extent_io.c 189.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2

3 4 5 6 7 8 9 10 11 12 13
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/bio.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/page-flags.h>
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
14
#include <linux/prefetch.h>
D
Dan Magenheimer 已提交
15
#include <linux/cleancache.h>
16
#include "misc.h"
17
#include "extent_io.h"
18
#include "extent-io-tree.h"
19
#include "extent_map.h"
20 21
#include "ctree.h"
#include "btrfs_inode.h"
22
#include "volumes.h"
23
#include "check-integrity.h"
24
#include "locking.h"
25
#include "rcu-string.h"
26
#include "backref.h"
27
#include "disk-io.h"
28
#include "subpage.h"
29
#include "zoned.h"
30
#include "block-group.h"
31 32 33

static struct kmem_cache *extent_state_cache;
static struct kmem_cache *extent_buffer_cache;
34
static struct bio_set btrfs_bioset;
35

36 37 38 39 40
static inline bool extent_state_in_tree(const struct extent_state *state)
{
	return !RB_EMPTY_NODE(&state->rb_node);
}

41
#ifdef CONFIG_BTRFS_DEBUG
42
static LIST_HEAD(states);
C
Chris Mason 已提交
43
static DEFINE_SPINLOCK(leak_lock);
44

45 46 47
static inline void btrfs_leak_debug_add(spinlock_t *lock,
					struct list_head *new,
					struct list_head *head)
48 49 50
{
	unsigned long flags;

51
	spin_lock_irqsave(lock, flags);
52
	list_add(new, head);
53
	spin_unlock_irqrestore(lock, flags);
54 55
}

56 57
static inline void btrfs_leak_debug_del(spinlock_t *lock,
					struct list_head *entry)
58 59 60
{
	unsigned long flags;

61
	spin_lock_irqsave(lock, flags);
62
	list_del(entry);
63
	spin_unlock_irqrestore(lock, flags);
64 65
}

66
void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
67 68
{
	struct extent_buffer *eb;
69
	unsigned long flags;
70

71 72 73 74 75 76 77
	/*
	 * If we didn't get into open_ctree our allocated_ebs will not be
	 * initialized, so just skip this.
	 */
	if (!fs_info->allocated_ebs.next)
		return;

78 79 80 81
	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
	while (!list_empty(&fs_info->allocated_ebs)) {
		eb = list_first_entry(&fs_info->allocated_ebs,
				      struct extent_buffer, leak_list);
82 83 84 85
		pr_err(
	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
		       btrfs_header_owner(eb));
86 87 88
		list_del(&eb->leak_list);
		kmem_cache_free(extent_buffer_cache, eb);
	}
89
	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
90 91 92 93 94 95
}

static inline void btrfs_extent_state_leak_debug_check(void)
{
	struct extent_state *state;

96 97
	while (!list_empty(&states)) {
		state = list_entry(states.next, struct extent_state, leak_list);
98
		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
99 100
		       state->start, state->end, state->state,
		       extent_state_in_tree(state),
101
		       refcount_read(&state->refs));
102 103 104 105
		list_del(&state->leak_list);
		kmem_cache_free(extent_state_cache, state);
	}
}
106

107 108
#define btrfs_debug_check_extent_io_range(tree, start, end)		\
	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
109
static inline void __btrfs_debug_check_extent_io_range(const char *caller,
110
		struct extent_io_tree *tree, u64 start, u64 end)
111
{
112 113 114 115 116 117 118 119 120 121 122 123
	struct inode *inode = tree->private_data;
	u64 isize;

	if (!inode || !is_data_inode(inode))
		return;

	isize = i_size_read(inode);
	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
	}
124
}
125
#else
126 127
#define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
#define btrfs_leak_debug_del(lock, entry)	do {} while (0)
128
#define btrfs_extent_state_leak_debug_check()	do {} while (0)
129
#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
C
Chris Mason 已提交
130
#endif
131 132 133 134 135 136 137 138

struct tree_entry {
	u64 start;
	u64 end;
	struct rb_node rb_node;
};

struct extent_page_data {
139
	struct btrfs_bio_ctrl bio_ctrl;
140 141 142
	/* tells writepage not to lock the state bits for this range
	 * it still does the unlocking
	 */
143 144
	unsigned int extent_locked:1;

145
	/* tells the submit_bio code to use REQ_SYNC */
146
	unsigned int sync_io:1;
147 148
};

149
static int add_extent_changeset(struct extent_state *state, u32 bits,
150 151 152 153 154 155
				 struct extent_changeset *changeset,
				 int set)
{
	int ret;

	if (!changeset)
156
		return 0;
157
	if (set && (state->state & bits) == bits)
158
		return 0;
159
	if (!set && (state->state & bits) == 0)
160
		return 0;
161
	changeset->bytes_changed += state->end - state->start + 1;
162
	ret = ulist_add(&changeset->range_changed, state->start, state->end,
163
			GFP_ATOMIC);
164
	return ret;
165 166
}

167 168
int __must_check submit_one_bio(struct bio *bio, int mirror_num,
				unsigned long bio_flags)
169 170 171 172 173 174
{
	blk_status_t ret = 0;
	struct extent_io_tree *tree = bio->bi_private;

	bio->bi_private = NULL;

175 176 177 178
	if (is_data_inode(tree->private_data))
		ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
					    bio_flags);
	else
179 180
		ret = btrfs_submit_metadata_bio(tree->private_data, bio,
						mirror_num, bio_flags);
181 182 183 184

	return blk_status_to_errno(ret);
}

185 186 187
/* Cleanup unsubmitted bios */
static void end_write_bio(struct extent_page_data *epd, int ret)
{
188 189 190 191 192 193
	struct bio *bio = epd->bio_ctrl.bio;

	if (bio) {
		bio->bi_status = errno_to_blk_status(ret);
		bio_endio(bio);
		epd->bio_ctrl.bio = NULL;
194 195 196
	}
}

197 198 199 200 201 202 203
/*
 * Submit bio from extent page data via submit_one_bio
 *
 * Return 0 if everything is OK.
 * Return <0 for error.
 */
static int __must_check flush_write_bio(struct extent_page_data *epd)
204
{
205
	int ret = 0;
206
	struct bio *bio = epd->bio_ctrl.bio;
207

208 209
	if (bio) {
		ret = submit_one_bio(bio, 0, 0);
210 211 212 213 214 215 216
		/*
		 * Clean up of epd->bio is handled by its endio function.
		 * And endio is either triggered by successful bio execution
		 * or the error handler of submit bio hook.
		 * So at this point, no matter what happened, we don't need
		 * to clean up epd->bio.
		 */
217
		epd->bio_ctrl.bio = NULL;
218
	}
219
	return ret;
220
}
221

222
int __init extent_state_cache_init(void)
223
{
D
David Sterba 已提交
224
	extent_state_cache = kmem_cache_create("btrfs_extent_state",
225
			sizeof(struct extent_state), 0,
226
			SLAB_MEM_SPREAD, NULL);
227 228
	if (!extent_state_cache)
		return -ENOMEM;
229 230
	return 0;
}
231

232 233
int __init extent_io_init(void)
{
D
David Sterba 已提交
234
	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
235
			sizeof(struct extent_buffer), 0,
236
			SLAB_MEM_SPREAD, NULL);
237
	if (!extent_buffer_cache)
238
		return -ENOMEM;
239

240 241 242
	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
			offsetof(struct btrfs_io_bio, bio),
			BIOSET_NEED_BVECS))
243
		goto free_buffer_cache;
244

245
	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
246 247
		goto free_bioset;

248 249
	return 0;

250
free_bioset:
251
	bioset_exit(&btrfs_bioset);
252

253 254 255
free_buffer_cache:
	kmem_cache_destroy(extent_buffer_cache);
	extent_buffer_cache = NULL;
256 257
	return -ENOMEM;
}
258

259 260 261
void __cold extent_state_cache_exit(void)
{
	btrfs_extent_state_leak_debug_check();
262 263 264
	kmem_cache_destroy(extent_state_cache);
}

265
void __cold extent_io_exit(void)
266
{
267 268 269 270 271
	/*
	 * Make sure all delayed rcu free are flushed before we
	 * destroy caches.
	 */
	rcu_barrier();
272
	kmem_cache_destroy(extent_buffer_cache);
273
	bioset_exit(&btrfs_bioset);
274 275
}

276 277 278 279 280 281 282 283 284
/*
 * For the file_extent_tree, we want to hold the inode lock when we lookup and
 * update the disk_i_size, but lockdep will complain because our io_tree we hold
 * the tree lock and get the inode lock when setting delalloc.  These two things
 * are unrelated, so make a class for the file_extent_tree so we don't get the
 * two locking patterns mixed up.
 */
static struct lock_class_key file_extent_tree_class;

285
void extent_io_tree_init(struct btrfs_fs_info *fs_info,
286 287
			 struct extent_io_tree *tree, unsigned int owner,
			 void *private_data)
288
{
289
	tree->fs_info = fs_info;
290
	tree->state = RB_ROOT;
291
	tree->dirty_bytes = 0;
292
	spin_lock_init(&tree->lock);
293
	tree->private_data = private_data;
294
	tree->owner = owner;
295 296
	if (owner == IO_TREE_INODE_FILE_EXTENT)
		lockdep_set_class(&tree->lock, &file_extent_tree_class);
297 298
}

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
void extent_io_tree_release(struct extent_io_tree *tree)
{
	spin_lock(&tree->lock);
	/*
	 * Do a single barrier for the waitqueue_active check here, the state
	 * of the waitqueue should not change once extent_io_tree_release is
	 * called.
	 */
	smp_mb();
	while (!RB_EMPTY_ROOT(&tree->state)) {
		struct rb_node *node;
		struct extent_state *state;

		node = rb_first(&tree->state);
		state = rb_entry(node, struct extent_state, rb_node);
		rb_erase(&state->rb_node, &tree->state);
		RB_CLEAR_NODE(&state->rb_node);
		/*
		 * btree io trees aren't supposed to have tasks waiting for
		 * changes in the flags of extent states ever.
		 */
		ASSERT(!waitqueue_active(&state->wq));
		free_extent_state(state);

		cond_resched_lock(&tree->lock);
	}
	spin_unlock(&tree->lock);
}

328
static struct extent_state *alloc_extent_state(gfp_t mask)
329 330 331
{
	struct extent_state *state;

332 333 334 335 336
	/*
	 * The given mask might be not appropriate for the slab allocator,
	 * drop the unsupported bits
	 */
	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
337
	state = kmem_cache_alloc(extent_state_cache, mask);
338
	if (!state)
339 340
		return state;
	state->state = 0;
341
	state->failrec = NULL;
342
	RB_CLEAR_NODE(&state->rb_node);
343
	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
344
	refcount_set(&state->refs, 1);
345
	init_waitqueue_head(&state->wq);
346
	trace_alloc_extent_state(state, mask, _RET_IP_);
347 348 349
	return state;
}

350
void free_extent_state(struct extent_state *state)
351 352 353
{
	if (!state)
		return;
354
	if (refcount_dec_and_test(&state->refs)) {
355
		WARN_ON(extent_state_in_tree(state));
356
		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
357
		trace_free_extent_state(state, _RET_IP_);
358 359 360 361
		kmem_cache_free(extent_state_cache, state);
	}
}

362 363 364
static struct rb_node *tree_insert(struct rb_root *root,
				   struct rb_node *search_start,
				   u64 offset,
365 366 367
				   struct rb_node *node,
				   struct rb_node ***p_in,
				   struct rb_node **parent_in)
368
{
369
	struct rb_node **p;
C
Chris Mason 已提交
370
	struct rb_node *parent = NULL;
371 372
	struct tree_entry *entry;

373 374 375 376 377 378
	if (p_in && parent_in) {
		p = *p_in;
		parent = *parent_in;
		goto do_insert;
	}

379
	p = search_start ? &search_start : &root->rb_node;
C
Chris Mason 已提交
380
	while (*p) {
381 382 383 384 385 386 387 388 389 390 391
		parent = *p;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (offset < entry->start)
			p = &(*p)->rb_left;
		else if (offset > entry->end)
			p = &(*p)->rb_right;
		else
			return parent;
	}

392
do_insert:
393 394 395 396 397
	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
	return NULL;
}

N
Nikolay Borisov 已提交
398
/**
399 400
 * Search @tree for an entry that contains @offset. Such entry would have
 * entry->start <= offset && entry->end >= offset.
N
Nikolay Borisov 已提交
401
 *
402 403 404 405 406 407 408
 * @tree:       the tree to search
 * @offset:     offset that should fall within an entry in @tree
 * @next_ret:   pointer to the first entry whose range ends after @offset
 * @prev_ret:   pointer to the first entry whose range begins before @offset
 * @p_ret:      pointer where new node should be anchored (used when inserting an
 *	        entry in the tree)
 * @parent_ret: points to entry which would have been the parent of the entry,
N
Nikolay Borisov 已提交
409 410 411 412 413 414 415
 *               containing @offset
 *
 * This function returns a pointer to the entry that contains @offset byte
 * address. If no such entry exists, then NULL is returned and the other
 * pointer arguments to the function are filled, otherwise the found entry is
 * returned and other pointers are left untouched.
 */
416
static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
417
				      struct rb_node **next_ret,
418
				      struct rb_node **prev_ret,
419 420
				      struct rb_node ***p_ret,
				      struct rb_node **parent_ret)
421
{
422
	struct rb_root *root = &tree->state;
423
	struct rb_node **n = &root->rb_node;
424 425 426 427 428
	struct rb_node *prev = NULL;
	struct rb_node *orig_prev = NULL;
	struct tree_entry *entry;
	struct tree_entry *prev_entry = NULL;

429 430 431
	while (*n) {
		prev = *n;
		entry = rb_entry(prev, struct tree_entry, rb_node);
432 433 434
		prev_entry = entry;

		if (offset < entry->start)
435
			n = &(*n)->rb_left;
436
		else if (offset > entry->end)
437
			n = &(*n)->rb_right;
C
Chris Mason 已提交
438
		else
439
			return *n;
440 441
	}

442 443 444 445 446
	if (p_ret)
		*p_ret = n;
	if (parent_ret)
		*parent_ret = prev;

447
	if (next_ret) {
448
		orig_prev = prev;
C
Chris Mason 已提交
449
		while (prev && offset > prev_entry->end) {
450 451 452
			prev = rb_next(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
453
		*next_ret = prev;
454 455 456
		prev = orig_prev;
	}

457
	if (prev_ret) {
458
		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
C
Chris Mason 已提交
459
		while (prev && offset < prev_entry->start) {
460 461 462
			prev = rb_prev(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
463
		*prev_ret = prev;
464 465 466 467
	}
	return NULL;
}

468 469 470 471 472
static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree *tree,
		       u64 offset,
		       struct rb_node ***p_ret,
		       struct rb_node **parent_ret)
473
{
474
	struct rb_node *next= NULL;
475
	struct rb_node *ret;
476

477
	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
C
Chris Mason 已提交
478
	if (!ret)
479
		return next;
480 481 482
	return ret;
}

483 484 485 486 487 488
static inline struct rb_node *tree_search(struct extent_io_tree *tree,
					  u64 offset)
{
	return tree_search_for_insert(tree, offset, NULL, NULL);
}

489 490 491 492 493 494 495 496 497
/*
 * utility function to look for merge candidates inside a given range.
 * Any extents with matching state are merged together into a single
 * extent in the tree.  Extents with EXTENT_IO in their state field
 * are not merged because the end_io handlers need to be able to do
 * operations on them without sleeping (or doing allocations/splits).
 *
 * This should be called with the tree lock held.
 */
498 499
static void merge_state(struct extent_io_tree *tree,
		        struct extent_state *state)
500 501 502 503
{
	struct extent_state *other;
	struct rb_node *other_node;

N
Nikolay Borisov 已提交
504
	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
505
		return;
506 507 508 509 510 511

	other_node = rb_prev(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->end == state->start - 1 &&
		    other->state == state->state) {
512 513 514 515
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
516 517
			state->start = other->start;
			rb_erase(&other->rb_node, &tree->state);
518
			RB_CLEAR_NODE(&other->rb_node);
519 520 521 522 523 524 525 526
			free_extent_state(other);
		}
	}
	other_node = rb_next(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->start == state->end + 1 &&
		    other->state == state->state) {
527 528 529 530
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
531 532
			state->end = other->end;
			rb_erase(&other->rb_node, &tree->state);
533
			RB_CLEAR_NODE(&other->rb_node);
534
			free_extent_state(other);
535 536 537 538
		}
	}
}

539
static void set_state_bits(struct extent_io_tree *tree,
540
			   struct extent_state *state, u32 *bits,
541
			   struct extent_changeset *changeset);
542

543 544 545 546 547 548 549 550 551 552 553 554
/*
 * insert an extent_state struct into the tree.  'bits' are set on the
 * struct before it is inserted.
 *
 * This may return -EEXIST if the extent is already there, in which case the
 * state struct is freed.
 *
 * The tree lock is not taken internally.  This is a utility function and
 * probably isn't what you want to call (see set/clear_extent_bit).
 */
static int insert_state(struct extent_io_tree *tree,
			struct extent_state *state, u64 start, u64 end,
555 556
			struct rb_node ***p,
			struct rb_node **parent,
557
			u32 *bits, struct extent_changeset *changeset)
558 559 560
{
	struct rb_node *node;

561 562 563 564 565
	if (end < start) {
		btrfs_err(tree->fs_info,
			"insert state: end < start %llu %llu", end, start);
		WARN_ON(1);
	}
566 567
	state->start = start;
	state->end = end;
J
Josef Bacik 已提交
568

569
	set_state_bits(tree, state, bits, changeset);
570

571
	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
572 573 574
	if (node) {
		struct extent_state *found;
		found = rb_entry(node, struct extent_state, rb_node);
575 576
		btrfs_err(tree->fs_info,
		       "found node %llu %llu on insert of %llu %llu",
577
		       found->start, found->end, start, end);
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
		return -EEXIST;
	}
	merge_state(tree, state);
	return 0;
}

/*
 * split a given extent state struct in two, inserting the preallocated
 * struct 'prealloc' as the newly created second half.  'split' indicates an
 * offset inside 'orig' where it should be split.
 *
 * Before calling,
 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 * are two extent state structs in the tree:
 * prealloc: [orig->start, split - 1]
 * orig: [ split, orig->end ]
 *
 * The tree locks are not taken by this function. They need to be held
 * by the caller.
 */
static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
		       struct extent_state *prealloc, u64 split)
{
	struct rb_node *node;
J
Josef Bacik 已提交
602

603 604
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_split_delalloc_extent(tree->private_data, orig, split);
J
Josef Bacik 已提交
605

606 607 608 609 610
	prealloc->start = orig->start;
	prealloc->end = split - 1;
	prealloc->state = orig->state;
	orig->start = split;

611 612
	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
			   &prealloc->rb_node, NULL, NULL);
613 614 615 616 617 618 619
	if (node) {
		free_extent_state(prealloc);
		return -EEXIST;
	}
	return 0;
}

620 621 622 623 624 625 626 627 628
static struct extent_state *next_state(struct extent_state *state)
{
	struct rb_node *next = rb_next(&state->rb_node);
	if (next)
		return rb_entry(next, struct extent_state, rb_node);
	else
		return NULL;
}

629 630
/*
 * utility function to clear some bits in an extent state struct.
631
 * it will optionally wake up anyone waiting on this state (wake == 1).
632 633 634 635
 *
 * If no bits are set on the state struct after clearing things, the
 * struct is freed and removed from the tree
 */
636 637
static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
					    struct extent_state *state,
638
					    u32 *bits, int wake,
639
					    struct extent_changeset *changeset)
640
{
641
	struct extent_state *next;
642
	u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
643
	int ret;
644

645
	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
646 647 648 649
		u64 range = state->end - state->start + 1;
		WARN_ON(range > tree->dirty_bytes);
		tree->dirty_bytes -= range;
	}
650 651 652 653

	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_clear_delalloc_extent(tree->private_data, state, bits);

654 655
	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
	BUG_ON(ret < 0);
656
	state->state &= ~bits_to_clear;
657 658
	if (wake)
		wake_up(&state->wq);
659
	if (state->state == 0) {
660
		next = next_state(state);
661
		if (extent_state_in_tree(state)) {
662
			rb_erase(&state->rb_node, &tree->state);
663
			RB_CLEAR_NODE(&state->rb_node);
664 665 666 667 668 669
			free_extent_state(state);
		} else {
			WARN_ON(1);
		}
	} else {
		merge_state(tree, state);
670
		next = next_state(state);
671
	}
672
	return next;
673 674
}

675 676 677 678 679 680 681 682 683
static struct extent_state *
alloc_extent_state_atomic(struct extent_state *prealloc)
{
	if (!prealloc)
		prealloc = alloc_extent_state(GFP_ATOMIC);

	return prealloc;
}

684
static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
685
{
686
	btrfs_panic(tree->fs_info, err,
687
	"locking error: extent tree was modified by another thread while locked");
688 689
}

690 691 692 693 694 695 696 697 698 699
/*
 * clear some bits on a range in the tree.  This may require splitting
 * or inserting elements in the tree, so the gfp mask is used to
 * indicate which allocations or sleeping are allowed.
 *
 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 * the given range from the tree regardless of state (ie for truncate).
 *
 * the range [start, end] is inclusive.
 *
700
 * This takes the tree lock, and returns 0 on success and < 0 on error.
701
 */
702
int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
703 704 705
		       u32 bits, int wake, int delete,
		       struct extent_state **cached_state,
		       gfp_t mask, struct extent_changeset *changeset)
706 707
{
	struct extent_state *state;
708
	struct extent_state *cached;
709 710
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
711
	u64 last_end;
712
	int err;
713
	int clear = 0;
714

715
	btrfs_debug_check_extent_io_range(tree, start, end);
716
	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
717

718 719 720
	if (bits & EXTENT_DELALLOC)
		bits |= EXTENT_NORESERVE;

721 722 723
	if (delete)
		bits |= ~EXTENT_CTLBITS;

N
Nikolay Borisov 已提交
724
	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
725
		clear = 1;
726
again:
727
	if (!prealloc && gfpflags_allow_blocking(mask)) {
728 729 730 731 732 733 734
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
735 736 737
		prealloc = alloc_extent_state(mask);
	}

738
	spin_lock(&tree->lock);
739 740
	if (cached_state) {
		cached = *cached_state;
741 742 743 744 745 746

		if (clear) {
			*cached_state = NULL;
			cached_state = NULL;
		}

747 748
		if (cached && extent_state_in_tree(cached) &&
		    cached->start <= start && cached->end > start) {
749
			if (clear)
750
				refcount_dec(&cached->refs);
751
			state = cached;
752
			goto hit_next;
753
		}
754 755
		if (clear)
			free_extent_state(cached);
756
	}
757 758 759 760
	/*
	 * this search will find the extents that end after
	 * our range starts
	 */
761
	node = tree_search(tree, start);
762 763 764
	if (!node)
		goto out;
	state = rb_entry(node, struct extent_state, rb_node);
765
hit_next:
766 767 768
	if (state->start > end)
		goto out;
	WARN_ON(state->end < start);
769
	last_end = state->end;
770

771
	/* the state doesn't have the wanted bits, go ahead */
772 773
	if (!(state->state & bits)) {
		state = next_state(state);
774
		goto next;
775
	}
776

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
	/*
	 *     | ---- desired range ---- |
	 *  | state | or
	 *  | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip
	 * bits on second half.
	 *
	 * If the extent we found extends past our range, we
	 * just split and search again.  It'll get split again
	 * the next time though.
	 *
	 * If the extent we found is inside our range, we clear
	 * the desired bit on it.
	 */

	if (state->start < start) {
794 795
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
796
		err = split_state(tree, state, prealloc, start);
797 798 799
		if (err)
			extent_io_tree_panic(tree, err);

800 801 802 803
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
804 805
			state = clear_state_bit(tree, state, &bits, wake,
						changeset);
806
			goto next;
807 808 809 810 811 812 813 814 815 816
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and clear the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
817 818
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
819
		err = split_state(tree, state, prealloc, end + 1);
820 821 822
		if (err)
			extent_io_tree_panic(tree, err);

823 824
		if (wake)
			wake_up(&state->wq);
825

826
		clear_state_bit(tree, prealloc, &bits, wake, changeset);
J
Josef Bacik 已提交
827

828 829 830
		prealloc = NULL;
		goto out;
	}
831

832
	state = clear_state_bit(tree, state, &bits, wake, changeset);
833
next:
834 835 836
	if (last_end == (u64)-1)
		goto out;
	start = last_end + 1;
837
	if (start <= end && state && !need_resched())
838
		goto hit_next;
839 840 841 842

search_again:
	if (start > end)
		goto out;
843
	spin_unlock(&tree->lock);
844
	if (gfpflags_allow_blocking(mask))
845 846
		cond_resched();
	goto again;
847 848 849 850 851 852 853 854

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return 0;

855 856
}

857 858
static void wait_on_state(struct extent_io_tree *tree,
			  struct extent_state *state)
859 860
		__releases(tree->lock)
		__acquires(tree->lock)
861 862 863
{
	DEFINE_WAIT(wait);
	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
864
	spin_unlock(&tree->lock);
865
	schedule();
866
	spin_lock(&tree->lock);
867 868 869 870 871 872 873 874
	finish_wait(&state->wq, &wait);
}

/*
 * waits for one or more bits to clear on a range in the state tree.
 * The range [start, end] is inclusive.
 * The tree lock is taken by this function
 */
875
static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
876
			    u32 bits)
877 878 879 880
{
	struct extent_state *state;
	struct rb_node *node;

881
	btrfs_debug_check_extent_io_range(tree, start, end);
882

883
	spin_lock(&tree->lock);
884 885 886 887 888 889
again:
	while (1) {
		/*
		 * this search will find all the extents that end after
		 * our range starts
		 */
890
		node = tree_search(tree, start);
891
process_node:
892 893 894 895 896 897 898 899 900 901
		if (!node)
			break;

		state = rb_entry(node, struct extent_state, rb_node);

		if (state->start > end)
			goto out;

		if (state->state & bits) {
			start = state->start;
902
			refcount_inc(&state->refs);
903 904 905 906 907 908 909 910 911
			wait_on_state(tree, state);
			free_extent_state(state);
			goto again;
		}
		start = state->end + 1;

		if (start > end)
			break;

912 913 914 915
		if (!cond_resched_lock(&tree->lock)) {
			node = rb_next(node);
			goto process_node;
		}
916 917
	}
out:
918
	spin_unlock(&tree->lock);
919 920
}

921
static void set_state_bits(struct extent_io_tree *tree,
922
			   struct extent_state *state,
923
			   u32 *bits, struct extent_changeset *changeset)
924
{
925
	u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
926
	int ret;
J
Josef Bacik 已提交
927

928 929 930
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_set_delalloc_extent(tree->private_data, state, bits);

931
	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
932 933 934
		u64 range = state->end - state->start + 1;
		tree->dirty_bytes += range;
	}
935 936
	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
	BUG_ON(ret < 0);
937
	state->state |= bits_to_set;
938 939
}

940 941
static void cache_state_if_flags(struct extent_state *state,
				 struct extent_state **cached_ptr,
942
				 unsigned flags)
943 944
{
	if (cached_ptr && !(*cached_ptr)) {
945
		if (!flags || (state->state & flags)) {
946
			*cached_ptr = state;
947
			refcount_inc(&state->refs);
948 949 950 951
		}
	}
}

952 953 954 955
static void cache_state(struct extent_state *state,
			struct extent_state **cached_ptr)
{
	return cache_state_if_flags(state, cached_ptr,
N
Nikolay Borisov 已提交
956
				    EXTENT_LOCKED | EXTENT_BOUNDARY);
957 958
}

959
/*
960 961
 * set some bits on a range in the tree.  This may require allocations or
 * sleeping, so the gfp mask is used to indicate what is allowed.
962
 *
963 964 965
 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 * part of the range already has the desired bits set.  The start of the
 * existing range is returned in failed_start in this case.
966
 *
967
 * [start, end] is inclusive This takes the tree lock.
968
 */
969 970
int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
		   u32 exclusive_bits, u64 *failed_start,
971 972
		   struct extent_state **cached_state, gfp_t mask,
		   struct extent_changeset *changeset)
973 974 975 976
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
977 978
	struct rb_node **p;
	struct rb_node *parent;
979 980 981
	int err = 0;
	u64 last_start;
	u64 last_end;
982

983
	btrfs_debug_check_extent_io_range(tree, start, end);
984
	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
985

986 987 988 989
	if (exclusive_bits)
		ASSERT(failed_start);
	else
		ASSERT(failed_start == NULL);
990
again:
991
	if (!prealloc && gfpflags_allow_blocking(mask)) {
992 993 994 995 996 997 998
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
999 1000 1001
		prealloc = alloc_extent_state(mask);
	}

1002
	spin_lock(&tree->lock);
1003 1004
	if (cached_state && *cached_state) {
		state = *cached_state;
1005
		if (state->start <= start && state->end > start &&
1006
		    extent_state_in_tree(state)) {
1007 1008 1009 1010
			node = &state->rb_node;
			goto hit_next;
		}
	}
1011 1012 1013 1014
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1015
	node = tree_search_for_insert(tree, start, &p, &parent);
1016
	if (!node) {
1017 1018
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1019
		err = insert_state(tree, prealloc, start, end,
1020
				   &p, &parent, &bits, changeset);
1021 1022 1023
		if (err)
			extent_io_tree_panic(tree, err);

1024
		cache_state(prealloc, cached_state);
1025 1026 1027 1028
		prealloc = NULL;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1029
hit_next:
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1040
		if (state->state & exclusive_bits) {
1041 1042 1043 1044
			*failed_start = state->start;
			err = -EEXIST;
			goto out;
		}
1045

1046
		set_state_bits(tree, state, &bits, changeset);
1047
		cache_state(state, cached_state);
1048
		merge_state(tree, state);
1049 1050 1051
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1052 1053 1054 1055
		state = next_state(state);
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
1076
		if (state->state & exclusive_bits) {
1077 1078 1079 1080
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1081

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
		/*
		 * If this extent already has all the bits we want set, then
		 * skip it, not necessary to split it or do anything with it.
		 */
		if ((state->state & bits) == bits) {
			start = state->end + 1;
			cache_state(state, cached_state);
			goto search_again;
		}

1092 1093
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1094
		err = split_state(tree, state, prealloc, start);
1095 1096 1097
		if (err)
			extent_io_tree_panic(tree, err);

1098 1099 1100 1101
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1102
			set_state_bits(tree, state, &bits, changeset);
1103
			cache_state(state, cached_state);
1104
			merge_state(tree, state);
1105 1106 1107
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1108 1109 1110 1111
			state = next_state(state);
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
C
Chris Mason 已提交
1127
			this_end = last_start - 1;
1128 1129 1130

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1131 1132 1133 1134 1135

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
1136
		err = insert_state(tree, prealloc, start, this_end,
1137
				   NULL, NULL, &bits, changeset);
1138 1139 1140
		if (err)
			extent_io_tree_panic(tree, err);

J
Josef Bacik 已提交
1141 1142
		cache_state(prealloc, cached_state);
		prealloc = NULL;
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
1153
		if (state->state & exclusive_bits) {
1154 1155 1156 1157
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1158 1159 1160

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1161
		err = split_state(tree, state, prealloc, end + 1);
1162 1163
		if (err)
			extent_io_tree_panic(tree, err);
1164

1165
		set_state_bits(tree, prealloc, &bits, changeset);
1166
		cache_state(prealloc, cached_state);
1167 1168 1169 1170 1171
		merge_state(tree, prealloc);
		prealloc = NULL;
		goto out;
	}

1172 1173 1174 1175 1176 1177 1178
search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
	if (gfpflags_allow_blocking(mask))
		cond_resched();
	goto again;
1179 1180

out:
1181
	spin_unlock(&tree->lock);
1182 1183 1184 1185 1186 1187 1188
	if (prealloc)
		free_extent_state(prealloc);

	return err;

}

J
Josef Bacik 已提交
1189
/**
L
Liu Bo 已提交
1190 1191
 * convert_extent_bit - convert all bits in a given range from one bit to
 * 			another
J
Josef Bacik 已提交
1192 1193 1194 1195 1196
 * @tree:	the io tree to search
 * @start:	the start offset in bytes
 * @end:	the end offset in bytes (inclusive)
 * @bits:	the bits to set in this range
 * @clear_bits:	the bits to clear in this range
1197
 * @cached_state:	state that we're going to cache
J
Josef Bacik 已提交
1198 1199 1200 1201 1202 1203
 *
 * This will go through and set bits for the given range.  If any states exist
 * already in this range they are set with the given bit and cleared of the
 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 * boundary bits like LOCK.
1204 1205
 *
 * All allocations are done with GFP_NOFS.
J
Josef Bacik 已提交
1206 1207
 */
int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1208
		       u32 bits, u32 clear_bits,
1209
		       struct extent_state **cached_state)
J
Josef Bacik 已提交
1210 1211 1212 1213
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
1214 1215
	struct rb_node **p;
	struct rb_node *parent;
J
Josef Bacik 已提交
1216 1217 1218
	int err = 0;
	u64 last_start;
	u64 last_end;
1219
	bool first_iteration = true;
J
Josef Bacik 已提交
1220

1221
	btrfs_debug_check_extent_io_range(tree, start, end);
1222 1223
	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
				       clear_bits);
1224

J
Josef Bacik 已提交
1225
again:
1226
	if (!prealloc) {
1227 1228 1229 1230 1231 1232 1233
		/*
		 * Best effort, don't worry if extent state allocation fails
		 * here for the first iteration. We might have a cached state
		 * that matches exactly the target range, in which case no
		 * extent state allocations are needed. We'll only know this
		 * after locking the tree.
		 */
1234
		prealloc = alloc_extent_state(GFP_NOFS);
1235
		if (!prealloc && !first_iteration)
J
Josef Bacik 已提交
1236 1237 1238 1239
			return -ENOMEM;
	}

	spin_lock(&tree->lock);
1240 1241 1242
	if (cached_state && *cached_state) {
		state = *cached_state;
		if (state->start <= start && state->end > start &&
1243
		    extent_state_in_tree(state)) {
1244 1245 1246 1247 1248
			node = &state->rb_node;
			goto hit_next;
		}
	}

J
Josef Bacik 已提交
1249 1250 1251 1252
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1253
	node = tree_search_for_insert(tree, start, &p, &parent);
J
Josef Bacik 已提交
1254 1255
	if (!node) {
		prealloc = alloc_extent_state_atomic(prealloc);
1256 1257 1258 1259
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
1260
		err = insert_state(tree, prealloc, start, end,
1261
				   &p, &parent, &bits, NULL);
1262 1263
		if (err)
			extent_io_tree_panic(tree, err);
1264 1265
		cache_state(prealloc, cached_state);
		prealloc = NULL;
J
Josef Bacik 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
hit_next:
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1280
		set_state_bits(tree, state, &bits, NULL);
1281
		cache_state(state, cached_state);
1282
		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1283 1284 1285
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1286 1287 1288
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
J
Josef Bacik 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
		prealloc = alloc_extent_state_atomic(prealloc);
1310 1311 1312 1313
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1314
		err = split_state(tree, state, prealloc, start);
1315 1316
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1317 1318 1319 1320
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1321
			set_state_bits(tree, state, &bits, NULL);
1322
			cache_state(state, cached_state);
1323 1324
			state = clear_state_bit(tree, state, &clear_bits, 0,
						NULL);
J
Josef Bacik 已提交
1325 1326 1327
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1328 1329 1330
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
J
Josef Bacik 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
			this_end = last_start - 1;

		prealloc = alloc_extent_state_atomic(prealloc);
1349 1350 1351 1352
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1353 1354 1355 1356 1357 1358

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
		err = insert_state(tree, prealloc, start, this_end,
1359
				   NULL, NULL, &bits, NULL);
1360 1361
		if (err)
			extent_io_tree_panic(tree, err);
1362
		cache_state(prealloc, cached_state);
J
Josef Bacik 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
		prealloc = NULL;
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
		prealloc = alloc_extent_state_atomic(prealloc);
1375 1376 1377 1378
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1379 1380

		err = split_state(tree, state, prealloc, end + 1);
1381 1382
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1383

1384
		set_state_bits(tree, prealloc, &bits, NULL);
1385
		cache_state(prealloc, cached_state);
1386
		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1387 1388 1389 1390 1391 1392 1393 1394
		prealloc = NULL;
		goto out;
	}

search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
1395
	cond_resched();
1396
	first_iteration = false;
J
Josef Bacik 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	goto again;

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return err;
}

1407
/* wrappers around set/clear extent bit */
1408
int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1409
			   u32 bits, struct extent_changeset *changeset)
1410 1411 1412 1413 1414 1415 1416 1417 1418
{
	/*
	 * We don't support EXTENT_LOCKED yet, as current changeset will
	 * record any bits changed, so for EXTENT_LOCKED case, it will
	 * either fail with -EEXIST or changeset will record the whole
	 * range.
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1419 1420
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
			      changeset);
1421 1422
}

1423
int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1424
			   u32 bits)
1425
{
1426 1427
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
			      GFP_NOWAIT, NULL);
1428 1429
}

1430
int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1431
		     u32 bits, int wake, int delete,
1432
		     struct extent_state **cached)
1433 1434
{
	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1435
				  cached, GFP_NOFS, NULL);
1436 1437 1438
}

int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1439
		u32 bits, struct extent_changeset *changeset)
1440 1441 1442 1443 1444 1445 1446
{
	/*
	 * Don't support EXTENT_LOCKED case, same reason as
	 * set_record_extent_bits().
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1447
	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1448 1449 1450
				  changeset);
}

C
Chris Mason 已提交
1451 1452 1453 1454
/*
 * either insert or lock state struct between start and end use mask to tell
 * us if waiting is desired.
 */
1455
int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1456
		     struct extent_state **cached_state)
1457 1458 1459
{
	int err;
	u64 failed_start;
1460

1461
	while (1) {
1462 1463 1464
		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
				     EXTENT_LOCKED, &failed_start,
				     cached_state, GFP_NOFS, NULL);
1465
		if (err == -EEXIST) {
1466 1467
			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
			start = failed_start;
1468
		} else
1469 1470 1471 1472 1473 1474
			break;
		WARN_ON(start > end);
	}
	return err;
}

1475
int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1476 1477 1478 1479
{
	int err;
	u64 failed_start;

1480 1481
	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
			     &failed_start, NULL, GFP_NOFS, NULL);
Y
Yan Zheng 已提交
1482 1483 1484
	if (err == -EEXIST) {
		if (failed_start > start)
			clear_extent_bit(tree, start, failed_start - 1,
1485
					 EXTENT_LOCKED, 1, 0, NULL);
1486
		return 0;
Y
Yan Zheng 已提交
1487
	}
1488 1489 1490
	return 1;
}

1491
void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1492
{
1493 1494
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1495 1496 1497 1498 1499 1500
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		clear_page_dirty_for_io(page);
1501
		put_page(page);
1502 1503 1504 1505
		index++;
	}
}

1506
void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1507
{
1508 1509
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1510 1511 1512 1513 1514 1515
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		__set_page_dirty_nobuffers(page);
1516
		account_page_redirty(page);
1517
		put_page(page);
1518 1519 1520 1521
		index++;
	}
}

C
Chris Mason 已提交
1522 1523 1524 1525
/* find the first state struct with 'bits' set after 'start', and
 * return it.  tree->lock must be held.  NULL will returned if
 * nothing was found after 'start'
 */
1526
static struct extent_state *
1527
find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
C
Chris Mason 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536
{
	struct rb_node *node;
	struct extent_state *state;

	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
	node = tree_search(tree, start);
C
Chris Mason 已提交
1537
	if (!node)
C
Chris Mason 已提交
1538 1539
		goto out;

C
Chris Mason 已提交
1540
	while (1) {
C
Chris Mason 已提交
1541
		state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1542
		if (state->end >= start && (state->state & bits))
C
Chris Mason 已提交
1543
			return state;
C
Chris Mason 已提交
1544

C
Chris Mason 已提交
1545 1546 1547 1548 1549 1550 1551 1552
		node = rb_next(node);
		if (!node)
			break;
	}
out:
	return NULL;
}

1553
/*
1554
 * Find the first offset in the io tree with one or more @bits set.
1555
 *
1556 1557 1558 1559
 * Note: If there are multiple bits set in @bits, any of them will match.
 *
 * Return 0 if we find something, and update @start_ret and @end_ret.
 * Return 1 if we found nothing.
1560 1561
 */
int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1562
			  u64 *start_ret, u64 *end_ret, u32 bits,
1563
			  struct extent_state **cached_state)
1564 1565 1566 1567 1568
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
1569 1570
	if (cached_state && *cached_state) {
		state = *cached_state;
1571
		if (state->end == start - 1 && extent_state_in_tree(state)) {
1572
			while ((state = next_state(state)) != NULL) {
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
				if (state->state & bits)
					goto got_it;
			}
			free_extent_state(*cached_state);
			*cached_state = NULL;
			goto out;
		}
		free_extent_state(*cached_state);
		*cached_state = NULL;
	}

1584
	state = find_first_extent_bit_state(tree, start, bits);
1585
got_it:
1586
	if (state) {
1587
		cache_state_if_flags(state, cached_state, 0);
1588 1589 1590 1591
		*start_ret = state->start;
		*end_ret = state->end;
		ret = 0;
	}
1592
out:
1593 1594 1595 1596
	spin_unlock(&tree->lock);
	return ret;
}

1597
/**
1598 1599 1600 1601 1602 1603 1604
 * Find a contiguous area of bits
 *
 * @tree:      io tree to check
 * @start:     offset to start the search from
 * @start_ret: the first offset we found with the bits set
 * @end_ret:   the final contiguous range of the bits that were set
 * @bits:      bits to look for
1605 1606 1607 1608 1609 1610 1611 1612 1613
 *
 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
 * to set bits appropriately, and then merge them again.  During this time it
 * will drop the tree->lock, so use this helper if you want to find the actual
 * contiguous area for given bits.  We will search to the first bit we find, and
 * then walk down the tree until we find a non-contiguous area.  The area
 * returned will be the full contiguous area with the bits set.
 */
int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1614
			       u64 *start_ret, u64 *end_ret, u32 bits)
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
	state = find_first_extent_bit_state(tree, start, bits);
	if (state) {
		*start_ret = state->start;
		*end_ret = state->end;
		while ((state = next_state(state)) != NULL) {
			if (state->start > (*end_ret + 1))
				break;
			*end_ret = state->end;
		}
		ret = 0;
	}
	spin_unlock(&tree->lock);
	return ret;
}

1635
/**
1636 1637
 * Find the first range that has @bits not set. This range could start before
 * @start.
1638
 *
1639 1640 1641 1642 1643
 * @tree:      the tree to search
 * @start:     offset at/after which the found extent should start
 * @start_ret: records the beginning of the range
 * @end_ret:   records the end of the range (inclusive)
 * @bits:      the set of bits which must be unset
1644 1645 1646 1647 1648 1649 1650
 *
 * Since unallocated range is also considered one which doesn't have the bits
 * set it's possible that @end_ret contains -1, this happens in case the range
 * spans (last_range_end, end of device]. In this case it's up to the caller to
 * trim @end_ret to the appropriate size.
 */
void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1651
				 u64 *start_ret, u64 *end_ret, u32 bits)
1652 1653 1654 1655 1656 1657 1658 1659 1660
{
	struct extent_state *state;
	struct rb_node *node, *prev = NULL, *next;

	spin_lock(&tree->lock);

	/* Find first extent with bits cleared */
	while (1) {
		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
		if (!node && !next && !prev) {
			/*
			 * Tree is completely empty, send full range and let
			 * caller deal with it
			 */
			*start_ret = 0;
			*end_ret = -1;
			goto out;
		} else if (!node && !next) {
			/*
			 * We are past the last allocated chunk, set start at
			 * the end of the last extent.
			 */
			state = rb_entry(prev, struct extent_state, rb_node);
			*start_ret = state->end + 1;
			*end_ret = -1;
			goto out;
		} else if (!node) {
1679 1680
			node = next;
		}
1681 1682 1683 1684
		/*
		 * At this point 'node' either contains 'start' or start is
		 * before 'node'
		 */
1685
		state = rb_entry(node, struct extent_state, rb_node);
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707

		if (in_range(start, state->start, state->end - state->start + 1)) {
			if (state->state & bits) {
				/*
				 * |--range with bits sets--|
				 *    |
				 *    start
				 */
				start = state->end + 1;
			} else {
				/*
				 * 'start' falls within a range that doesn't
				 * have the bits set, so take its start as
				 * the beginning of the desired range
				 *
				 * |--range with bits cleared----|
				 *      |
				 *      start
				 */
				*start_ret = state->start;
				break;
			}
1708
		} else {
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
			/*
			 * |---prev range---|---hole/unset---|---node range---|
			 *                          |
			 *                        start
			 *
			 *                        or
			 *
			 * |---hole/unset--||--first node--|
			 * 0   |
			 *    start
			 */
			if (prev) {
				state = rb_entry(prev, struct extent_state,
						 rb_node);
				*start_ret = state->end + 1;
			} else {
				*start_ret = 0;
			}
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
			break;
		}
	}

	/*
	 * Find the longest stretch from start until an entry which has the
	 * bits set
	 */
	while (1) {
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->end >= start && !(state->state & bits)) {
			*end_ret = state->end;
		} else {
			*end_ret = state->start - 1;
			break;
		}

		node = rb_next(node);
		if (!node)
			break;
	}
out:
	spin_unlock(&tree->lock);
}

C
Chris Mason 已提交
1752 1753 1754 1755
/*
 * find a contiguous range of bytes in the file marked as delalloc, not
 * more than 'max_bytes'.  start and end are used to return the range,
 *
1756
 * true is returned if we find something, false if nothing was in the tree
C
Chris Mason 已提交
1757
 */
J
Josef Bacik 已提交
1758 1759 1760
bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
			       u64 *end, u64 max_bytes,
			       struct extent_state **cached_state)
1761 1762 1763 1764
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
1765
	bool found = false;
1766 1767
	u64 total_bytes = 0;

1768
	spin_lock(&tree->lock);
C
Chris Mason 已提交
1769

1770 1771 1772 1773
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1774
	node = tree_search(tree, cur_start);
1775
	if (!node) {
1776
		*end = (u64)-1;
1777 1778 1779
		goto out;
	}

C
Chris Mason 已提交
1780
	while (1) {
1781
		state = rb_entry(node, struct extent_state, rb_node);
1782 1783
		if (found && (state->start != cur_start ||
			      (state->state & EXTENT_BOUNDARY))) {
1784 1785 1786 1787 1788 1789 1790
			goto out;
		}
		if (!(state->state & EXTENT_DELALLOC)) {
			if (!found)
				*end = state->end;
			goto out;
		}
1791
		if (!found) {
1792
			*start = state->start;
1793
			*cached_state = state;
1794
			refcount_inc(&state->refs);
1795
		}
1796
		found = true;
1797 1798 1799 1800
		*end = state->end;
		cur_start = state->end + 1;
		node = rb_next(node);
		total_bytes += state->end - state->start + 1;
1801
		if (total_bytes >= max_bytes)
1802 1803
			break;
		if (!node)
1804 1805 1806
			break;
	}
out:
1807
	spin_unlock(&tree->lock);
1808 1809 1810
	return found;
}

1811 1812 1813 1814 1815 1816 1817 1818
/*
 * Process one page for __process_pages_contig().
 *
 * Return >0 if we hit @page == @locked_page.
 * Return 0 if we updated the page status.
 * Return -EGAIN if the we need to try again.
 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
 */
1819 1820
static int process_one_page(struct btrfs_fs_info *fs_info,
			    struct address_space *mapping,
1821
			    struct page *page, struct page *locked_page,
1822
			    unsigned long page_ops, u64 start, u64 end)
1823
{
1824 1825 1826 1827 1828
	u32 len;

	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
	len = end + 1 - start;

1829
	if (page_ops & PAGE_SET_ORDERED)
1830
		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1831
	if (page_ops & PAGE_SET_ERROR)
1832
		btrfs_page_clamp_set_error(fs_info, page, start, len);
1833
	if (page_ops & PAGE_START_WRITEBACK) {
1834 1835
		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1836 1837
	}
	if (page_ops & PAGE_END_WRITEBACK)
1838
		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1839 1840 1841 1842

	if (page == locked_page)
		return 1;

1843
	if (page_ops & PAGE_LOCK) {
1844 1845 1846 1847 1848
		int ret;

		ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
		if (ret)
			return ret;
1849
		if (!PageDirty(page) || page->mapping != mapping) {
1850
			btrfs_page_end_writer_lock(fs_info, page, start, len);
1851 1852 1853 1854
			return -EAGAIN;
		}
	}
	if (page_ops & PAGE_UNLOCK)
1855
		btrfs_page_end_writer_lock(fs_info, page, start, len);
1856 1857 1858
	return 0;
}

1859 1860
static int __process_pages_contig(struct address_space *mapping,
				  struct page *locked_page,
1861
				  u64 start, u64 end, unsigned long page_ops,
1862 1863
				  u64 *processed_end)
{
1864
	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
	pgoff_t start_index = start >> PAGE_SHIFT;
	pgoff_t end_index = end >> PAGE_SHIFT;
	pgoff_t index = start_index;
	unsigned long nr_pages = end_index - start_index + 1;
	unsigned long pages_processed = 0;
	struct page *pages[16];
	int err = 0;
	int i;

	if (page_ops & PAGE_LOCK) {
		ASSERT(page_ops == PAGE_LOCK);
		ASSERT(processed_end && *processed_end == start);
	}

	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
		mapping_set_error(mapping, -EIO);

	while (nr_pages > 0) {
		int found_pages;

		found_pages = find_get_pages_contig(mapping, index,
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
		if (found_pages == 0) {
			/*
			 * Only if we're going to lock these pages, we can find
			 * nothing at @index.
			 */
			ASSERT(page_ops & PAGE_LOCK);
			err = -EAGAIN;
			goto out;
		}

		for (i = 0; i < found_pages; i++) {
			int process_ret;

1901 1902 1903
			process_ret = process_one_page(fs_info, mapping,
					pages[i], locked_page, page_ops,
					start, end);
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
			if (process_ret < 0) {
				for (; i < found_pages; i++)
					put_page(pages[i]);
				err = -EAGAIN;
				goto out;
			}
			put_page(pages[i]);
			pages_processed++;
		}
		nr_pages -= found_pages;
		index += found_pages;
		cond_resched();
	}
out:
	if (err && processed_end) {
		/*
		 * Update @processed_end. I know this is awful since it has
		 * two different return value patterns (inclusive vs exclusive).
		 *
		 * But the exclusive pattern is necessary if @start is 0, or we
		 * underflow and check against processed_end won't work as
		 * expected.
		 */
		if (pages_processed)
			*processed_end = min(end,
			((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
		else
			*processed_end = start;
	}
	return err;
}
1935

1936 1937 1938
static noinline void __unlock_for_delalloc(struct inode *inode,
					   struct page *locked_page,
					   u64 start, u64 end)
C
Chris Mason 已提交
1939
{
1940 1941
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
C
Chris Mason 已提交
1942

1943
	ASSERT(locked_page);
C
Chris Mason 已提交
1944
	if (index == locked_page->index && end_index == index)
1945
		return;
C
Chris Mason 已提交
1946

1947
	__process_pages_contig(inode->i_mapping, locked_page, start, end,
1948
			       PAGE_UNLOCK, NULL);
C
Chris Mason 已提交
1949 1950 1951 1952 1953 1954 1955
}

static noinline int lock_delalloc_pages(struct inode *inode,
					struct page *locked_page,
					u64 delalloc_start,
					u64 delalloc_end)
{
1956 1957
	unsigned long index = delalloc_start >> PAGE_SHIFT;
	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1958
	u64 processed_end = delalloc_start;
C
Chris Mason 已提交
1959 1960
	int ret;

1961
	ASSERT(locked_page);
C
Chris Mason 已提交
1962 1963 1964
	if (index == locked_page->index && index == end_index)
		return 0;

1965 1966 1967
	ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
				     delalloc_end, PAGE_LOCK, &processed_end);
	if (ret == -EAGAIN && processed_end > delalloc_start)
1968
		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1969
				      processed_end);
C
Chris Mason 已提交
1970 1971 1972 1973
	return ret;
}

/*
1974 1975
 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
 * more than @max_bytes.  @Start and @end are used to return the range,
C
Chris Mason 已提交
1976
 *
1977 1978
 * Return: true if we find something
 *         false if nothing was in the tree
C
Chris Mason 已提交
1979
 */
1980
EXPORT_FOR_TESTS
1981
noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1982
				    struct page *locked_page, u64 *start,
1983
				    u64 *end)
C
Chris Mason 已提交
1984
{
1985
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1986
	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
C
Chris Mason 已提交
1987 1988
	u64 delalloc_start;
	u64 delalloc_end;
1989
	bool found;
1990
	struct extent_state *cached_state = NULL;
C
Chris Mason 已提交
1991 1992 1993 1994 1995 1996 1997
	int ret;
	int loops = 0;

again:
	/* step one, find a bunch of delalloc bytes starting at start */
	delalloc_start = *start;
	delalloc_end = 0;
J
Josef Bacik 已提交
1998 1999
	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
					  max_bytes, &cached_state);
C
Chris Mason 已提交
2000
	if (!found || delalloc_end <= *start) {
C
Chris Mason 已提交
2001 2002
		*start = delalloc_start;
		*end = delalloc_end;
2003
		free_extent_state(cached_state);
2004
		return false;
C
Chris Mason 已提交
2005 2006
	}

C
Chris Mason 已提交
2007 2008 2009 2010 2011
	/*
	 * start comes from the offset of locked_page.  We have to lock
	 * pages in order, so we can't process delalloc bytes before
	 * locked_page
	 */
C
Chris Mason 已提交
2012
	if (delalloc_start < *start)
C
Chris Mason 已提交
2013 2014
		delalloc_start = *start;

C
Chris Mason 已提交
2015 2016 2017
	/*
	 * make sure to limit the number of pages we try to lock down
	 */
2018 2019
	if (delalloc_end + 1 - delalloc_start > max_bytes)
		delalloc_end = delalloc_start + max_bytes - 1;
C
Chris Mason 已提交
2020

C
Chris Mason 已提交
2021 2022 2023
	/* step two, lock all the pages after the page that has start */
	ret = lock_delalloc_pages(inode, locked_page,
				  delalloc_start, delalloc_end);
2024
	ASSERT(!ret || ret == -EAGAIN);
C
Chris Mason 已提交
2025 2026 2027 2028
	if (ret == -EAGAIN) {
		/* some of the pages are gone, lets avoid looping by
		 * shortening the size of the delalloc range we're searching
		 */
2029
		free_extent_state(cached_state);
2030
		cached_state = NULL;
C
Chris Mason 已提交
2031
		if (!loops) {
2032
			max_bytes = PAGE_SIZE;
C
Chris Mason 已提交
2033 2034 2035
			loops = 1;
			goto again;
		} else {
2036
			found = false;
C
Chris Mason 已提交
2037 2038 2039 2040 2041
			goto out_failed;
		}
	}

	/* step three, lock the state bits for the whole range */
2042
	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
C
Chris Mason 已提交
2043 2044 2045

	/* then test to make sure it is all still delalloc */
	ret = test_range_bit(tree, delalloc_start, delalloc_end,
2046
			     EXTENT_DELALLOC, 1, cached_state);
C
Chris Mason 已提交
2047
	if (!ret) {
2048
		unlock_extent_cached(tree, delalloc_start, delalloc_end,
2049
				     &cached_state);
C
Chris Mason 已提交
2050 2051 2052 2053 2054
		__unlock_for_delalloc(inode, locked_page,
			      delalloc_start, delalloc_end);
		cond_resched();
		goto again;
	}
2055
	free_extent_state(cached_state);
C
Chris Mason 已提交
2056 2057 2058 2059 2060 2061
	*start = delalloc_start;
	*end = delalloc_end;
out_failed:
	return found;
}

2062
void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2063
				  struct page *locked_page,
2064
				  u32 clear_bits, unsigned long page_ops)
2065
{
2066
	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2067

2068
	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2069
			       start, end, page_ops, NULL);
2070 2071
}

C
Chris Mason 已提交
2072 2073 2074 2075 2076
/*
 * count the number of bytes in the tree that have a given bit(s)
 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
 * cached.  The total number found is returned.
 */
2077 2078
u64 count_range_bits(struct extent_io_tree *tree,
		     u64 *start, u64 search_end, u64 max_bytes,
2079
		     u32 bits, int contig)
2080 2081 2082 2083 2084
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
	u64 total_bytes = 0;
2085
	u64 last = 0;
2086 2087
	int found = 0;

2088
	if (WARN_ON(search_end <= cur_start))
2089 2090
		return 0;

2091
	spin_lock(&tree->lock);
2092 2093 2094 2095 2096 2097 2098 2099
	if (cur_start == 0 && bits == EXTENT_DIRTY) {
		total_bytes = tree->dirty_bytes;
		goto out;
	}
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2100
	node = tree_search(tree, cur_start);
C
Chris Mason 已提交
2101
	if (!node)
2102 2103
		goto out;

C
Chris Mason 已提交
2104
	while (1) {
2105 2106 2107
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->start > search_end)
			break;
2108 2109 2110
		if (contig && found && state->start > last + 1)
			break;
		if (state->end >= cur_start && (state->state & bits) == bits) {
2111 2112 2113 2114 2115
			total_bytes += min(search_end, state->end) + 1 -
				       max(cur_start, state->start);
			if (total_bytes >= max_bytes)
				break;
			if (!found) {
2116
				*start = max(cur_start, state->start);
2117 2118
				found = 1;
			}
2119 2120 2121
			last = state->end;
		} else if (contig && found) {
			break;
2122 2123 2124 2125 2126 2127
		}
		node = rb_next(node);
		if (!node)
			break;
	}
out:
2128
	spin_unlock(&tree->lock);
2129 2130
	return total_bytes;
}
2131

C
Chris Mason 已提交
2132 2133 2134 2135
/*
 * set the private field for a given byte offset in the tree.  If there isn't
 * an extent_state there already, this does nothing.
 */
2136 2137
int set_state_failrec(struct extent_io_tree *tree, u64 start,
		      struct io_failure_record *failrec)
2138 2139 2140 2141 2142
{
	struct rb_node *node;
	struct extent_state *state;
	int ret = 0;

2143
	spin_lock(&tree->lock);
2144 2145 2146 2147
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2148
	node = tree_search(tree, start);
2149
	if (!node) {
2150 2151 2152 2153 2154 2155 2156 2157
		ret = -ENOENT;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
		ret = -ENOENT;
		goto out;
	}
2158
	state->failrec = failrec;
2159
out:
2160
	spin_unlock(&tree->lock);
2161 2162 2163
	return ret;
}

2164
struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2165 2166 2167
{
	struct rb_node *node;
	struct extent_state *state;
2168
	struct io_failure_record *failrec;
2169

2170
	spin_lock(&tree->lock);
2171 2172 2173 2174
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2175
	node = tree_search(tree, start);
2176
	if (!node) {
2177
		failrec = ERR_PTR(-ENOENT);
2178 2179 2180 2181
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
2182
		failrec = ERR_PTR(-ENOENT);
2183 2184
		goto out;
	}
2185 2186

	failrec = state->failrec;
2187
out:
2188
	spin_unlock(&tree->lock);
2189
	return failrec;
2190 2191 2192 2193
}

/*
 * searches a range in the state tree for a given mask.
2194
 * If 'filled' == 1, this returns 1 only if every extent in the tree
2195 2196 2197 2198
 * has the bits set.  Otherwise, 1 is returned if any bit in the
 * range is found set.
 */
int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2199
		   u32 bits, int filled, struct extent_state *cached)
2200 2201 2202 2203 2204
{
	struct extent_state *state = NULL;
	struct rb_node *node;
	int bitset = 0;

2205
	spin_lock(&tree->lock);
2206
	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2207
	    cached->end > start)
2208 2209 2210
		node = &cached->rb_node;
	else
		node = tree_search(tree, start);
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
	while (node && start <= end) {
		state = rb_entry(node, struct extent_state, rb_node);

		if (filled && state->start > start) {
			bitset = 0;
			break;
		}

		if (state->start > end)
			break;

		if (state->state & bits) {
			bitset = 1;
			if (!filled)
				break;
		} else if (filled) {
			bitset = 0;
			break;
		}
2230 2231 2232 2233

		if (state->end == (u64)-1)
			break;

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
		start = state->end + 1;
		if (start > end)
			break;
		node = rb_next(node);
		if (!node) {
			if (filled)
				bitset = 0;
			break;
		}
	}
2244
	spin_unlock(&tree->lock);
2245 2246 2247 2248 2249 2250 2251
	return bitset;
}

/*
 * helper function to set a given page up to date if all the
 * extents in the tree for that page are up to date
 */
2252
static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2253
{
M
Miao Xie 已提交
2254
	u64 start = page_offset(page);
2255
	u64 end = start + PAGE_SIZE - 1;
2256
	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2257 2258 2259
		SetPageUptodate(page);
}

2260 2261 2262
int free_io_failure(struct extent_io_tree *failure_tree,
		    struct extent_io_tree *io_tree,
		    struct io_failure_record *rec)
2263 2264 2265 2266
{
	int ret;
	int err = 0;

2267
	set_state_failrec(failure_tree, rec->start, NULL);
2268 2269
	ret = clear_extent_bits(failure_tree, rec->start,
				rec->start + rec->len - 1,
2270
				EXTENT_LOCKED | EXTENT_DIRTY);
2271 2272 2273
	if (ret)
		err = ret;

2274
	ret = clear_extent_bits(io_tree, rec->start,
D
David Woodhouse 已提交
2275
				rec->start + rec->len - 1,
2276
				EXTENT_DAMAGED);
D
David Woodhouse 已提交
2277 2278
	if (ret && !err)
		err = ret;
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288

	kfree(rec);
	return err;
}

/*
 * this bypasses the standard btrfs submit functions deliberately, as
 * the standard behavior is to write all copies in a raid setup. here we only
 * want to write the one bad copy. so we do the mapping for ourselves and issue
 * submit_bio directly.
2289
 * to avoid any synchronization issues, wait for the data after writing, which
2290 2291 2292 2293
 * actually prevents the read that triggered the error from finishing.
 * currently, there can be no more than two copies of every data bit. thus,
 * exactly one rewrite is required.
 */
2294 2295 2296
int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
		      u64 length, u64 logical, struct page *page,
		      unsigned int pg_offset, int mirror_num)
2297 2298 2299 2300 2301 2302 2303 2304
{
	struct bio *bio;
	struct btrfs_device *dev;
	u64 map_length = 0;
	u64 sector;
	struct btrfs_bio *bbio = NULL;
	int ret;

2305
	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2306 2307
	BUG_ON(!mirror_num);

2308 2309 2310
	if (btrfs_is_zoned(fs_info))
		return btrfs_repair_one_zone(fs_info, logical);

2311
	bio = btrfs_io_bio_alloc(1);
2312
	bio->bi_iter.bi_size = 0;
2313 2314
	map_length = length;

2315 2316 2317 2318 2319 2320
	/*
	 * Avoid races with device replace and make sure our bbio has devices
	 * associated to its stripes that don't go away while we are doing the
	 * read repair operation.
	 */
	btrfs_bio_counter_inc_blocked(fs_info);
2321
	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
		/*
		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
		 * to update all raid stripes, but here we just want to correct
		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
		 * stripe's dev and sector.
		 */
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
				      &map_length, &bbio, 0);
		if (ret) {
			btrfs_bio_counter_dec(fs_info);
			bio_put(bio);
			return -EIO;
		}
		ASSERT(bbio->mirror_num == 1);
	} else {
		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
				      &map_length, &bbio, mirror_num);
		if (ret) {
			btrfs_bio_counter_dec(fs_info);
			bio_put(bio);
			return -EIO;
		}
		BUG_ON(mirror_num != bbio->mirror_num);
2345
	}
2346 2347

	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2348
	bio->bi_iter.bi_sector = sector;
2349
	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2350
	btrfs_put_bbio(bbio);
2351 2352
	if (!dev || !dev->bdev ||
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2353
		btrfs_bio_counter_dec(fs_info);
2354 2355 2356
		bio_put(bio);
		return -EIO;
	}
2357
	bio_set_dev(bio, dev->bdev);
2358
	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2359
	bio_add_page(bio, page, length, pg_offset);
2360

2361
	if (btrfsic_submit_bio_wait(bio)) {
2362
		/* try to remap that extent elsewhere? */
2363
		btrfs_bio_counter_dec(fs_info);
2364
		bio_put(bio);
2365
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2366 2367 2368
		return -EIO;
	}

2369 2370
	btrfs_info_rl_in_rcu(fs_info,
		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2371
				  ino, start,
2372
				  rcu_str_deref(dev->name), sector);
2373
	btrfs_bio_counter_dec(fs_info);
2374 2375 2376 2377
	bio_put(bio);
	return 0;
}

2378
int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2379
{
2380
	struct btrfs_fs_info *fs_info = eb->fs_info;
2381
	u64 start = eb->start;
2382
	int i, num_pages = num_extent_pages(eb);
2383
	int ret = 0;
2384

2385
	if (sb_rdonly(fs_info->sb))
2386 2387
		return -EROFS;

2388
	for (i = 0; i < num_pages; i++) {
2389
		struct page *p = eb->pages[i];
2390

2391
		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2392
					start - page_offset(p), mirror_num);
2393 2394
		if (ret)
			break;
2395
		start += PAGE_SIZE;
2396 2397 2398 2399 2400
	}

	return ret;
}

2401 2402 2403 2404
/*
 * each time an IO finishes, we do a fast check in the IO failure tree
 * to see if we need to process or clean up an io_failure_record
 */
2405 2406 2407 2408
int clean_io_failure(struct btrfs_fs_info *fs_info,
		     struct extent_io_tree *failure_tree,
		     struct extent_io_tree *io_tree, u64 start,
		     struct page *page, u64 ino, unsigned int pg_offset)
2409 2410 2411 2412 2413 2414 2415 2416
{
	u64 private;
	struct io_failure_record *failrec;
	struct extent_state *state;
	int num_copies;
	int ret;

	private = 0;
2417 2418
	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
			       EXTENT_DIRTY, 0);
2419 2420 2421
	if (!ret)
		return 0;

2422 2423
	failrec = get_state_failrec(failure_tree, start);
	if (IS_ERR(failrec))
2424 2425 2426 2427
		return 0;

	BUG_ON(!failrec->this_mirror);

2428
	if (sb_rdonly(fs_info->sb))
2429
		goto out;
2430

2431 2432
	spin_lock(&io_tree->lock);
	state = find_first_extent_bit_state(io_tree,
2433 2434
					    failrec->start,
					    EXTENT_LOCKED);
2435
	spin_unlock(&io_tree->lock);
2436

2437 2438
	if (state && state->start <= failrec->start &&
	    state->end >= failrec->start + failrec->len - 1) {
2439 2440
		num_copies = btrfs_num_copies(fs_info, failrec->logical,
					      failrec->len);
2441
		if (num_copies > 1)  {
2442 2443 2444
			repair_io_failure(fs_info, ino, start, failrec->len,
					  failrec->logical, page, pg_offset,
					  failrec->failed_mirror);
2445 2446 2447 2448
		}
	}

out:
2449
	free_io_failure(failure_tree, io_tree, failrec);
2450

2451
	return 0;
2452 2453
}

2454 2455 2456 2457 2458 2459
/*
 * Can be called when
 * - hold extent lock
 * - under ordered extent
 * - the inode is freeing
 */
2460
void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2461
{
2462
	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
	struct io_failure_record *failrec;
	struct extent_state *state, *next;

	if (RB_EMPTY_ROOT(&failure_tree->state))
		return;

	spin_lock(&failure_tree->lock);
	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
	while (state) {
		if (state->start > end)
			break;

		ASSERT(state->end <= end);

		next = next_state(state);

2479
		failrec = state->failrec;
2480 2481 2482 2483 2484 2485 2486 2487
		free_extent_state(state);
		kfree(failrec);

		state = next;
	}
	spin_unlock(&failure_tree->lock);
}

2488
static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2489
							     u64 start)
2490
{
2491
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2492
	struct io_failure_record *failrec;
2493 2494 2495 2496
	struct extent_map *em;
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2497
	const u32 sectorsize = fs_info->sectorsize;
2498 2499 2500
	int ret;
	u64 logical;

2501
	failrec = get_state_failrec(failure_tree, start);
2502
	if (!IS_ERR(failrec)) {
2503
		btrfs_debug(fs_info,
2504 2505
	"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
			failrec->logical, failrec->start, failrec->len);
2506 2507 2508 2509 2510
		/*
		 * when data can be on disk more than twice, add to failrec here
		 * (e.g. with a list for failed_mirror) to make
		 * clean_io_failure() clean all those errors at once.
		 */
2511 2512

		return failrec;
2513
	}
2514

2515 2516 2517
	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
	if (!failrec)
		return ERR_PTR(-ENOMEM);
2518

2519
	failrec->start = start;
2520
	failrec->len = sectorsize;
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
	failrec->this_mirror = 0;
	failrec->bio_flags = 0;

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, start, failrec->len);
	if (!em) {
		read_unlock(&em_tree->lock);
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	if (em->start > start || em->start + em->len <= start) {
		free_extent_map(em);
		em = NULL;
	}
	read_unlock(&em_tree->lock);
	if (!em) {
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	logical = start - em->start;
	logical = em->block_start + logical;
	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
		logical = em->block_start;
		failrec->bio_flags = EXTENT_BIO_COMPRESSED;
		extent_set_compress_type(&failrec->bio_flags, em->compress_type);
	}

	btrfs_debug(fs_info,
		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
		    logical, start, failrec->len);

	failrec->logical = logical;
	free_extent_map(em);

	/* Set the bits in the private failure tree */
2558
	ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2559 2560 2561 2562
			      EXTENT_LOCKED | EXTENT_DIRTY);
	if (ret >= 0) {
		ret = set_state_failrec(failure_tree, start, failrec);
		/* Set the bits in the inode's tree */
2563 2564
		ret = set_extent_bits(tree, start, start + sectorsize - 1,
				      EXTENT_DAMAGED);
2565 2566 2567 2568 2569 2570
	} else if (ret < 0) {
		kfree(failrec);
		return ERR_PTR(ret);
	}

	return failrec;
2571 2572
}

2573
static bool btrfs_check_repairable(struct inode *inode,
2574 2575
				   struct io_failure_record *failrec,
				   int failed_mirror)
2576
{
2577
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2578 2579
	int num_copies;

2580
	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2581 2582 2583 2584 2585 2586
	if (num_copies == 1) {
		/*
		 * we only have a single copy of the data, so don't bother with
		 * all the retry and error correction code that follows. no
		 * matter what the error is, it is very likely to persist.
		 */
2587 2588 2589
		btrfs_debug(fs_info,
			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2590
		return false;
2591 2592
	}

2593 2594 2595
	/* The failure record should only contain one sector */
	ASSERT(failrec->len == fs_info->sectorsize);

2596
	/*
2597 2598 2599 2600 2601 2602 2603
	 * There are two premises:
	 * a) deliver good data to the caller
	 * b) correct the bad sectors on disk
	 *
	 * Since we're only doing repair for one sector, we only need to get
	 * a good copy of the failed sector and if we succeed, we have setup
	 * everything for repair_io_failure to do the rest for us.
2604
	 */
2605 2606 2607
	failrec->failed_mirror = failed_mirror;
	failrec->this_mirror++;
	if (failrec->this_mirror == failed_mirror)
2608 2609
		failrec->this_mirror++;

2610
	if (failrec->this_mirror > num_copies) {
2611 2612 2613
		btrfs_debug(fs_info,
			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2614
		return false;
2615 2616
	}

2617
	return true;
2618 2619
}

2620 2621 2622 2623 2624
int btrfs_repair_one_sector(struct inode *inode,
			    struct bio *failed_bio, u32 bio_offset,
			    struct page *page, unsigned int pgoff,
			    u64 start, int failed_mirror,
			    submit_bio_hook_t *submit_bio_hook)
2625 2626
{
	struct io_failure_record *failrec;
2627
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2628
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2629
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2630
	struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2631
	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2632 2633
	struct bio *repair_bio;
	struct btrfs_io_bio *repair_io_bio;
2634
	blk_status_t status;
2635

2636 2637
	btrfs_debug(fs_info,
		   "repair read error: read error at %llu", start);
2638

2639
	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2640

2641
	failrec = btrfs_get_io_failure_record(inode, start);
2642
	if (IS_ERR(failrec))
2643
		return PTR_ERR(failrec);
2644

2645 2646

	if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
2647
		free_io_failure(failure_tree, tree, failrec);
2648
		return -EIO;
2649 2650
	}

2651 2652 2653 2654 2655 2656
	repair_bio = btrfs_io_bio_alloc(1);
	repair_io_bio = btrfs_io_bio(repair_bio);
	repair_bio->bi_opf = REQ_OP_READ;
	repair_bio->bi_end_io = failed_bio->bi_end_io;
	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
	repair_bio->bi_private = failed_bio->bi_private;
2657

2658
	if (failed_io_bio->csum) {
2659
		const u32 csum_size = fs_info->csum_size;
2660 2661 2662 2663 2664

		repair_io_bio->csum = repair_io_bio->csum_inline;
		memcpy(repair_io_bio->csum,
		       failed_io_bio->csum + csum_size * icsum, csum_size);
	}
2665

2666 2667 2668
	bio_add_page(repair_bio, page, failrec->len, pgoff);
	repair_io_bio->logical = failrec->start;
	repair_io_bio->iter = repair_bio->bi_iter;
2669

2670
	btrfs_debug(btrfs_sb(inode->i_sb),
2671 2672
		    "repair read error: submitting new read to mirror %d",
		    failrec->this_mirror);
2673

2674 2675
	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
				 failrec->bio_flags);
2676
	if (status) {
2677
		free_io_failure(failure_tree, tree, failrec);
2678
		bio_put(repair_bio);
2679
	}
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
	return blk_status_to_errno(status);
}

static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);

	ASSERT(page_offset(page) <= start &&
	       start + len <= page_offset(page) + PAGE_SIZE);

	if (uptodate) {
		btrfs_page_set_uptodate(fs_info, page, start, len);
	} else {
		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
	}

	if (fs_info->sectorsize == PAGE_SIZE)
		unlock_page(page);
2699
	else
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
		btrfs_subpage_end_reader(fs_info, page, start, len);
}

static blk_status_t submit_read_repair(struct inode *inode,
				      struct bio *failed_bio, u32 bio_offset,
				      struct page *page, unsigned int pgoff,
				      u64 start, u64 end, int failed_mirror,
				      unsigned int error_bitmap,
				      submit_bio_hook_t *submit_bio_hook)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
	const u32 sectorsize = fs_info->sectorsize;
	const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
	int error = 0;
	int i;

	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);

	/* We're here because we had some read errors or csum mismatch */
	ASSERT(error_bitmap);

	/*
	 * We only get called on buffered IO, thus page must be mapped and bio
	 * must not be cloned.
	 */
	ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));

	/* Iterate through all the sectors in the range */
	for (i = 0; i < nr_bits; i++) {
		const unsigned int offset = i * sectorsize;
		struct extent_state *cached = NULL;
		bool uptodate = false;
		int ret;

		if (!(error_bitmap & (1U << i))) {
			/*
			 * This sector has no error, just end the page read
			 * and unlock the range.
			 */
			uptodate = true;
			goto next;
		}

		ret = btrfs_repair_one_sector(inode, failed_bio,
				bio_offset + offset,
				page, pgoff + offset, start + offset,
				failed_mirror, submit_bio_hook);
		if (!ret) {
			/*
			 * We have submitted the read repair, the page release
			 * will be handled by the endio function of the
			 * submitted repair bio.
			 * Thus we don't need to do any thing here.
			 */
			continue;
		}
		/*
		 * Repair failed, just record the error but still continue.
		 * Or the remaining sectors will not be properly unlocked.
		 */
		if (!error)
			error = ret;
next:
		end_page_read(page, uptodate, start + offset, sectorsize);
		if (uptodate)
			set_extent_uptodate(&BTRFS_I(inode)->io_tree,
					start + offset,
					start + offset + sectorsize - 1,
					&cached, GFP_ATOMIC);
		unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
				start + offset,
				start + offset + sectorsize - 1,
				&cached);
	}
	return errno_to_blk_status(error);
2775 2776
}

2777 2778
/* lots and lots of room for performance fixes in the end_bio funcs */

2779
void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2780
{
2781
	struct btrfs_inode *inode;
2782
	int uptodate = (err == 0);
2783
	int ret = 0;
2784

2785 2786 2787
	ASSERT(page && page->mapping);
	inode = BTRFS_I(page->mapping->host);
	btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2788 2789 2790 2791

	if (!uptodate) {
		ClearPageUptodate(page);
		SetPageError(page);
2792
		ret = err < 0 ? err : -EIO;
2793
		mapping_set_error(page->mapping, ret);
2794 2795 2796
	}
}

2797 2798 2799 2800 2801 2802 2803 2804 2805
/*
 * after a writepage IO is done, we need to:
 * clear the uptodate bits on error
 * clear the writeback bits in the extent tree for this IO
 * end_page_writeback if the page has no more pending IO
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2806
static void end_bio_extent_writepage(struct bio *bio)
2807
{
2808
	int error = blk_status_to_errno(bio->bi_status);
2809
	struct bio_vec *bvec;
2810 2811
	u64 start;
	u64 end;
2812
	struct bvec_iter_all iter_all;
2813
	bool first_bvec = true;
2814

2815
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2816
	bio_for_each_segment_all(bvec, bio, iter_all) {
2817
		struct page *page = bvec->bv_page;
2818 2819
		struct inode *inode = page->mapping->host;
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
		const u32 sectorsize = fs_info->sectorsize;

		/* Our read/write should always be sector aligned. */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page write in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
			btrfs_info(fs_info,
		"incomplete page write with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
2834

2835 2836 2837 2838 2839
		if (first_bvec) {
			btrfs_record_physical_zoned(inode, start, bio);
			first_bvec = false;
		}

2840
		end_extent_writepage(page, error, start, end);
2841 2842

		btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2843
	}
2844

2845 2846 2847
	bio_put(bio);
}

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
/*
 * Record previously processed extent range
 *
 * For endio_readpage_release_extent() to handle a full extent range, reducing
 * the extent io operations.
 */
struct processed_extent {
	struct btrfs_inode *inode;
	/* Start of the range in @inode */
	u64 start;
2858
	/* End of the range in @inode */
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
	u64 end;
	bool uptodate;
};

/*
 * Try to release processed extent range
 *
 * May not release the extent range right now if the current range is
 * contiguous to processed extent.
 *
 * Will release processed extent when any of @inode, @uptodate, the range is
 * no longer contiguous to the processed range.
 *
 * Passing @inode == NULL will force processed extent to be released.
 */
static void endio_readpage_release_extent(struct processed_extent *processed,
			      struct btrfs_inode *inode, u64 start, u64 end,
			      bool uptodate)
2877 2878
{
	struct extent_state *cached = NULL;
2879 2880 2881 2882 2883
	struct extent_io_tree *tree;

	/* The first extent, initialize @processed */
	if (!processed->inode)
		goto update;
2884

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
	/*
	 * Contiguous to processed extent, just uptodate the end.
	 *
	 * Several things to notice:
	 *
	 * - bio can be merged as long as on-disk bytenr is contiguous
	 *   This means we can have page belonging to other inodes, thus need to
	 *   check if the inode still matches.
	 * - bvec can contain range beyond current page for multi-page bvec
	 *   Thus we need to do processed->end + 1 >= start check
	 */
	if (processed->inode == inode && processed->uptodate == uptodate &&
	    processed->end + 1 >= start && end >= processed->end) {
		processed->end = end;
		return;
	}

	tree = &processed->inode->io_tree;
	/*
	 * Now we don't have range contiguous to the processed range, release
	 * the processed range now.
	 */
	if (processed->uptodate && tree->track_uptodate)
		set_extent_uptodate(tree, processed->start, processed->end,
				    &cached, GFP_ATOMIC);
	unlock_extent_cached_atomic(tree, processed->start, processed->end,
				    &cached);

update:
	/* Update processed to current range */
	processed->inode = inode;
	processed->start = start;
	processed->end = end;
	processed->uptodate = uptodate;
2919 2920
}

2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
{
	ASSERT(PageLocked(page));
	if (fs_info->sectorsize == PAGE_SIZE)
		return;

	ASSERT(PagePrivate(page));
	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
}

2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
/*
 * Find extent buffer for a givne bytenr.
 *
 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
 * in endio context.
 */
static struct extent_buffer *find_extent_buffer_readpage(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
	struct extent_buffer *eb;

	/*
	 * For regular sectorsize, we can use page->private to grab extent
	 * buffer
	 */
	if (fs_info->sectorsize == PAGE_SIZE) {
		ASSERT(PagePrivate(page) && page->private);
		return (struct extent_buffer *)page->private;
	}

	/* For subpage case, we need to lookup buffer radix tree */
	rcu_read_lock();
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       bytenr >> fs_info->sectorsize_bits);
	rcu_read_unlock();
	ASSERT(eb);
	return eb;
}

2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
/*
 * after a readpage IO is done, we need to:
 * clear the uptodate bits on error
 * set the uptodate bits if things worked
 * set the page up to date if all extents in the tree are uptodate
 * clear the lock bit in the extent tree
 * unlock the page if there are no other extents locked for it
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2971
static void end_bio_extent_readpage(struct bio *bio)
2972
{
2973
	struct bio_vec *bvec;
2974
	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2975
	struct extent_io_tree *tree, *failure_tree;
2976
	struct processed_extent processed = { 0 };
2977 2978 2979 2980 2981
	/*
	 * The offset to the beginning of a bio, since one bio can never be
	 * larger than UINT_MAX, u32 here is enough.
	 */
	u32 bio_offset = 0;
2982
	int mirror;
2983
	int ret;
2984
	struct bvec_iter_all iter_all;
2985

2986
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2987
	bio_for_each_segment_all(bvec, bio, iter_all) {
2988
		bool uptodate = !bio->bi_status;
2989
		struct page *page = bvec->bv_page;
2990
		struct inode *inode = page->mapping->host;
2991
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2992
		const u32 sectorsize = fs_info->sectorsize;
2993
		unsigned int error_bitmap = (unsigned int)-1;
2994 2995 2996
		u64 start;
		u64 end;
		u32 len;
2997

2998 2999
		btrfs_debug(fs_info,
			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
D
David Sterba 已提交
3000
			bio->bi_iter.bi_sector, bio->bi_status,
3001
			io_bio->mirror_num);
3002
		tree = &BTRFS_I(inode)->io_tree;
3003
		failure_tree = &BTRFS_I(inode)->io_failure_tree;
3004

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
		/*
		 * We always issue full-sector reads, but if some block in a
		 * page fails to read, blk_update_request() will advance
		 * bv_offset and adjust bv_len to compensate.  Print a warning
		 * for unaligned offsets, and an error if they don't add up to
		 * a full sector.
		 */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page read in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
				     sectorsize))
			btrfs_info(fs_info,
		"incomplete page read with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
3024
		len = bvec->bv_len;
3025

3026
		mirror = io_bio->mirror_num;
3027
		if (likely(uptodate)) {
3028 3029
			if (is_data_inode(inode)) {
				error_bitmap = btrfs_verify_data_csum(io_bio,
3030
						bio_offset, page, start, end);
3031 3032
				ret = error_bitmap;
			} else {
3033
				ret = btrfs_validate_metadata_buffer(io_bio,
3034
					page, start, end, mirror);
3035
			}
3036
			if (ret)
3037
				uptodate = false;
3038
			else
3039 3040 3041 3042
				clean_io_failure(BTRFS_I(inode)->root->fs_info,
						 failure_tree, tree, start,
						 page,
						 btrfs_ino(BTRFS_I(inode)), 0);
3043
		}
3044

3045 3046 3047
		if (likely(uptodate))
			goto readpage_ok;

3048
		if (is_data_inode(inode)) {
3049
			/*
3050 3051
			 * btrfs_submit_read_repair() will handle all the good
			 * and bad sectors, we just continue to the next bvec.
3052
			 */
3053 3054 3055 3056 3057 3058 3059 3060
			submit_read_repair(inode, bio, bio_offset, page,
					   start - page_offset(page), start,
					   end, mirror, error_bitmap,
					   btrfs_submit_data_bio);

			ASSERT(bio_offset + len > bio_offset);
			bio_offset += len;
			continue;
3061 3062 3063
		} else {
			struct extent_buffer *eb;

3064
			eb = find_extent_buffer_readpage(fs_info, page, start);
3065 3066 3067 3068 3069 3070
			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
			eb->read_mirror = mirror;
			atomic_dec(&eb->io_pages);
			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
					       &eb->bflags))
				btree_readahead_hook(eb, -EIO);
3071
		}
3072
readpage_ok:
3073
		if (likely(uptodate)) {
3074
			loff_t i_size = i_size_read(inode);
3075
			pgoff_t end_index = i_size >> PAGE_SHIFT;
3076

3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
			/*
			 * Zero out the remaining part if this range straddles
			 * i_size.
			 *
			 * Here we should only zero the range inside the bvec,
			 * not touch anything else.
			 *
			 * NOTE: i_size is exclusive while end is inclusive.
			 */
			if (page->index == end_index && i_size <= end) {
				u32 zero_start = max(offset_in_page(i_size),
3088
						     offset_in_page(start));
3089 3090 3091 3092

				zero_user_segment(page, zero_start,
						  offset_in_page(end) + 1);
			}
3093
		}
3094 3095
		ASSERT(bio_offset + len > bio_offset);
		bio_offset += len;
3096

3097
		/* Update page status and unlock */
3098
		end_page_read(page, uptodate, start, len);
3099 3100
		endio_readpage_release_extent(&processed, BTRFS_I(inode),
					      start, end, uptodate);
3101
	}
3102 3103
	/* Release the last extent */
	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3104
	btrfs_io_bio_free_csum(io_bio);
3105 3106 3107
	bio_put(bio);
}

3108
/*
3109 3110 3111
 * Initialize the members up to but not including 'bio'. Use after allocating a
 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
 * 'bio' because use of __GFP_ZERO is not supported.
3112
 */
3113
static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
3114
{
3115 3116
	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
}
3117

3118
/*
3119 3120 3121
 * The following helpers allocate a bio. As it's backed by a bioset, it'll
 * never fail.  We're returning a bio right now but you can call btrfs_io_bio
 * for the appropriate container_of magic
3122
 */
3123
struct bio *btrfs_bio_alloc(u64 first_byte)
3124 3125 3126
{
	struct bio *bio;

3127
	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &btrfs_bioset);
3128
	bio->bi_iter.bi_sector = first_byte >> 9;
3129
	btrfs_io_bio_init(btrfs_io_bio(bio));
3130 3131 3132
	return bio;
}

3133
struct bio *btrfs_bio_clone(struct bio *bio)
3134
{
3135 3136
	struct btrfs_io_bio *btrfs_bio;
	struct bio *new;
3137

3138
	/* Bio allocation backed by a bioset does not fail */
3139
	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
3140
	btrfs_bio = btrfs_io_bio(new);
3141
	btrfs_io_bio_init(btrfs_bio);
3142
	btrfs_bio->iter = bio->bi_iter;
3143 3144
	return new;
}
3145

3146
struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
3147
{
3148 3149
	struct bio *bio;

3150
	/* Bio allocation backed by a bioset does not fail */
3151
	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
3152
	btrfs_io_bio_init(btrfs_io_bio(bio));
3153
	return bio;
3154 3155
}

3156
struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
3157 3158 3159 3160 3161
{
	struct bio *bio;
	struct btrfs_io_bio *btrfs_bio;

	/* this will never fail when it's backed by a bioset */
3162
	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3163 3164 3165
	ASSERT(bio);

	btrfs_bio = btrfs_io_bio(bio);
3166
	btrfs_io_bio_init(btrfs_bio);
3167 3168

	bio_trim(bio, offset >> 9, size >> 9);
3169
	btrfs_bio->iter = bio->bi_iter;
3170 3171
	return bio;
}
3172

3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
/**
 * Attempt to add a page to bio
 *
 * @bio:	destination bio
 * @page:	page to add to the bio
 * @disk_bytenr:  offset of the new bio or to check whether we are adding
 *                a contiguous page to the previous one
 * @pg_offset:	starting offset in the page
 * @size:	portion of page that we want to write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
 * @bio_flags:	flags of the current bio to see if we can merge them
 * @return:	true if page was added, false otherwise
 *
 * Attempt to add a page to bio considering stripe alignment etc.
 *
 * Return true if successfully page added. Otherwise, return false.
 */
3190 3191
static bool btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
			       struct page *page,
3192 3193 3194 3195
			       u64 disk_bytenr, unsigned int size,
			       unsigned int pg_offset,
			       unsigned long bio_flags)
{
3196 3197
	struct bio *bio = bio_ctrl->bio;
	u32 bio_size = bio->bi_iter.bi_size;
3198 3199
	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
	bool contig;
3200
	int ret;
3201

3202 3203 3204 3205
	ASSERT(bio);
	/* The limit should be calculated when bio_ctrl->bio is allocated */
	ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
	if (bio_ctrl->bio_flags != bio_flags)
3206 3207
		return false;

3208
	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED)
3209 3210 3211 3212 3213 3214
		contig = bio->bi_iter.bi_sector == sector;
	else
		contig = bio_end_sector(bio) == sector;
	if (!contig)
		return false;

3215 3216
	if (bio_size + size > bio_ctrl->len_to_oe_boundary ||
	    bio_size + size > bio_ctrl->len_to_stripe_boundary)
3217 3218
		return false;

3219
	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3220
		ret = bio_add_zone_append_page(bio, page, size, pg_offset);
3221
	else
3222 3223 3224
		ret = bio_add_page(bio, page, size, pg_offset);

	return ret == size;
3225 3226
}

3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
			       struct btrfs_inode *inode)
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct btrfs_io_geometry geom;
	struct btrfs_ordered_extent *ordered;
	struct extent_map *em;
	u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
	int ret;

	/*
	 * Pages for compressed extent are never submitted to disk directly,
	 * thus it has no real boundary, just set them to U32_MAX.
	 *
	 * The split happens for real compressed bio, which happens in
	 * btrfs_submit_compressed_read/write().
	 */
	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
		return 0;
	}
	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
	if (IS_ERR(em))
		return PTR_ERR(em);
	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
				    logical, &geom);
	free_extent_map(em);
	if (ret < 0) {
		return ret;
	}
	if (geom.len > U32_MAX)
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
	else
		bio_ctrl->len_to_stripe_boundary = (u32)geom.len;

	if (!btrfs_is_zoned(fs_info) ||
	    bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	/* Ordered extent not yet created, so we're good */
	ordered = btrfs_lookup_ordered_extent(inode, logical);
	if (!ordered) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
		ordered->disk_bytenr + ordered->disk_num_bytes - logical);
	btrfs_put_ordered_extent(ordered);
	return 0;
}

3282 3283
/*
 * @opf:	bio REQ_OP_* and REQ_* flags as one value
3284 3285
 * @wbc:	optional writeback control for io accounting
 * @page:	page to add to the bio
3286 3287
 * @disk_bytenr: logical bytenr where the write will be
 * @size:	portion of page that we want to write to
3288 3289
 * @pg_offset:	offset of the new bio or to check whether we are adding
 *              a contiguous page to the previous one
3290
 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3291 3292 3293 3294
 * @end_io_func:     end_io callback for new bio
 * @mirror_num:	     desired mirror to read/write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
 * @bio_flags:	flags of the current bio to see if we can merge them
3295
 */
3296
static int submit_extent_page(unsigned int opf,
3297
			      struct writeback_control *wbc,
3298
			      struct btrfs_bio_ctrl *bio_ctrl,
3299
			      struct page *page, u64 disk_bytenr,
3300
			      size_t size, unsigned long pg_offset,
3301
			      bio_end_io_t end_io_func,
C
Chris Mason 已提交
3302
			      int mirror_num,
3303 3304
			      unsigned long bio_flags,
			      bool force_bio_submit)
3305 3306 3307
{
	int ret = 0;
	struct bio *bio;
3308
	size_t io_size = min_t(size_t, size, PAGE_SIZE);
3309 3310 3311
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
	struct extent_io_tree *tree = &inode->io_tree;
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3312

3313
	ASSERT(bio_ctrl);
3314

3315 3316 3317 3318
	ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
	       pg_offset + size <= PAGE_SIZE);
	if (bio_ctrl->bio) {
		bio = bio_ctrl->bio;
3319
		if (force_bio_submit ||
3320 3321 3322 3323 3324
		    !btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, io_size,
					pg_offset, bio_flags)) {
			ret = submit_one_bio(bio, mirror_num, bio_ctrl->bio_flags);
			bio_ctrl->bio = NULL;
			if (ret < 0)
3325
				return ret;
3326
		} else {
3327
			if (wbc)
3328
				wbc_account_cgroup_owner(wbc, page, io_size);
3329 3330 3331
			return 0;
		}
	}
C
Chris Mason 已提交
3332

3333
	bio = btrfs_bio_alloc(disk_bytenr);
3334
	bio_add_page(bio, page, io_size, pg_offset);
3335 3336
	bio->bi_end_io = end_io_func;
	bio->bi_private = tree;
3337
	bio->bi_write_hint = page->mapping->host->i_write_hint;
3338
	bio->bi_opf = opf;
3339
	if (wbc) {
3340 3341
		struct block_device *bdev;

3342
		bdev = fs_info->fs_devices->latest_bdev;
3343
		bio_set_dev(bio, bdev);
3344
		wbc_init_bio(wbc, bio);
3345
		wbc_account_cgroup_owner(wbc, page, io_size);
3346
	}
3347
	if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) {
3348
		struct btrfs_device *device;
3349

3350 3351 3352
		device = btrfs_zoned_get_device(fs_info, disk_bytenr, io_size);
		if (IS_ERR(device))
			return PTR_ERR(device);
3353

3354
		btrfs_io_bio(bio)->device = device;
3355
	}
3356

3357 3358 3359
	bio_ctrl->bio = bio;
	bio_ctrl->bio_flags = bio_flags;
	ret = calc_bio_boundaries(bio_ctrl, inode);
3360 3361 3362 3363

	return ret;
}

3364 3365 3366
static int attach_extent_buffer_page(struct extent_buffer *eb,
				     struct page *page,
				     struct btrfs_subpage *prealloc)
3367
{
3368 3369 3370
	struct btrfs_fs_info *fs_info = eb->fs_info;
	int ret = 0;

3371 3372 3373 3374 3375 3376 3377 3378 3379
	/*
	 * If the page is mapped to btree inode, we should hold the private
	 * lock to prevent race.
	 * For cloned or dummy extent buffers, their pages are not mapped and
	 * will not race with any other ebs.
	 */
	if (page->mapping)
		lockdep_assert_held(&page->mapping->private_lock);

3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
	if (fs_info->sectorsize == PAGE_SIZE) {
		if (!PagePrivate(page))
			attach_page_private(page, eb);
		else
			WARN_ON(page->private != (unsigned long)eb);
		return 0;
	}

	/* Already mapped, just free prealloc */
	if (PagePrivate(page)) {
		btrfs_free_subpage(prealloc);
		return 0;
	}

	if (prealloc)
		/* Has preallocated memory for subpage */
		attach_page_private(page, prealloc);
3397
	else
3398 3399 3400 3401
		/* Do new allocation to attach subpage */
		ret = btrfs_attach_subpage(fs_info, page,
					   BTRFS_SUBPAGE_METADATA);
	return ret;
3402 3403
}

3404
int set_page_extent_mapped(struct page *page)
3405
{
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

	if (PagePrivate(page))
		return 0;

	fs_info = btrfs_sb(page->mapping->host->i_sb);

	if (fs_info->sectorsize < PAGE_SIZE)
		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);

	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
	return 0;
}

void clear_page_extent_mapped(struct page *page)
{
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

3428
	if (!PagePrivate(page))
3429 3430 3431 3432 3433 3434 3435
		return;

	fs_info = btrfs_sb(page->mapping->host->i_sb);
	if (fs_info->sectorsize < PAGE_SIZE)
		return btrfs_detach_subpage(fs_info, page);

	detach_page_private(page);
3436 3437
}

3438 3439
static struct extent_map *
__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3440
		 u64 start, u64 len, struct extent_map **em_cached)
3441 3442 3443 3444 3445
{
	struct extent_map *em;

	if (em_cached && *em_cached) {
		em = *em_cached;
3446
		if (extent_map_in_tree(em) && start >= em->start &&
3447
		    start < extent_map_end(em)) {
3448
			refcount_inc(&em->refs);
3449 3450 3451 3452 3453 3454 3455
			return em;
		}

		free_extent_map(em);
		*em_cached = NULL;
	}

3456
	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3457 3458
	if (em_cached && !IS_ERR_OR_NULL(em)) {
		BUG_ON(*em_cached);
3459
		refcount_inc(&em->refs);
3460 3461 3462 3463
		*em_cached = em;
	}
	return em;
}
3464 3465 3466 3467
/*
 * basic readpage implementation.  Locked extent state structs are inserted
 * into the tree that are removed when the IO is done (by the end_io
 * handlers)
3468
 * XXX JDM: This needs looking at to ensure proper page locking
3469
 * return 0 on success, otherwise return error
3470
 */
3471
int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3472
		      struct btrfs_bio_ctrl *bio_ctrl,
3473
		      unsigned int read_flags, u64 *prev_em_start)
3474 3475
{
	struct inode *inode = page->mapping->host;
3476
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
M
Miao Xie 已提交
3477
	u64 start = page_offset(page);
3478
	const u64 end = start + PAGE_SIZE - 1;
3479 3480 3481 3482 3483 3484
	u64 cur = start;
	u64 extent_offset;
	u64 last_byte = i_size_read(inode);
	u64 block_start;
	u64 cur_end;
	struct extent_map *em;
3485
	int ret = 0;
3486
	int nr = 0;
3487
	size_t pg_offset = 0;
3488 3489
	size_t iosize;
	size_t blocksize = inode->i_sb->s_blocksize;
3490
	unsigned long this_bio_flag = 0;
3491
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3492

3493 3494 3495
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		unlock_extent(tree, start, end);
3496 3497
		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
		unlock_page(page);
3498 3499
		goto out;
	}
3500

D
Dan Magenheimer 已提交
3501 3502 3503
	if (!PageUptodate(page)) {
		if (cleancache_get_page(page) == 0) {
			BUG_ON(blocksize != PAGE_SIZE);
3504
			unlock_extent(tree, start, end);
3505
			unlock_page(page);
D
Dan Magenheimer 已提交
3506 3507 3508 3509
			goto out;
		}
	}

3510
	if (page->index == last_byte >> PAGE_SHIFT) {
3511
		size_t zero_offset = offset_in_page(last_byte);
C
Chris Mason 已提交
3512 3513

		if (zero_offset) {
3514
			iosize = PAGE_SIZE - zero_offset;
3515
			memzero_page(page, zero_offset, iosize);
C
Chris Mason 已提交
3516 3517 3518
			flush_dcache_page(page);
		}
	}
3519
	begin_page_read(fs_info, page);
3520
	while (cur <= end) {
3521
		bool force_bio_submit = false;
3522
		u64 disk_bytenr;
3523

3524
		if (cur >= last_byte) {
3525 3526
			struct extent_state *cached = NULL;

3527
			iosize = PAGE_SIZE - pg_offset;
3528
			memzero_page(page, pg_offset, iosize);
3529 3530
			flush_dcache_page(page);
			set_extent_uptodate(tree, cur, cur + iosize - 1,
3531
					    &cached, GFP_NOFS);
3532
			unlock_extent_cached(tree, cur,
3533
					     cur + iosize - 1, &cached);
3534
			end_page_read(page, true, cur, iosize);
3535 3536
			break;
		}
3537
		em = __get_extent_map(inode, page, pg_offset, cur,
3538
				      end - cur + 1, em_cached);
3539
		if (IS_ERR_OR_NULL(em)) {
3540
			unlock_extent(tree, cur, end);
3541
			end_page_read(page, false, cur, end + 1 - cur);
3542 3543 3544 3545 3546 3547
			break;
		}
		extent_offset = cur - em->start;
		BUG_ON(extent_map_end(em) <= cur);
		BUG_ON(end < cur);

3548
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3549
			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3550 3551 3552
			extent_set_compress_type(&this_bio_flag,
						 em->compress_type);
		}
C
Chris Mason 已提交
3553

3554 3555
		iosize = min(extent_map_end(em) - cur, end - cur + 1);
		cur_end = min(extent_map_end(em) - 1, end);
3556
		iosize = ALIGN(iosize, blocksize);
3557
		if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3558
			disk_bytenr = em->block_start;
3559
		else
3560
			disk_bytenr = em->block_start + extent_offset;
3561
		block_start = em->block_start;
Y
Yan Zheng 已提交
3562 3563
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			block_start = EXTENT_MAP_HOLE;
3564 3565 3566

		/*
		 * If we have a file range that points to a compressed extent
3567
		 * and it's followed by a consecutive file range that points
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
		 * to the same compressed extent (possibly with a different
		 * offset and/or length, so it either points to the whole extent
		 * or only part of it), we must make sure we do not submit a
		 * single bio to populate the pages for the 2 ranges because
		 * this makes the compressed extent read zero out the pages
		 * belonging to the 2nd range. Imagine the following scenario:
		 *
		 *  File layout
		 *  [0 - 8K]                     [8K - 24K]
		 *    |                               |
		 *    |                               |
		 * points to extent X,         points to extent X,
		 * offset 4K, length of 8K     offset 0, length 16K
		 *
		 * [extent X, compressed length = 4K uncompressed length = 16K]
		 *
		 * If the bio to read the compressed extent covers both ranges,
		 * it will decompress extent X into the pages belonging to the
		 * first range and then it will stop, zeroing out the remaining
		 * pages that belong to the other range that points to extent X.
		 * So here we make sure we submit 2 bios, one for the first
		 * range and another one for the third range. Both will target
		 * the same physical extent from disk, but we can't currently
		 * make the compressed bio endio callback populate the pages
		 * for both ranges because each compressed bio is tightly
		 * coupled with a single extent map, and each range can have
		 * an extent map with a different offset value relative to the
		 * uncompressed data of our extent and different lengths. This
		 * is a corner case so we prioritize correctness over
		 * non-optimal behavior (submitting 2 bios for the same extent).
		 */
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
		    prev_em_start && *prev_em_start != (u64)-1 &&
3601
		    *prev_em_start != em->start)
3602 3603 3604
			force_bio_submit = true;

		if (prev_em_start)
3605
			*prev_em_start = em->start;
3606

3607 3608 3609 3610 3611
		free_extent_map(em);
		em = NULL;

		/* we've found a hole, just zero and go on */
		if (block_start == EXTENT_MAP_HOLE) {
3612 3613
			struct extent_state *cached = NULL;

3614
			memzero_page(page, pg_offset, iosize);
3615 3616 3617
			flush_dcache_page(page);

			set_extent_uptodate(tree, cur, cur + iosize - 1,
3618
					    &cached, GFP_NOFS);
3619
			unlock_extent_cached(tree, cur,
3620
					     cur + iosize - 1, &cached);
3621
			end_page_read(page, true, cur, iosize);
3622
			cur = cur + iosize;
3623
			pg_offset += iosize;
3624 3625 3626
			continue;
		}
		/* the get_extent function already copied into the page */
3627 3628
		if (test_range_bit(tree, cur, cur_end,
				   EXTENT_UPTODATE, 1, NULL)) {
3629
			check_page_uptodate(tree, page);
3630
			unlock_extent(tree, cur, cur + iosize - 1);
3631
			end_page_read(page, true, cur, iosize);
3632
			cur = cur + iosize;
3633
			pg_offset += iosize;
3634 3635
			continue;
		}
3636 3637 3638 3639
		/* we have an inline extent but it didn't get marked up
		 * to date.  Error out
		 */
		if (block_start == EXTENT_MAP_INLINE) {
3640
			unlock_extent(tree, cur, cur + iosize - 1);
3641
			end_page_read(page, false, cur, iosize);
3642
			cur = cur + iosize;
3643
			pg_offset += iosize;
3644 3645
			continue;
		}
3646

3647
		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3648 3649
					 bio_ctrl, page, disk_bytenr, iosize,
					 pg_offset,
3650
					 end_bio_extent_readpage, 0,
3651 3652
					 this_bio_flag,
					 force_bio_submit);
3653 3654 3655
		if (!ret) {
			nr++;
		} else {
3656
			unlock_extent(tree, cur, cur + iosize - 1);
3657
			end_page_read(page, false, cur, iosize);
3658
			goto out;
3659
		}
3660
		cur = cur + iosize;
3661
		pg_offset += iosize;
3662
	}
D
Dan Magenheimer 已提交
3663
out:
3664
	return ret;
3665 3666
}

3667
static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3668 3669 3670 3671
					u64 start, u64 end,
					struct extent_map **em_cached,
					struct btrfs_bio_ctrl *bio_ctrl,
					u64 *prev_em_start)
3672
{
3673
	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3674 3675
	int index;

3676
	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3677 3678

	for (index = 0; index < nr_pages; index++) {
3679
		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3680
				  REQ_RAHEAD, prev_em_start);
3681
		put_page(pages[index]);
3682 3683 3684
	}
}

3685
static void update_nr_written(struct writeback_control *wbc,
3686
			      unsigned long nr_written)
3687 3688 3689 3690
{
	wbc->nr_to_write -= nr_written;
}

3691
/*
3692 3693
 * helper for __extent_writepage, doing all of the delayed allocation setup.
 *
3694
 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3695 3696 3697 3698 3699
 * to write the page (copy into inline extent).  In this case the IO has
 * been started and the page is already unlocked.
 *
 * This returns 0 if all went well (page still locked)
 * This returns < 0 if there were errors (page still locked)
3700
 */
3701
static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3702 3703
		struct page *page, struct writeback_control *wbc,
		u64 delalloc_start, unsigned long *nr_written)
3704
{
3705
	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3706
	bool found;
3707 3708 3709 3710 3711 3712 3713
	u64 delalloc_to_write = 0;
	u64 delalloc_end = 0;
	int ret;
	int page_started = 0;


	while (delalloc_end < page_end) {
3714
		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3715
					       &delalloc_start,
3716
					       &delalloc_end);
3717
		if (!found) {
3718 3719 3720
			delalloc_start = delalloc_end + 1;
			continue;
		}
3721
		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3722
				delalloc_end, &page_started, nr_written, wbc);
3723 3724
		if (ret) {
			SetPageError(page);
3725 3726 3727 3728 3729
			/*
			 * btrfs_run_delalloc_range should return < 0 for error
			 * but just in case, we use > 0 here meaning the IO is
			 * started, so we don't want to return > 0 unless
			 * things are going well.
3730
			 */
3731
			return ret < 0 ? ret : -EIO;
3732 3733
		}
		/*
3734 3735
		 * delalloc_end is already one less than the total length, so
		 * we don't subtract one from PAGE_SIZE
3736 3737
		 */
		delalloc_to_write += (delalloc_end - delalloc_start +
3738
				      PAGE_SIZE) >> PAGE_SHIFT;
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
		delalloc_start = delalloc_end + 1;
	}
	if (wbc->nr_to_write < delalloc_to_write) {
		int thresh = 8192;

		if (delalloc_to_write < thresh * 2)
			thresh = delalloc_to_write;
		wbc->nr_to_write = min_t(u64, delalloc_to_write,
					 thresh);
	}

	/* did the fill delalloc function already unlock and start
	 * the IO?
	 */
	if (page_started) {
		/*
		 * we've unlocked the page, so we can't update
		 * the mapping's writeback index, just update
		 * nr_to_write.
		 */
		wbc->nr_to_write -= *nr_written;
		return 1;
	}

3763
	return 0;
3764 3765
}

3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
/*
 * Find the first byte we need to write.
 *
 * For subpage, one page can contain several sectors, and
 * __extent_writepage_io() will just grab all extent maps in the page
 * range and try to submit all non-inline/non-compressed extents.
 *
 * This is a big problem for subpage, we shouldn't re-submit already written
 * data at all.
 * This function will lookup subpage dirty bit to find which range we really
 * need to submit.
 *
 * Return the next dirty range in [@start, @end).
 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
 */
static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
				 struct page *page, u64 *start, u64 *end)
{
	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
	u64 orig_start = *start;
	/* Declare as unsigned long so we can use bitmap ops */
	unsigned long dirty_bitmap;
	unsigned long flags;
	int nbits = (orig_start - page_offset(page)) >> fs_info->sectorsize_bits;
	int range_start_bit = nbits;
	int range_end_bit;

	/*
	 * For regular sector size == page size case, since one page only
	 * contains one sector, we return the page offset directly.
	 */
	if (fs_info->sectorsize == PAGE_SIZE) {
		*start = page_offset(page);
		*end = page_offset(page) + PAGE_SIZE;
		return;
	}

	/* We should have the page locked, but just in case */
	spin_lock_irqsave(&subpage->lock, flags);
	dirty_bitmap = subpage->dirty_bitmap;
	spin_unlock_irqrestore(&subpage->lock, flags);

	bitmap_next_set_region(&dirty_bitmap, &range_start_bit, &range_end_bit,
			       BTRFS_SUBPAGE_BITMAP_SIZE);
	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
}

3814 3815 3816 3817 3818 3819 3820 3821
/*
 * helper for __extent_writepage.  This calls the writepage start hooks,
 * and does the loop to map the page into extents and bios.
 *
 * We return 1 if the IO is started and the page is unlocked,
 * 0 if all went well (page still locked)
 * < 0 if there were errors (page still locked)
 */
3822
static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3823 3824 3825 3826 3827
				 struct page *page,
				 struct writeback_control *wbc,
				 struct extent_page_data *epd,
				 loff_t i_size,
				 unsigned long nr_written,
3828
				 int *nr_ret)
3829
{
3830
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3831 3832
	u64 cur = page_offset(page);
	u64 end = cur + PAGE_SIZE - 1;
3833 3834 3835
	u64 extent_offset;
	u64 block_start;
	struct extent_map *em;
3836 3837
	int ret = 0;
	int nr = 0;
3838
	u32 opf = REQ_OP_WRITE;
3839
	const unsigned int write_flags = wbc_to_write_flags(wbc);
3840
	bool compressed;
C
Chris Mason 已提交
3841

3842
	ret = btrfs_writepage_cow_fixup(page);
3843 3844
	if (ret) {
		/* Fixup worker will requeue */
3845
		redirty_page_for_writepage(wbc, page);
3846 3847 3848
		update_nr_written(wbc, nr_written);
		unlock_page(page);
		return 1;
3849 3850
	}

3851 3852 3853 3854
	/*
	 * we don't want to touch the inode after unlocking the page,
	 * so we update the mapping writeback index now
	 */
3855
	update_nr_written(wbc, nr_written + 1);
3856

3857
	while (cur <= end) {
3858
		u64 disk_bytenr;
3859
		u64 em_end;
3860 3861
		u64 dirty_range_start = cur;
		u64 dirty_range_end;
3862
		u32 iosize;
3863

3864
		if (cur >= i_size) {
3865 3866
			btrfs_writepage_endio_finish_ordered(inode, page, cur,
							     end, 1);
3867 3868
			break;
		}
3869 3870 3871 3872 3873 3874 3875 3876

		find_next_dirty_byte(fs_info, page, &dirty_range_start,
				     &dirty_range_end);
		if (cur < dirty_range_start) {
			cur = dirty_range_start;
			continue;
		}

3877
		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3878
		if (IS_ERR_OR_NULL(em)) {
3879
			btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
3880
			ret = PTR_ERR_OR_ZERO(em);
3881 3882 3883 3884
			break;
		}

		extent_offset = cur - em->start;
3885
		em_end = extent_map_end(em);
3886 3887 3888 3889
		ASSERT(cur <= em_end);
		ASSERT(cur < end);
		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
3890
		block_start = em->block_start;
C
Chris Mason 已提交
3891
		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3892 3893
		disk_bytenr = em->block_start + extent_offset;

3894 3895 3896 3897 3898
		/*
		 * Note that em_end from extent_map_end() and dirty_range_end from
		 * find_next_dirty_byte() are all exclusive
		 */
		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
3899

3900
		if (btrfs_use_zone_append(inode, em->block_start))
3901 3902
			opf = REQ_OP_ZONE_APPEND;

3903 3904 3905
		free_extent_map(em);
		em = NULL;

C
Chris Mason 已提交
3906 3907 3908 3909 3910
		/*
		 * compressed and inline extents are written through other
		 * paths in the FS
		 */
		if (compressed || block_start == EXTENT_MAP_HOLE ||
3911
		    block_start == EXTENT_MAP_INLINE) {
3912
			if (compressed)
C
Chris Mason 已提交
3913
				nr++;
3914
			else
3915 3916
				btrfs_writepage_endio_finish_ordered(inode,
						page, cur, cur + iosize - 1, 1);
C
Chris Mason 已提交
3917
			cur += iosize;
3918 3919
			continue;
		}
C
Chris Mason 已提交
3920

3921
		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
3922
		if (!PageWriteback(page)) {
3923
			btrfs_err(inode->root->fs_info,
3924 3925
				   "page %lu not writeback, cur %llu end %llu",
			       page->index, cur, end);
3926
		}
3927

3928 3929 3930 3931 3932 3933 3934 3935
		/*
		 * Although the PageDirty bit is cleared before entering this
		 * function, subpage dirty bit is not cleared.
		 * So clear subpage dirty bit here so next time we won't submit
		 * page for range already written to disk.
		 */
		btrfs_page_clear_dirty(fs_info, page, cur, iosize);

3936 3937
		ret = submit_extent_page(opf | write_flags, wbc,
					 &epd->bio_ctrl, page,
3938
					 disk_bytenr, iosize,
3939
					 cur - page_offset(page),
3940
					 end_bio_extent_writepage,
3941
					 0, 0, false);
3942
		if (ret) {
3943
			btrfs_page_set_error(fs_info, page, cur, iosize);
3944
			if (PageWriteback(page))
3945 3946
				btrfs_page_clear_writeback(fs_info, page, cur,
							   iosize);
3947
		}
3948

3949
		cur += iosize;
3950 3951
		nr++;
	}
3952 3953 3954 3955 3956 3957 3958 3959 3960
	*nr_ret = nr;
	return ret;
}

/*
 * the writepage semantics are similar to regular writepage.  extent
 * records are inserted to lock ranges in the tree, and as dirty areas
 * are found, they are marked writeback.  Then the lock bits are removed
 * and the end_io handler clears the writeback ranges
3961 3962 3963
 *
 * Return 0 if everything goes well.
 * Return <0 for error.
3964 3965
 */
static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3966
			      struct extent_page_data *epd)
3967 3968 3969
{
	struct inode *inode = page->mapping->host;
	u64 start = page_offset(page);
3970
	u64 page_end = start + PAGE_SIZE - 1;
3971 3972
	int ret;
	int nr = 0;
3973
	size_t pg_offset;
3974
	loff_t i_size = i_size_read(inode);
3975
	unsigned long end_index = i_size >> PAGE_SHIFT;
3976 3977 3978 3979 3980 3981 3982 3983
	unsigned long nr_written = 0;

	trace___extent_writepage(page, inode, wbc);

	WARN_ON(!PageLocked(page));

	ClearPageError(page);

3984
	pg_offset = offset_in_page(i_size);
3985 3986
	if (page->index > end_index ||
	   (page->index == end_index && !pg_offset)) {
3987
		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3988 3989 3990 3991 3992
		unlock_page(page);
		return 0;
	}

	if (page->index == end_index) {
3993
		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
3994 3995 3996
		flush_dcache_page(page);
	}

3997 3998 3999 4000 4001
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		SetPageError(page);
		goto done;
	}
4002

4003
	if (!epd->extent_locked) {
4004 4005
		ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
					 &nr_written);
4006
		if (ret == 1)
4007
			return 0;
4008 4009 4010
		if (ret)
			goto done;
	}
4011

4012 4013
	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
				    nr_written, &nr);
4014
	if (ret == 1)
4015
		return 0;
4016

4017 4018 4019 4020 4021 4022
done:
	if (nr == 0) {
		/* make sure the mapping tag for page dirty gets cleared */
		set_page_writeback(page);
		end_page_writeback(page);
	}
4023 4024 4025 4026
	if (PageError(page)) {
		ret = ret < 0 ? ret : -EIO;
		end_extent_writepage(page, ret, start, page_end);
	}
4027
	unlock_page(page);
4028
	ASSERT(ret <= 0);
4029
	return ret;
4030 4031
}

4032
void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
4033
{
4034 4035
	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
		       TASK_UNINTERRUPTIBLE);
4036 4037
}

4038 4039 4040 4041 4042 4043 4044
static void end_extent_buffer_writeback(struct extent_buffer *eb)
{
	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
	smp_mb__after_atomic();
	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
}

4045
/*
4046
 * Lock extent buffer status and pages for writeback.
4047
 *
4048 4049 4050 4051 4052 4053
 * May try to flush write bio if we can't get the lock.
 *
 * Return  0 if the extent buffer doesn't need to be submitted.
 *           (E.g. the extent buffer is not dirty)
 * Return >0 is the extent buffer is submitted to bio.
 * Return <0 if something went wrong, no page is locked.
4054
 */
4055
static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
4056
			  struct extent_page_data *epd)
4057
{
4058
	struct btrfs_fs_info *fs_info = eb->fs_info;
4059
	int i, num_pages, failed_page_nr;
4060 4061 4062 4063
	int flush = 0;
	int ret = 0;

	if (!btrfs_try_tree_write_lock(eb)) {
4064
		ret = flush_write_bio(epd);
4065 4066 4067
		if (ret < 0)
			return ret;
		flush = 1;
4068 4069 4070 4071 4072 4073 4074 4075
		btrfs_tree_lock(eb);
	}

	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
		btrfs_tree_unlock(eb);
		if (!epd->sync_io)
			return 0;
		if (!flush) {
4076
			ret = flush_write_bio(epd);
4077 4078
			if (ret < 0)
				return ret;
4079 4080
			flush = 1;
		}
C
Chris Mason 已提交
4081 4082 4083 4084 4085
		while (1) {
			wait_on_extent_buffer_writeback(eb);
			btrfs_tree_lock(eb);
			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
				break;
4086 4087 4088 4089
			btrfs_tree_unlock(eb);
		}
	}

4090 4091 4092 4093 4094 4095
	/*
	 * We need to do this to prevent races in people who check if the eb is
	 * under IO since we can end up having no IO bits set for a short period
	 * of time.
	 */
	spin_lock(&eb->refs_lock);
4096 4097
	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4098
		spin_unlock(&eb->refs_lock);
4099
		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4100 4101 4102
		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
					 -eb->len,
					 fs_info->dirty_metadata_batch);
4103
		ret = 1;
4104 4105
	} else {
		spin_unlock(&eb->refs_lock);
4106 4107 4108 4109
	}

	btrfs_tree_unlock(eb);

4110 4111 4112 4113 4114 4115 4116
	/*
	 * Either we don't need to submit any tree block, or we're submitting
	 * subpage eb.
	 * Subpage metadata doesn't use page locking at all, so we can skip
	 * the page locking.
	 */
	if (!ret || fs_info->sectorsize < PAGE_SIZE)
4117 4118
		return ret;

4119
	num_pages = num_extent_pages(eb);
4120
	for (i = 0; i < num_pages; i++) {
4121
		struct page *p = eb->pages[i];
4122 4123 4124

		if (!trylock_page(p)) {
			if (!flush) {
4125 4126 4127 4128 4129
				int err;

				err = flush_write_bio(epd);
				if (err < 0) {
					ret = err;
4130 4131 4132
					failed_page_nr = i;
					goto err_unlock;
				}
4133 4134 4135 4136 4137 4138 4139
				flush = 1;
			}
			lock_page(p);
		}
	}

	return ret;
4140 4141 4142 4143
err_unlock:
	/* Unlock already locked pages */
	for (i = 0; i < failed_page_nr; i++)
		unlock_page(eb->pages[i]);
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
	/*
	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
	 * be made and undo everything done before.
	 */
	btrfs_tree_lock(eb);
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
	end_extent_buffer_writeback(eb);
	spin_unlock(&eb->refs_lock);
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
				 fs_info->dirty_metadata_batch);
	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
	btrfs_tree_unlock(eb);
4158
	return ret;
4159 4160
}

4161
static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4162
{
4163
	struct btrfs_fs_info *fs_info = eb->fs_info;
4164

4165
	btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4166 4167 4168
	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
		return;

4169 4170 4171 4172 4173 4174 4175
	/*
	 * If we error out, we should add back the dirty_metadata_bytes
	 * to make it consistent.
	 */
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
				 eb->len, fs_info->dirty_metadata_batch);

4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
	/*
	 * If writeback for a btree extent that doesn't belong to a log tree
	 * failed, increment the counter transaction->eb_write_errors.
	 * We do this because while the transaction is running and before it's
	 * committing (when we call filemap_fdata[write|wait]_range against
	 * the btree inode), we might have
	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
	 * returns an error or an error happens during writeback, when we're
	 * committing the transaction we wouldn't know about it, since the pages
	 * can be no longer dirty nor marked anymore for writeback (if a
	 * subsequent modification to the extent buffer didn't happen before the
	 * transaction commit), which makes filemap_fdata[write|wait]_range not
	 * able to find the pages tagged with SetPageError at transaction
	 * commit time. So if this happens we must abort the transaction,
	 * otherwise we commit a super block with btree roots that point to
	 * btree nodes/leafs whose content on disk is invalid - either garbage
	 * or the content of some node/leaf from a past generation that got
	 * cowed or deleted and is no longer valid.
	 *
	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
	 * not be enough - we need to distinguish between log tree extents vs
	 * non-log tree extents, and the next filemap_fdatawait_range() call
	 * will catch and clear such errors in the mapping - and that call might
	 * be from a log sync and not from a transaction commit. Also, checking
	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
	 * not done and would not be reliable - the eb might have been released
	 * from memory and reading it back again means that flag would not be
	 * set (since it's a runtime flag, not persisted on disk).
	 *
	 * Using the flags below in the btree inode also makes us achieve the
	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
	 * writeback for all dirty pages and before filemap_fdatawait_range()
	 * is called, the writeback for all dirty pages had already finished
	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
	 * filemap_fdatawait_range() would return success, as it could not know
	 * that writeback errors happened (the pages were no longer tagged for
	 * writeback).
	 */
	switch (eb->log_index) {
	case -1:
4216
		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4217 4218
		break;
	case 0:
4219
		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4220 4221
		break;
	case 1:
4222
		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4223 4224 4225 4226 4227 4228
		break;
	default:
		BUG(); /* unexpected, logic error */
	}
}

4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
/*
 * The endio specific version which won't touch any unsafe spinlock in endio
 * context.
 */
static struct extent_buffer *find_extent_buffer_nolock(
		struct btrfs_fs_info *fs_info, u64 start)
{
	struct extent_buffer *eb;

	rcu_read_lock();
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       start >> fs_info->sectorsize_bits);
	if (eb && atomic_inc_not_zero(&eb->refs)) {
		rcu_read_unlock();
		return eb;
	}
	rcu_read_unlock();
	return NULL;
}

/*
 * The endio function for subpage extent buffer write.
 *
 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
 * after all extent buffers in the page has finished their writeback.
 */
4255
static void end_bio_subpage_eb_writepage(struct bio *bio)
4256
{
4257
	struct btrfs_fs_info *fs_info;
4258 4259 4260
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

4261 4262 4263
	fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
	ASSERT(fs_info->sectorsize < PAGE_SIZE);

4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
	ASSERT(!bio_flagged(bio, BIO_CLONED));
	bio_for_each_segment_all(bvec, bio, iter_all) {
		struct page *page = bvec->bv_page;
		u64 bvec_start = page_offset(page) + bvec->bv_offset;
		u64 bvec_end = bvec_start + bvec->bv_len - 1;
		u64 cur_bytenr = bvec_start;

		ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));

		/* Iterate through all extent buffers in the range */
		while (cur_bytenr <= bvec_end) {
			struct extent_buffer *eb;
			int done;

			/*
			 * Here we can't use find_extent_buffer(), as it may
			 * try to lock eb->refs_lock, which is not safe in endio
			 * context.
			 */
			eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
			ASSERT(eb);

			cur_bytenr = eb->start + eb->len;

			ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
			done = atomic_dec_and_test(&eb->io_pages);
			ASSERT(done);

			if (bio->bi_status ||
			    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
				ClearPageUptodate(page);
				set_btree_ioerr(page, eb);
			}

			btrfs_subpage_clear_writeback(fs_info, page, eb->start,
						      eb->len);
			end_extent_buffer_writeback(eb);
			/*
			 * free_extent_buffer() will grab spinlock which is not
			 * safe in endio context. Thus here we manually dec
			 * the ref.
			 */
			atomic_dec(&eb->refs);
		}
	}
	bio_put(bio);
}

4312
static void end_bio_extent_buffer_writepage(struct bio *bio)
4313
{
4314
	struct bio_vec *bvec;
4315
	struct extent_buffer *eb;
4316
	int done;
4317
	struct bvec_iter_all iter_all;
4318

4319
	ASSERT(!bio_flagged(bio, BIO_CLONED));
4320
	bio_for_each_segment_all(bvec, bio, iter_all) {
4321 4322 4323 4324 4325 4326
		struct page *page = bvec->bv_page;

		eb = (struct extent_buffer *)page->private;
		BUG_ON(!eb);
		done = atomic_dec_and_test(&eb->io_pages);

4327
		if (bio->bi_status ||
4328
		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4329
			ClearPageUptodate(page);
4330
			set_btree_ioerr(page, eb);
4331 4332 4333 4334 4335 4336 4337 4338
		}

		end_page_writeback(page);

		if (!done)
			continue;

		end_extent_buffer_writeback(eb);
4339
	}
4340 4341 4342 4343

	bio_put(bio);
}

4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
static void prepare_eb_write(struct extent_buffer *eb)
{
	u32 nritems;
	unsigned long start;
	unsigned long end;

	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
	atomic_set(&eb->io_pages, num_extent_pages(eb));

	/* Set btree blocks beyond nritems with 0 to avoid stale content */
	nritems = btrfs_header_nritems(eb);
	if (btrfs_header_level(eb) > 0) {
		end = btrfs_node_key_ptr_offset(nritems);
		memzero_extent_buffer(eb, end, eb->len - end);
	} else {
		/*
		 * Leaf:
		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
		 */
		start = btrfs_item_nr_offset(nritems);
		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
		memzero_extent_buffer(eb, start, end - start);
	}
}

4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382
/*
 * Unlike the work in write_one_eb(), we rely completely on extent locking.
 * Page locking is only utilized at minimum to keep the VMM code happy.
 */
static int write_one_subpage_eb(struct extent_buffer *eb,
				struct writeback_control *wbc,
				struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
	bool no_dirty_ebs = false;
	int ret;

4383 4384
	prepare_eb_write(eb);

4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
	/* clear_page_dirty_for_io() in subpage helper needs page locked */
	lock_page(page);
	btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);

	/* Check if this is the last dirty bit to update nr_written */
	no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
							  eb->start, eb->len);
	if (no_dirty_ebs)
		clear_page_dirty_for_io(page);

4395 4396 4397
	ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
			&epd->bio_ctrl, page, eb->start, eb->len,
			eb->start - page_offset(page),
4398
			end_bio_subpage_eb_writepage, 0, 0, false);
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
	if (ret) {
		btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
		set_btree_ioerr(page, eb);
		unlock_page(page);

		if (atomic_dec_and_test(&eb->io_pages))
			end_extent_buffer_writeback(eb);
		return -EIO;
	}
	unlock_page(page);
	/*
	 * Submission finished without problem, if no range of the page is
	 * dirty anymore, we have submitted a page.  Update nr_written in wbc.
	 */
	if (no_dirty_ebs)
		update_nr_written(wbc, 1);
	return ret;
}

4418
static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4419 4420 4421
			struct writeback_control *wbc,
			struct extent_page_data *epd)
{
4422
	u64 disk_bytenr = eb->start;
4423
	int i, num_pages;
4424
	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4425
	int ret = 0;
4426

4427
	prepare_eb_write(eb);
4428

4429
	num_pages = num_extent_pages(eb);
4430
	for (i = 0; i < num_pages; i++) {
4431
		struct page *p = eb->pages[i];
4432 4433 4434

		clear_page_dirty_for_io(p);
		set_page_writeback(p);
4435
		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4436 4437
					 &epd->bio_ctrl, p, disk_bytenr,
					 PAGE_SIZE, 0,
4438
					 end_bio_extent_buffer_writepage,
4439
					 0, 0, false);
4440
		if (ret) {
4441
			set_btree_ioerr(p, eb);
4442 4443
			if (PageWriteback(p))
				end_page_writeback(p);
4444 4445 4446 4447 4448
			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
				end_extent_buffer_writeback(eb);
			ret = -EIO;
			break;
		}
4449
		disk_bytenr += PAGE_SIZE;
4450
		update_nr_written(wbc, 1);
4451 4452 4453 4454 4455
		unlock_page(p);
	}

	if (unlikely(ret)) {
		for (; i < num_pages; i++) {
4456
			struct page *p = eb->pages[i];
4457
			clear_page_dirty_for_io(p);
4458 4459 4460 4461 4462 4463 4464
			unlock_page(p);
		}
	}

	return ret;
}

4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
/*
 * Submit one subpage btree page.
 *
 * The main difference to submit_eb_page() is:
 * - Page locking
 *   For subpage, we don't rely on page locking at all.
 *
 * - Flush write bio
 *   We only flush bio if we may be unable to fit current extent buffers into
 *   current bio.
 *
 * Return >=0 for the number of submitted extent buffers.
 * Return <0 for fatal error.
 */
static int submit_eb_subpage(struct page *page,
			     struct writeback_control *wbc,
			     struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	int submitted = 0;
	u64 page_start = page_offset(page);
	int bit_start = 0;
	const int nbits = BTRFS_SUBPAGE_BITMAP_SIZE;
	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
	int ret;

	/* Lock and write each dirty extent buffers in the range */
	while (bit_start < nbits) {
		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
		struct extent_buffer *eb;
		unsigned long flags;
		u64 start;

		/*
		 * Take private lock to ensure the subpage won't be detached
		 * in the meantime.
		 */
		spin_lock(&page->mapping->private_lock);
		if (!PagePrivate(page)) {
			spin_unlock(&page->mapping->private_lock);
			break;
		}
		spin_lock_irqsave(&subpage->lock, flags);
		if (!((1 << bit_start) & subpage->dirty_bitmap)) {
			spin_unlock_irqrestore(&subpage->lock, flags);
			spin_unlock(&page->mapping->private_lock);
			bit_start++;
			continue;
		}

		start = page_start + bit_start * fs_info->sectorsize;
		bit_start += sectors_per_node;

		/*
		 * Here we just want to grab the eb without touching extra
		 * spin locks, so call find_extent_buffer_nolock().
		 */
		eb = find_extent_buffer_nolock(fs_info, start);
		spin_unlock_irqrestore(&subpage->lock, flags);
		spin_unlock(&page->mapping->private_lock);

		/*
		 * The eb has already reached 0 refs thus find_extent_buffer()
		 * doesn't return it. We don't need to write back such eb
		 * anyway.
		 */
		if (!eb)
			continue;

		ret = lock_extent_buffer_for_io(eb, epd);
		if (ret == 0) {
			free_extent_buffer(eb);
			continue;
		}
		if (ret < 0) {
			free_extent_buffer(eb);
			goto cleanup;
		}
4543
		ret = write_one_subpage_eb(eb, wbc, epd);
4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
		free_extent_buffer(eb);
		if (ret < 0)
			goto cleanup;
		submitted++;
	}
	return submitted;

cleanup:
	/* We hit error, end bio for the submitted extent buffers */
	end_write_bio(epd, ret);
	return ret;
}

4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
/*
 * Submit all page(s) of one extent buffer.
 *
 * @page:	the page of one extent buffer
 * @eb_context:	to determine if we need to submit this page, if current page
 *		belongs to this eb, we don't need to submit
 *
 * The caller should pass each page in their bytenr order, and here we use
 * @eb_context to determine if we have submitted pages of one extent buffer.
 *
 * If we have, we just skip until we hit a new page that doesn't belong to
 * current @eb_context.
 *
 * If not, we submit all the page(s) of the extent buffer.
 *
 * Return >0 if we have submitted the extent buffer successfully.
 * Return 0 if we don't need to submit the page, as it's already submitted by
 * previous call.
 * Return <0 for fatal error.
 */
static int submit_eb_page(struct page *page, struct writeback_control *wbc,
			  struct extent_page_data *epd,
			  struct extent_buffer **eb_context)
{
	struct address_space *mapping = page->mapping;
4582
	struct btrfs_block_group *cache = NULL;
4583 4584 4585 4586 4587 4588
	struct extent_buffer *eb;
	int ret;

	if (!PagePrivate(page))
		return 0;

4589 4590 4591
	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
		return submit_eb_subpage(page, wbc, epd);

4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
	spin_lock(&mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	eb = (struct extent_buffer *)page->private;

	/*
	 * Shouldn't happen and normally this would be a BUG_ON but no point
	 * crashing the machine for something we can survive anyway.
	 */
	if (WARN_ON(!eb)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	if (eb == *eb_context) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}
	ret = atomic_inc_not_zero(&eb->refs);
	spin_unlock(&mapping->private_lock);
	if (!ret)
		return 0;

4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
		/*
		 * If for_sync, this hole will be filled with
		 * trasnsaction commit.
		 */
		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
			ret = -EAGAIN;
		else
			ret = 0;
		free_extent_buffer(eb);
		return ret;
	}

4631 4632 4633 4634
	*eb_context = eb;

	ret = lock_extent_buffer_for_io(eb, epd);
	if (ret <= 0) {
4635 4636 4637
		btrfs_revert_meta_write_pointer(cache, eb);
		if (cache)
			btrfs_put_block_group(cache);
4638 4639 4640
		free_extent_buffer(eb);
		return ret;
	}
4641 4642
	if (cache)
		btrfs_put_block_group(cache);
4643 4644 4645 4646 4647 4648 4649
	ret = write_one_eb(eb, wbc, epd);
	free_extent_buffer(eb);
	if (ret < 0)
		return ret;
	return 1;
}

4650 4651 4652
int btree_write_cache_pages(struct address_space *mapping,
				   struct writeback_control *wbc)
{
4653
	struct extent_buffer *eb_context = NULL;
4654
	struct extent_page_data epd = {
4655
		.bio_ctrl = { 0 },
4656 4657 4658
		.extent_locked = 0,
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
	};
4659
	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4660 4661 4662 4663 4664 4665 4666 4667
	int ret = 0;
	int done = 0;
	int nr_to_write_done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	int scanned = 0;
M
Matthew Wilcox 已提交
4668
	xa_mark_t tag;
4669

4670
	pagevec_init(&pvec);
4671 4672 4673
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4674 4675 4676 4677 4678
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4679
	} else {
4680 4681
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4682 4683 4684 4685 4686 4687
		scanned = 1;
	}
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4688
	btrfs_zoned_meta_io_lock(fs_info);
4689 4690 4691 4692
retry:
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);
	while (!done && !nr_to_write_done && (index <= end) &&
J
Jan Kara 已提交
4693
	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4694
			tag))) {
4695 4696 4697 4698 4699
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4700 4701
			ret = submit_eb_page(page, wbc, &epd, &eb_context);
			if (ret == 0)
4702
				continue;
4703
			if (ret < 0) {
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
				done = 1;
				break;
			}

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	if (!scanned && !done) {
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
		goto retry;
	}
4727 4728
	if (ret < 0) {
		end_write_bio(&epd, ret);
4729
		goto out;
4730
	}
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
	/*
	 * If something went wrong, don't allow any metadata write bio to be
	 * submitted.
	 *
	 * This would prevent use-after-free if we had dirty pages not
	 * cleaned up, which can still happen by fuzzed images.
	 *
	 * - Bad extent tree
	 *   Allowing existing tree block to be allocated for other trees.
	 *
	 * - Log tree operations
	 *   Exiting tree blocks get allocated to log tree, bumps its
	 *   generation, then get cleaned in tree re-balance.
	 *   Such tree block will not be written back, since it's clean,
	 *   thus no WRITTEN flag set.
	 *   And after log writes back, this tree block is not traced by
	 *   any dirty extent_io_tree.
	 *
	 * - Offending tree block gets re-dirtied from its original owner
	 *   Since it has bumped generation, no WRITTEN flag, it can be
	 *   reused without COWing. This tree block will not be traced
	 *   by btrfs_transaction::dirty_pages.
	 *
	 *   Now such dirty tree block will not be cleaned by any dirty
	 *   extent io tree. Thus we don't want to submit such wild eb
	 *   if the fs already has error.
	 */
	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
		ret = flush_write_bio(&epd);
	} else {
4761
		ret = -EROFS;
4762 4763
		end_write_bio(&epd, ret);
	}
4764 4765
out:
	btrfs_zoned_meta_io_unlock(fs_info);
4766 4767 4768
	return ret;
}

4769
/**
4770 4771
 * Walk the list of dirty pages of the given address space and write all of them.
 *
4772
 * @mapping: address space structure to write
4773 4774
 * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
 * @epd:     holds context for the write, namely the bio
4775 4776 4777 4778 4779 4780 4781 4782 4783
 *
 * If a page is already under I/O, write_cache_pages() skips it, even
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
 */
4784
static int extent_write_cache_pages(struct address_space *mapping,
C
Chris Mason 已提交
4785
			     struct writeback_control *wbc,
4786
			     struct extent_page_data *epd)
4787
{
4788
	struct inode *inode = mapping->host;
4789 4790
	int ret = 0;
	int done = 0;
4791
	int nr_to_write_done = 0;
4792 4793 4794 4795
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
4796 4797
	pgoff_t done_index;
	int range_whole = 0;
4798
	int scanned = 0;
M
Matthew Wilcox 已提交
4799
	xa_mark_t tag;
4800

4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
	/*
	 * We have to hold onto the inode so that ordered extents can do their
	 * work when the IO finishes.  The alternative to this is failing to add
	 * an ordered extent if the igrab() fails there and that is a huge pain
	 * to deal with, so instead just hold onto the inode throughout the
	 * writepages operation.  If it fails here we are freeing up the inode
	 * anyway and we'd rather not waste our time writing out stuff that is
	 * going to be truncated anyway.
	 */
	if (!igrab(inode))
		return 0;

4813
	pagevec_init(&pvec);
4814 4815 4816
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4817 4818 4819 4820 4821
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4822
	} else {
4823 4824
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4825 4826
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
4827 4828
		scanned = 1;
	}
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842

	/*
	 * We do the tagged writepage as long as the snapshot flush bit is set
	 * and we are the first one who do the filemap_flush() on this inode.
	 *
	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
	 * not race in and drop the bit.
	 */
	if (range_whole && wbc->nr_to_write == LONG_MAX &&
	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
			       &BTRFS_I(inode)->runtime_flags))
		wbc->tagged_writepages = 1;

	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4843 4844 4845
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4846
retry:
4847
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4848
		tag_pages_for_writeback(mapping, index, end);
4849
	done_index = index;
4850
	while (!done && !nr_to_write_done && (index <= end) &&
4851 4852
			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
						&index, end, tag))) {
4853 4854 4855 4856 4857
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4858
			done_index = page->index + 1;
4859
			/*
M
Matthew Wilcox 已提交
4860 4861 4862 4863 4864
			 * At this point we hold neither the i_pages lock nor
			 * the page lock: the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to
			 * tmpfs file mapping
4865
			 */
4866
			if (!trylock_page(page)) {
4867 4868
				ret = flush_write_bio(epd);
				BUG_ON(ret < 0);
4869
				lock_page(page);
4870
			}
4871 4872 4873 4874 4875 4876

			if (unlikely(page->mapping != mapping)) {
				unlock_page(page);
				continue;
			}

C
Chris Mason 已提交
4877
			if (wbc->sync_mode != WB_SYNC_NONE) {
4878 4879 4880 4881
				if (PageWriteback(page)) {
					ret = flush_write_bio(epd);
					BUG_ON(ret < 0);
				}
4882
				wait_on_page_writeback(page);
C
Chris Mason 已提交
4883
			}
4884 4885 4886 4887 4888 4889 4890

			if (PageWriteback(page) ||
			    !clear_page_dirty_for_io(page)) {
				unlock_page(page);
				continue;
			}

4891
			ret = __extent_writepage(page, wbc, epd);
4892 4893 4894 4895
			if (ret < 0) {
				done = 1;
				break;
			}
4896 4897 4898 4899 4900 4901 4902

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
4903 4904 4905 4906
		}
		pagevec_release(&pvec);
		cond_resched();
	}
4907
	if (!scanned && !done) {
4908 4909 4910 4911 4912 4913
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
4914 4915 4916 4917 4918 4919 4920 4921 4922 4923

		/*
		 * If we're looping we could run into a page that is locked by a
		 * writer and that writer could be waiting on writeback for a
		 * page in our current bio, and thus deadlock, so flush the
		 * write bio here.
		 */
		ret = flush_write_bio(epd);
		if (!ret)
			goto retry;
4924
	}
4925 4926 4927 4928

	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
		mapping->writeback_index = done_index;

4929
	btrfs_add_delayed_iput(inode);
4930
	return ret;
4931 4932
}

4933
int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4934 4935 4936
{
	int ret;
	struct extent_page_data epd = {
4937
		.bio_ctrl = { 0 },
4938
		.extent_locked = 0,
4939
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4940 4941 4942
	};

	ret = __extent_writepage(page, wbc, &epd);
4943 4944 4945 4946 4947
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
4948

4949 4950
	ret = flush_write_bio(&epd);
	ASSERT(ret <= 0);
4951 4952 4953
	return ret;
}

4954
int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4955 4956 4957 4958 4959
			      int mode)
{
	int ret = 0;
	struct address_space *mapping = inode->i_mapping;
	struct page *page;
4960 4961
	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
		PAGE_SHIFT;
4962 4963

	struct extent_page_data epd = {
4964
		.bio_ctrl = { 0 },
4965
		.extent_locked = 1,
4966
		.sync_io = mode == WB_SYNC_ALL,
4967 4968 4969 4970 4971 4972
	};
	struct writeback_control wbc_writepages = {
		.sync_mode	= mode,
		.nr_to_write	= nr_pages * 2,
		.range_start	= start,
		.range_end	= end + 1,
4973 4974 4975
		/* We're called from an async helper function */
		.punt_to_cgroup	= 1,
		.no_cgroup_owner = 1,
4976 4977
	};

4978
	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
C
Chris Mason 已提交
4979
	while (start <= end) {
4980
		page = find_get_page(mapping, start >> PAGE_SHIFT);
4981 4982 4983
		if (clear_page_dirty_for_io(page))
			ret = __extent_writepage(page, &wbc_writepages, &epd);
		else {
4984 4985
			btrfs_writepage_endio_finish_ordered(BTRFS_I(inode),
					page, start, start + PAGE_SIZE - 1, 1);
4986 4987
			unlock_page(page);
		}
4988 4989
		put_page(page);
		start += PAGE_SIZE;
4990 4991
	}

4992
	ASSERT(ret <= 0);
4993 4994 4995
	if (ret == 0)
		ret = flush_write_bio(&epd);
	else
4996
		end_write_bio(&epd, ret);
4997 4998

	wbc_detach_inode(&wbc_writepages);
4999 5000
	return ret;
}
5001

5002
int extent_writepages(struct address_space *mapping,
5003 5004 5005 5006
		      struct writeback_control *wbc)
{
	int ret = 0;
	struct extent_page_data epd = {
5007
		.bio_ctrl = { 0 },
5008
		.extent_locked = 0,
5009
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5010 5011
	};

5012
	ret = extent_write_cache_pages(mapping, wbc, &epd);
5013 5014 5015 5016 5017 5018
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
	ret = flush_write_bio(&epd);
5019 5020 5021
	return ret;
}

5022
void extent_readahead(struct readahead_control *rac)
5023
{
5024
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
L
Liu Bo 已提交
5025
	struct page *pagepool[16];
5026
	struct extent_map *em_cached = NULL;
5027
	u64 prev_em_start = (u64)-1;
5028
	int nr;
5029

5030
	while ((nr = readahead_page_batch(rac, pagepool))) {
5031 5032
		u64 contig_start = readahead_pos(rac);
		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
5033

5034
		contiguous_readpages(pagepool, nr, contig_start, contig_end,
5035
				&em_cached, &bio_ctrl, &prev_em_start);
5036
	}
L
Liu Bo 已提交
5037

5038 5039 5040
	if (em_cached)
		free_extent_map(em_cached);

5041 5042
	if (bio_ctrl.bio) {
		if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags))
5043 5044
			return;
	}
5045 5046 5047 5048 5049 5050 5051 5052 5053 5054
}

/*
 * basic invalidatepage code, this waits on any locked or writeback
 * ranges corresponding to the page, and then deletes any extent state
 * records from the tree
 */
int extent_invalidatepage(struct extent_io_tree *tree,
			  struct page *page, unsigned long offset)
{
5055
	struct extent_state *cached_state = NULL;
M
Miao Xie 已提交
5056
	u64 start = page_offset(page);
5057
	u64 end = start + PAGE_SIZE - 1;
5058 5059
	size_t blocksize = page->mapping->host->i_sb->s_blocksize;

5060 5061 5062
	/* This function is only called for the btree inode */
	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);

5063
	start += ALIGN(offset, blocksize);
5064 5065 5066
	if (start > end)
		return 0;

5067
	lock_extent_bits(tree, start, end, &cached_state);
5068
	wait_on_page_writeback(page);
5069 5070 5071 5072 5073 5074 5075

	/*
	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
	 * so here we only need to unlock the extent range to free any
	 * existing extent state.
	 */
	unlock_extent_cached(tree, start, end, &cached_state);
5076 5077 5078
	return 0;
}

5079 5080 5081 5082 5083
/*
 * a helper for releasepage, this tests for areas of the page that
 * are locked or under IO and drops the related state bits if it is safe
 * to drop the page.
 */
5084
static int try_release_extent_state(struct extent_io_tree *tree,
5085
				    struct page *page, gfp_t mask)
5086
{
M
Miao Xie 已提交
5087
	u64 start = page_offset(page);
5088
	u64 end = start + PAGE_SIZE - 1;
5089 5090
	int ret = 1;

N
Nikolay Borisov 已提交
5091
	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
5092
		ret = 0;
N
Nikolay Borisov 已提交
5093
	} else {
5094
		/*
5095 5096 5097 5098
		 * At this point we can safely clear everything except the
		 * locked bit, the nodatasum bit and the delalloc new bit.
		 * The delalloc new bit will be cleared by ordered extent
		 * completion.
5099
		 */
5100
		ret = __clear_extent_bit(tree, start, end,
5101 5102
			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
			 0, 0, NULL, mask, NULL);
5103 5104 5105 5106 5107 5108 5109 5110

		/* if clear_extent_bit failed for enomem reasons,
		 * we can't allow the release to continue.
		 */
		if (ret < 0)
			ret = 0;
		else
			ret = 1;
5111 5112 5113 5114
	}
	return ret;
}

5115 5116 5117 5118 5119
/*
 * a helper for releasepage.  As long as there are no locked extents
 * in the range corresponding to the page, both state records and extent
 * map records are removed
 */
5120
int try_release_extent_mapping(struct page *page, gfp_t mask)
5121 5122
{
	struct extent_map *em;
M
Miao Xie 已提交
5123
	u64 start = page_offset(page);
5124
	u64 end = start + PAGE_SIZE - 1;
5125 5126 5127
	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
	struct extent_io_tree *tree = &btrfs_inode->io_tree;
	struct extent_map_tree *map = &btrfs_inode->extent_tree;
5128

5129
	if (gfpflags_allow_blocking(mask) &&
5130
	    page->mapping->host->i_size > SZ_16M) {
5131
		u64 len;
5132
		while (start <= end) {
5133 5134 5135
			struct btrfs_fs_info *fs_info;
			u64 cur_gen;

5136
			len = end - start + 1;
5137
			write_lock(&map->lock);
5138
			em = lookup_extent_mapping(map, start, len);
5139
			if (!em) {
5140
				write_unlock(&map->lock);
5141 5142
				break;
			}
5143 5144
			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
			    em->start != start) {
5145
				write_unlock(&map->lock);
5146 5147 5148
				free_extent_map(em);
				break;
			}
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
			if (test_range_bit(tree, em->start,
					   extent_map_end(em) - 1,
					   EXTENT_LOCKED, 0, NULL))
				goto next;
			/*
			 * If it's not in the list of modified extents, used
			 * by a fast fsync, we can remove it. If it's being
			 * logged we can safely remove it since fsync took an
			 * extra reference on the em.
			 */
			if (list_empty(&em->list) ||
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175
			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
				goto remove_em;
			/*
			 * If it's in the list of modified extents, remove it
			 * only if its generation is older then the current one,
			 * in which case we don't need it for a fast fsync.
			 * Otherwise don't remove it, we could be racing with an
			 * ongoing fast fsync that could miss the new extent.
			 */
			fs_info = btrfs_inode->root->fs_info;
			spin_lock(&fs_info->trans_lock);
			cur_gen = fs_info->generation;
			spin_unlock(&fs_info->trans_lock);
			if (em->generation >= cur_gen)
				goto next;
remove_em:
5176 5177 5178 5179 5180 5181 5182 5183
			/*
			 * We only remove extent maps that are not in the list of
			 * modified extents or that are in the list but with a
			 * generation lower then the current generation, so there
			 * is no need to set the full fsync flag on the inode (it
			 * hurts the fsync performance for workloads with a data
			 * size that exceeds or is close to the system's memory).
			 */
5184 5185 5186
			remove_extent_mapping(map, em);
			/* once for the rb tree */
			free_extent_map(em);
5187
next:
5188
			start = extent_map_end(em);
5189
			write_unlock(&map->lock);
5190 5191

			/* once for us */
5192
			free_extent_map(em);
5193 5194

			cond_resched(); /* Allow large-extent preemption. */
5195 5196
		}
	}
5197
	return try_release_extent_state(tree, page, mask);
5198 5199
}

5200 5201 5202 5203
/*
 * helper function for fiemap, which doesn't want to see any holes.
 * This maps until we find something past 'last'
 */
5204
static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
5205
						u64 offset, u64 last)
5206
{
5207
	u64 sectorsize = btrfs_inode_sectorsize(inode);
5208 5209 5210 5211 5212 5213
	struct extent_map *em;
	u64 len;

	if (offset >= last)
		return NULL;

5214
	while (1) {
5215 5216 5217
		len = last - offset;
		if (len == 0)
			break;
5218
		len = ALIGN(len, sectorsize);
5219
		em = btrfs_get_extent_fiemap(inode, offset, len);
5220
		if (IS_ERR_OR_NULL(em))
5221 5222 5223
			return em;

		/* if this isn't a hole return it */
5224
		if (em->block_start != EXTENT_MAP_HOLE)
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235
			return em;

		/* this is a hole, advance to the next extent */
		offset = extent_map_end(em);
		free_extent_map(em);
		if (offset >= last)
			break;
	}
	return NULL;
}

5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
/*
 * To cache previous fiemap extent
 *
 * Will be used for merging fiemap extent
 */
struct fiemap_cache {
	u64 offset;
	u64 phys;
	u64 len;
	u32 flags;
	bool cached;
};

/*
 * Helper to submit fiemap extent.
 *
 * Will try to merge current fiemap extent specified by @offset, @phys,
 * @len and @flags with cached one.
 * And only when we fails to merge, cached one will be submitted as
 * fiemap extent.
 *
 * Return value is the same as fiemap_fill_next_extent().
 */
static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
				struct fiemap_cache *cache,
				u64 offset, u64 phys, u64 len, u32 flags)
{
	int ret = 0;

	if (!cache->cached)
		goto assign;

	/*
	 * Sanity check, extent_fiemap() should have ensured that new
5270
	 * fiemap extent won't overlap with cached one.
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
	 * Not recoverable.
	 *
	 * NOTE: Physical address can overlap, due to compression
	 */
	if (cache->offset + cache->len > offset) {
		WARN_ON(1);
		return -EINVAL;
	}

	/*
	 * Only merges fiemap extents if
	 * 1) Their logical addresses are continuous
	 *
	 * 2) Their physical addresses are continuous
	 *    So truly compressed (physical size smaller than logical size)
	 *    extents won't get merged with each other
	 *
	 * 3) Share same flags except FIEMAP_EXTENT_LAST
	 *    So regular extent won't get merged with prealloc extent
	 */
	if (cache->offset + cache->len  == offset &&
	    cache->phys + cache->len == phys  &&
	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
			(flags & ~FIEMAP_EXTENT_LAST)) {
		cache->len += len;
		cache->flags |= flags;
		goto try_submit_last;
	}

	/* Not mergeable, need to submit cached one */
	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret)
		return ret;
assign:
	cache->cached = true;
	cache->offset = offset;
	cache->phys = phys;
	cache->len = len;
	cache->flags = flags;
try_submit_last:
	if (cache->flags & FIEMAP_EXTENT_LAST) {
		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
				cache->phys, cache->len, cache->flags);
		cache->cached = false;
	}
	return ret;
}

/*
5322
 * Emit last fiemap cache
5323
 *
5324 5325 5326 5327 5328 5329 5330
 * The last fiemap cache may still be cached in the following case:
 * 0		      4k		    8k
 * |<- Fiemap range ->|
 * |<------------  First extent ----------->|
 *
 * In this case, the first extent range will be cached but not emitted.
 * So we must emit it before ending extent_fiemap().
5331
 */
5332
static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5333
				  struct fiemap_cache *cache)
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
{
	int ret;

	if (!cache->cached)
		return 0;

	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret > 0)
		ret = 0;
	return ret;
}

5348
int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
5349
		  u64 start, u64 len)
Y
Yehuda Sadeh 已提交
5350
{
J
Josef Bacik 已提交
5351
	int ret = 0;
5352
	u64 off;
Y
Yehuda Sadeh 已提交
5353 5354
	u64 max = start + len;
	u32 flags = 0;
J
Josef Bacik 已提交
5355 5356
	u32 found_type;
	u64 last;
5357
	u64 last_for_get_extent = 0;
Y
Yehuda Sadeh 已提交
5358
	u64 disko = 0;
5359
	u64 isize = i_size_read(&inode->vfs_inode);
J
Josef Bacik 已提交
5360
	struct btrfs_key found_key;
Y
Yehuda Sadeh 已提交
5361
	struct extent_map *em = NULL;
5362
	struct extent_state *cached_state = NULL;
J
Josef Bacik 已提交
5363
	struct btrfs_path *path;
5364
	struct btrfs_root *root = inode->root;
5365
	struct fiemap_cache cache = { 0 };
5366 5367
	struct ulist *roots;
	struct ulist *tmp_ulist;
Y
Yehuda Sadeh 已提交
5368
	int end = 0;
5369 5370 5371
	u64 em_start = 0;
	u64 em_len = 0;
	u64 em_end = 0;
Y
Yehuda Sadeh 已提交
5372 5373 5374 5375

	if (len == 0)
		return -EINVAL;

J
Josef Bacik 已提交
5376 5377 5378 5379
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

5380 5381 5382 5383 5384 5385 5386
	roots = ulist_alloc(GFP_KERNEL);
	tmp_ulist = ulist_alloc(GFP_KERNEL);
	if (!roots || !tmp_ulist) {
		ret = -ENOMEM;
		goto out_free_ulist;
	}

5387 5388 5389 5390 5391
	/*
	 * We can't initialize that to 'start' as this could miss extents due
	 * to extent item merging
	 */
	off = 0;
5392 5393
	start = round_down(start, btrfs_inode_sectorsize(inode));
	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5394

5395 5396 5397 5398
	/*
	 * lookup the last file extent.  We're not using i_size here
	 * because there might be preallocation past i_size
	 */
5399 5400
	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
				       0);
J
Josef Bacik 已提交
5401
	if (ret < 0) {
5402
		goto out_free_ulist;
5403 5404 5405 5406
	} else {
		WARN_ON(!ret);
		if (ret == 1)
			ret = 0;
J
Josef Bacik 已提交
5407
	}
5408

J
Josef Bacik 已提交
5409 5410
	path->slots[0]--;
	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5411
	found_type = found_key.type;
J
Josef Bacik 已提交
5412

5413
	/* No extents, but there might be delalloc bits */
5414
	if (found_key.objectid != btrfs_ino(inode) ||
J
Josef Bacik 已提交
5415
	    found_type != BTRFS_EXTENT_DATA_KEY) {
5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
		/* have to trust i_size as the end */
		last = (u64)-1;
		last_for_get_extent = isize;
	} else {
		/*
		 * remember the start of the last extent.  There are a
		 * bunch of different factors that go into the length of the
		 * extent, so its much less complex to remember where it started
		 */
		last = found_key.offset;
		last_for_get_extent = last + 1;
J
Josef Bacik 已提交
5427
	}
5428
	btrfs_release_path(path);
J
Josef Bacik 已提交
5429

5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
	/*
	 * we might have some extents allocated but more delalloc past those
	 * extents.  so, we trust isize unless the start of the last extent is
	 * beyond isize
	 */
	if (last < isize) {
		last = (u64)-1;
		last_for_get_extent = isize;
	}

5440
	lock_extent_bits(&inode->io_tree, start, start + len - 1,
5441
			 &cached_state);
5442

5443
	em = get_extent_skip_holes(inode, start, last_for_get_extent);
Y
Yehuda Sadeh 已提交
5444 5445 5446 5447 5448 5449
	if (!em)
		goto out;
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out;
	}
J
Josef Bacik 已提交
5450

Y
Yehuda Sadeh 已提交
5451
	while (!end) {
5452
		u64 offset_in_extent = 0;
5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464

		/* break if the extent we found is outside the range */
		if (em->start >= max || extent_map_end(em) < off)
			break;

		/*
		 * get_extent may return an extent that starts before our
		 * requested range.  We have to make sure the ranges
		 * we return to fiemap always move forward and don't
		 * overlap, so adjust the offsets here
		 */
		em_start = max(em->start, off);
Y
Yehuda Sadeh 已提交
5465

5466 5467
		/*
		 * record the offset from the start of the extent
5468 5469 5470
		 * for adjusting the disk offset below.  Only do this if the
		 * extent isn't compressed since our in ram offset may be past
		 * what we have actually allocated on disk.
5471
		 */
5472 5473
		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			offset_in_extent = em_start - em->start;
5474
		em_end = extent_map_end(em);
5475
		em_len = em_end - em_start;
Y
Yehuda Sadeh 已提交
5476
		flags = 0;
5477 5478 5479 5480
		if (em->block_start < EXTENT_MAP_LAST_BYTE)
			disko = em->block_start + offset_in_extent;
		else
			disko = 0;
Y
Yehuda Sadeh 已提交
5481

5482 5483 5484 5485 5486 5487 5488
		/*
		 * bump off for our next call to get_extent
		 */
		off = extent_map_end(em);
		if (off >= max)
			end = 1;

5489
		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
Y
Yehuda Sadeh 已提交
5490 5491
			end = 1;
			flags |= FIEMAP_EXTENT_LAST;
5492
		} else if (em->block_start == EXTENT_MAP_INLINE) {
Y
Yehuda Sadeh 已提交
5493 5494
			flags |= (FIEMAP_EXTENT_DATA_INLINE |
				  FIEMAP_EXTENT_NOT_ALIGNED);
5495
		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
Y
Yehuda Sadeh 已提交
5496 5497
			flags |= (FIEMAP_EXTENT_DELALLOC |
				  FIEMAP_EXTENT_UNKNOWN);
5498 5499 5500
		} else if (fieinfo->fi_extents_max) {
			u64 bytenr = em->block_start -
				(em->start - em->orig_start);
5501 5502 5503 5504

			/*
			 * As btrfs supports shared space, this information
			 * can be exported to userspace tools via
5505 5506 5507
			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
			 * then we're just getting a count and we can skip the
			 * lookup stuff.
5508
			 */
5509
			ret = btrfs_check_shared(root, btrfs_ino(inode),
5510
						 bytenr, roots, tmp_ulist);
5511
			if (ret < 0)
5512
				goto out_free;
5513
			if (ret)
5514
				flags |= FIEMAP_EXTENT_SHARED;
5515
			ret = 0;
Y
Yehuda Sadeh 已提交
5516 5517 5518
		}
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			flags |= FIEMAP_EXTENT_ENCODED;
5519 5520
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			flags |= FIEMAP_EXTENT_UNWRITTEN;
Y
Yehuda Sadeh 已提交
5521 5522 5523

		free_extent_map(em);
		em = NULL;
5524 5525
		if ((em_start >= last) || em_len == (u64)-1 ||
		   (last == (u64)-1 && isize <= em_end)) {
Y
Yehuda Sadeh 已提交
5526 5527 5528 5529
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}

5530
		/* now scan forward to see if this is really the last extent. */
5531
		em = get_extent_skip_holes(inode, off, last_for_get_extent);
5532 5533 5534 5535 5536
		if (IS_ERR(em)) {
			ret = PTR_ERR(em);
			goto out;
		}
		if (!em) {
J
Josef Bacik 已提交
5537 5538 5539
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}
5540 5541
		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
					   em_len, flags);
5542 5543 5544
		if (ret) {
			if (ret == 1)
				ret = 0;
5545
			goto out_free;
5546
		}
Y
Yehuda Sadeh 已提交
5547 5548
	}
out_free:
5549
	if (!ret)
5550
		ret = emit_last_fiemap_cache(fieinfo, &cache);
Y
Yehuda Sadeh 已提交
5551 5552
	free_extent_map(em);
out:
5553
	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5554
			     &cached_state);
5555 5556

out_free_ulist:
5557
	btrfs_free_path(path);
5558 5559
	ulist_free(roots);
	ulist_free(tmp_ulist);
Y
Yehuda Sadeh 已提交
5560 5561 5562
	return ret;
}

5563 5564 5565 5566 5567
static void __free_extent_buffer(struct extent_buffer *eb)
{
	kmem_cache_free(extent_buffer_cache, eb);
}

5568
int extent_buffer_under_io(const struct extent_buffer *eb)
5569 5570 5571 5572 5573 5574
{
	return (atomic_read(&eb->io_pages) ||
		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
}

5575
static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5576
{
5577
	struct btrfs_subpage *subpage;
5578

5579
	lockdep_assert_held(&page->mapping->private_lock);
5580

5581 5582 5583 5584
	if (PagePrivate(page)) {
		subpage = (struct btrfs_subpage *)page->private;
		if (atomic_read(&subpage->eb_refs))
			return true;
5585 5586 5587 5588 5589 5590
		/*
		 * Even there is no eb refs here, we may still have
		 * end_page_read() call relying on page::private.
		 */
		if (atomic_read(&subpage->readers))
			return true;
5591 5592 5593
	}
	return false;
}
5594

5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607
static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);

	/*
	 * For mapped eb, we're going to change the page private, which should
	 * be done under the private_lock.
	 */
	if (mapped)
		spin_lock(&page->mapping->private_lock);

	if (!PagePrivate(page)) {
5608
		if (mapped)
5609 5610 5611 5612 5613
			spin_unlock(&page->mapping->private_lock);
		return;
	}

	if (fs_info->sectorsize == PAGE_SIZE) {
5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625
		/*
		 * We do this since we'll remove the pages after we've
		 * removed the eb from the radix tree, so we could race
		 * and have this page now attached to the new eb.  So
		 * only clear page_private if it's still connected to
		 * this eb.
		 */
		if (PagePrivate(page) &&
		    page->private == (unsigned long)eb) {
			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
			BUG_ON(PageDirty(page));
			BUG_ON(PageWriteback(page));
5626
			/*
5627 5628
			 * We need to make sure we haven't be attached
			 * to a new eb.
5629
			 */
5630
			detach_page_private(page);
5631
		}
5632 5633
		if (mapped)
			spin_unlock(&page->mapping->private_lock);
5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650
		return;
	}

	/*
	 * For subpage, we can have dummy eb with page private.  In this case,
	 * we can directly detach the private as such page is only attached to
	 * one dummy eb, no sharing.
	 */
	if (!mapped) {
		btrfs_detach_subpage(fs_info, page);
		return;
	}

	btrfs_page_dec_eb_refs(fs_info, page);

	/*
	 * We can only detach the page private if there are no other ebs in the
5651
	 * page range and no unfinished IO.
5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674
	 */
	if (!page_range_has_eb(fs_info, page))
		btrfs_detach_subpage(fs_info, page);

	spin_unlock(&page->mapping->private_lock);
}

/* Release all pages attached to the extent buffer */
static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
{
	int i;
	int num_pages;

	ASSERT(!extent_buffer_under_io(eb));

	num_pages = num_extent_pages(eb);
	for (i = 0; i < num_pages; i++) {
		struct page *page = eb->pages[i];

		if (!page)
			continue;

		detach_extent_buffer_page(eb, page);
5675

5676
		/* One for when we allocated the page */
5677
		put_page(page);
5678
	}
5679 5680 5681 5682 5683 5684 5685
}

/*
 * Helper for releasing the extent buffer.
 */
static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
{
5686
	btrfs_release_extent_buffer_pages(eb);
5687
	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5688 5689 5690
	__free_extent_buffer(eb);
}

5691 5692
static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5693
		      unsigned long len)
5694 5695 5696
{
	struct extent_buffer *eb = NULL;

5697
	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5698 5699
	eb->start = start;
	eb->len = len;
5700
	eb->fs_info = fs_info;
5701
	eb->bflags = 0;
5702
	init_rwsem(&eb->lock);
5703

5704 5705
	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
			     &fs_info->allocated_ebs);
5706
	INIT_LIST_HEAD(&eb->release_list);
5707

5708
	spin_lock_init(&eb->refs_lock);
5709
	atomic_set(&eb->refs, 1);
5710
	atomic_set(&eb->io_pages, 0);
5711

5712
	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5713 5714 5715 5716

	return eb;
}

5717
struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5718
{
5719
	int i;
5720 5721
	struct page *p;
	struct extent_buffer *new;
5722
	int num_pages = num_extent_pages(src);
5723

5724
	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5725 5726 5727
	if (new == NULL)
		return NULL;

5728 5729 5730 5731 5732 5733 5734
	/*
	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
	 * btrfs_release_extent_buffer() have different behavior for
	 * UNMAPPED subpage extent buffer.
	 */
	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);

5735
	for (i = 0; i < num_pages; i++) {
5736 5737
		int ret;

5738
		p = alloc_page(GFP_NOFS);
5739 5740 5741 5742
		if (!p) {
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5743 5744 5745 5746 5747 5748
		ret = attach_extent_buffer_page(new, p, NULL);
		if (ret < 0) {
			put_page(p);
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5749 5750
		WARN_ON(PageDirty(p));
		new->pages[i] = p;
5751
		copy_page(page_address(p), page_address(src->pages[i]));
5752
	}
5753
	set_extent_buffer_uptodate(new);
5754 5755 5756 5757

	return new;
}

5758 5759
struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
						  u64 start, unsigned long len)
5760 5761
{
	struct extent_buffer *eb;
5762 5763
	int num_pages;
	int i;
5764

5765
	eb = __alloc_extent_buffer(fs_info, start, len);
5766 5767 5768
	if (!eb)
		return NULL;

5769
	num_pages = num_extent_pages(eb);
5770
	for (i = 0; i < num_pages; i++) {
5771 5772
		int ret;

5773
		eb->pages[i] = alloc_page(GFP_NOFS);
5774 5775
		if (!eb->pages[i])
			goto err;
5776 5777 5778
		ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
		if (ret < 0)
			goto err;
5779 5780 5781
	}
	set_extent_buffer_uptodate(eb);
	btrfs_set_header_nritems(eb, 0);
5782
	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5783 5784 5785

	return eb;
err:
5786 5787
	for (; i > 0; i--) {
		detach_extent_buffer_page(eb, eb->pages[i - 1]);
5788
		__free_page(eb->pages[i - 1]);
5789
	}
5790 5791 5792 5793
	__free_extent_buffer(eb);
	return NULL;
}

5794
struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5795
						u64 start)
5796
{
5797
	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5798 5799
}

5800 5801
static void check_buffer_tree_ref(struct extent_buffer *eb)
{
5802
	int refs;
5803 5804 5805 5806
	/*
	 * The TREE_REF bit is first set when the extent_buffer is added
	 * to the radix tree. It is also reset, if unset, when a new reference
	 * is created by find_extent_buffer.
5807
	 *
5808 5809 5810
	 * It is only cleared in two cases: freeing the last non-tree
	 * reference to the extent_buffer when its STALE bit is set or
	 * calling releasepage when the tree reference is the only reference.
5811
	 *
5812 5813 5814 5815 5816
	 * In both cases, care is taken to ensure that the extent_buffer's
	 * pages are not under io. However, releasepage can be concurrently
	 * called with creating new references, which is prone to race
	 * conditions between the calls to check_buffer_tree_ref in those
	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5817
	 *
5818 5819 5820 5821 5822 5823 5824
	 * The actual lifetime of the extent_buffer in the radix tree is
	 * adequately protected by the refcount, but the TREE_REF bit and
	 * its corresponding reference are not. To protect against this
	 * class of races, we call check_buffer_tree_ref from the codepaths
	 * which trigger io after they set eb->io_pages. Note that once io is
	 * initiated, TREE_REF can no longer be cleared, so that is the
	 * moment at which any such race is best fixed.
5825
	 */
5826 5827 5828 5829
	refs = atomic_read(&eb->refs);
	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		return;

5830 5831
	spin_lock(&eb->refs_lock);
	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5832
		atomic_inc(&eb->refs);
5833
	spin_unlock(&eb->refs_lock);
5834 5835
}

5836 5837
static void mark_extent_buffer_accessed(struct extent_buffer *eb,
		struct page *accessed)
5838
{
5839
	int num_pages, i;
5840

5841 5842
	check_buffer_tree_ref(eb);

5843
	num_pages = num_extent_pages(eb);
5844
	for (i = 0; i < num_pages; i++) {
5845 5846
		struct page *p = eb->pages[i];

5847 5848
		if (p != accessed)
			mark_page_accessed(p);
5849 5850 5851
	}
}

5852 5853
struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
					 u64 start)
5854 5855 5856
{
	struct extent_buffer *eb;

5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875
	eb = find_extent_buffer_nolock(fs_info, start);
	if (!eb)
		return NULL;
	/*
	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
	 * another task running free_extent_buffer() might have seen that flag
	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
	 * writeback flags not set) and it's still in the tree (flag
	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
	 * decrementing the extent buffer's reference count twice.  So here we
	 * could race and increment the eb's reference count, clear its stale
	 * flag, mark it as dirty and drop our reference before the other task
	 * finishes executing free_extent_buffer, which would later result in
	 * an attempt to free an extent buffer that is dirty.
	 */
	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
		spin_lock(&eb->refs_lock);
		spin_unlock(&eb->refs_lock);
5876
	}
5877 5878
	mark_extent_buffer_accessed(eb, NULL);
	return eb;
5879 5880
}

5881 5882
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5883
					u64 start)
5884 5885 5886 5887 5888 5889 5890
{
	struct extent_buffer *eb, *exists = NULL;
	int ret;

	eb = find_extent_buffer(fs_info, start);
	if (eb)
		return eb;
5891
	eb = alloc_dummy_extent_buffer(fs_info, start);
5892
	if (!eb)
5893
		return ERR_PTR(-ENOMEM);
5894 5895
	eb->fs_info = fs_info;
again:
5896
	ret = radix_tree_preload(GFP_NOFS);
5897 5898
	if (ret) {
		exists = ERR_PTR(ret);
5899
		goto free_eb;
5900
	}
5901 5902
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
5903
				start >> fs_info->sectorsize_bits, eb);
5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922
	spin_unlock(&fs_info->buffer_lock);
	radix_tree_preload_end();
	if (ret == -EEXIST) {
		exists = find_extent_buffer(fs_info, start);
		if (exists)
			goto free_eb;
		else
			goto again;
	}
	check_buffer_tree_ref(eb);
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);

	return eb;
free_eb:
	btrfs_release_extent_buffer(eb);
	return exists;
}
#endif

5923 5924
static struct extent_buffer *grab_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page)
5925 5926 5927
{
	struct extent_buffer *exists;

5928 5929 5930 5931 5932 5933 5934 5935
	/*
	 * For subpage case, we completely rely on radix tree to ensure we
	 * don't try to insert two ebs for the same bytenr.  So here we always
	 * return NULL and just continue.
	 */
	if (fs_info->sectorsize < PAGE_SIZE)
		return NULL;

5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954
	/* Page not yet attached to an extent buffer */
	if (!PagePrivate(page))
		return NULL;

	/*
	 * We could have already allocated an eb for this page and attached one
	 * so lets see if we can get a ref on the existing eb, and if we can we
	 * know it's good and we can just return that one, else we know we can
	 * just overwrite page->private.
	 */
	exists = (struct extent_buffer *)page->private;
	if (atomic_inc_not_zero(&exists->refs))
		return exists;

	WARN_ON(PageDirty(page));
	detach_page_private(page);
	return NULL;
}

5955
struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5956
					  u64 start, u64 owner_root, int level)
5957
{
5958
	unsigned long len = fs_info->nodesize;
5959 5960
	int num_pages;
	int i;
5961
	unsigned long index = start >> PAGE_SHIFT;
5962
	struct extent_buffer *eb;
5963
	struct extent_buffer *exists = NULL;
5964
	struct page *p;
5965
	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5966
	int uptodate = 1;
5967
	int ret;
5968

5969
	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5970 5971 5972 5973
		btrfs_err(fs_info, "bad tree block start %llu", start);
		return ERR_PTR(-EINVAL);
	}

5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984
#if BITS_PER_LONG == 32
	if (start >= MAX_LFS_FILESIZE) {
		btrfs_err_rl(fs_info,
		"extent buffer %llu is beyond 32bit page cache limit", start);
		btrfs_err_32bit_limit(fs_info);
		return ERR_PTR(-EOVERFLOW);
	}
	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
		btrfs_warn_32bit_limit(fs_info);
#endif

5985 5986 5987 5988 5989 5990 5991 5992
	if (fs_info->sectorsize < PAGE_SIZE &&
	    offset_in_page(start) + len > PAGE_SIZE) {
		btrfs_err(fs_info,
		"tree block crosses page boundary, start %llu nodesize %lu",
			  start, len);
		return ERR_PTR(-EINVAL);
	}

5993
	eb = find_extent_buffer(fs_info, start);
5994
	if (eb)
5995 5996
		return eb;

5997
	eb = __alloc_extent_buffer(fs_info, start, len);
5998
	if (!eb)
5999
		return ERR_PTR(-ENOMEM);
6000
	btrfs_set_buffer_lockdep_class(owner_root, eb, level);
6001

6002
	num_pages = num_extent_pages(eb);
6003
	for (i = 0; i < num_pages; i++, index++) {
6004 6005
		struct btrfs_subpage *prealloc = NULL;

6006
		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
6007 6008
		if (!p) {
			exists = ERR_PTR(-ENOMEM);
6009
			goto free_eb;
6010
		}
J
Josef Bacik 已提交
6011

6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030
		/*
		 * Preallocate page->private for subpage case, so that we won't
		 * allocate memory with private_lock hold.  The memory will be
		 * freed by attach_extent_buffer_page() or freed manually if
		 * we exit earlier.
		 *
		 * Although we have ensured one subpage eb can only have one
		 * page, but it may change in the future for 16K page size
		 * support, so we still preallocate the memory in the loop.
		 */
		ret = btrfs_alloc_subpage(fs_info, &prealloc,
					  BTRFS_SUBPAGE_METADATA);
		if (ret < 0) {
			unlock_page(p);
			put_page(p);
			exists = ERR_PTR(ret);
			goto free_eb;
		}

J
Josef Bacik 已提交
6031
		spin_lock(&mapping->private_lock);
6032
		exists = grab_extent_buffer(fs_info, p);
6033 6034 6035 6036 6037
		if (exists) {
			spin_unlock(&mapping->private_lock);
			unlock_page(p);
			put_page(p);
			mark_extent_buffer_accessed(exists, p);
6038
			btrfs_free_subpage(prealloc);
6039
			goto free_eb;
6040
		}
6041 6042 6043
		/* Should not fail, as we have preallocated the memory */
		ret = attach_extent_buffer_page(eb, p, prealloc);
		ASSERT(!ret);
6044 6045 6046 6047 6048 6049 6050 6051 6052 6053
		/*
		 * To inform we have extra eb under allocation, so that
		 * detach_extent_buffer_page() won't release the page private
		 * when the eb hasn't yet been inserted into radix tree.
		 *
		 * The ref will be decreased when the eb released the page, in
		 * detach_extent_buffer_page().
		 * Thus needs no special handling in error path.
		 */
		btrfs_page_inc_eb_refs(fs_info, p);
J
Josef Bacik 已提交
6054
		spin_unlock(&mapping->private_lock);
6055

6056
		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6057
		eb->pages[i] = p;
6058 6059
		if (!PageUptodate(p))
			uptodate = 0;
C
Chris Mason 已提交
6060 6061

		/*
6062 6063 6064 6065 6066
		 * We can't unlock the pages just yet since the extent buffer
		 * hasn't been properly inserted in the radix tree, this
		 * opens a race with btree_releasepage which can free a page
		 * while we are still filling in all pages for the buffer and
		 * we could crash.
C
Chris Mason 已提交
6067
		 */
6068 6069
	}
	if (uptodate)
6070
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6071
again:
6072
	ret = radix_tree_preload(GFP_NOFS);
6073 6074
	if (ret) {
		exists = ERR_PTR(ret);
6075
		goto free_eb;
6076
	}
6077

6078 6079
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
6080
				start >> fs_info->sectorsize_bits, eb);
6081
	spin_unlock(&fs_info->buffer_lock);
6082
	radix_tree_preload_end();
6083
	if (ret == -EEXIST) {
6084
		exists = find_extent_buffer(fs_info, start);
6085 6086 6087
		if (exists)
			goto free_eb;
		else
6088
			goto again;
6089 6090
	}
	/* add one reference for the tree */
6091
	check_buffer_tree_ref(eb);
6092
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
C
Chris Mason 已提交
6093 6094

	/*
6095 6096 6097
	 * Now it's safe to unlock the pages because any calls to
	 * btree_releasepage will correctly detect that a page belongs to a
	 * live buffer and won't free them prematurely.
C
Chris Mason 已提交
6098
	 */
6099 6100
	for (i = 0; i < num_pages; i++)
		unlock_page(eb->pages[i]);
6101 6102
	return eb;

6103
free_eb:
6104
	WARN_ON(!atomic_dec_and_test(&eb->refs));
6105 6106 6107 6108
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i])
			unlock_page(eb->pages[i]);
	}
C
Chris Mason 已提交
6109

6110
	btrfs_release_extent_buffer(eb);
6111
	return exists;
6112 6113
}

6114 6115 6116 6117 6118 6119 6120 6121
static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
{
	struct extent_buffer *eb =
			container_of(head, struct extent_buffer, rcu_head);

	__free_extent_buffer(eb);
}

6122
static int release_extent_buffer(struct extent_buffer *eb)
6123
	__releases(&eb->refs_lock)
6124
{
6125 6126
	lockdep_assert_held(&eb->refs_lock);

6127 6128
	WARN_ON(atomic_read(&eb->refs) == 0);
	if (atomic_dec_and_test(&eb->refs)) {
6129
		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6130
			struct btrfs_fs_info *fs_info = eb->fs_info;
6131

6132
			spin_unlock(&eb->refs_lock);
6133

6134 6135
			spin_lock(&fs_info->buffer_lock);
			radix_tree_delete(&fs_info->buffer_radix,
6136
					  eb->start >> fs_info->sectorsize_bits);
6137
			spin_unlock(&fs_info->buffer_lock);
6138 6139
		} else {
			spin_unlock(&eb->refs_lock);
6140
		}
6141

6142
		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6143
		/* Should be safe to release our pages at this point */
6144
		btrfs_release_extent_buffer_pages(eb);
6145
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6146
		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6147 6148 6149 6150
			__free_extent_buffer(eb);
			return 1;
		}
#endif
6151
		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6152
		return 1;
6153 6154
	}
	spin_unlock(&eb->refs_lock);
6155 6156

	return 0;
6157 6158
}

6159 6160
void free_extent_buffer(struct extent_buffer *eb)
{
6161 6162
	int refs;
	int old;
6163 6164 6165
	if (!eb)
		return;

6166 6167
	while (1) {
		refs = atomic_read(&eb->refs);
6168 6169 6170
		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
			refs == 1))
6171 6172 6173 6174 6175 6176
			break;
		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
		if (old == refs)
			return;
	}

6177 6178 6179
	spin_lock(&eb->refs_lock);
	if (atomic_read(&eb->refs) == 2 &&
	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6180
	    !extent_buffer_under_io(eb) &&
6181 6182 6183 6184 6185 6186 6187
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);

	/*
	 * I know this is terrible, but it's temporary until we stop tracking
	 * the uptodate bits and such for the extent buffers.
	 */
6188
	release_extent_buffer(eb);
6189 6190 6191 6192 6193
}

void free_extent_buffer_stale(struct extent_buffer *eb)
{
	if (!eb)
6194 6195
		return;

6196 6197 6198
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);

6199
	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6200 6201
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);
6202
	release_extent_buffer(eb);
6203 6204
}

6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
static void btree_clear_page_dirty(struct page *page)
{
	ASSERT(PageDirty(page));
	ASSERT(PageLocked(page));
	clear_page_dirty_for_io(page);
	xa_lock_irq(&page->mapping->i_pages);
	if (!PageDirty(page))
		__xa_clear_mark(&page->mapping->i_pages,
				page_index(page), PAGECACHE_TAG_DIRTY);
	xa_unlock_irq(&page->mapping->i_pages);
}

static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
	bool last;

	/* btree_clear_page_dirty() needs page locked */
	lock_page(page);
	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
						  eb->len);
	if (last)
		btree_clear_page_dirty(page);
	unlock_page(page);
	WARN_ON(atomic_read(&eb->refs) == 0);
}

6233
void clear_extent_buffer_dirty(const struct extent_buffer *eb)
6234
{
6235 6236
	int i;
	int num_pages;
6237 6238
	struct page *page;

6239 6240 6241
	if (eb->fs_info->sectorsize < PAGE_SIZE)
		return clear_subpage_extent_buffer_dirty(eb);

6242
	num_pages = num_extent_pages(eb);
6243 6244

	for (i = 0; i < num_pages; i++) {
6245
		page = eb->pages[i];
6246
		if (!PageDirty(page))
C
Chris Mason 已提交
6247
			continue;
6248
		lock_page(page);
6249
		btree_clear_page_dirty(page);
6250
		ClearPageError(page);
6251
		unlock_page(page);
6252
	}
6253
	WARN_ON(atomic_read(&eb->refs) == 0);
6254 6255
}

6256
bool set_extent_buffer_dirty(struct extent_buffer *eb)
6257
{
6258 6259
	int i;
	int num_pages;
6260
	bool was_dirty;
6261

6262 6263
	check_buffer_tree_ref(eb);

6264
	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6265

6266
	num_pages = num_extent_pages(eb);
6267
	WARN_ON(atomic_read(&eb->refs) == 0);
6268 6269
	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));

6270 6271
	if (!was_dirty) {
		bool subpage = eb->fs_info->sectorsize < PAGE_SIZE;
6272

6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291
		/*
		 * For subpage case, we can have other extent buffers in the
		 * same page, and in clear_subpage_extent_buffer_dirty() we
		 * have to clear page dirty without subpage lock held.
		 * This can cause race where our page gets dirty cleared after
		 * we just set it.
		 *
		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
		 * its page for other reasons, we can use page lock to prevent
		 * the above race.
		 */
		if (subpage)
			lock_page(eb->pages[0]);
		for (i = 0; i < num_pages; i++)
			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
					     eb->start, eb->len);
		if (subpage)
			unlock_page(eb->pages[0]);
	}
6292 6293 6294 6295 6296
#ifdef CONFIG_BTRFS_DEBUG
	for (i = 0; i < num_pages; i++)
		ASSERT(PageDirty(eb->pages[i]));
#endif

6297
	return was_dirty;
6298 6299
}

6300
void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6301
{
6302
	struct btrfs_fs_info *fs_info = eb->fs_info;
6303
	struct page *page;
6304
	int num_pages;
6305
	int i;
6306

6307
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6308
	num_pages = num_extent_pages(eb);
6309
	for (i = 0; i < num_pages; i++) {
6310
		page = eb->pages[i];
C
Chris Mason 已提交
6311
		if (page)
6312 6313
			btrfs_page_clear_uptodate(fs_info, page,
						  eb->start, eb->len);
6314 6315 6316
	}
}

6317
void set_extent_buffer_uptodate(struct extent_buffer *eb)
6318
{
6319
	struct btrfs_fs_info *fs_info = eb->fs_info;
6320
	struct page *page;
6321
	int num_pages;
6322
	int i;
6323

6324
	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6325
	num_pages = num_extent_pages(eb);
6326
	for (i = 0; i < num_pages; i++) {
6327
		page = eb->pages[i];
6328
		btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
6329 6330 6331
	}
}

6332 6333 6334 6335 6336 6337
static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
				      int mirror_num)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct extent_io_tree *io_tree;
	struct page *page = eb->pages[0];
6338
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6339 6340 6341 6342 6343 6344 6345
	int ret = 0;

	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
	ASSERT(PagePrivate(page));
	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;

	if (wait == WAIT_NONE) {
6346 6347
		if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
			return -EAGAIN;
6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368
	} else {
		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		if (ret < 0)
			return ret;
	}

	ret = 0;
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
	    PageUptodate(page) ||
	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		return ret;
	}

	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
	eb->read_mirror = 0;
	atomic_set(&eb->io_pages, 1);
	check_buffer_tree_ref(eb);
	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);

6369
	btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
6370 6371 6372 6373
	ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
				 page, eb->start, eb->len,
				 eb->start - page_offset(page),
				 end_bio_extent_readpage, mirror_num, 0,
6374 6375 6376 6377 6378 6379 6380 6381 6382
				 true);
	if (ret) {
		/*
		 * In the endio function, if we hit something wrong we will
		 * increase the io_pages, so here we need to decrease it for
		 * error path.
		 */
		atomic_dec(&eb->io_pages);
	}
6383
	if (bio_ctrl.bio) {
6384 6385
		int tmp;

6386 6387
		tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0);
		bio_ctrl.bio = NULL;
6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399
		if (tmp < 0)
			return tmp;
	}
	if (ret || wait != WAIT_COMPLETE)
		return ret;

	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
		ret = -EIO;
	return ret;
}

6400
int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6401
{
6402
	int i;
6403 6404 6405
	struct page *page;
	int err;
	int ret = 0;
6406 6407
	int locked_pages = 0;
	int all_uptodate = 1;
6408
	int num_pages;
6409
	unsigned long num_reads = 0;
6410
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6411

6412
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6413 6414
		return 0;

6415 6416 6417
	if (eb->fs_info->sectorsize < PAGE_SIZE)
		return read_extent_buffer_subpage(eb, wait, mirror_num);

6418
	num_pages = num_extent_pages(eb);
6419
	for (i = 0; i < num_pages; i++) {
6420
		page = eb->pages[i];
6421
		if (wait == WAIT_NONE) {
6422 6423 6424 6425 6426 6427 6428
			/*
			 * WAIT_NONE is only utilized by readahead. If we can't
			 * acquire the lock atomically it means either the eb
			 * is being read out or under modification.
			 * Either way the eb will be or has been cached,
			 * readahead can exit safely.
			 */
6429
			if (!trylock_page(page))
6430
				goto unlock_exit;
6431 6432 6433
		} else {
			lock_page(page);
		}
6434
		locked_pages++;
6435 6436 6437 6438 6439 6440
	}
	/*
	 * We need to firstly lock all pages to make sure that
	 * the uptodate bit of our pages won't be affected by
	 * clear_extent_buffer_uptodate().
	 */
6441
	for (i = 0; i < num_pages; i++) {
6442
		page = eb->pages[i];
6443 6444
		if (!PageUptodate(page)) {
			num_reads++;
6445
			all_uptodate = 0;
6446
		}
6447
	}
6448

6449
	if (all_uptodate) {
6450
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6451 6452 6453
		goto unlock_exit;
	}

6454
	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6455
	eb->read_mirror = 0;
6456
	atomic_set(&eb->io_pages, num_reads);
6457 6458 6459 6460 6461
	/*
	 * It is possible for releasepage to clear the TREE_REF bit before we
	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
	 */
	check_buffer_tree_ref(eb);
6462
	for (i = 0; i < num_pages; i++) {
6463
		page = eb->pages[i];
6464

6465
		if (!PageUptodate(page)) {
6466 6467 6468 6469 6470 6471
			if (ret) {
				atomic_dec(&eb->io_pages);
				unlock_page(page);
				continue;
			}

6472
			ClearPageError(page);
6473
			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
6474 6475 6476
					 &bio_ctrl, page, page_offset(page),
					 PAGE_SIZE, 0, end_bio_extent_readpage,
					 mirror_num, 0, false);
6477 6478
			if (err) {
				/*
6479 6480 6481
				 * We failed to submit the bio so it's the
				 * caller's responsibility to perform cleanup
				 * i.e unlock page/set error bit.
6482
				 */
6483 6484 6485
				ret = err;
				SetPageError(page);
				unlock_page(page);
6486 6487
				atomic_dec(&eb->io_pages);
			}
6488 6489 6490 6491 6492
		} else {
			unlock_page(page);
		}
	}

6493 6494 6495
	if (bio_ctrl.bio) {
		err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags);
		bio_ctrl.bio = NULL;
6496 6497
		if (err)
			return err;
6498
	}
6499

6500
	if (ret || wait != WAIT_COMPLETE)
6501
		return ret;
C
Chris Mason 已提交
6502

6503
	for (i = 0; i < num_pages; i++) {
6504
		page = eb->pages[i];
6505
		wait_on_page_locked(page);
C
Chris Mason 已提交
6506
		if (!PageUptodate(page))
6507 6508
			ret = -EIO;
	}
C
Chris Mason 已提交
6509

6510
	return ret;
6511 6512

unlock_exit:
C
Chris Mason 已提交
6513
	while (locked_pages > 0) {
6514
		locked_pages--;
6515 6516
		page = eb->pages[locked_pages];
		unlock_page(page);
6517 6518
	}
	return ret;
6519 6520
}

6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550
static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
			    unsigned long len)
{
	btrfs_warn(eb->fs_info,
		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
		eb->start, eb->len, start, len);
	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));

	return true;
}

/*
 * Check if the [start, start + len) range is valid before reading/writing
 * the eb.
 * NOTE: @start and @len are offset inside the eb, not logical address.
 *
 * Caller should not touch the dst/src memory if this function returns error.
 */
static inline int check_eb_range(const struct extent_buffer *eb,
				 unsigned long start, unsigned long len)
{
	unsigned long offset;

	/* start, start + len should not go beyond eb->len nor overflow */
	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
		return report_eb_range(eb, start, len);

	return false;
}

6551 6552
void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
			unsigned long start, unsigned long len)
6553 6554 6555 6556 6557 6558
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *dst = (char *)dstv;
6559
	unsigned long i = get_eb_page_index(start);
6560

6561
	if (check_eb_range(eb, start, len))
6562
		return;
6563

6564
	offset = get_eb_offset_in_page(eb, start);
6565

C
Chris Mason 已提交
6566
	while (len > 0) {
6567
		page = eb->pages[i];
6568

6569
		cur = min(len, (PAGE_SIZE - offset));
6570
		kaddr = page_address(page);
6571 6572 6573 6574 6575 6576 6577 6578 6579
		memcpy(dst, kaddr + offset, cur);

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6580 6581 6582
int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
				       void __user *dstv,
				       unsigned long start, unsigned long len)
6583 6584 6585 6586 6587 6588
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char __user *dst = (char __user *)dstv;
6589
	unsigned long i = get_eb_page_index(start);
6590 6591 6592 6593 6594
	int ret = 0;

	WARN_ON(start > eb->len);
	WARN_ON(start + len > eb->start + eb->len);

6595
	offset = get_eb_offset_in_page(eb, start);
6596 6597

	while (len > 0) {
6598
		page = eb->pages[i];
6599

6600
		cur = min(len, (PAGE_SIZE - offset));
6601
		kaddr = page_address(page);
6602
		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615
			ret = -EFAULT;
			break;
		}

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}

	return ret;
}

6616 6617
int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
			 unsigned long start, unsigned long len)
6618 6619 6620 6621 6622 6623
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *ptr = (char *)ptrv;
6624
	unsigned long i = get_eb_page_index(start);
6625 6626
	int ret = 0;

6627 6628
	if (check_eb_range(eb, start, len))
		return -EINVAL;
6629

6630
	offset = get_eb_offset_in_page(eb, start);
6631

C
Chris Mason 已提交
6632
	while (len > 0) {
6633
		page = eb->pages[i];
6634

6635
		cur = min(len, (PAGE_SIZE - offset));
6636

6637
		kaddr = page_address(page);
6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649
		ret = memcmp(ptr, kaddr + offset, cur);
		if (ret)
			break;

		ptr += cur;
		len -= cur;
		offset = 0;
		i++;
	}
	return ret;
}

6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671
/*
 * Check that the extent buffer is uptodate.
 *
 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
 */
static void assert_eb_page_uptodate(const struct extent_buffer *eb,
				    struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;

	if (fs_info->sectorsize < PAGE_SIZE) {
		bool uptodate;

		uptodate = btrfs_subpage_test_uptodate(fs_info, page,
						       eb->start, eb->len);
		WARN_ON(!uptodate);
	} else {
		WARN_ON(!PageUptodate(page));
	}
}

6672
void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6673 6674 6675 6676
		const void *srcv)
{
	char *kaddr;

6677
	assert_eb_page_uptodate(eb, eb->pages[0]);
6678 6679 6680 6681
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
						   chunk_tree_uuid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6682 6683
}

6684
void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6685 6686 6687
{
	char *kaddr;

6688
	assert_eb_page_uptodate(eb, eb->pages[0]);
6689 6690 6691
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6692 6693
}

6694
void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6695 6696 6697 6698 6699 6700 6701
			 unsigned long start, unsigned long len)
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *src = (char *)srcv;
6702
	unsigned long i = get_eb_page_index(start);
6703

6704 6705
	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));

6706 6707
	if (check_eb_range(eb, start, len))
		return;
6708

6709
	offset = get_eb_offset_in_page(eb, start);
6710

C
Chris Mason 已提交
6711
	while (len > 0) {
6712
		page = eb->pages[i];
6713
		assert_eb_page_uptodate(eb, page);
6714

6715
		cur = min(len, PAGE_SIZE - offset);
6716
		kaddr = page_address(page);
6717 6718 6719 6720 6721 6722 6723 6724 6725
		memcpy(kaddr + offset, src, cur);

		src += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6726
void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6727
		unsigned long len)
6728 6729 6730 6731 6732
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
6733
	unsigned long i = get_eb_page_index(start);
6734

6735 6736
	if (check_eb_range(eb, start, len))
		return;
6737

6738
	offset = get_eb_offset_in_page(eb, start);
6739

C
Chris Mason 已提交
6740
	while (len > 0) {
6741
		page = eb->pages[i];
6742
		assert_eb_page_uptodate(eb, page);
6743

6744
		cur = min(len, PAGE_SIZE - offset);
6745
		kaddr = page_address(page);
6746
		memset(kaddr + offset, 0, cur);
6747 6748 6749 6750 6751 6752 6753

		len -= cur;
		offset = 0;
		i++;
	}
}

6754 6755
void copy_extent_buffer_full(const struct extent_buffer *dst,
			     const struct extent_buffer *src)
6756 6757
{
	int i;
6758
	int num_pages;
6759 6760 6761

	ASSERT(dst->len == src->len);

6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775
	if (dst->fs_info->sectorsize == PAGE_SIZE) {
		num_pages = num_extent_pages(dst);
		for (i = 0; i < num_pages; i++)
			copy_page(page_address(dst->pages[i]),
				  page_address(src->pages[i]));
	} else {
		size_t src_offset = get_eb_offset_in_page(src, 0);
		size_t dst_offset = get_eb_offset_in_page(dst, 0);

		ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
		memcpy(page_address(dst->pages[0]) + dst_offset,
		       page_address(src->pages[0]) + src_offset,
		       src->len);
	}
6776 6777
}

6778 6779
void copy_extent_buffer(const struct extent_buffer *dst,
			const struct extent_buffer *src,
6780 6781 6782 6783 6784 6785 6786 6787
			unsigned long dst_offset, unsigned long src_offset,
			unsigned long len)
{
	u64 dst_len = dst->len;
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
6788
	unsigned long i = get_eb_page_index(dst_offset);
6789

6790 6791 6792 6793
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(src, src_offset, len))
		return;

6794 6795
	WARN_ON(src->len != dst_len);

6796
	offset = get_eb_offset_in_page(dst, dst_offset);
6797

C
Chris Mason 已提交
6798
	while (len > 0) {
6799
		page = dst->pages[i];
6800
		assert_eb_page_uptodate(dst, page);
6801

6802
		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
6803

6804
		kaddr = page_address(page);
6805 6806 6807 6808 6809 6810 6811 6812 6813
		read_extent_buffer(src, kaddr + offset, src_offset, cur);

		src_offset += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826
/*
 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
 * given bit number
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number
 * @page_index: return index of the page in the extent buffer that contains the
 * given bit number
 * @page_offset: return offset into the page given by page_index
 *
 * This helper hides the ugliness of finding the byte in an extent buffer which
 * contains a given bit.
 */
6827
static inline void eb_bitmap_offset(const struct extent_buffer *eb,
6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839
				    unsigned long start, unsigned long nr,
				    unsigned long *page_index,
				    size_t *page_offset)
{
	size_t byte_offset = BIT_BYTE(nr);
	size_t offset;

	/*
	 * The byte we want is the offset of the extent buffer + the offset of
	 * the bitmap item in the extent buffer + the offset of the byte in the
	 * bitmap item.
	 */
6840
	offset = start + offset_in_page(eb->start) + byte_offset;
6841

6842
	*page_index = offset >> PAGE_SHIFT;
6843
	*page_offset = offset_in_page(offset);
6844 6845 6846 6847 6848 6849 6850 6851
}

/**
 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number to test
 */
6852
int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
6853 6854
			   unsigned long nr)
{
6855
	u8 *kaddr;
6856 6857 6858 6859 6860 6861
	struct page *page;
	unsigned long i;
	size_t offset;

	eb_bitmap_offset(eb, start, nr, &i, &offset);
	page = eb->pages[i];
6862
	assert_eb_page_uptodate(eb, page);
6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873
	kaddr = page_address(page);
	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
}

/**
 * extent_buffer_bitmap_set - set an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to set
 */
6874
void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
6875 6876
			      unsigned long pos, unsigned long len)
{
6877
	u8 *kaddr;
6878 6879 6880 6881 6882
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6883
	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
6884 6885 6886

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
6887
	assert_eb_page_uptodate(eb, page);
6888 6889 6890 6891 6892 6893
	kaddr = page_address(page);

	while (len >= bits_to_set) {
		kaddr[offset] |= mask_to_set;
		len -= bits_to_set;
		bits_to_set = BITS_PER_BYTE;
D
Dan Carpenter 已提交
6894
		mask_to_set = ~0;
6895
		if (++offset >= PAGE_SIZE && len > 0) {
6896 6897
			offset = 0;
			page = eb->pages[++i];
6898
			assert_eb_page_uptodate(eb, page);
6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] |= mask_to_set;
	}
}


/**
 * extent_buffer_bitmap_clear - clear an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to clear
 */
6916 6917 6918
void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
				unsigned long start, unsigned long pos,
				unsigned long len)
6919
{
6920
	u8 *kaddr;
6921 6922 6923 6924 6925
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6926
	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
6927 6928 6929

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
6930
	assert_eb_page_uptodate(eb, page);
6931 6932 6933 6934 6935 6936
	kaddr = page_address(page);

	while (len >= bits_to_clear) {
		kaddr[offset] &= ~mask_to_clear;
		len -= bits_to_clear;
		bits_to_clear = BITS_PER_BYTE;
D
Dan Carpenter 已提交
6937
		mask_to_clear = ~0;
6938
		if (++offset >= PAGE_SIZE && len > 0) {
6939 6940
			offset = 0;
			page = eb->pages[++i];
6941
			assert_eb_page_uptodate(eb, page);
6942 6943 6944 6945 6946 6947 6948 6949 6950
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] &= ~mask_to_clear;
	}
}

6951 6952 6953 6954 6955 6956
static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
{
	unsigned long distance = (src > dst) ? src - dst : dst - src;
	return distance < len;
}

6957 6958 6959 6960
static void copy_pages(struct page *dst_page, struct page *src_page,
		       unsigned long dst_off, unsigned long src_off,
		       unsigned long len)
{
6961
	char *dst_kaddr = page_address(dst_page);
6962
	char *src_kaddr;
6963
	int must_memmove = 0;
6964

6965
	if (dst_page != src_page) {
6966
		src_kaddr = page_address(src_page);
6967
	} else {
6968
		src_kaddr = dst_kaddr;
6969 6970
		if (areas_overlap(src_off, dst_off, len))
			must_memmove = 1;
6971
	}
6972

6973 6974 6975 6976
	if (must_memmove)
		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
	else
		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6977 6978
}

6979 6980 6981
void memcpy_extent_buffer(const struct extent_buffer *dst,
			  unsigned long dst_offset, unsigned long src_offset,
			  unsigned long len)
6982 6983 6984 6985 6986 6987 6988
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_i;
	unsigned long src_i;

6989 6990 6991
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
6992

C
Chris Mason 已提交
6993
	while (len > 0) {
6994 6995
		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
6996

6997 6998
		dst_i = get_eb_page_index(dst_offset);
		src_i = get_eb_page_index(src_offset);
6999

7000
		cur = min(len, (unsigned long)(PAGE_SIZE -
7001 7002
					       src_off_in_page));
		cur = min_t(unsigned long, cur,
7003
			(unsigned long)(PAGE_SIZE - dst_off_in_page));
7004

7005
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7006 7007 7008 7009 7010 7011 7012 7013
			   dst_off_in_page, src_off_in_page, cur);

		src_offset += cur;
		dst_offset += cur;
		len -= cur;
	}
}

7014 7015 7016
void memmove_extent_buffer(const struct extent_buffer *dst,
			   unsigned long dst_offset, unsigned long src_offset,
			   unsigned long len)
7017 7018 7019 7020 7021 7022 7023 7024 7025
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_end = dst_offset + len - 1;
	unsigned long src_end = src_offset + len - 1;
	unsigned long dst_i;
	unsigned long src_i;

7026 7027 7028
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
7029
	if (dst_offset < src_offset) {
7030 7031 7032
		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
		return;
	}
C
Chris Mason 已提交
7033
	while (len > 0) {
7034 7035
		dst_i = get_eb_page_index(dst_end);
		src_i = get_eb_page_index(src_end);
7036

7037 7038
		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
		src_off_in_page = get_eb_offset_in_page(dst, src_end);
7039 7040 7041

		cur = min_t(unsigned long, len, src_off_in_page + 1);
		cur = min(cur, dst_off_in_page + 1);
7042
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7043 7044 7045 7046 7047 7048 7049 7050
			   dst_off_in_page - cur + 1,
			   src_off_in_page - cur + 1, cur);

		dst_end -= cur;
		src_end -= cur;
		len -= cur;
	}
}
7051

7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150
static struct extent_buffer *get_next_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
	struct extent_buffer *gang[BTRFS_SUBPAGE_BITMAP_SIZE];
	struct extent_buffer *found = NULL;
	u64 page_start = page_offset(page);
	int ret;
	int i;

	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
	ASSERT(PAGE_SIZE / fs_info->nodesize <= BTRFS_SUBPAGE_BITMAP_SIZE);
	lockdep_assert_held(&fs_info->buffer_lock);

	ret = radix_tree_gang_lookup(&fs_info->buffer_radix, (void **)gang,
			bytenr >> fs_info->sectorsize_bits,
			PAGE_SIZE / fs_info->nodesize);
	for (i = 0; i < ret; i++) {
		/* Already beyond page end */
		if (gang[i]->start >= page_start + PAGE_SIZE)
			break;
		/* Found one */
		if (gang[i]->start >= bytenr) {
			found = gang[i];
			break;
		}
	}
	return found;
}

static int try_release_subpage_extent_buffer(struct page *page)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	u64 cur = page_offset(page);
	const u64 end = page_offset(page) + PAGE_SIZE;
	int ret;

	while (cur < end) {
		struct extent_buffer *eb = NULL;

		/*
		 * Unlike try_release_extent_buffer() which uses page->private
		 * to grab buffer, for subpage case we rely on radix tree, thus
		 * we need to ensure radix tree consistency.
		 *
		 * We also want an atomic snapshot of the radix tree, thus go
		 * with spinlock rather than RCU.
		 */
		spin_lock(&fs_info->buffer_lock);
		eb = get_next_extent_buffer(fs_info, page, cur);
		if (!eb) {
			/* No more eb in the page range after or at cur */
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		cur = eb->start + eb->len;

		/*
		 * The same as try_release_extent_buffer(), to ensure the eb
		 * won't disappear out from under us.
		 */
		spin_lock(&eb->refs_lock);
		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
			spin_unlock(&eb->refs_lock);
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		spin_unlock(&fs_info->buffer_lock);

		/*
		 * If tree ref isn't set then we know the ref on this eb is a
		 * real ref, so just return, this eb will likely be freed soon
		 * anyway.
		 */
		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
			spin_unlock(&eb->refs_lock);
			break;
		}

		/*
		 * Here we don't care about the return value, we will always
		 * check the page private at the end.  And
		 * release_extent_buffer() will release the refs_lock.
		 */
		release_extent_buffer(eb);
	}
	/*
	 * Finally to check if we have cleared page private, as if we have
	 * released all ebs in the page, the page private should be cleared now.
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page))
		ret = 1;
	else
		ret = 0;
	spin_unlock(&page->mapping->private_lock);
	return ret;

}

7151
int try_release_extent_buffer(struct page *page)
7152
{
7153 7154
	struct extent_buffer *eb;

7155 7156 7157
	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
		return try_release_subpage_extent_buffer(page);

7158
	/*
7159 7160
	 * We need to make sure nobody is changing page->private, as we rely on
	 * page->private as the pointer to extent buffer.
7161 7162 7163 7164
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&page->mapping->private_lock);
J
Josef Bacik 已提交
7165
		return 1;
7166
	}
7167

7168 7169
	eb = (struct extent_buffer *)page->private;
	BUG_ON(!eb);
7170 7171

	/*
7172 7173 7174
	 * This is a little awful but should be ok, we need to make sure that
	 * the eb doesn't disappear out from under us while we're looking at
	 * this page.
7175
	 */
7176
	spin_lock(&eb->refs_lock);
7177
	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7178 7179 7180
		spin_unlock(&eb->refs_lock);
		spin_unlock(&page->mapping->private_lock);
		return 0;
7181
	}
7182
	spin_unlock(&page->mapping->private_lock);
7183

7184
	/*
7185 7186
	 * If tree ref isn't set then we know the ref on this eb is a real ref,
	 * so just return, this page will likely be freed soon anyway.
7187
	 */
7188 7189 7190
	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
		spin_unlock(&eb->refs_lock);
		return 0;
7191
	}
7192

7193
	return release_extent_buffer(eb);
7194
}
7195 7196 7197 7198 7199

/*
 * btrfs_readahead_tree_block - attempt to readahead a child block
 * @fs_info:	the fs_info
 * @bytenr:	bytenr to read
7200
 * @owner_root: objectid of the root that owns this eb
7201
 * @gen:	generation for the uptodate check, can be 0
7202
 * @level:	level for the eb
7203 7204 7205 7206 7207 7208
 *
 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
 * normal uptodate check of the eb, without checking the generation.  If we have
 * to read the block we will not block on anything.
 */
void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7209
				u64 bytenr, u64 owner_root, u64 gen, int level)
7210 7211 7212 7213
{
	struct extent_buffer *eb;
	int ret;

7214
	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241
	if (IS_ERR(eb))
		return;

	if (btrfs_buffer_uptodate(eb, gen, 1)) {
		free_extent_buffer(eb);
		return;
	}

	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
	if (ret < 0)
		free_extent_buffer_stale(eb);
	else
		free_extent_buffer(eb);
}

/*
 * btrfs_readahead_node_child - readahead a node's child block
 * @node:	parent node we're reading from
 * @slot:	slot in the parent node for the child we want to read
 *
 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
 * the slot in the node provided.
 */
void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
{
	btrfs_readahead_tree_block(node->fs_info,
				   btrfs_node_blockptr(node, slot),
7242 7243 7244
				   btrfs_header_owner(node),
				   btrfs_node_ptr_generation(node, slot),
				   btrfs_header_level(node) - 1);
7245
}