llu is beyond 32bit page cache limit", start);
		btrfs_err_32bit_limit(fs_info);
		return ERR_PTR(-EOVERFLOW);
	}
	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
		btrfs_warn_32bit_limit(fs_info);
#endif

6179
	eb = find_extent_buffer(fs_info, start);
6180
	if (eb)
6181 6182
		return eb;

6183
	eb = __alloc_extent_buffer(fs_info, start, len);
6184
	if (!eb)
6185
		return ERR_PTR(-ENOMEM);
6186
	btrfs_set_buffer_lockdep_class(owner_root, eb, level);
6187

6188
	num_pages = num_extent_pages(eb);
6189
	for (i = 0; i < num_pages; i++, index++) {
6190 6191
		struct btrfs_subpage *prealloc = NULL;

6192
		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
6193 6194
		if (!p) {
			exists = ERR_PTR(-ENOMEM);
6195
			goto free_eb;
6196
		}
J
Josef Bacik 已提交
6197

6198 6199 6200 6201 6202 6203 6204 6205 6206 6207
		/*
		 * Preallocate page->private for subpage case, so that we won't
		 * allocate memory with private_lock hold.  The memory will be
		 * freed by attach_extent_buffer_page() or freed manually if
		 * we exit earlier.
		 *
		 * Although we have ensured one subpage eb can only have one
		 * page, but it may change in the future for 16K page size
		 * support, so we still preallocate the memory in the loop.
		 */
6208
		if (fs_info->nodesize < PAGE_SIZE) {
6209 6210 6211
			prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
			if (IS_ERR(prealloc)) {
				ret = PTR_ERR(prealloc);
6212 6213 6214 6215 6216
				unlock_page(p);
				put_page(p);
				exists = ERR_PTR(ret);
				goto free_eb;
			}
6217 6218
		}

J
Josef Bacik 已提交
6219
		spin_lock(&mapping->private_lock);
6220
		exists = grab_extent_buffer(fs_info, p);
6221 6222 6223 6224 6225
		if (exists) {
			spin_unlock(&mapping->private_lock);
			unlock_page(p);
			put_page(p);
			mark_extent_buffer_accessed(exists, p);
6226
			btrfs_free_subpage(prealloc);
6227
			goto free_eb;
6228
		}
6229 6230 6231
		/* Should not fail, as we have preallocated the memory */
		ret = attach_extent_buffer_page(eb, p, prealloc);
		ASSERT(!ret);
6232 6233 6234 6235 6236 6237 6238 6239 6240 6241
		/*
		 * To inform we have extra eb under allocation, so that
		 * detach_extent_buffer_page() won't release the page private
		 * when the eb hasn't yet been inserted into radix tree.
		 *
		 * The ref will be decreased when the eb released the page, in
		 * detach_extent_buffer_page().
		 * Thus needs no special handling in error path.
		 */
		btrfs_page_inc_eb_refs(fs_info, p);
J
Josef Bacik 已提交
6242
		spin_unlock(&mapping->private_lock);
6243

6244
		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6245
		eb->pages[i] = p;
6246 6247
		if (!PageUptodate(p))
			uptodate = 0;
C
Chris Mason 已提交
6248 6249

		/*
6250 6251
		 * We can't unlock the pages just yet since the extent buffer
		 * hasn't been properly inserted in the radix tree, this
6252
		 * opens a race with btree_release_folio which can free a page
6253 6254
		 * while we are still filling in all pages for the buffer and
		 * we could crash.
C
Chris Mason 已提交
6255
		 */
6256 6257
	}
	if (uptodate)
6258
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273
again:
	ret = radix_tree_preload(GFP_NOFS);
	if (ret) {
		exists = ERR_PTR(ret);
		goto free_eb;
	}

	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
				start >> fs_info->sectorsize_bits, eb);
	spin_unlock(&fs_info->buffer_lock);
	radix_tree_preload_end();
	if (ret == -EEXIST) {
		exists = find_extent_buffer(fs_info, start);
		if (exists)
6274
			goto free_eb;
6275 6276 6277
		else
			goto again;
	}
6278
	/* add one reference for the tree */
6279
	check_buffer_tree_ref(eb);
6280
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
C
Chris Mason 已提交
6281 6282

	/*
6283
	 * Now it's safe to unlock the pages because any calls to
6284
	 * btree_release_folio will correctly detect that a page belongs to a
6285
	 * live buffer and won't free them prematurely.
C
Chris Mason 已提交
6286
	 */
6287 6288
	for (i = 0; i < num_pages; i++)
		unlock_page(eb->pages[i]);
6289 6290
	return eb;

6291
free_eb:
6292
	WARN_ON(!atomic_dec_and_test(&eb->refs));
6293 6294 6295 6296
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i])
			unlock_page(eb->pages[i]);
	}
C
Chris Mason 已提交
6297

6298
	btrfs_release_extent_buffer(eb);
6299
	return exists;
6300 6301
}

6302 6303 6304 6305 6306 6307 6308 6309
static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
{
	struct extent_buffer *eb =
			container_of(head, struct extent_buffer, rcu_head);

	__free_extent_buffer(eb);
}

6310
static int release_extent_buffer(struct extent_buffer *eb)
6311
	__releases(&eb->refs_lock)
6312
{
6313 6314
	lockdep_assert_held(&eb->refs_lock);

6315 6316
	WARN_ON(atomic_read(&eb->refs) == 0);
	if (atomic_dec_and_test(&eb->refs)) {
6317
		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6318
			struct btrfs_fs_info *fs_info = eb->fs_info;
6319

6320
			spin_unlock(&eb->refs_lock);
6321

6322 6323 6324 6325
			spin_lock(&fs_info->buffer_lock);
			radix_tree_delete(&fs_info->buffer_radix,
					  eb->start >> fs_info->sectorsize_bits);
			spin_unlock(&fs_info->buffer_lock);
6326 6327
		} else {
			spin_unlock(&eb->refs_lock);
6328
		}
6329

6330
		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6331
		/* Should be safe to release our pages at this point */
6332
		btrfs_release_extent_buffer_pages(eb);
6333
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6334
		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6335 6336 6337 6338
			__free_extent_buffer(eb);
			return 1;
		}
#endif
6339
		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6340
		return 1;
6341 6342
	}
	spin_unlock(&eb->refs_lock);
6343 6344

	return 0;
6345 6346
}

6347 6348
void free_extent_buffer(struct extent_buffer *eb)
{
6349 6350
	int refs;
	int old;
6351 6352 6353
	if (!eb)
		return;

6354 6355
	while (1) {
		refs = atomic_read(&eb->refs);
6356 6357 6358
		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
			refs == 1))
6359 6360 6361 6362 6363 6364
			break;
		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
		if (old == refs)
			return;
	}

6365 6366 6367
	spin_lock(&eb->refs_lock);
	if (atomic_read(&eb->refs) == 2 &&
	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6368
	    !extent_buffer_under_io(eb) &&
6369 6370 6371 6372 6373 6374 6375
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);

	/*
	 * I know this is terrible, but it's temporary until we stop tracking
	 * the uptodate bits and such for the extent buffers.
	 */
6376
	release_extent_buffer(eb);
6377 6378 6379 6380 6381
}

void free_extent_buffer_stale(struct extent_buffer *eb)
{
	if (!eb)
6382 6383
		return;

6384 6385 6386
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);

6387
	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6388 6389
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);
6390
	release_extent_buffer(eb);
6391 6392
}

6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420
static void btree_clear_page_dirty(struct page *page)
{
	ASSERT(PageDirty(page));
	ASSERT(PageLocked(page));
	clear_page_dirty_for_io(page);
	xa_lock_irq(&page->mapping->i_pages);
	if (!PageDirty(page))
		__xa_clear_mark(&page->mapping->i_pages,
				page_index(page), PAGECACHE_TAG_DIRTY);
	xa_unlock_irq(&page->mapping->i_pages);
}

static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
	bool last;

	/* btree_clear_page_dirty() needs page locked */
	lock_page(page);
	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
						  eb->len);
	if (last)
		btree_clear_page_dirty(page);
	unlock_page(page);
	WARN_ON(atomic_read(&eb->refs) == 0);
}

6421
void clear_extent_buffer_dirty(const struct extent_buffer *eb)
6422
{
6423 6424
	int i;
	int num_pages;
6425 6426
	struct page *page;

6427
	if (eb->fs_info->nodesize < PAGE_SIZE)
6428 6429
		return clear_subpage_extent_buffer_dirty(eb);

6430
	num_pages = num_extent_pages(eb);
6431 6432

	for (i = 0; i < num_pages; i++) {
6433
		page = eb->pages[i];
6434
		if (!PageDirty(page))
C
Chris Mason 已提交
6435
			continue;
6436
		lock_page(page);
6437
		btree_clear_page_dirty(page);
6438
		ClearPageError(page);
6439
		unlock_page(page);
6440
	}
6441
	WARN_ON(atomic_read(&eb->refs) == 0);
6442 6443
}

6444
bool set_extent_buffer_dirty(struct extent_buffer *eb)
6445
{
6446 6447
	int i;
	int num_pages;
6448
	bool was_dirty;
6449

6450 6451
	check_buffer_tree_ref(eb);

6452
	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6453

6454
	num_pages = num_extent_pages(eb);
6455
	WARN_ON(atomic_read(&eb->refs) == 0);
6456 6457
	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));

6458
	if (!was_dirty) {
6459
		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
6460

6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479
		/*
		 * For subpage case, we can have other extent buffers in the
		 * same page, and in clear_subpage_extent_buffer_dirty() we
		 * have to clear page dirty without subpage lock held.
		 * This can cause race where our page gets dirty cleared after
		 * we just set it.
		 *
		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
		 * its page for other reasons, we can use page lock to prevent
		 * the above race.
		 */
		if (subpage)
			lock_page(eb->pages[0]);
		for (i = 0; i < num_pages; i++)
			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
					     eb->start, eb->len);
		if (subpage)
			unlock_page(eb->pages[0]);
	}
6480 6481 6482 6483 6484
#ifdef CONFIG_BTRFS_DEBUG
	for (i = 0; i < num_pages; i++)
		ASSERT(PageDirty(eb->pages[i]));
#endif

6485
	return was_dirty;
6486 6487
}

6488
void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6489
{
6490
	struct btrfs_fs_info *fs_info = eb->fs_info;
6491
	struct page *page;
6492
	int num_pages;
6493
	int i;
6494

6495
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6496
	num_pages = num_extent_pages(eb);
6497
	for (i = 0; i < num_pages; i++) {
6498
		page = eb->pages[i];
6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510
		if (!page)
			continue;

		/*
		 * This is special handling for metadata subpage, as regular
		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
		 */
		if (fs_info->nodesize >= PAGE_SIZE)
			ClearPageUptodate(page);
		else
			btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
						     eb->len);
6511 6512 6513
	}
}

6514
void set_extent_buffer_uptodate(struct extent_buffer *eb)
6515
{
6516
	struct btrfs_fs_info *fs_info = eb->fs_info;
6517
	struct page *page;
6518
	int num_pages;
6519
	int i;
6520

6521
	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6522
	num_pages = num_extent_pages(eb);
6523
	for (i = 0; i < num_pages; i++) {
6524
		page = eb->pages[i];
6525 6526 6527 6528 6529 6530 6531 6532 6533 6534

		/*
		 * This is special handling for metadata subpage, as regular
		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
		 */
		if (fs_info->nodesize >= PAGE_SIZE)
			SetPageUptodate(page);
		else
			btrfs_subpage_set_uptodate(fs_info, page, eb->start,
						   eb->len);
6535 6536 6537
	}
}

6538 6539 6540 6541 6542 6543
static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
				      int mirror_num)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct extent_io_tree *io_tree;
	struct page *page = eb->pages[0];
6544 6545 6546
	struct btrfs_bio_ctrl bio_ctrl = {
		.mirror_num = mirror_num,
	};
6547 6548 6549 6550 6551 6552 6553
	int ret = 0;

	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
	ASSERT(PagePrivate(page));
	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;

	if (wait == WAIT_NONE) {
6554 6555
		if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
			return -EAGAIN;
6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576
	} else {
		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		if (ret < 0)
			return ret;
	}

	ret = 0;
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
	    PageUptodate(page) ||
	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		return ret;
	}

	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
	eb->read_mirror = 0;
	atomic_set(&eb->io_pages, 1);
	check_buffer_tree_ref(eb);
	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);

6577
	btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
6578
	ret = submit_extent_page(REQ_OP_READ, NULL, &bio_ctrl,
6579 6580
				 page, eb->start, eb->len,
				 eb->start - page_offset(page),
6581
				 end_bio_extent_readpage, 0, true);
6582 6583 6584 6585 6586 6587 6588 6589
	if (ret) {
		/*
		 * In the endio function, if we hit something wrong we will
		 * increase the io_pages, so here we need to decrease it for
		 * error path.
		 */
		atomic_dec(&eb->io_pages);
	}
6590
	submit_one_bio(&bio_ctrl);
6591 6592 6593 6594 6595 6596 6597 6598 6599
	if (ret || wait != WAIT_COMPLETE)
		return ret;

	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
		ret = -EIO;
	return ret;
}

6600
int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6601
{
6602
	int i;
6603 6604 6605
	struct page *page;
	int err;
	int ret = 0;
6606 6607
	int locked_pages = 0;
	int all_uptodate = 1;
6608
	int num_pages;
6609
	unsigned long num_reads = 0;
6610 6611 6612
	struct btrfs_bio_ctrl bio_ctrl = {
		.mirror_num = mirror_num,
	};
6613

6614
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6615 6616
		return 0;

6617 6618 6619 6620 6621 6622 6623 6624
	/*
	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
	 * operation, which could potentially still be in flight.  In this case
	 * we simply want to return an error.
	 */
	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
		return -EIO;

6625
	if (eb->fs_info->nodesize < PAGE_SIZE)
6626 6627
		return read_extent_buffer_subpage(eb, wait, mirror_num);

6628
	num_pages = num_extent_pages(eb);
6629
	for (i = 0; i < num_pages; i++) {
6630
		page = eb->pages[i];
6631
		if (wait == WAIT_NONE) {
6632 6633 6634 6635 6636 6637 6638
			/*
			 * WAIT_NONE is only utilized by readahead. If we can't
			 * acquire the lock atomically it means either the eb
			 * is being read out or under modification.
			 * Either way the eb will be or has been cached,
			 * readahead can exit safely.
			 */
6639
			if (!trylock_page(page))
6640
				goto unlock_exit;
6641 6642 6643
		} else {
			lock_page(page);
		}
6644
		locked_pages++;
6645 6646 6647 6648 6649 6650
	}
	/*
	 * We need to firstly lock all pages to make sure that
	 * the uptodate bit of our pages won't be affected by
	 * clear_extent_buffer_uptodate().
	 */
6651
	for (i = 0; i < num_pages; i++) {
6652
		page = eb->pages[i];
6653 6654
		if (!PageUptodate(page)) {
			num_reads++;
6655
			all_uptodate = 0;
6656
		}
6657
	}
6658

6659
	if (all_uptodate) {
6660
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6661 6662 6663
		goto unlock_exit;
	}

6664
	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6665
	eb->read_mirror = 0;
6666
	atomic_set(&eb->io_pages, num_reads);
6667
	/*
6668
	 * It is possible for release_folio to clear the TREE_REF bit before we
6669 6670 6671
	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
	 */
	check_buffer_tree_ref(eb);
6672
	for (i = 0; i < num_pages; i++) {
6673
		page = eb->pages[i];
6674

6675
		if (!PageUptodate(page)) {
6676 6677 6678 6679 6680 6681
			if (ret) {
				atomic_dec(&eb->io_pages);
				unlock_page(page);
				continue;
			}

6682
			ClearPageError(page);
6683
			err = submit_extent_page(REQ_OP_READ, NULL,
6684 6685
					 &bio_ctrl, page, page_offset(page),
					 PAGE_SIZE, 0, end_bio_extent_readpage,
6686
					 0, false);
6687 6688
			if (err) {
				/*
6689 6690 6691
				 * We failed to submit the bio so it's the
				 * caller's responsibility to perform cleanup
				 * i.e unlock page/set error bit.
6692
				 */
6693 6694 6695
				ret = err;
				SetPageError(page);
				unlock_page(page);
6696 6697
				atomic_dec(&eb->io_pages);
			}
6698 6699 6700 6701 6702
		} else {
			unlock_page(page);
		}
	}

6703
	submit_one_bio(&bio_ctrl);
6704

6705
	if (ret || wait != WAIT_COMPLETE)
6706
		return ret;
C
Chris Mason 已提交
6707

6708
	for (i = 0; i < num_pages; i++) {
6709
		page = eb->pages[i];
6710
		wait_on_page_locked(page);
C
Chris Mason 已提交
6711
		if (!PageUptodate(page))
6712 6713
			ret = -EIO;
	}
C
Chris Mason 已提交
6714

6715
	return ret;
6716 6717

unlock_exit:
C
Chris Mason 已提交
6718
	while (locked_pages > 0) {
6719
		locked_pages--;
6720 6721
		page = eb->pages[locked_pages];
		unlock_page(page);
6722 6723
	}
	return ret;
6724 6725
}

6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755
static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
			    unsigned long len)
{
	btrfs_warn(eb->fs_info,
		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
		eb->start, eb->len, start, len);
	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));

	return true;
}

/*
 * Check if the [start, start + len) range is valid before reading/writing
 * the eb.
 * NOTE: @start and @len are offset inside the eb, not logical address.
 *
 * Caller should not touch the dst/src memory if this function returns error.
 */
static inline int check_eb_range(const struct extent_buffer *eb,
				 unsigned long start, unsigned long len)
{
	unsigned long offset;

	/* start, start + len should not go beyond eb->len nor overflow */
	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
		return report_eb_range(eb, start, len);

	return false;
}

6756 6757
void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
			unsigned long start, unsigned long len)
6758 6759 6760 6761 6762 6763
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *dst = (char *)dstv;
6764
	unsigned long i = get_eb_page_index(start);
6765

6766
	if (check_eb_range(eb, start, len))
6767
		return;
6768

6769
	offset = get_eb_offset_in_page(eb, start);
6770

C
Chris Mason 已提交
6771
	while (len > 0) {
6772
		page = eb->pages[i];
6773

6774
		cur = min(len, (PAGE_SIZE - offset));
6775
		kaddr = page_address(page);
6776 6777 6778 6779 6780 6781 6782 6783 6784
		memcpy(dst, kaddr + offset, cur);

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6785 6786 6787
int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
				       void __user *dstv,
				       unsigned long start, unsigned long len)
6788 6789 6790 6791 6792 6793
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char __user *dst = (char __user *)dstv;
6794
	unsigned long i = get_eb_page_index(start);
6795 6796 6797 6798 6799
	int ret = 0;

	WARN_ON(start > eb->len);
	WARN_ON(start + len > eb->start + eb->len);

6800
	offset = get_eb_offset_in_page(eb, start);
6801 6802

	while (len > 0) {
6803
		page = eb->pages[i];
6804

6805
		cur = min(len, (PAGE_SIZE - offset));
6806
		kaddr = page_address(page);
6807
		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820
			ret = -EFAULT;
			break;
		}

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}

	return ret;
}

6821 6822
int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
			 unsigned long start, unsigned long len)
6823 6824 6825 6826 6827 6828
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *ptr = (char *)ptrv;
6829
	unsigned long i = get_eb_page_index(start);
6830 6831
	int ret = 0;

6832 6833
	if (check_eb_range(eb, start, len))
		return -EINVAL;
6834

6835
	offset = get_eb_offset_in_page(eb, start);
6836

C
Chris Mason 已提交
6837
	while (len > 0) {
6838
		page = eb->pages[i];
6839

6840
		cur = min(len, (PAGE_SIZE - offset));
6841

6842
		kaddr = page_address(page);
6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854
		ret = memcmp(ptr, kaddr + offset, cur);
		if (ret)
			break;

		ptr += cur;
		len -= cur;
		offset = 0;
		i++;
	}
	return ret;
}

6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865
/*
 * Check that the extent buffer is uptodate.
 *
 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
 */
static void assert_eb_page_uptodate(const struct extent_buffer *eb,
				    struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;

6866 6867 6868 6869 6870 6871 6872 6873 6874
	/*
	 * If we are using the commit root we could potentially clear a page
	 * Uptodate while we're using the extent buffer that we've previously
	 * looked up.  We don't want to complain in this case, as the page was
	 * valid before, we just didn't write it out.  Instead we want to catch
	 * the case where we didn't actually read the block properly, which
	 * would have !PageUptodate && !PageError, as we clear PageError before
	 * reading.
	 */
6875
	if (fs_info->nodesize < PAGE_SIZE) {
6876
		bool uptodate, error;
6877 6878 6879

		uptodate = btrfs_subpage_test_uptodate(fs_info, page,
						       eb->start, eb->len);
6880 6881
		error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len);
		WARN_ON(!uptodate && !error);
6882
	} else {
6883
		WARN_ON(!PageUptodate(page) && !PageError(page));
6884 6885 6886
	}
}

6887
void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6888 6889 6890 6891
		const void *srcv)
{
	char *kaddr;

6892
	assert_eb_page_uptodate(eb, eb->pages[0]);
6893 6894 6895 6896
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
						   chunk_tree_uuid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6897 6898
}

6899
void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6900 6901 6902
{
	char *kaddr;

6903
	assert_eb_page_uptodate(eb, eb->pages[0]);
6904 6905 6906
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6907 6908
}

6909
void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6910 6911 6912 6913 6914 6915 6916
			 unsigned long start, unsigned long len)
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *src = (char *)srcv;
6917
	unsigned long i = get_eb_page_index(start);
6918

6919 6920
	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));

6921 6922
	if (check_eb_range(eb, start, len))
		return;
6923

6924
	offset = get_eb_offset_in_page(eb, start);
6925

C
Chris Mason 已提交
6926
	while (len > 0) {
6927
		page = eb->pages[i];
6928
		assert_eb_page_uptodate(eb, page);
6929

6930
		cur = min(len, PAGE_SIZE - offset);
6931
		kaddr = page_address(page);
6932 6933 6934 6935 6936 6937 6938 6939 6940
		memcpy(kaddr + offset, src, cur);

		src += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6941
void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6942
		unsigned long len)
6943 6944 6945 6946 6947
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
6948
	unsigned long i = get_eb_page_index(start);
6949

6950 6951
	if (check_eb_range(eb, start, len))
		return;
6952

6953
	offset = get_eb_offset_in_page(eb, start);
6954

C
Chris Mason 已提交
6955
	while (len > 0) {
6956
		page = eb->pages[i];
6957
		assert_eb_page_uptodate(eb, page);
6958

6959
		cur = min(len, PAGE_SIZE - offset);
6960
		kaddr = page_address(page);
6961
		memset(kaddr + offset, 0, cur);
6962 6963 6964 6965 6966 6967 6968

		len -= cur;
		offset = 0;
		i++;
	}
}

6969 6970
void copy_extent_buffer_full(const struct extent_buffer *dst,
			     const struct extent_buffer *src)
6971 6972
{
	int i;
6973
	int num_pages;
6974 6975 6976

	ASSERT(dst->len == src->len);

6977
	if (dst->fs_info->nodesize >= PAGE_SIZE) {
6978 6979 6980 6981 6982 6983 6984 6985
		num_pages = num_extent_pages(dst);
		for (i = 0; i < num_pages; i++)
			copy_page(page_address(dst->pages[i]),
				  page_address(src->pages[i]));
	} else {
		size_t src_offset = get_eb_offset_in_page(src, 0);
		size_t dst_offset = get_eb_offset_in_page(dst, 0);

6986
		ASSERT(src->fs_info->nodesize < PAGE_SIZE);
6987 6988 6989 6990
		memcpy(page_address(dst->pages[0]) + dst_offset,
		       page_address(src->pages[0]) + src_offset,
		       src->len);
	}
6991 6992
}

6993 6994
void copy_extent_buffer(const struct extent_buffer *dst,
			const struct extent_buffer *src,
6995 6996 6997 6998 6999 7000 7001 7002
			unsigned long dst_offset, unsigned long src_offset,
			unsigned long len)
{
	u64 dst_len = dst->len;
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
7003
	unsigned long i = get_eb_page_index(dst_offset);
7004

7005 7006 7007 7008
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(src, src_offset, len))
		return;

7009 7010
	WARN_ON(src->len != dst_len);

7011
	offset = get_eb_offset_in_page(dst, dst_offset);
7012

C
Chris Mason 已提交
7013
	while (len > 0) {
7014
		page = dst->pages[i];
7015
		assert_eb_page_uptodate(dst, page);
7016

7017
		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
7018

7019
		kaddr = page_address(page);
7020 7021 7022 7023 7024 7025 7026 7027 7028
		read_extent_buffer(src, kaddr + offset, src_offset, cur);

		src_offset += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041
/*
 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
 * given bit number
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number
 * @page_index: return index of the page in the extent buffer that contains the
 * given bit number
 * @page_offset: return offset into the page given by page_index
 *
 * This helper hides the ugliness of finding the byte in an extent buffer which
 * contains a given bit.
 */
7042
static inline void eb_bitmap_offset(const struct extent_buffer *eb,
7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054
				    unsigned long start, unsigned long nr,
				    unsigned long *page_index,
				    size_t *page_offset)
{
	size_t byte_offset = BIT_BYTE(nr);
	size_t offset;

	/*
	 * The byte we want is the offset of the extent buffer + the offset of
	 * the bitmap item in the extent buffer + the offset of the byte in the
	 * bitmap item.
	 */
7055
	offset = start + offset_in_page(eb->start) + byte_offset;
7056

7057
	*page_index = offset >> PAGE_SHIFT;
7058
	*page_offset = offset_in_page(offset);
7059 7060 7061 7062 7063 7064 7065 7066
}

/**
 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number to test
 */
7067
int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
7068 7069
			   unsigned long nr)
{
7070
	u8 *kaddr;
7071 7072 7073 7074 7075 7076
	struct page *page;
	unsigned long i;
	size_t offset;

	eb_bitmap_offset(eb, start, nr, &i, &offset);
	page = eb->pages[i];
7077
	assert_eb_page_uptodate(eb, page);
7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088
	kaddr = page_address(page);
	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
}

/**
 * extent_buffer_bitmap_set - set an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to set
 */
7089
void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
7090 7091
			      unsigned long pos, unsigned long len)
{
7092
	u8 *kaddr;
7093 7094 7095 7096 7097
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7098
	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
7099 7100 7101

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
7102
	assert_eb_page_uptodate(eb, page);
7103 7104 7105 7106 7107 7108
	kaddr = page_address(page);

	while (len >= bits_to_set) {
		kaddr[offset] |= mask_to_set;
		len -= bits_to_set;
		bits_to_set = BITS_PER_BYTE;
D
Dan Carpenter 已提交
7109
		mask_to_set = ~0;
7110
		if (++offset >= PAGE_SIZE && len > 0) {
7111 7112
			offset = 0;
			page = eb->pages[++i];
7113
			assert_eb_page_uptodate(eb, page);
7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] |= mask_to_set;
	}
}


/**
 * extent_buffer_bitmap_clear - clear an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to clear
 */
7131 7132 7133
void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
				unsigned long start, unsigned long pos,
				unsigned long len)
7134
{
7135
	u8 *kaddr;
7136 7137 7138 7139 7140
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7141
	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
7142 7143 7144

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
7145
	assert_eb_page_uptodate(eb, page);
7146 7147 7148 7149 7150 7151
	kaddr = page_address(page);

	while (len >= bits_to_clear) {
		kaddr[offset] &= ~mask_to_clear;
		len -= bits_to_clear;
		bits_to_clear = BITS_PER_BYTE;
D
Dan Carpenter 已提交
7152
		mask_to_clear = ~0;
7153
		if (++offset >= PAGE_SIZE && len > 0) {
7154 7155
			offset = 0;
			page = eb->pages[++i];
7156
			assert_eb_page_uptodate(eb, page);
7157 7158 7159 7160 7161 7162 7163 7164 7165
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] &= ~mask_to_clear;
	}
}

7166 7167 7168 7169 7170 7171
static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
{
	unsigned long distance = (src > dst) ? src - dst : dst - src;
	return distance < len;
}

7172 7173 7174 7175
static void copy_pages(struct page *dst_page, struct page *src_page,
		       unsigned long dst_off, unsigned long src_off,
		       unsigned long len)
{
7176
	char *dst_kaddr = page_address(dst_page);
7177
	char *src_kaddr;
7178
	int must_memmove = 0;
7179

7180
	if (dst_page != src_page) {
7181
		src_kaddr = page_address(src_page);
7182
	} else {
7183
		src_kaddr = dst_kaddr;
7184 7185
		if (areas_overlap(src_off, dst_off, len))
			must_memmove = 1;
7186
	}
7187

7188 7189 7190 7191
	if (must_memmove)
		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
	else
		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
7192 7193
}

7194 7195 7196
void memcpy_extent_buffer(const struct extent_buffer *dst,
			  unsigned long dst_offset, unsigned long src_offset,
			  unsigned long len)
7197 7198 7199 7200 7201 7202 7203
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_i;
	unsigned long src_i;

7204 7205 7206
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
7207

C
Chris Mason 已提交
7208
	while (len > 0) {
7209 7210
		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
7211

7212 7213
		dst_i = get_eb_page_index(dst_offset);
		src_i = get_eb_page_index(src_offset);
7214

7215
		cur = min(len, (unsigned long)(PAGE_SIZE -
7216 7217
					       src_off_in_page));
		cur = min_t(unsigned long, cur,
7218
			(unsigned long)(PAGE_SIZE - dst_off_in_page));
7219

7220
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7221 7222 7223 7224 7225 7226 7227 7228
			   dst_off_in_page, src_off_in_page, cur);

		src_offset += cur;
		dst_offset += cur;
		len -= cur;
	}
}

7229 7230 7231
void memmove_extent_buffer(const struct extent_buffer *dst,
			   unsigned long dst_offset, unsigned long src_offset,
			   unsigned long len)
7232 7233 7234 7235 7236 7237 7238 7239 7240
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_end = dst_offset + len - 1;
	unsigned long src_end = src_offset + len - 1;
	unsigned long dst_i;
	unsigned long src_i;

7241 7242 7243
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
7244
	if (dst_offset < src_offset) {
7245 7246 7247
		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
		return;
	}
C
Chris Mason 已提交
7248
	while (len > 0) {
7249 7250
		dst_i = get_eb_page_index(dst_end);
		src_i = get_eb_page_index(src_end);
7251

7252 7253
		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
		src_off_in_page = get_eb_offset_in_page(dst, src_end);
7254 7255 7256

		cur = min_t(unsigned long, len, src_off_in_page + 1);
		cur = min(cur, dst_off_in_page + 1);
7257
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7258 7259 7260 7261 7262 7263 7264 7265
			   dst_off_in_page - cur + 1,
			   src_off_in_page - cur + 1, cur);

		dst_end -= cur;
		src_end -= cur;
		len -= cur;
	}
}
7266

7267
#define GANG_LOOKUP_SIZE	16
7268 7269 7270
static struct extent_buffer *get_next_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
7271 7272
	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
	struct extent_buffer *found = NULL;
7273
	u64 page_start = page_offset(page);
7274
	u64 cur = page_start;
7275 7276 7277 7278

	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
	lockdep_assert_held(&fs_info->buffer_lock);

7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299
	while (cur < page_start + PAGE_SIZE) {
		int ret;
		int i;

		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
				(void **)gang, cur >> fs_info->sectorsize_bits,
				min_t(unsigned int, GANG_LOOKUP_SIZE,
				      PAGE_SIZE / fs_info->nodesize));
		if (ret == 0)
			goto out;
		for (i = 0; i < ret; i++) {
			/* Already beyond page end */
			if (gang[i]->start >= page_start + PAGE_SIZE)
				goto out;
			/* Found one */
			if (gang[i]->start >= bytenr) {
				found = gang[i];
				goto out;
			}
		}
		cur = gang[ret - 1]->start + gang[ret - 1]->len;
7300
	}
7301 7302
out:
	return found;
7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374
}

static int try_release_subpage_extent_buffer(struct page *page)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	u64 cur = page_offset(page);
	const u64 end = page_offset(page) + PAGE_SIZE;
	int ret;

	while (cur < end) {
		struct extent_buffer *eb = NULL;

		/*
		 * Unlike try_release_extent_buffer() which uses page->private
		 * to grab buffer, for subpage case we rely on radix tree, thus
		 * we need to ensure radix tree consistency.
		 *
		 * We also want an atomic snapshot of the radix tree, thus go
		 * with spinlock rather than RCU.
		 */
		spin_lock(&fs_info->buffer_lock);
		eb = get_next_extent_buffer(fs_info, page, cur);
		if (!eb) {
			/* No more eb in the page range after or at cur */
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		cur = eb->start + eb->len;

		/*
		 * The same as try_release_extent_buffer(), to ensure the eb
		 * won't disappear out from under us.
		 */
		spin_lock(&eb->refs_lock);
		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
			spin_unlock(&eb->refs_lock);
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		spin_unlock(&fs_info->buffer_lock);

		/*
		 * If tree ref isn't set then we know the ref on this eb is a
		 * real ref, so just return, this eb will likely be freed soon
		 * anyway.
		 */
		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
			spin_unlock(&eb->refs_lock);
			break;
		}

		/*
		 * Here we don't care about the return value, we will always
		 * check the page private at the end.  And
		 * release_extent_buffer() will release the refs_lock.
		 */
		release_extent_buffer(eb);
	}
	/*
	 * Finally to check if we have cleared page private, as if we have
	 * released all ebs in the page, the page private should be cleared now.
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page))
		ret = 1;
	else
		ret = 0;
	spin_unlock(&page->mapping->private_lock);
	return ret;

}

7375
int try_release_extent_buffer(struct page *page)
7376
{
7377 7378
	struct extent_buffer *eb;

7379
	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
7380 7381
		return try_release_subpage_extent_buffer(page);

7382
	/*
7383 7384
	 * We need to make sure nobody is changing page->private, as we rely on
	 * page->private as the pointer to extent buffer.
7385 7386 7387 7388
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&page->mapping->private_lock);
J
Josef Bacik 已提交
7389
		return 1;
7390
	}
7391

7392 7393
	eb = (struct extent_buffer *)page->private;
	BUG_ON(!eb);
7394 7395

	/*
7396 7397 7398
	 * This is a little awful but should be ok, we need to make sure that
	 * the eb doesn't disappear out from under us while we're looking at
	 * this page.
7399
	 */
7400
	spin_lock(&eb->refs_lock);
7401
	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7402 7403 7404
		spin_unlock(&eb->refs_lock);
		spin_unlock(&page->mapping->private_lock);
		return 0;
7405
	}
7406
	spin_unlock(&page->mapping->private_lock);
7407

7408
	/*
7409 7410
	 * If tree ref isn't set then we know the ref on this eb is a real ref,
	 * so just return, this page will likely be freed soon anyway.
7411
	 */
7412 7413 7414
	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
		spin_unlock(&eb->refs_lock);
		return 0;
7415
	}
7416

7417
	return release_extent_buffer(eb);
7418
}
7419 7420 7421 7422 7423

/*
 * btrfs_readahead_tree_block - attempt to readahead a child block
 * @fs_info:	the fs_info
 * @bytenr:	bytenr to read
7424
 * @owner_root: objectid of the root that owns this eb
7425
 * @gen:	generation for the uptodate check, can be 0
7426
 * @level:	level for the eb
7427 7428 7429 7430 7431 7432
 *
 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
 * normal uptodate check of the eb, without checking the generation.  If we have
 * to read the block we will not block on anything.
 */
void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7433
				u64 bytenr, u64 owner_root, u64 gen, int level)
7434 7435 7436 7437
{
	struct extent_buffer *eb;
	int ret;

7438
	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465
	if (IS_ERR(eb))
		return;

	if (btrfs_buffer_uptodate(eb, gen, 1)) {
		free_extent_buffer(eb);
		return;
	}

	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
	if (ret < 0)
		free_extent_buffer_stale(eb);
	else
		free_extent_buffer(eb);
}

/*
 * btrfs_readahead_node_child - readahead a node's child block
 * @node:	parent node we're reading from
 * @slot:	slot in the parent node for the child we want to read
 *
 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
 * the slot in the node provided.
 */
void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
{
	btrfs_readahead_tree_block(node->fs_info,
				   btrfs_node_blockptr(node, slot),
7466 7467 7468
				   btrfs_header_owner(node),
				   btrfs_node_ptr_generation(node, slot),
				   btrfs_header_level(node) - 1);
7469
}