extent_io.c 198.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2

3 4 5 6 7 8
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/bio.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/page-flags.h>
9
#include <linux/sched/mm.h>
10 11 12 13 14
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
15
#include <linux/prefetch.h>
B
Boris Burkov 已提交
16
#include <linux/fsverity.h>
17
#include "misc.h"
18
#include "extent_io.h"
19
#include "extent-io-tree.h"
20
#include "extent_map.h"
21 22
#include "ctree.h"
#include "btrfs_inode.h"
23
#include "volumes.h"
24
#include "check-integrity.h"
25
#include "locking.h"
26
#include "rcu-string.h"
27
#include "backref.h"
28
#include "disk-io.h"
29
#include "subpage.h"
30
#include "zoned.h"
31
#include "block-group.h"
32
#include "compression.h"
33 34 35

static struct kmem_cache *extent_state_cache;
static struct kmem_cache *extent_buffer_cache;
36
static struct bio_set btrfs_bioset;
37

38 39 40 41 42
static inline bool extent_state_in_tree(const struct extent_state *state)
{
	return !RB_EMPTY_NODE(&state->rb_node);
}

43
#ifdef CONFIG_BTRFS_DEBUG
44
static LIST_HEAD(states);
C
Chris Mason 已提交
45
static DEFINE_SPINLOCK(leak_lock);
46

47 48 49
static inline void btrfs_leak_debug_add(spinlock_t *lock,
					struct list_head *new,
					struct list_head *head)
50 51 52
{
	unsigned long flags;

53
	spin_lock_irqsave(lock, flags);
54
	list_add(new, head);
55
	spin_unlock_irqrestore(lock, flags);
56 57
}

58 59
static inline void btrfs_leak_debug_del(spinlock_t *lock,
					struct list_head *entry)
60 61 62
{
	unsigned long flags;

63
	spin_lock_irqsave(lock, flags);
64
	list_del(entry);
65
	spin_unlock_irqrestore(lock, flags);
66 67
}

68
void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
69 70
{
	struct extent_buffer *eb;
71
	unsigned long flags;
72

73 74 75 76 77 78 79
	/*
	 * If we didn't get into open_ctree our allocated_ebs will not be
	 * initialized, so just skip this.
	 */
	if (!fs_info->allocated_ebs.next)
		return;

80
	WARN_ON(!list_empty(&fs_info->allocated_ebs));
81 82 83 84
	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
	while (!list_empty(&fs_info->allocated_ebs)) {
		eb = list_first_entry(&fs_info->allocated_ebs,
				      struct extent_buffer, leak_list);
85 86 87 88
		pr_err(
	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
		       btrfs_header_owner(eb));
89 90 91
		list_del(&eb->leak_list);
		kmem_cache_free(extent_buffer_cache, eb);
	}
92
	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
93 94 95 96 97 98
}

static inline void btrfs_extent_state_leak_debug_check(void)
{
	struct extent_state *state;

99 100
	while (!list_empty(&states)) {
		state = list_entry(states.next, struct extent_state, leak_list);
101
		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
102 103
		       state->start, state->end, state->state,
		       extent_state_in_tree(state),
104
		       refcount_read(&state->refs));
105 106 107 108
		list_del(&state->leak_list);
		kmem_cache_free(extent_state_cache, state);
	}
}
109

110 111
#define btrfs_debug_check_extent_io_range(tree, start, end)		\
	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
112
static inline void __btrfs_debug_check_extent_io_range(const char *caller,
113
		struct extent_io_tree *tree, u64 start, u64 end)
114
{
115 116 117 118 119 120 121 122 123 124 125 126
	struct inode *inode = tree->private_data;
	u64 isize;

	if (!inode || !is_data_inode(inode))
		return;

	isize = i_size_read(inode);
	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
	}
127
}
128
#else
129 130
#define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
#define btrfs_leak_debug_del(lock, entry)	do {} while (0)
131
#define btrfs_extent_state_leak_debug_check()	do {} while (0)
132
#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
C
Chris Mason 已提交
133
#endif
134 135 136 137 138 139 140

struct tree_entry {
	u64 start;
	u64 end;
	struct rb_node rb_node;
};

141 142 143 144 145 146
/*
 * Structure to record info about the bio being assembled, and other info like
 * how many bytes are there before stripe/ordered extent boundary.
 */
struct btrfs_bio_ctrl {
	struct bio *bio;
147
	int mirror_num;
148
	enum btrfs_compression_type compress_type;
149 150 151 152
	u32 len_to_stripe_boundary;
	u32 len_to_oe_boundary;
};

153
struct extent_page_data {
154
	struct btrfs_bio_ctrl bio_ctrl;
155 156 157
	/* tells writepage not to lock the state bits for this range
	 * it still does the unlocking
	 */
158 159
	unsigned int extent_locked:1;

160
	/* tells the submit_bio code to use REQ_SYNC */
161
	unsigned int sync_io:1;
162 163
};

164
static int add_extent_changeset(struct extent_state *state, u32 bits,
165 166 167 168 169 170
				 struct extent_changeset *changeset,
				 int set)
{
	int ret;

	if (!changeset)
171
		return 0;
172
	if (set && (state->state & bits) == bits)
173
		return 0;
174
	if (!set && (state->state & bits) == 0)
175
		return 0;
176
	changeset->bytes_changed += state->end - state->start + 1;
177
	ret = ulist_add(&changeset->range_changed, state->start, state->end,
178
			GFP_ATOMIC);
179
	return ret;
180 181
}

182
static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
183
{
184 185 186 187 188 189 190 191 192 193
	struct bio *bio;
	struct inode *inode;
	int mirror_num;

	if (!bio_ctrl->bio)
		return;

	bio = bio_ctrl->bio;
	inode = bio_first_page_all(bio)->mapping->host;
	mirror_num = bio_ctrl->mirror_num;
194

195 196
	/* Caller should ensure the bio has at least some range added */
	ASSERT(bio->bi_iter.bi_size);
197

198 199 200 201
	if (!is_data_inode(inode))
		btrfs_submit_metadata_bio(inode, bio, mirror_num);
	else if (btrfs_op(bio) == BTRFS_MAP_WRITE)
		btrfs_submit_data_write_bio(inode, bio, mirror_num);
202
	else
203 204
		btrfs_submit_data_read_bio(inode, bio, mirror_num,
					   bio_ctrl->compress_type);
205

206 207
	/* The bio is owned by the bi_end_io handler now */
	bio_ctrl->bio = NULL;
208 209
}

210
/*
211
 * Submit or fail the current bio in an extent_page_data structure.
212
 */
213
static void submit_write_bio(struct extent_page_data *epd, int ret)
214
{
215
	struct bio *bio = epd->bio_ctrl.bio;
216

217 218 219 220 221 222 223
	if (!bio)
		return;

	if (ret) {
		ASSERT(ret < 0);
		bio->bi_status = errno_to_blk_status(ret);
		bio_endio(bio);
224 225
		/* The bio is owned by the bi_end_io handler now */
		epd->bio_ctrl.bio = NULL;
226
	} else {
227
		submit_one_bio(&epd->bio_ctrl);
228 229
	}
}
230

231
int __init extent_state_cache_init(void)
232
{
D
David Sterba 已提交
233
	extent_state_cache = kmem_cache_create("btrfs_extent_state",
234
			sizeof(struct extent_state), 0,
235
			SLAB_MEM_SPREAD, NULL);
236 237
	if (!extent_state_cache)
		return -ENOMEM;
238 239
	return 0;
}
240

241 242
int __init extent_io_init(void)
{
D
David Sterba 已提交
243
	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
244
			sizeof(struct extent_buffer), 0,
245
			SLAB_MEM_SPREAD, NULL);
246
	if (!extent_buffer_cache)
247
		return -ENOMEM;
248

249
	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
250
			offsetof(struct btrfs_bio, bio),
251
			BIOSET_NEED_BVECS))
252
		goto free_buffer_cache;
253

254
	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
255 256
		goto free_bioset;

257 258
	return 0;

259
free_bioset:
260
	bioset_exit(&btrfs_bioset);
261

262 263 264
free_buffer_cache:
	kmem_cache_destroy(extent_buffer_cache);
	extent_buffer_cache = NULL;
265 266
	return -ENOMEM;
}
267

268 269 270
void __cold extent_state_cache_exit(void)
{
	btrfs_extent_state_leak_debug_check();
271 272 273
	kmem_cache_destroy(extent_state_cache);
}

274
void __cold extent_io_exit(void)
275
{
276 277 278 279 280
	/*
	 * Make sure all delayed rcu free are flushed before we
	 * destroy caches.
	 */
	rcu_barrier();
281
	kmem_cache_destroy(extent_buffer_cache);
282
	bioset_exit(&btrfs_bioset);
283 284
}

285 286 287 288 289 290 291 292 293
/*
 * For the file_extent_tree, we want to hold the inode lock when we lookup and
 * update the disk_i_size, but lockdep will complain because our io_tree we hold
 * the tree lock and get the inode lock when setting delalloc.  These two things
 * are unrelated, so make a class for the file_extent_tree so we don't get the
 * two locking patterns mixed up.
 */
static struct lock_class_key file_extent_tree_class;

294
void extent_io_tree_init(struct btrfs_fs_info *fs_info,
295 296
			 struct extent_io_tree *tree, unsigned int owner,
			 void *private_data)
297
{
298
	tree->fs_info = fs_info;
299
	tree->state = RB_ROOT;
300
	tree->dirty_bytes = 0;
301
	spin_lock_init(&tree->lock);
302
	tree->private_data = private_data;
303
	tree->owner = owner;
304 305
	if (owner == IO_TREE_INODE_FILE_EXTENT)
		lockdep_set_class(&tree->lock, &file_extent_tree_class);
306 307
}

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
void extent_io_tree_release(struct extent_io_tree *tree)
{
	spin_lock(&tree->lock);
	/*
	 * Do a single barrier for the waitqueue_active check here, the state
	 * of the waitqueue should not change once extent_io_tree_release is
	 * called.
	 */
	smp_mb();
	while (!RB_EMPTY_ROOT(&tree->state)) {
		struct rb_node *node;
		struct extent_state *state;

		node = rb_first(&tree->state);
		state = rb_entry(node, struct extent_state, rb_node);
		rb_erase(&state->rb_node, &tree->state);
		RB_CLEAR_NODE(&state->rb_node);
		/*
		 * btree io trees aren't supposed to have tasks waiting for
		 * changes in the flags of extent states ever.
		 */
		ASSERT(!waitqueue_active(&state->wq));
		free_extent_state(state);

		cond_resched_lock(&tree->lock);
	}
	spin_unlock(&tree->lock);
}

337
static struct extent_state *alloc_extent_state(gfp_t mask)
338 339 340
{
	struct extent_state *state;

341 342 343 344 345
	/*
	 * The given mask might be not appropriate for the slab allocator,
	 * drop the unsupported bits
	 */
	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
346
	state = kmem_cache_alloc(extent_state_cache, mask);
347
	if (!state)
348 349
		return state;
	state->state = 0;
350
	state->failrec = NULL;
351
	RB_CLEAR_NODE(&state->rb_node);
352
	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
353
	refcount_set(&state->refs, 1);
354
	init_waitqueue_head(&state->wq);
355
	trace_alloc_extent_state(state, mask, _RET_IP_);
356 357 358
	return state;
}

359
void free_extent_state(struct extent_state *state)
360 361 362
{
	if (!state)
		return;
363
	if (refcount_dec_and_test(&state->refs)) {
364
		WARN_ON(extent_state_in_tree(state));
365
		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
366
		trace_free_extent_state(state, _RET_IP_);
367 368 369 370
		kmem_cache_free(extent_state_cache, state);
	}
}

N
Nikolay Borisov 已提交
371
/**
372 373
 * Search @tree for an entry that contains @offset. Such entry would have
 * entry->start <= offset && entry->end >= offset.
N
Nikolay Borisov 已提交
374
 *
375 376
 * @tree:       the tree to search
 * @offset:     offset that should fall within an entry in @tree
377
 * @node_ret:   pointer where new node should be anchored (used when inserting an
378 379
 *	        entry in the tree)
 * @parent_ret: points to entry which would have been the parent of the entry,
N
Nikolay Borisov 已提交
380 381
 *               containing @offset
 *
382 383 384 385 386
 * Return a pointer to the entry that contains @offset byte address and don't change
 * @node_ret and @parent_ret.
 *
 * If no such entry exists, return pointer to entry that ends before @offset
 * and fill parameters @node_ret and @parent_ret, ie. does not return NULL.
N
Nikolay Borisov 已提交
387
 */
388 389 390 391
static inline struct rb_node *tree_search_for_insert(struct extent_io_tree *tree,
					             u64 offset,
						     struct rb_node ***node_ret,
						     struct rb_node **parent_ret)
392
{
393
	struct rb_root *root = &tree->state;
394
	struct rb_node **node = &root->rb_node;
395 396 397
	struct rb_node *prev = NULL;
	struct tree_entry *entry;

398 399
	while (*node) {
		prev = *node;
400
		entry = rb_entry(prev, struct tree_entry, rb_node);
401 402

		if (offset < entry->start)
403
			node = &(*node)->rb_left;
404
		else if (offset > entry->end)
405
			node = &(*node)->rb_right;
C
Chris Mason 已提交
406
		else
407
			return *node;
408 409
	}

410 411
	if (node_ret)
		*node_ret = node;
412 413 414
	if (parent_ret)
		*parent_ret = prev;

415 416 417 418
	/* Search neighbors until we find the first one past the end */
	while (prev && offset > entry->end) {
		prev = rb_next(prev);
		entry = rb_entry(prev, struct tree_entry, rb_node);
419 420
	}

421
	return prev;
422 423
}

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
/*
 * Inexact rb-tree search, return the next entry if @offset is not found
 */
static inline struct rb_node *tree_search(struct extent_io_tree *tree, u64 offset)
{
	return tree_search_for_insert(tree, offset, NULL, NULL);
}

/**
 * Search offset in the tree or fill neighbor rbtree node pointers.
 *
 * @tree:      the tree to search
 * @offset:    offset that should fall within an entry in @tree
 * @next_ret:  pointer to the first entry whose range ends after @offset
 * @prev_ret:  pointer to the first entry whose range begins before @offset
 *
 * Return a pointer to the entry that contains @offset byte address. If no
 * such entry exists, then return NULL and fill @prev_ret and @next_ret.
 * Otherwise return the found entry and other pointers are left untouched.
 */
static struct rb_node *tree_search_prev_next(struct extent_io_tree *tree,
					     u64 offset,
					     struct rb_node **prev_ret,
					     struct rb_node **next_ret)
448
{
449 450 451
	struct rb_root *root = &tree->state;
	struct rb_node **node = &root->rb_node;
	struct rb_node *prev = NULL;
452
	struct rb_node *orig_prev = NULL;
453 454
	struct tree_entry *entry;

455 456 457
	ASSERT(prev_ret);
	ASSERT(next_ret);

458 459 460 461 462 463 464 465 466 467 468 469
	while (*node) {
		prev = *node;
		entry = rb_entry(prev, struct tree_entry, rb_node);

		if (offset < entry->start)
			node = &(*node)->rb_left;
		else if (offset > entry->end)
			node = &(*node)->rb_right;
		else
			return *node;
	}

470
	orig_prev = prev;
471 472 473 474
	while (prev && offset > entry->end) {
		prev = rb_next(prev);
		entry = rb_entry(prev, struct tree_entry, rb_node);
	}
475 476
	*next_ret = prev;
	prev = orig_prev;
477

478 479 480 481 482 483
	entry = rb_entry(prev, struct tree_entry, rb_node);
	while (prev && offset < entry->start) {
		prev = rb_prev(prev);
		entry = rb_entry(prev, struct tree_entry, rb_node);
	}
	*prev_ret = prev;
484

485
	return NULL;
486 487
}

488 489 490 491 492 493 494 495 496
/*
 * utility function to look for merge candidates inside a given range.
 * Any extents with matching state are merged together into a single
 * extent in the tree.  Extents with EXTENT_IO in their state field
 * are not merged because the end_io handlers need to be able to do
 * operations on them without sleeping (or doing allocations/splits).
 *
 * This should be called with the tree lock held.
 */
497 498
static void merge_state(struct extent_io_tree *tree,
		        struct extent_state *state)
499 500 501 502
{
	struct extent_state *other;
	struct rb_node *other_node;

N
Nikolay Borisov 已提交
503
	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
504
		return;
505 506 507 508 509 510

	other_node = rb_prev(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->end == state->start - 1 &&
		    other->state == state->state) {
511 512 513 514
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
515 516
			state->start = other->start;
			rb_erase(&other->rb_node, &tree->state);
517
			RB_CLEAR_NODE(&other->rb_node);
518 519 520 521 522 523 524 525
			free_extent_state(other);
		}
	}
	other_node = rb_next(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->start == state->end + 1 &&
		    other->state == state->state) {
526 527 528 529
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
530 531
			state->end = other->end;
			rb_erase(&other->rb_node, &tree->state);
532
			RB_CLEAR_NODE(&other->rb_node);
533
			free_extent_state(other);
534 535 536 537
		}
	}
}

538
static void set_state_bits(struct extent_io_tree *tree,
539
			   struct extent_state *state, u32 bits,
540
			   struct extent_changeset *changeset);
541

542 543 544 545 546 547 548 549 550 551 552
/*
 * insert an extent_state struct into the tree.  'bits' are set on the
 * struct before it is inserted.
 *
 * This may return -EEXIST if the extent is already there, in which case the
 * state struct is freed.
 *
 * The tree lock is not taken internally.  This is a utility function and
 * probably isn't what you want to call (see set/clear_extent_bit).
 */
static int insert_state(struct extent_io_tree *tree,
553
			struct extent_state *state,
554
			u32 bits, struct extent_changeset *changeset)
555
{
556 557
	struct rb_node **node;
	struct rb_node *parent;
558
	const u64 end = state->end;
J
Josef Bacik 已提交
559

560
	set_state_bits(tree, state, bits, changeset);
561

562 563 564 565 566 567 568 569 570 571 572 573 574 575
	node = &tree->state.rb_node;
	while (*node) {
		struct tree_entry *entry;

		parent = *node;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (end < entry->start) {
			node = &(*node)->rb_left;
		} else if (end > entry->end) {
			node = &(*node)->rb_right;
		} else {
			btrfs_err(tree->fs_info,
			       "found node %llu %llu on insert of %llu %llu",
576
			       entry->start, entry->end, state->start, end);
577 578 579 580 581 582 583
			return -EEXIST;
		}
	}

	rb_link_node(&state->rb_node, parent, node);
	rb_insert_color(&state->rb_node, &tree->state);

584 585 586 587
	merge_state(tree, state);
	return 0;
}

588 589 590 591 592 593 594 595 596 597 598 599 600 601
/*
 * Insert state to @tree to the location given by @node and @parent.
 */
static void insert_state_fast(struct extent_io_tree *tree,
			      struct extent_state *state, struct rb_node **node,
			      struct rb_node *parent, unsigned bits,
			      struct extent_changeset *changeset)
{
	set_state_bits(tree, state, bits, changeset);
	rb_link_node(&state->rb_node, parent, node);
	rb_insert_color(&state->rb_node, &tree->state);
	merge_state(tree, state);
}

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
/*
 * split a given extent state struct in two, inserting the preallocated
 * struct 'prealloc' as the newly created second half.  'split' indicates an
 * offset inside 'orig' where it should be split.
 *
 * Before calling,
 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 * are two extent state structs in the tree:
 * prealloc: [orig->start, split - 1]
 * orig: [ split, orig->end ]
 *
 * The tree locks are not taken by this function. They need to be held
 * by the caller.
 */
static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
		       struct extent_state *prealloc, u64 split)
{
619 620
	struct rb_node *parent = NULL;
	struct rb_node **node;
J
Josef Bacik 已提交
621

622 623
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_split_delalloc_extent(tree->private_data, orig, split);
J
Josef Bacik 已提交
624

625 626 627 628 629
	prealloc->start = orig->start;
	prealloc->end = split - 1;
	prealloc->state = orig->state;
	orig->start = split;

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
	parent = &orig->rb_node;
	node = &parent;
	while (*node) {
		struct tree_entry *entry;

		parent = *node;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (prealloc->end < entry->start) {
			node = &(*node)->rb_left;
		} else if (prealloc->end > entry->end) {
			node = &(*node)->rb_right;
		} else {
			free_extent_state(prealloc);
			return -EEXIST;
		}
646
	}
647 648 649 650

	rb_link_node(&prealloc->rb_node, parent, node);
	rb_insert_color(&prealloc->rb_node, &tree->state);

651 652 653
	return 0;
}

654 655 656 657 658 659 660 661 662
static struct extent_state *next_state(struct extent_state *state)
{
	struct rb_node *next = rb_next(&state->rb_node);
	if (next)
		return rb_entry(next, struct extent_state, rb_node);
	else
		return NULL;
}

663 664
/*
 * utility function to clear some bits in an extent state struct.
665
 * it will optionally wake up anyone waiting on this state (wake == 1).
666 667 668 669
 *
 * If no bits are set on the state struct after clearing things, the
 * struct is freed and removed from the tree
 */
670 671
static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
					    struct extent_state *state,
672
					    u32 bits, int wake,
673
					    struct extent_changeset *changeset)
674
{
675
	struct extent_state *next;
676
	u32 bits_to_clear = bits & ~EXTENT_CTLBITS;
677
	int ret;
678

679
	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
680 681 682 683
		u64 range = state->end - state->start + 1;
		WARN_ON(range > tree->dirty_bytes);
		tree->dirty_bytes -= range;
	}
684 685 686 687

	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_clear_delalloc_extent(tree->private_data, state, bits);

688 689
	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
	BUG_ON(ret < 0);
690
	state->state &= ~bits_to_clear;
691 692
	if (wake)
		wake_up(&state->wq);
693
	if (state->state == 0) {
694
		next = next_state(state);
695
		if (extent_state_in_tree(state)) {
696
			rb_erase(&state->rb_node, &tree->state);
697
			RB_CLEAR_NODE(&state->rb_node);
698 699 700 701 702 703
			free_extent_state(state);
		} else {
			WARN_ON(1);
		}
	} else {
		merge_state(tree, state);
704
		next = next_state(state);
705
	}
706
	return next;
707 708
}

709 710 711 712 713 714 715 716 717
static struct extent_state *
alloc_extent_state_atomic(struct extent_state *prealloc)
{
	if (!prealloc)
		prealloc = alloc_extent_state(GFP_ATOMIC);

	return prealloc;
}

718
static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
719
{
720
	btrfs_panic(tree->fs_info, err,
721
	"locking error: extent tree was modified by another thread while locked");
722 723
}

724 725 726 727 728 729 730 731 732 733
/*
 * clear some bits on a range in the tree.  This may require splitting
 * or inserting elements in the tree, so the gfp mask is used to
 * indicate which allocations or sleeping are allowed.
 *
 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 * the given range from the tree regardless of state (ie for truncate).
 *
 * the range [start, end] is inclusive.
 *
734
 * This takes the tree lock, and returns 0 on success and < 0 on error.
735
 */
736
int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
737 738 739
		       u32 bits, int wake, int delete,
		       struct extent_state **cached_state,
		       gfp_t mask, struct extent_changeset *changeset)
740 741
{
	struct extent_state *state;
742
	struct extent_state *cached;
743 744
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
745
	u64 last_end;
746
	int err;
747
	int clear = 0;
748

749
	btrfs_debug_check_extent_io_range(tree, start, end);
750
	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
751

752 753 754
	if (bits & EXTENT_DELALLOC)
		bits |= EXTENT_NORESERVE;

755 756 757
	if (delete)
		bits |= ~EXTENT_CTLBITS;

N
Nikolay Borisov 已提交
758
	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
759
		clear = 1;
760
again:
761
	if (!prealloc && gfpflags_allow_blocking(mask)) {
762 763 764 765 766 767 768
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
769 770 771
		prealloc = alloc_extent_state(mask);
	}

772
	spin_lock(&tree->lock);
773 774
	if (cached_state) {
		cached = *cached_state;
775 776 777 778 779 780

		if (clear) {
			*cached_state = NULL;
			cached_state = NULL;
		}

781 782
		if (cached && extent_state_in_tree(cached) &&
		    cached->start <= start && cached->end > start) {
783
			if (clear)
784
				refcount_dec(&cached->refs);
785
			state = cached;
786
			goto hit_next;
787
		}
788 789
		if (clear)
			free_extent_state(cached);
790
	}
791 792 793 794
	/*
	 * this search will find the extents that end after
	 * our range starts
	 */
795
	node = tree_search(tree, start);
796 797 798
	if (!node)
		goto out;
	state = rb_entry(node, struct extent_state, rb_node);
799
hit_next:
800 801 802
	if (state->start > end)
		goto out;
	WARN_ON(state->end < start);
803
	last_end = state->end;
804

805
	/* the state doesn't have the wanted bits, go ahead */
806 807
	if (!(state->state & bits)) {
		state = next_state(state);
808
		goto next;
809
	}
810

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
	/*
	 *     | ---- desired range ---- |
	 *  | state | or
	 *  | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip
	 * bits on second half.
	 *
	 * If the extent we found extends past our range, we
	 * just split and search again.  It'll get split again
	 * the next time though.
	 *
	 * If the extent we found is inside our range, we clear
	 * the desired bit on it.
	 */

	if (state->start < start) {
828 829
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
830
		err = split_state(tree, state, prealloc, start);
831 832 833
		if (err)
			extent_io_tree_panic(tree, err);

834 835 836 837
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
838
			state = clear_state_bit(tree, state, bits, wake, changeset);
839
			goto next;
840 841 842 843 844 845 846 847 848 849
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and clear the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
850 851
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
852
		err = split_state(tree, state, prealloc, end + 1);
853 854 855
		if (err)
			extent_io_tree_panic(tree, err);

856 857
		if (wake)
			wake_up(&state->wq);
858

859
		clear_state_bit(tree, prealloc, bits, wake, changeset);
J
Josef Bacik 已提交
860

861 862 863
		prealloc = NULL;
		goto out;
	}
864

865
	state = clear_state_bit(tree, state, bits, wake, changeset);
866
next:
867 868 869
	if (last_end == (u64)-1)
		goto out;
	start = last_end + 1;
870
	if (start <= end && state && !need_resched())
871
		goto hit_next;
872 873 874 875

search_again:
	if (start > end)
		goto out;
876
	spin_unlock(&tree->lock);
877
	if (gfpflags_allow_blocking(mask))
878 879
		cond_resched();
	goto again;
880 881 882 883 884 885 886 887

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return 0;

888 889
}

890 891
static void wait_on_state(struct extent_io_tree *tree,
			  struct extent_state *state)
892 893
		__releases(tree->lock)
		__acquires(tree->lock)
894 895 896
{
	DEFINE_WAIT(wait);
	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
897
	spin_unlock(&tree->lock);
898
	schedule();
899
	spin_lock(&tree->lock);
900 901 902 903 904 905 906 907
	finish_wait(&state->wq, &wait);
}

/*
 * waits for one or more bits to clear on a range in the state tree.
 * The range [start, end] is inclusive.
 * The tree lock is taken by this function
 */
908
static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
909
			    u32 bits)
910 911 912 913
{
	struct extent_state *state;
	struct rb_node *node;

914
	btrfs_debug_check_extent_io_range(tree, start, end);
915

916
	spin_lock(&tree->lock);
917 918 919 920 921 922
again:
	while (1) {
		/*
		 * this search will find all the extents that end after
		 * our range starts
		 */
923
		node = tree_search(tree, start);
924
process_node:
925 926 927 928 929 930 931 932 933 934
		if (!node)
			break;

		state = rb_entry(node, struct extent_state, rb_node);

		if (state->start > end)
			goto out;

		if (state->state & bits) {
			start = state->start;
935
			refcount_inc(&state->refs);
936 937 938 939 940 941 942 943 944
			wait_on_state(tree, state);
			free_extent_state(state);
			goto again;
		}
		start = state->end + 1;

		if (start > end)
			break;

945 946 947 948
		if (!cond_resched_lock(&tree->lock)) {
			node = rb_next(node);
			goto process_node;
		}
949 950
	}
out:
951
	spin_unlock(&tree->lock);
952 953
}

954
static void set_state_bits(struct extent_io_tree *tree,
955
			   struct extent_state *state,
956
			   u32 bits, struct extent_changeset *changeset)
957
{
958
	u32 bits_to_set = bits & ~EXTENT_CTLBITS;
959
	int ret;
J
Josef Bacik 已提交
960

961 962 963
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_set_delalloc_extent(tree->private_data, state, bits);

964
	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
965 966 967
		u64 range = state->end - state->start + 1;
		tree->dirty_bytes += range;
	}
968 969
	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
	BUG_ON(ret < 0);
970
	state->state |= bits_to_set;
971 972
}

973 974
static void cache_state_if_flags(struct extent_state *state,
				 struct extent_state **cached_ptr,
975
				 unsigned flags)
976 977
{
	if (cached_ptr && !(*cached_ptr)) {
978
		if (!flags || (state->state & flags)) {
979
			*cached_ptr = state;
980
			refcount_inc(&state->refs);
981 982 983 984
		}
	}
}

985 986 987 988
static void cache_state(struct extent_state *state,
			struct extent_state **cached_ptr)
{
	return cache_state_if_flags(state, cached_ptr,
N
Nikolay Borisov 已提交
989
				    EXTENT_LOCKED | EXTENT_BOUNDARY);
990 991
}

992
/*
993 994
 * set some bits on a range in the tree.  This may require allocations or
 * sleeping, so the gfp mask is used to indicate what is allowed.
995
 *
996 997 998
 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 * part of the range already has the desired bits set.  The start of the
 * existing range is returned in failed_start in this case.
999
 *
1000
 * [start, end] is inclusive This takes the tree lock.
1001
 */
1002 1003
int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
		   u32 exclusive_bits, u64 *failed_start,
1004 1005
		   struct extent_state **cached_state, gfp_t mask,
		   struct extent_changeset *changeset)
1006 1007 1008 1009
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
1010 1011
	struct rb_node **p;
	struct rb_node *parent;
1012 1013 1014
	int err = 0;
	u64 last_start;
	u64 last_end;
1015

1016
	btrfs_debug_check_extent_io_range(tree, start, end);
1017
	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
1018

1019 1020 1021 1022
	if (exclusive_bits)
		ASSERT(failed_start);
	else
		ASSERT(failed_start == NULL);
1023
again:
1024
	if (!prealloc && gfpflags_allow_blocking(mask)) {
1025 1026 1027 1028 1029 1030 1031
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
1032 1033 1034
		prealloc = alloc_extent_state(mask);
	}

1035
	spin_lock(&tree->lock);
1036 1037
	if (cached_state && *cached_state) {
		state = *cached_state;
1038
		if (state->start <= start && state->end > start &&
1039
		    extent_state_in_tree(state)) {
1040 1041 1042 1043
			node = &state->rb_node;
			goto hit_next;
		}
	}
1044 1045 1046 1047
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1048
	node = tree_search_for_insert(tree, start, &p, &parent);
1049
	if (!node) {
1050 1051
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1052 1053
		prealloc->start = start;
		prealloc->end = end;
1054
		insert_state_fast(tree, prealloc, p, parent, bits, changeset);
1055
		cache_state(prealloc, cached_state);
1056 1057 1058 1059
		prealloc = NULL;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1060
hit_next:
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1071
		if (state->state & exclusive_bits) {
1072 1073 1074 1075
			*failed_start = state->start;
			err = -EEXIST;
			goto out;
		}
1076

1077
		set_state_bits(tree, state, bits, changeset);
1078
		cache_state(state, cached_state);
1079
		merge_state(tree, state);
1080 1081 1082
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1083 1084 1085 1086
		state = next_state(state);
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
1107
		if (state->state & exclusive_bits) {
1108 1109 1110 1111
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1112

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
		/*
		 * If this extent already has all the bits we want set, then
		 * skip it, not necessary to split it or do anything with it.
		 */
		if ((state->state & bits) == bits) {
			start = state->end + 1;
			cache_state(state, cached_state);
			goto search_again;
		}

1123 1124
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1125
		err = split_state(tree, state, prealloc, start);
1126 1127 1128
		if (err)
			extent_io_tree_panic(tree, err);

1129 1130 1131 1132
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1133
			set_state_bits(tree, state, bits, changeset);
1134
			cache_state(state, cached_state);
1135
			merge_state(tree, state);
1136 1137 1138
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1139 1140 1141 1142
			state = next_state(state);
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
C
Chris Mason 已提交
1158
			this_end = last_start - 1;
1159 1160 1161

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1162 1163 1164 1165 1166

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
1167 1168
		prealloc->start = start;
		prealloc->end = this_end;
1169
		err = insert_state(tree, prealloc, bits, changeset);
1170 1171 1172
		if (err)
			extent_io_tree_panic(tree, err);

J
Josef Bacik 已提交
1173 1174
		cache_state(prealloc, cached_state);
		prealloc = NULL;
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
1185
		if (state->state & exclusive_bits) {
1186 1187 1188 1189
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1190 1191 1192

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1193
		err = split_state(tree, state, prealloc, end + 1);
1194 1195
		if (err)
			extent_io_tree_panic(tree, err);
1196

1197
		set_state_bits(tree, prealloc, bits, changeset);
1198
		cache_state(prealloc, cached_state);
1199 1200 1201 1202 1203
		merge_state(tree, prealloc);
		prealloc = NULL;
		goto out;
	}

1204 1205 1206 1207 1208 1209 1210
search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
	if (gfpflags_allow_blocking(mask))
		cond_resched();
	goto again;
1211 1212

out:
1213
	spin_unlock(&tree->lock);
1214 1215 1216 1217 1218 1219 1220
	if (prealloc)
		free_extent_state(prealloc);

	return err;

}

J
Josef Bacik 已提交
1221
/**
L
Liu Bo 已提交
1222 1223
 * convert_extent_bit - convert all bits in a given range from one bit to
 * 			another
J
Josef Bacik 已提交
1224 1225 1226 1227 1228
 * @tree:	the io tree to search
 * @start:	the start offset in bytes
 * @end:	the end offset in bytes (inclusive)
 * @bits:	the bits to set in this range
 * @clear_bits:	the bits to clear in this range
1229
 * @cached_state:	state that we're going to cache
J
Josef Bacik 已提交
1230 1231 1232 1233 1234 1235
 *
 * This will go through and set bits for the given range.  If any states exist
 * already in this range they are set with the given bit and cleared of the
 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 * boundary bits like LOCK.
1236 1237
 *
 * All allocations are done with GFP_NOFS.
J
Josef Bacik 已提交
1238 1239
 */
int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1240
		       u32 bits, u32 clear_bits,
1241
		       struct extent_state **cached_state)
J
Josef Bacik 已提交
1242 1243 1244 1245
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
1246 1247
	struct rb_node **p;
	struct rb_node *parent;
J
Josef Bacik 已提交
1248 1249 1250
	int err = 0;
	u64 last_start;
	u64 last_end;
1251
	bool first_iteration = true;
J
Josef Bacik 已提交
1252

1253
	btrfs_debug_check_extent_io_range(tree, start, end);
1254 1255
	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
				       clear_bits);
1256

J
Josef Bacik 已提交
1257
again:
1258
	if (!prealloc) {
1259 1260 1261 1262 1263 1264 1265
		/*
		 * Best effort, don't worry if extent state allocation fails
		 * here for the first iteration. We might have a cached state
		 * that matches exactly the target range, in which case no
		 * extent state allocations are needed. We'll only know this
		 * after locking the tree.
		 */
1266
		prealloc = alloc_extent_state(GFP_NOFS);
1267
		if (!prealloc && !first_iteration)
J
Josef Bacik 已提交
1268 1269 1270 1271
			return -ENOMEM;
	}

	spin_lock(&tree->lock);
1272 1273 1274
	if (cached_state && *cached_state) {
		state = *cached_state;
		if (state->start <= start && state->end > start &&
1275
		    extent_state_in_tree(state)) {
1276 1277 1278 1279 1280
			node = &state->rb_node;
			goto hit_next;
		}
	}

J
Josef Bacik 已提交
1281 1282 1283 1284
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1285
	node = tree_search_for_insert(tree, start, &p, &parent);
J
Josef Bacik 已提交
1286 1287
	if (!node) {
		prealloc = alloc_extent_state_atomic(prealloc);
1288 1289 1290 1291
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
1292 1293
		prealloc->start = start;
		prealloc->end = end;
1294
		insert_state_fast(tree, prealloc, p, parent, bits, NULL);
1295 1296
		cache_state(prealloc, cached_state);
		prealloc = NULL;
J
Josef Bacik 已提交
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
hit_next:
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1311
		set_state_bits(tree, state, bits, NULL);
1312
		cache_state(state, cached_state);
1313
		state = clear_state_bit(tree, state, clear_bits, 0, NULL);
J
Josef Bacik 已提交
1314 1315 1316
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1317 1318 1319
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
J
Josef Bacik 已提交
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
		prealloc = alloc_extent_state_atomic(prealloc);
1341 1342 1343 1344
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1345
		err = split_state(tree, state, prealloc, start);
1346 1347
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1348 1349 1350 1351
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1352
			set_state_bits(tree, state, bits, NULL);
1353
			cache_state(state, cached_state);
1354
			state = clear_state_bit(tree, state, clear_bits, 0, NULL);
J
Josef Bacik 已提交
1355 1356 1357
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1358 1359 1360
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
J
Josef Bacik 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
			this_end = last_start - 1;

		prealloc = alloc_extent_state_atomic(prealloc);
1379 1380 1381 1382
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1383 1384 1385 1386 1387

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
1388 1389
		prealloc->start = start;
		prealloc->end = this_end;
1390
		err = insert_state(tree, prealloc, bits, NULL);
1391 1392
		if (err)
			extent_io_tree_panic(tree, err);
1393
		cache_state(prealloc, cached_state);
J
Josef Bacik 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
		prealloc = NULL;
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
		prealloc = alloc_extent_state_atomic(prealloc);
1406 1407 1408 1409
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1410 1411

		err = split_state(tree, state, prealloc, end + 1);
1412 1413
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1414

1415
		set_state_bits(tree, prealloc, bits, NULL);
1416
		cache_state(prealloc, cached_state);
1417
		clear_state_bit(tree, prealloc, clear_bits, 0, NULL);
J
Josef Bacik 已提交
1418 1419 1420 1421 1422 1423 1424 1425
		prealloc = NULL;
		goto out;
	}

search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
1426
	cond_resched();
1427
	first_iteration = false;
J
Josef Bacik 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	goto again;

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return err;
}

1438
/* wrappers around set/clear extent bit */
1439
int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1440
			   u32 bits, struct extent_changeset *changeset)
1441 1442 1443 1444 1445 1446 1447 1448 1449
{
	/*
	 * We don't support EXTENT_LOCKED yet, as current changeset will
	 * record any bits changed, so for EXTENT_LOCKED case, it will
	 * either fail with -EEXIST or changeset will record the whole
	 * range.
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1450 1451
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
			      changeset);
1452 1453
}

1454
int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1455
			   u32 bits)
1456
{
1457 1458
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
			      GFP_NOWAIT, NULL);
1459 1460
}

1461
int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1462
		     u32 bits, int wake, int delete,
1463
		     struct extent_state **cached)
1464 1465
{
	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1466
				  cached, GFP_NOFS, NULL);
1467 1468 1469
}

int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1470
		u32 bits, struct extent_changeset *changeset)
1471 1472 1473 1474 1475 1476 1477
{
	/*
	 * Don't support EXTENT_LOCKED case, same reason as
	 * set_record_extent_bits().
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1478
	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1479 1480 1481
				  changeset);
}

C
Chris Mason 已提交
1482 1483 1484 1485
/*
 * either insert or lock state struct between start and end use mask to tell
 * us if waiting is desired.
 */
1486
int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1487
		     struct extent_state **cached_state)
1488 1489 1490
{
	int err;
	u64 failed_start;
1491

1492
	while (1) {
1493 1494 1495
		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
				     EXTENT_LOCKED, &failed_start,
				     cached_state, GFP_NOFS, NULL);
1496
		if (err == -EEXIST) {
1497 1498
			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
			start = failed_start;
1499
		} else
1500 1501 1502 1503 1504 1505
			break;
		WARN_ON(start > end);
	}
	return err;
}

1506
int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1507 1508 1509 1510
{
	int err;
	u64 failed_start;

1511 1512
	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
			     &failed_start, NULL, GFP_NOFS, NULL);
Y
Yan Zheng 已提交
1513 1514 1515
	if (err == -EEXIST) {
		if (failed_start > start)
			clear_extent_bit(tree, start, failed_start - 1,
1516
					 EXTENT_LOCKED, 1, 0, NULL);
1517
		return 0;
Y
Yan Zheng 已提交
1518
	}
1519 1520 1521
	return 1;
}

1522
void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1523
{
1524 1525
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1526 1527 1528 1529 1530 1531
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		clear_page_dirty_for_io(page);
1532
		put_page(page);
1533 1534 1535 1536
		index++;
	}
}

1537
void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1538
{
1539
	struct address_space *mapping = inode->i_mapping;
1540 1541
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1542
	struct folio *folio;
1543 1544

	while (index <= end_index) {
1545 1546 1547 1548 1549
		folio = filemap_get_folio(mapping, index);
		filemap_dirty_folio(mapping, folio);
		folio_account_redirty(folio);
		index += folio_nr_pages(folio);
		folio_put(folio);
1550 1551 1552
	}
}

C
Chris Mason 已提交
1553 1554 1555 1556
/* find the first state struct with 'bits' set after 'start', and
 * return it.  tree->lock must be held.  NULL will returned if
 * nothing was found after 'start'
 */
1557
static struct extent_state *
1558
find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
C
Chris Mason 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567
{
	struct rb_node *node;
	struct extent_state *state;

	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
	node = tree_search(tree, start);
C
Chris Mason 已提交
1568
	if (!node)
C
Chris Mason 已提交
1569 1570
		goto out;

C
Chris Mason 已提交
1571
	while (1) {
C
Chris Mason 已提交
1572
		state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1573
		if (state->end >= start && (state->state & bits))
C
Chris Mason 已提交
1574
			return state;
C
Chris Mason 已提交
1575

C
Chris Mason 已提交
1576 1577 1578 1579 1580 1581 1582 1583
		node = rb_next(node);
		if (!node)
			break;
	}
out:
	return NULL;
}

1584
/*
1585
 * Find the first offset in the io tree with one or more @bits set.
1586
 *
1587 1588 1589 1590
 * Note: If there are multiple bits set in @bits, any of them will match.
 *
 * Return 0 if we find something, and update @start_ret and @end_ret.
 * Return 1 if we found nothing.
1591 1592
 */
int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1593
			  u64 *start_ret, u64 *end_ret, u32 bits,
1594
			  struct extent_state **cached_state)
1595 1596 1597 1598 1599
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
1600 1601
	if (cached_state && *cached_state) {
		state = *cached_state;
1602
		if (state->end == start - 1 && extent_state_in_tree(state)) {
1603
			while ((state = next_state(state)) != NULL) {
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
				if (state->state & bits)
					goto got_it;
			}
			free_extent_state(*cached_state);
			*cached_state = NULL;
			goto out;
		}
		free_extent_state(*cached_state);
		*cached_state = NULL;
	}

1615
	state = find_first_extent_bit_state(tree, start, bits);
1616
got_it:
1617
	if (state) {
1618
		cache_state_if_flags(state, cached_state, 0);
1619 1620 1621 1622
		*start_ret = state->start;
		*end_ret = state->end;
		ret = 0;
	}
1623
out:
1624 1625 1626 1627
	spin_unlock(&tree->lock);
	return ret;
}

1628
/**
1629 1630 1631 1632 1633 1634 1635
 * Find a contiguous area of bits
 *
 * @tree:      io tree to check
 * @start:     offset to start the search from
 * @start_ret: the first offset we found with the bits set
 * @end_ret:   the final contiguous range of the bits that were set
 * @bits:      bits to look for
1636 1637 1638 1639 1640 1641 1642 1643 1644
 *
 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
 * to set bits appropriately, and then merge them again.  During this time it
 * will drop the tree->lock, so use this helper if you want to find the actual
 * contiguous area for given bits.  We will search to the first bit we find, and
 * then walk down the tree until we find a non-contiguous area.  The area
 * returned will be the full contiguous area with the bits set.
 */
int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1645
			       u64 *start_ret, u64 *end_ret, u32 bits)
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
	state = find_first_extent_bit_state(tree, start, bits);
	if (state) {
		*start_ret = state->start;
		*end_ret = state->end;
		while ((state = next_state(state)) != NULL) {
			if (state->start > (*end_ret + 1))
				break;
			*end_ret = state->end;
		}
		ret = 0;
	}
	spin_unlock(&tree->lock);
	return ret;
}

1666
/**
1667 1668
 * Find the first range that has @bits not set. This range could start before
 * @start.
1669
 *
1670 1671 1672 1673 1674
 * @tree:      the tree to search
 * @start:     offset at/after which the found extent should start
 * @start_ret: records the beginning of the range
 * @end_ret:   records the end of the range (inclusive)
 * @bits:      the set of bits which must be unset
1675 1676 1677 1678 1679 1680 1681
 *
 * Since unallocated range is also considered one which doesn't have the bits
 * set it's possible that @end_ret contains -1, this happens in case the range
 * spans (last_range_end, end of device]. In this case it's up to the caller to
 * trim @end_ret to the appropriate size.
 */
void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1682
				 u64 *start_ret, u64 *end_ret, u32 bits)
1683 1684 1685 1686 1687 1688 1689 1690
{
	struct extent_state *state;
	struct rb_node *node, *prev = NULL, *next;

	spin_lock(&tree->lock);

	/* Find first extent with bits cleared */
	while (1) {
1691
		node = tree_search_prev_next(tree, start, &prev, &next);
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
		if (!node && !next && !prev) {
			/*
			 * Tree is completely empty, send full range and let
			 * caller deal with it
			 */
			*start_ret = 0;
			*end_ret = -1;
			goto out;
		} else if (!node && !next) {
			/*
			 * We are past the last allocated chunk, set start at
			 * the end of the last extent.
			 */
			state = rb_entry(prev, struct extent_state, rb_node);
			*start_ret = state->end + 1;
			*end_ret = -1;
			goto out;
		} else if (!node) {
1710 1711
			node = next;
		}
1712 1713 1714 1715
		/*
		 * At this point 'node' either contains 'start' or start is
		 * before 'node'
		 */
1716
		state = rb_entry(node, struct extent_state, rb_node);
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738

		if (in_range(start, state->start, state->end - state->start + 1)) {
			if (state->state & bits) {
				/*
				 * |--range with bits sets--|
				 *    |
				 *    start
				 */
				start = state->end + 1;
			} else {
				/*
				 * 'start' falls within a range that doesn't
				 * have the bits set, so take its start as
				 * the beginning of the desired range
				 *
				 * |--range with bits cleared----|
				 *      |
				 *      start
				 */
				*start_ret = state->start;
				break;
			}
1739
		} else {
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
			/*
			 * |---prev range---|---hole/unset---|---node range---|
			 *                          |
			 *                        start
			 *
			 *                        or
			 *
			 * |---hole/unset--||--first node--|
			 * 0   |
			 *    start
			 */
			if (prev) {
				state = rb_entry(prev, struct extent_state,
						 rb_node);
				*start_ret = state->end + 1;
			} else {
				*start_ret = 0;
			}
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
			break;
		}
	}

	/*
	 * Find the longest stretch from start until an entry which has the
	 * bits set
	 */
	while (1) {
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->end >= start && !(state->state & bits)) {
			*end_ret = state->end;
		} else {
			*end_ret = state->start - 1;
			break;
		}

		node = rb_next(node);
		if (!node)
			break;
	}
out:
	spin_unlock(&tree->lock);
}

C
Chris Mason 已提交
1783 1784 1785 1786
/*
 * find a contiguous range of bytes in the file marked as delalloc, not
 * more than 'max_bytes'.  start and end are used to return the range,
 *
1787
 * true is returned if we find something, false if nothing was in the tree
C
Chris Mason 已提交
1788
 */
J
Josef Bacik 已提交
1789 1790 1791
bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
			       u64 *end, u64 max_bytes,
			       struct extent_state **cached_state)
1792 1793 1794 1795
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
1796
	bool found = false;
1797 1798
	u64 total_bytes = 0;

1799
	spin_lock(&tree->lock);
C
Chris Mason 已提交
1800

1801 1802 1803 1804
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1805
	node = tree_search(tree, cur_start);
1806
	if (!node) {
1807
		*end = (u64)-1;
1808 1809 1810
		goto out;
	}

C
Chris Mason 已提交
1811
	while (1) {
1812
		state = rb_entry(node, struct extent_state, rb_node);
1813 1814
		if (found && (state->start != cur_start ||
			      (state->state & EXTENT_BOUNDARY))) {
1815 1816 1817 1818 1819 1820 1821
			goto out;
		}
		if (!(state->state & EXTENT_DELALLOC)) {
			if (!found)
				*end = state->end;
			goto out;
		}
1822
		if (!found) {
1823
			*start = state->start;
1824
			*cached_state = state;
1825
			refcount_inc(&state->refs);
1826
		}
1827
		found = true;
1828 1829 1830 1831
		*end = state->end;
		cur_start = state->end + 1;
		node = rb_next(node);
		total_bytes += state->end - state->start + 1;
1832
		if (total_bytes >= max_bytes)
1833 1834
			break;
		if (!node)
1835 1836 1837
			break;
	}
out:
1838
	spin_unlock(&tree->lock);
1839 1840 1841
	return found;
}

1842 1843 1844 1845 1846 1847 1848 1849
/*
 * Process one page for __process_pages_contig().
 *
 * Return >0 if we hit @page == @locked_page.
 * Return 0 if we updated the page status.
 * Return -EGAIN if the we need to try again.
 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
 */
1850 1851
static int process_one_page(struct btrfs_fs_info *fs_info,
			    struct address_space *mapping,
1852
			    struct page *page, struct page *locked_page,
1853
			    unsigned long page_ops, u64 start, u64 end)
1854
{
1855 1856 1857 1858 1859
	u32 len;

	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
	len = end + 1 - start;

1860
	if (page_ops & PAGE_SET_ORDERED)
1861
		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1862
	if (page_ops & PAGE_SET_ERROR)
1863
		btrfs_page_clamp_set_error(fs_info, page, start, len);
1864
	if (page_ops & PAGE_START_WRITEBACK) {
1865 1866
		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1867 1868
	}
	if (page_ops & PAGE_END_WRITEBACK)
1869
		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1870 1871 1872 1873

	if (page == locked_page)
		return 1;

1874
	if (page_ops & PAGE_LOCK) {
1875 1876 1877 1878 1879
		int ret;

		ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
		if (ret)
			return ret;
1880
		if (!PageDirty(page) || page->mapping != mapping) {
1881
			btrfs_page_end_writer_lock(fs_info, page, start, len);
1882 1883 1884 1885
			return -EAGAIN;
		}
	}
	if (page_ops & PAGE_UNLOCK)
1886
		btrfs_page_end_writer_lock(fs_info, page, start, len);
1887 1888 1889
	return 0;
}

1890 1891
static int __process_pages_contig(struct address_space *mapping,
				  struct page *locked_page,
1892
				  u64 start, u64 end, unsigned long page_ops,
1893 1894
				  u64 *processed_end)
{
1895
	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
	pgoff_t start_index = start >> PAGE_SHIFT;
	pgoff_t end_index = end >> PAGE_SHIFT;
	pgoff_t index = start_index;
	unsigned long nr_pages = end_index - start_index + 1;
	unsigned long pages_processed = 0;
	struct page *pages[16];
	int err = 0;
	int i;

	if (page_ops & PAGE_LOCK) {
		ASSERT(page_ops == PAGE_LOCK);
		ASSERT(processed_end && *processed_end == start);
	}

	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
		mapping_set_error(mapping, -EIO);

	while (nr_pages > 0) {
		int found_pages;

		found_pages = find_get_pages_contig(mapping, index,
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
		if (found_pages == 0) {
			/*
			 * Only if we're going to lock these pages, we can find
			 * nothing at @index.
			 */
			ASSERT(page_ops & PAGE_LOCK);
			err = -EAGAIN;
			goto out;
		}

		for (i = 0; i < found_pages; i++) {
			int process_ret;

1932 1933 1934
			process_ret = process_one_page(fs_info, mapping,
					pages[i], locked_page, page_ops,
					start, end);
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
			if (process_ret < 0) {
				for (; i < found_pages; i++)
					put_page(pages[i]);
				err = -EAGAIN;
				goto out;
			}
			put_page(pages[i]);
			pages_processed++;
		}
		nr_pages -= found_pages;
		index += found_pages;
		cond_resched();
	}
out:
	if (err && processed_end) {
		/*
		 * Update @processed_end. I know this is awful since it has
		 * two different return value patterns (inclusive vs exclusive).
		 *
		 * But the exclusive pattern is necessary if @start is 0, or we
		 * underflow and check against processed_end won't work as
		 * expected.
		 */
		if (pages_processed)
			*processed_end = min(end,
			((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
		else
			*processed_end = start;
	}
	return err;
}
1966

1967 1968 1969
static noinline void __unlock_for_delalloc(struct inode *inode,
					   struct page *locked_page,
					   u64 start, u64 end)
C
Chris Mason 已提交
1970
{
1971 1972
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
C
Chris Mason 已提交
1973

1974
	ASSERT(locked_page);
C
Chris Mason 已提交
1975
	if (index == locked_page->index && end_index == index)
1976
		return;
C
Chris Mason 已提交
1977

1978
	__process_pages_contig(inode->i_mapping, locked_page, start, end,
1979
			       PAGE_UNLOCK, NULL);
C
Chris Mason 已提交
1980 1981 1982 1983 1984 1985 1986
}

static noinline int lock_delalloc_pages(struct inode *inode,
					struct page *locked_page,
					u64 delalloc_start,
					u64 delalloc_end)
{
1987 1988
	unsigned long index = delalloc_start >> PAGE_SHIFT;
	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1989
	u64 processed_end = delalloc_start;
C
Chris Mason 已提交
1990 1991
	int ret;

1992
	ASSERT(locked_page);
C
Chris Mason 已提交
1993 1994 1995
	if (index == locked_page->index && index == end_index)
		return 0;

1996 1997 1998
	ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
				     delalloc_end, PAGE_LOCK, &processed_end);
	if (ret == -EAGAIN && processed_end > delalloc_start)
1999
		__unlock_for_delalloc(inode, locked_page, delalloc_start,
2000
				      processed_end);
C
Chris Mason 已提交
2001 2002 2003 2004
	return ret;
}

/*
2005
 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
2006
 * more than @max_bytes.
C
Chris Mason 已提交
2007
 *
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
 * @start:	The original start bytenr to search.
 *		Will store the extent range start bytenr.
 * @end:	The original end bytenr of the search range
 *		Will store the extent range end bytenr.
 *
 * Return true if we find a delalloc range which starts inside the original
 * range, and @start/@end will store the delalloc range start/end.
 *
 * Return false if we can't find any delalloc range which starts inside the
 * original range, and @start/@end will be the non-delalloc range start/end.
C
Chris Mason 已提交
2018
 */
2019
EXPORT_FOR_TESTS
2020
noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
2021
				    struct page *locked_page, u64 *start,
2022
				    u64 *end)
C
Chris Mason 已提交
2023
{
2024
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2025
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2026 2027
	const u64 orig_start = *start;
	const u64 orig_end = *end;
2028 2029
	/* The sanity tests may not set a valid fs_info. */
	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
C
Chris Mason 已提交
2030 2031
	u64 delalloc_start;
	u64 delalloc_end;
2032
	bool found;
2033
	struct extent_state *cached_state = NULL;
C
Chris Mason 已提交
2034 2035 2036
	int ret;
	int loops = 0;

2037 2038 2039 2040 2041 2042
	/* Caller should pass a valid @end to indicate the search range end */
	ASSERT(orig_end > orig_start);

	/* The range should at least cover part of the page */
	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
		 orig_end <= page_offset(locked_page)));
C
Chris Mason 已提交
2043 2044 2045 2046
again:
	/* step one, find a bunch of delalloc bytes starting at start */
	delalloc_start = *start;
	delalloc_end = 0;
J
Josef Bacik 已提交
2047 2048
	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
					  max_bytes, &cached_state);
2049
	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
C
Chris Mason 已提交
2050
		*start = delalloc_start;
2051 2052 2053

		/* @delalloc_end can be -1, never go beyond @orig_end */
		*end = min(delalloc_end, orig_end);
2054
		free_extent_state(cached_state);
2055
		return false;
C
Chris Mason 已提交
2056 2057
	}

C
Chris Mason 已提交
2058 2059 2060 2061 2062
	/*
	 * start comes from the offset of locked_page.  We have to lock
	 * pages in order, so we can't process delalloc bytes before
	 * locked_page
	 */
C
Chris Mason 已提交
2063
	if (delalloc_start < *start)
C
Chris Mason 已提交
2064 2065
		delalloc_start = *start;

C
Chris Mason 已提交
2066 2067 2068
	/*
	 * make sure to limit the number of pages we try to lock down
	 */
2069 2070
	if (delalloc_end + 1 - delalloc_start > max_bytes)
		delalloc_end = delalloc_start + max_bytes - 1;
C
Chris Mason 已提交
2071

C
Chris Mason 已提交
2072 2073 2074
	/* step two, lock all the pages after the page that has start */
	ret = lock_delalloc_pages(inode, locked_page,
				  delalloc_start, delalloc_end);
2075
	ASSERT(!ret || ret == -EAGAIN);
C
Chris Mason 已提交
2076 2077 2078 2079
	if (ret == -EAGAIN) {
		/* some of the pages are gone, lets avoid looping by
		 * shortening the size of the delalloc range we're searching
		 */
2080
		free_extent_state(cached_state);
2081
		cached_state = NULL;
C
Chris Mason 已提交
2082
		if (!loops) {
2083
			max_bytes = PAGE_SIZE;
C
Chris Mason 已提交
2084 2085 2086
			loops = 1;
			goto again;
		} else {
2087
			found = false;
C
Chris Mason 已提交
2088 2089 2090 2091 2092
			goto out_failed;
		}
	}

	/* step three, lock the state bits for the whole range */
2093
	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
C
Chris Mason 已提交
2094 2095 2096

	/* then test to make sure it is all still delalloc */
	ret = test_range_bit(tree, delalloc_start, delalloc_end,
2097
			     EXTENT_DELALLOC, 1, cached_state);
C
Chris Mason 已提交
2098
	if (!ret) {
2099
		unlock_extent_cached(tree, delalloc_start, delalloc_end,
2100
				     &cached_state);
C
Chris Mason 已提交
2101 2102 2103 2104 2105
		__unlock_for_delalloc(inode, locked_page,
			      delalloc_start, delalloc_end);
		cond_resched();
		goto again;
	}
2106
	free_extent_state(cached_state);
C
Chris Mason 已提交
2107 2108 2109 2110 2111 2112
	*start = delalloc_start;
	*end = delalloc_end;
out_failed:
	return found;
}

2113
void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2114
				  struct page *locked_page,
2115
				  u32 clear_bits, unsigned long page_ops)
2116
{
2117
	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2118

2119
	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2120
			       start, end, page_ops, NULL);
2121 2122
}

C
Chris Mason 已提交
2123 2124 2125 2126 2127
/*
 * count the number of bytes in the tree that have a given bit(s)
 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
 * cached.  The total number found is returned.
 */
2128 2129
u64 count_range_bits(struct extent_io_tree *tree,
		     u64 *start, u64 search_end, u64 max_bytes,
2130
		     u32 bits, int contig)
2131 2132 2133 2134 2135
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
	u64 total_bytes = 0;
2136
	u64 last = 0;
2137 2138
	int found = 0;

2139
	if (WARN_ON(search_end <= cur_start))
2140 2141
		return 0;

2142
	spin_lock(&tree->lock);
2143 2144 2145 2146 2147 2148 2149 2150
	if (cur_start == 0 && bits == EXTENT_DIRTY) {
		total_bytes = tree->dirty_bytes;
		goto out;
	}
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2151
	node = tree_search(tree, cur_start);
C
Chris Mason 已提交
2152
	if (!node)
2153 2154
		goto out;

C
Chris Mason 已提交
2155
	while (1) {
2156 2157 2158
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->start > search_end)
			break;
2159 2160 2161
		if (contig && found && state->start > last + 1)
			break;
		if (state->end >= cur_start && (state->state & bits) == bits) {
2162 2163 2164 2165 2166
			total_bytes += min(search_end, state->end) + 1 -
				       max(cur_start, state->start);
			if (total_bytes >= max_bytes)
				break;
			if (!found) {
2167
				*start = max(cur_start, state->start);
2168 2169
				found = 1;
			}
2170 2171 2172
			last = state->end;
		} else if (contig && found) {
			break;
2173 2174 2175 2176 2177 2178
		}
		node = rb_next(node);
		if (!node)
			break;
	}
out:
2179
	spin_unlock(&tree->lock);
2180 2181
	return total_bytes;
}
2182

C
Chris Mason 已提交
2183 2184 2185 2186
/*
 * set the private field for a given byte offset in the tree.  If there isn't
 * an extent_state there already, this does nothing.
 */
2187 2188
int set_state_failrec(struct extent_io_tree *tree, u64 start,
		      struct io_failure_record *failrec)
2189 2190 2191 2192 2193
{
	struct rb_node *node;
	struct extent_state *state;
	int ret = 0;

2194
	spin_lock(&tree->lock);
2195 2196 2197 2198
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2199
	node = tree_search(tree, start);
2200
	if (!node) {
2201 2202 2203 2204 2205 2206 2207 2208
		ret = -ENOENT;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
		ret = -ENOENT;
		goto out;
	}
2209
	state->failrec = failrec;
2210
out:
2211
	spin_unlock(&tree->lock);
2212 2213 2214
	return ret;
}

2215
struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2216 2217 2218
{
	struct rb_node *node;
	struct extent_state *state;
2219
	struct io_failure_record *failrec;
2220

2221
	spin_lock(&tree->lock);
2222 2223 2224 2225
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2226
	node = tree_search(tree, start);
2227
	if (!node) {
2228
		failrec = ERR_PTR(-ENOENT);
2229 2230 2231 2232
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
2233
		failrec = ERR_PTR(-ENOENT);
2234 2235
		goto out;
	}
2236 2237

	failrec = state->failrec;
2238
out:
2239
	spin_unlock(&tree->lock);
2240
	return failrec;
2241 2242 2243 2244
}

/*
 * searches a range in the state tree for a given mask.
2245
 * If 'filled' == 1, this returns 1 only if every extent in the tree
2246 2247 2248 2249
 * has the bits set.  Otherwise, 1 is returned if any bit in the
 * range is found set.
 */
int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2250
		   u32 bits, int filled, struct extent_state *cached)
2251 2252 2253 2254 2255
{
	struct extent_state *state = NULL;
	struct rb_node *node;
	int bitset = 0;

2256
	spin_lock(&tree->lock);
2257
	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2258
	    cached->end > start)
2259 2260 2261
		node = &cached->rb_node;
	else
		node = tree_search(tree, start);
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
	while (node && start <= end) {
		state = rb_entry(node, struct extent_state, rb_node);

		if (filled && state->start > start) {
			bitset = 0;
			break;
		}

		if (state->start > end)
			break;

		if (state->state & bits) {
			bitset = 1;
			if (!filled)
				break;
		} else if (filled) {
			bitset = 0;
			break;
		}
2281 2282 2283 2284

		if (state->end == (u64)-1)
			break;

2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
		start = state->end + 1;
		if (start > end)
			break;
		node = rb_next(node);
		if (!node) {
			if (filled)
				bitset = 0;
			break;
		}
	}
2295
	spin_unlock(&tree->lock);
2296 2297 2298
	return bitset;
}

2299 2300 2301
int free_io_failure(struct extent_io_tree *failure_tree,
		    struct extent_io_tree *io_tree,
		    struct io_failure_record *rec)
2302 2303 2304 2305
{
	int ret;
	int err = 0;

2306
	set_state_failrec(failure_tree, rec->start, NULL);
2307 2308
	ret = clear_extent_bits(failure_tree, rec->start,
				rec->start + rec->len - 1,
2309
				EXTENT_LOCKED | EXTENT_DIRTY);
2310 2311 2312
	if (ret)
		err = ret;

2313
	ret = clear_extent_bits(io_tree, rec->start,
D
David Woodhouse 已提交
2314
				rec->start + rec->len - 1,
2315
				EXTENT_DAMAGED);
D
David Woodhouse 已提交
2316 2317
	if (ret && !err)
		err = ret;
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327

	kfree(rec);
	return err;
}

/*
 * this bypasses the standard btrfs submit functions deliberately, as
 * the standard behavior is to write all copies in a raid setup. here we only
 * want to write the one bad copy. so we do the mapping for ourselves and issue
 * submit_bio directly.
2328
 * to avoid any synchronization issues, wait for the data after writing, which
2329 2330 2331 2332
 * actually prevents the read that triggered the error from finishing.
 * currently, there can be no more than two copies of every data bit. thus,
 * exactly one rewrite is required.
 */
Q
Qu Wenruo 已提交
2333 2334 2335
static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
			     u64 length, u64 logical, struct page *page,
			     unsigned int pg_offset, int mirror_num)
2336 2337
{
	struct btrfs_device *dev;
2338 2339
	struct bio_vec bvec;
	struct bio bio;
2340 2341
	u64 map_length = 0;
	u64 sector;
2342
	struct btrfs_io_context *bioc = NULL;
2343
	int ret = 0;
2344

2345
	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2346 2347
	BUG_ON(!mirror_num);

2348 2349
	if (btrfs_repair_one_zone(fs_info, logical))
		return 0;
2350

2351 2352
	map_length = length;

2353
	/*
2354
	 * Avoid races with device replace and make sure our bioc has devices
2355 2356 2357 2358
	 * associated to its stripes that don't go away while we are doing the
	 * read repair operation.
	 */
	btrfs_bio_counter_inc_blocked(fs_info);
2359
	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2360 2361 2362 2363 2364 2365 2366
		/*
		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
		 * to update all raid stripes, but here we just want to correct
		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
		 * stripe's dev and sector.
		 */
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2367
				      &map_length, &bioc, 0);
2368 2369
		if (ret)
			goto out_counter_dec;
2370
		ASSERT(bioc->mirror_num == 1);
2371 2372
	} else {
		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2373
				      &map_length, &bioc, mirror_num);
2374 2375
		if (ret)
			goto out_counter_dec;
2376
		BUG_ON(mirror_num != bioc->mirror_num);
2377
	}
2378

2379 2380 2381
	sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
	dev = bioc->stripes[bioc->mirror_num - 1].dev;
	btrfs_put_bioc(bioc);
2382

2383 2384
	if (!dev || !dev->bdev ||
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2385 2386
		ret = -EIO;
		goto out_counter_dec;
2387 2388
	}

2389 2390 2391 2392 2393 2394 2395
	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
	bio.bi_iter.bi_sector = sector;
	__bio_add_page(&bio, page, length, pg_offset);

	btrfsic_check_bio(&bio);
	ret = submit_bio_wait(&bio);
	if (ret) {
2396
		/* try to remap that extent elsewhere? */
2397
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2398
		goto out_bio_uninit;
2399 2400
	}

2401 2402
	btrfs_info_rl_in_rcu(fs_info,
		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2403
				  ino, start,
2404
				  rcu_str_deref(dev->name), sector);
2405 2406 2407 2408 2409
	ret = 0;

out_bio_uninit:
	bio_uninit(&bio);
out_counter_dec:
2410
	btrfs_bio_counter_dec(fs_info);
2411
	return ret;
2412 2413
}

2414
int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2415
{
2416
	struct btrfs_fs_info *fs_info = eb->fs_info;
2417
	u64 start = eb->start;
2418
	int i, num_pages = num_extent_pages(eb);
2419
	int ret = 0;
2420

2421
	if (sb_rdonly(fs_info->sb))
2422 2423
		return -EROFS;

2424
	for (i = 0; i < num_pages; i++) {
2425
		struct page *p = eb->pages[i];
2426

2427
		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2428
					start - page_offset(p), mirror_num);
2429 2430
		if (ret)
			break;
2431
		start += PAGE_SIZE;
2432 2433 2434 2435 2436
	}

	return ret;
}

2437 2438 2439 2440
/*
 * each time an IO finishes, we do a fast check in the IO failure tree
 * to see if we need to process or clean up an io_failure_record
 */
2441 2442 2443 2444
int clean_io_failure(struct btrfs_fs_info *fs_info,
		     struct extent_io_tree *failure_tree,
		     struct extent_io_tree *io_tree, u64 start,
		     struct page *page, u64 ino, unsigned int pg_offset)
2445 2446 2447 2448 2449 2450 2451 2452
{
	u64 private;
	struct io_failure_record *failrec;
	struct extent_state *state;
	int num_copies;
	int ret;

	private = 0;
2453 2454
	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
			       EXTENT_DIRTY, 0);
2455 2456 2457
	if (!ret)
		return 0;

2458 2459
	failrec = get_state_failrec(failure_tree, start);
	if (IS_ERR(failrec))
2460 2461 2462 2463
		return 0;

	BUG_ON(!failrec->this_mirror);

2464
	if (sb_rdonly(fs_info->sb))
2465
		goto out;
2466

2467 2468
	spin_lock(&io_tree->lock);
	state = find_first_extent_bit_state(io_tree,
2469 2470
					    failrec->start,
					    EXTENT_LOCKED);
2471
	spin_unlock(&io_tree->lock);
2472

2473 2474
	if (state && state->start <= failrec->start &&
	    state->end >= failrec->start + failrec->len - 1) {
2475 2476
		num_copies = btrfs_num_copies(fs_info, failrec->logical,
					      failrec->len);
2477
		if (num_copies > 1)  {
2478 2479 2480
			repair_io_failure(fs_info, ino, start, failrec->len,
					  failrec->logical, page, pg_offset,
					  failrec->failed_mirror);
2481 2482 2483 2484
		}
	}

out:
2485
	free_io_failure(failure_tree, io_tree, failrec);
2486

2487
	return 0;
2488 2489
}

2490 2491 2492 2493 2494 2495
/*
 * Can be called when
 * - hold extent lock
 * - under ordered extent
 * - the inode is freeing
 */
2496
void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2497
{
2498
	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
	struct io_failure_record *failrec;
	struct extent_state *state, *next;

	if (RB_EMPTY_ROOT(&failure_tree->state))
		return;

	spin_lock(&failure_tree->lock);
	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
	while (state) {
		if (state->start > end)
			break;

		ASSERT(state->end <= end);

		next = next_state(state);

2515
		failrec = state->failrec;
2516 2517 2518 2519 2520 2521 2522 2523
		free_extent_state(state);
		kfree(failrec);

		state = next;
	}
	spin_unlock(&failure_tree->lock);
}

2524
static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2525
							     u64 start)
2526
{
2527
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2528
	struct io_failure_record *failrec;
2529 2530 2531 2532
	struct extent_map *em;
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2533
	const u32 sectorsize = fs_info->sectorsize;
2534 2535 2536
	int ret;
	u64 logical;

2537
	failrec = get_state_failrec(failure_tree, start);
2538
	if (!IS_ERR(failrec)) {
2539
		btrfs_debug(fs_info,
2540 2541
	"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
			failrec->logical, failrec->start, failrec->len);
2542 2543 2544 2545 2546
		/*
		 * when data can be on disk more than twice, add to failrec here
		 * (e.g. with a list for failed_mirror) to make
		 * clean_io_failure() clean all those errors at once.
		 */
2547 2548

		return failrec;
2549
	}
2550

2551 2552 2553
	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
	if (!failrec)
		return ERR_PTR(-ENOMEM);
2554

2555
	failrec->start = start;
2556
	failrec->len = sectorsize;
2557
	failrec->this_mirror = 0;
2558
	failrec->compress_type = BTRFS_COMPRESS_NONE;
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, start, failrec->len);
	if (!em) {
		read_unlock(&em_tree->lock);
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	if (em->start > start || em->start + em->len <= start) {
		free_extent_map(em);
		em = NULL;
	}
	read_unlock(&em_tree->lock);
	if (!em) {
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	logical = start - em->start;
	logical = em->block_start + logical;
	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
		logical = em->block_start;
2582
		failrec->compress_type = em->compress_type;
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
	}

	btrfs_debug(fs_info,
		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
		    logical, start, failrec->len);

	failrec->logical = logical;
	free_extent_map(em);

	/* Set the bits in the private failure tree */
2593
	ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2594 2595 2596 2597
			      EXTENT_LOCKED | EXTENT_DIRTY);
	if (ret >= 0) {
		ret = set_state_failrec(failure_tree, start, failrec);
		/* Set the bits in the inode's tree */
2598 2599
		ret = set_extent_bits(tree, start, start + sectorsize - 1,
				      EXTENT_DAMAGED);
2600 2601 2602 2603 2604 2605
	} else if (ret < 0) {
		kfree(failrec);
		return ERR_PTR(ret);
	}

	return failrec;
2606 2607
}

2608
static bool btrfs_check_repairable(struct inode *inode,
2609 2610
				   struct io_failure_record *failrec,
				   int failed_mirror)
2611
{
2612
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2613 2614
	int num_copies;

2615
	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2616 2617 2618 2619 2620 2621
	if (num_copies == 1) {
		/*
		 * we only have a single copy of the data, so don't bother with
		 * all the retry and error correction code that follows. no
		 * matter what the error is, it is very likely to persist.
		 */
2622 2623 2624
		btrfs_debug(fs_info,
			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2625
		return false;
2626 2627
	}

2628 2629 2630
	/* The failure record should only contain one sector */
	ASSERT(failrec->len == fs_info->sectorsize);

2631
	/*
2632 2633 2634 2635 2636 2637 2638
	 * There are two premises:
	 * a) deliver good data to the caller
	 * b) correct the bad sectors on disk
	 *
	 * Since we're only doing repair for one sector, we only need to get
	 * a good copy of the failed sector and if we succeed, we have setup
	 * everything for repair_io_failure to do the rest for us.
2639
	 */
2640
	ASSERT(failed_mirror);
2641 2642 2643
	failrec->failed_mirror = failed_mirror;
	failrec->this_mirror++;
	if (failrec->this_mirror == failed_mirror)
2644 2645
		failrec->this_mirror++;

2646
	if (failrec->this_mirror > num_copies) {
2647 2648 2649
		btrfs_debug(fs_info,
			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2650
		return false;
2651 2652
	}

2653
	return true;
2654 2655
}

2656 2657 2658 2659 2660
int btrfs_repair_one_sector(struct inode *inode,
			    struct bio *failed_bio, u32 bio_offset,
			    struct page *page, unsigned int pgoff,
			    u64 start, int failed_mirror,
			    submit_bio_hook_t *submit_bio_hook)
2661 2662
{
	struct io_failure_record *failrec;
2663
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2664
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2665
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2666
	struct btrfs_bio *failed_bbio = btrfs_bio(failed_bio);
2667
	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2668
	struct bio *repair_bio;
2669
	struct btrfs_bio *repair_bbio;
2670

2671 2672
	btrfs_debug(fs_info,
		   "repair read error: read error at %llu", start);
2673

2674
	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2675

2676
	failrec = btrfs_get_io_failure_record(inode, start);
2677
	if (IS_ERR(failrec))
2678
		return PTR_ERR(failrec);
2679

2680 2681

	if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
2682
		free_io_failure(failure_tree, tree, failrec);
2683
		return -EIO;
2684 2685
	}

2686 2687
	repair_bio = btrfs_bio_alloc(1);
	repair_bbio = btrfs_bio(repair_bio);
2688
	repair_bbio->file_offset = start;
2689 2690 2691 2692
	repair_bio->bi_opf = REQ_OP_READ;
	repair_bio->bi_end_io = failed_bio->bi_end_io;
	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
	repair_bio->bi_private = failed_bio->bi_private;
2693

2694
	if (failed_bbio->csum) {
2695
		const u32 csum_size = fs_info->csum_size;
2696

2697 2698 2699
		repair_bbio->csum = repair_bbio->csum_inline;
		memcpy(repair_bbio->csum,
		       failed_bbio->csum + csum_size * icsum, csum_size);
2700
	}
2701

2702
	bio_add_page(repair_bio, page, failrec->len, pgoff);
2703
	repair_bbio->iter = repair_bio->bi_iter;
2704

2705
	btrfs_debug(btrfs_sb(inode->i_sb),
2706 2707
		    "repair read error: submitting new read to mirror %d",
		    failrec->this_mirror);
2708

2709 2710 2711 2712 2713
	/*
	 * At this point we have a bio, so any errors from submit_bio_hook()
	 * will be handled by the endio on the repair_bio, so we can't return an
	 * error here.
	 */
2714
	submit_bio_hook(inode, repair_bio, failrec->this_mirror, failrec->compress_type);
2715
	return BLK_STS_OK;
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
}

static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);

	ASSERT(page_offset(page) <= start &&
	       start + len <= page_offset(page) + PAGE_SIZE);

	if (uptodate) {
B
Boris Burkov 已提交
2726 2727 2728 2729 2730 2731 2732 2733 2734
		if (fsverity_active(page->mapping->host) &&
		    !PageError(page) &&
		    !PageUptodate(page) &&
		    start < i_size_read(page->mapping->host) &&
		    !fsverity_verify_page(page)) {
			btrfs_page_set_error(fs_info, page, start, len);
		} else {
			btrfs_page_set_uptodate(fs_info, page, start, len);
		}
2735 2736 2737 2738 2739
	} else {
		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
	}

2740
	if (!btrfs_is_subpage(fs_info, page))
2741
		unlock_page(page);
2742
	else
2743 2744 2745
		btrfs_subpage_end_reader(fs_info, page, start, len);
}

2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
static void end_sector_io(struct page *page, u64 offset, bool uptodate)
{
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
	const u32 sectorsize = inode->root->fs_info->sectorsize;
	struct extent_state *cached = NULL;

	end_page_read(page, uptodate, offset, sectorsize);
	if (uptodate)
		set_extent_uptodate(&inode->io_tree, offset,
				    offset + sectorsize - 1, &cached, GFP_ATOMIC);
	unlock_extent_cached_atomic(&inode->io_tree, offset,
				    offset + sectorsize - 1, &cached);
}

2760 2761 2762
static void submit_data_read_repair(struct inode *inode, struct bio *failed_bio,
				    u32 bio_offset, const struct bio_vec *bvec,
				    int failed_mirror, unsigned int error_bitmap)
2763
{
2764
	const unsigned int pgoff = bvec->bv_offset;
2765
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2766 2767 2768
	struct page *page = bvec->bv_page;
	const u64 start = page_offset(bvec->bv_page) + bvec->bv_offset;
	const u64 end = start + bvec->bv_len - 1;
2769 2770 2771 2772 2773 2774
	const u32 sectorsize = fs_info->sectorsize;
	const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
	int i;

	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);

2775 2776 2777
	/* This repair is only for data */
	ASSERT(is_data_inode(inode));

2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
	/* We're here because we had some read errors or csum mismatch */
	ASSERT(error_bitmap);

	/*
	 * We only get called on buffered IO, thus page must be mapped and bio
	 * must not be cloned.
	 */
	ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));

	/* Iterate through all the sectors in the range */
	for (i = 0; i < nr_bits; i++) {
		const unsigned int offset = i * sectorsize;
		bool uptodate = false;
		int ret;

		if (!(error_bitmap & (1U << i))) {
			/*
			 * This sector has no error, just end the page read
			 * and unlock the range.
			 */
			uptodate = true;
			goto next;
		}

		ret = btrfs_repair_one_sector(inode, failed_bio,
				bio_offset + offset,
				page, pgoff + offset, start + offset,
2805
				failed_mirror, btrfs_submit_data_read_bio);
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
		if (!ret) {
			/*
			 * We have submitted the read repair, the page release
			 * will be handled by the endio function of the
			 * submitted repair bio.
			 * Thus we don't need to do any thing here.
			 */
			continue;
		}
		/*
2816 2817
		 * Continue on failed repair, otherwise the remaining sectors
		 * will not be properly unlocked.
2818 2819
		 */
next:
2820
		end_sector_io(page, start + offset, uptodate);
2821
	}
2822 2823
}

2824 2825
/* lots and lots of room for performance fixes in the end_bio funcs */

2826
void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2827
{
2828
	struct btrfs_inode *inode;
2829
	const bool uptodate = (err == 0);
2830
	int ret = 0;
2831

2832 2833 2834
	ASSERT(page && page->mapping);
	inode = BTRFS_I(page->mapping->host);
	btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2835 2836

	if (!uptodate) {
2837 2838 2839 2840 2841 2842 2843 2844
		const struct btrfs_fs_info *fs_info = inode->root->fs_info;
		u32 len;

		ASSERT(end + 1 - start <= U32_MAX);
		len = end + 1 - start;

		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
2845
		ret = err < 0 ? err : -EIO;
2846
		mapping_set_error(page->mapping, ret);
2847 2848 2849
	}
}

2850 2851 2852 2853 2854 2855 2856 2857 2858
/*
 * after a writepage IO is done, we need to:
 * clear the uptodate bits on error
 * clear the writeback bits in the extent tree for this IO
 * end_page_writeback if the page has no more pending IO
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2859
static void end_bio_extent_writepage(struct bio *bio)
2860
{
2861
	int error = blk_status_to_errno(bio->bi_status);
2862
	struct bio_vec *bvec;
2863 2864
	u64 start;
	u64 end;
2865
	struct bvec_iter_all iter_all;
2866
	bool first_bvec = true;
2867

2868
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2869
	bio_for_each_segment_all(bvec, bio, iter_all) {
2870
		struct page *page = bvec->bv_page;
2871 2872
		struct inode *inode = page->mapping->host;
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
		const u32 sectorsize = fs_info->sectorsize;

		/* Our read/write should always be sector aligned. */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page write in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
			btrfs_info(fs_info,
		"incomplete page write with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
2887

2888 2889 2890 2891 2892
		if (first_bvec) {
			btrfs_record_physical_zoned(inode, start, bio);
			first_bvec = false;
		}

2893
		end_extent_writepage(page, error, start, end);
2894 2895

		btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2896
	}
2897

2898 2899 2900
	bio_put(bio);
}

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
/*
 * Record previously processed extent range
 *
 * For endio_readpage_release_extent() to handle a full extent range, reducing
 * the extent io operations.
 */
struct processed_extent {
	struct btrfs_inode *inode;
	/* Start of the range in @inode */
	u64 start;
2911
	/* End of the range in @inode */
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
	u64 end;
	bool uptodate;
};

/*
 * Try to release processed extent range
 *
 * May not release the extent range right now if the current range is
 * contiguous to processed extent.
 *
 * Will release processed extent when any of @inode, @uptodate, the range is
 * no longer contiguous to the processed range.
 *
 * Passing @inode == NULL will force processed extent to be released.
 */
static void endio_readpage_release_extent(struct processed_extent *processed,
			      struct btrfs_inode *inode, u64 start, u64 end,
			      bool uptodate)
2930 2931
{
	struct extent_state *cached = NULL;
2932 2933 2934 2935 2936
	struct extent_io_tree *tree;

	/* The first extent, initialize @processed */
	if (!processed->inode)
		goto update;
2937

2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
	/*
	 * Contiguous to processed extent, just uptodate the end.
	 *
	 * Several things to notice:
	 *
	 * - bio can be merged as long as on-disk bytenr is contiguous
	 *   This means we can have page belonging to other inodes, thus need to
	 *   check if the inode still matches.
	 * - bvec can contain range beyond current page for multi-page bvec
	 *   Thus we need to do processed->end + 1 >= start check
	 */
	if (processed->inode == inode && processed->uptodate == uptodate &&
	    processed->end + 1 >= start && end >= processed->end) {
		processed->end = end;
		return;
	}

	tree = &processed->inode->io_tree;
	/*
	 * Now we don't have range contiguous to the processed range, release
	 * the processed range now.
	 */
	if (processed->uptodate && tree->track_uptodate)
		set_extent_uptodate(tree, processed->start, processed->end,
				    &cached, GFP_ATOMIC);
	unlock_extent_cached_atomic(tree, processed->start, processed->end,
				    &cached);

update:
	/* Update processed to current range */
	processed->inode = inode;
	processed->start = start;
	processed->end = end;
	processed->uptodate = uptodate;
2972 2973
}

2974 2975 2976
static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
{
	ASSERT(PageLocked(page));
2977
	if (!btrfs_is_subpage(fs_info, page))
2978 2979 2980 2981 2982 2983
		return;

	ASSERT(PagePrivate(page));
	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
}

2984
/*
2985
 * Find extent buffer for a givne bytenr.
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
 *
 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
 * in endio context.
 */
static struct extent_buffer *find_extent_buffer_readpage(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
	struct extent_buffer *eb;

	/*
	 * For regular sectorsize, we can use page->private to grab extent
	 * buffer
	 */
2999
	if (fs_info->nodesize >= PAGE_SIZE) {
3000 3001 3002 3003
		ASSERT(PagePrivate(page) && page->private);
		return (struct extent_buffer *)page->private;
	}

3004 3005 3006 3007 3008
	/* For subpage case, we need to lookup buffer radix tree */
	rcu_read_lock();
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       bytenr >> fs_info->sectorsize_bits);
	rcu_read_unlock();
3009 3010 3011 3012
	ASSERT(eb);
	return eb;
}

3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
/*
 * after a readpage IO is done, we need to:
 * clear the uptodate bits on error
 * set the uptodate bits if things worked
 * set the page up to date if all extents in the tree are uptodate
 * clear the lock bit in the extent tree
 * unlock the page if there are no other extents locked for it
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
3024
static void end_bio_extent_readpage(struct bio *bio)
3025
{
3026
	struct bio_vec *bvec;
3027
	struct btrfs_bio *bbio = btrfs_bio(bio);
3028
	struct extent_io_tree *tree, *failure_tree;
3029
	struct processed_extent processed = { 0 };
3030 3031 3032 3033 3034
	/*
	 * The offset to the beginning of a bio, since one bio can never be
	 * larger than UINT_MAX, u32 here is enough.
	 */
	u32 bio_offset = 0;
3035
	int mirror;
3036
	struct bvec_iter_all iter_all;
3037

3038
	ASSERT(!bio_flagged(bio, BIO_CLONED));
3039
	bio_for_each_segment_all(bvec, bio, iter_all) {
3040
		bool uptodate = !bio->bi_status;
3041
		struct page *page = bvec->bv_page;
3042
		struct inode *inode = page->mapping->host;
3043
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3044
		const u32 sectorsize = fs_info->sectorsize;
3045
		unsigned int error_bitmap = (unsigned int)-1;
3046
		bool repair = false;
3047 3048 3049
		u64 start;
		u64 end;
		u32 len;
3050

3051 3052
		btrfs_debug(fs_info,
			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
D
David Sterba 已提交
3053
			bio->bi_iter.bi_sector, bio->bi_status,
3054
			bbio->mirror_num);
3055
		tree = &BTRFS_I(inode)->io_tree;
3056
		failure_tree = &BTRFS_I(inode)->io_failure_tree;
3057

3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
		/*
		 * We always issue full-sector reads, but if some block in a
		 * page fails to read, blk_update_request() will advance
		 * bv_offset and adjust bv_len to compensate.  Print a warning
		 * for unaligned offsets, and an error if they don't add up to
		 * a full sector.
		 */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page read in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
				     sectorsize))
			btrfs_info(fs_info,
		"incomplete page read with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
3077
		len = bvec->bv_len;
3078

3079
		mirror = bbio->mirror_num;
3080
		if (likely(uptodate)) {
3081
			if (is_data_inode(inode)) {
3082
				error_bitmap = btrfs_verify_data_csum(bbio,
3083
						bio_offset, page, start, end);
3084 3085
				if (error_bitmap)
					uptodate = false;
3086
			} else {
3087 3088 3089
				if (btrfs_validate_metadata_buffer(bbio,
						page, start, end, mirror))
					uptodate = false;
3090
			}
3091
		}
3092

3093
		if (likely(uptodate)) {
3094
			loff_t i_size = i_size_read(inode);
3095
			pgoff_t end_index = i_size >> PAGE_SHIFT;
3096

3097 3098 3099 3100
			clean_io_failure(BTRFS_I(inode)->root->fs_info,
					 failure_tree, tree, start, page,
					 btrfs_ino(BTRFS_I(inode)), 0);

3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
			/*
			 * Zero out the remaining part if this range straddles
			 * i_size.
			 *
			 * Here we should only zero the range inside the bvec,
			 * not touch anything else.
			 *
			 * NOTE: i_size is exclusive while end is inclusive.
			 */
			if (page->index == end_index && i_size <= end) {
				u32 zero_start = max(offset_in_page(i_size),
3112
						     offset_in_page(start));
3113 3114 3115 3116

				zero_user_segment(page, zero_start,
						  offset_in_page(end) + 1);
			}
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
		} else if (is_data_inode(inode)) {
			/*
			 * Only try to repair bios that actually made it to a
			 * device.  If the bio failed to be submitted mirror
			 * is 0 and we need to fail it without retrying.
			 */
			if (mirror > 0)
				repair = true;
		} else {
			struct extent_buffer *eb;

			eb = find_extent_buffer_readpage(fs_info, page, start);
			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
			eb->read_mirror = mirror;
			atomic_dec(&eb->io_pages);
3132
		}
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147

		if (repair) {
			/*
			 * submit_data_read_repair() will handle all the good
			 * and bad sectors, we just continue to the next bvec.
			 */
			submit_data_read_repair(inode, bio, bio_offset, bvec,
						mirror, error_bitmap);
		} else {
			/* Update page status and unlock */
			end_page_read(page, uptodate, start, len);
			endio_readpage_release_extent(&processed, BTRFS_I(inode),
					start, end, PageUptodate(page));
		}

3148 3149
		ASSERT(bio_offset + len > bio_offset);
		bio_offset += len;
3150

3151
	}
3152 3153
	/* Release the last extent */
	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3154
	btrfs_bio_free_csum(bbio);
3155 3156 3157
	bio_put(bio);
}

3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
/**
 * Populate every free slot in a provided array with pages.
 *
 * @nr_pages:   number of pages to allocate
 * @page_array: the array to fill with pages; any existing non-null entries in
 * 		the array will be skipped
 *
 * Return: 0        if all pages were able to be allocated;
 *         -ENOMEM  otherwise, and the caller is responsible for freeing all
 *                  non-null page pointers in the array.
 */
int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
{
3171
	unsigned int allocated;
3172

3173 3174
	for (allocated = 0; allocated < nr_pages;) {
		unsigned int last = allocated;
3175

3176 3177
		allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);

3178 3179 3180
		if (allocated == nr_pages)
			return 0;

3181 3182 3183 3184 3185 3186
		/*
		 * During this iteration, no page could be allocated, even
		 * though alloc_pages_bulk_array() falls back to alloc_page()
		 * if  it could not bulk-allocate. So we must be out of memory.
		 */
		if (allocated == last)
3187
			return -ENOMEM;
3188 3189

		memalloc_retry_wait(GFP_NOFS);
3190 3191 3192 3193
	}
	return 0;
}

3194
/*
3195 3196 3197
 * Initialize the members up to but not including 'bio'. Use after allocating a
 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
 * 'bio' because use of __GFP_ZERO is not supported.
3198
 */
3199
static inline void btrfs_bio_init(struct btrfs_bio *bbio)
3200
{
3201
	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
3202
}
3203

3204
/*
Q
Qu Wenruo 已提交
3205 3206 3207
 * Allocate a btrfs_io_bio, with @nr_iovecs as maximum number of iovecs.
 *
 * The bio allocation is backed by bioset and does not fail.
3208
 */
3209
struct bio *btrfs_bio_alloc(unsigned int nr_iovecs)
3210 3211 3212
{
	struct bio *bio;

Q
Qu Wenruo 已提交
3213
	ASSERT(0 < nr_iovecs && nr_iovecs <= BIO_MAX_VECS);
3214
	bio = bio_alloc_bioset(NULL, nr_iovecs, 0, GFP_NOFS, &btrfs_bioset);
3215
	btrfs_bio_init(btrfs_bio(bio));
3216 3217 3218
	return bio;
}

3219
struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size)
3220 3221
{
	struct bio *bio;
3222
	struct btrfs_bio *bbio;
3223

3224 3225
	ASSERT(offset <= UINT_MAX && size <= UINT_MAX);

3226
	/* this will never fail when it's backed by a bioset */
3227
	bio = bio_alloc_clone(orig->bi_bdev, orig, GFP_NOFS, &btrfs_bioset);
3228 3229
	ASSERT(bio);

3230 3231
	bbio = btrfs_bio(bio);
	btrfs_bio_init(bbio);
3232 3233

	bio_trim(bio, offset >> 9, size >> 9);
3234
	bbio->iter = bio->bi_iter;
3235 3236
	return bio;
}
3237

3238 3239 3240
/**
 * Attempt to add a page to bio
 *
3241
 * @bio_ctrl:	record both the bio, and its bio_flags
3242 3243 3244 3245
 * @page:	page to add to the bio
 * @disk_bytenr:  offset of the new bio or to check whether we are adding
 *                a contiguous page to the previous one
 * @size:	portion of page that we want to write
3246
 * @pg_offset:	starting offset in the page
3247
 * @compress_type:   compression type of the current bio to see if we can merge them
3248 3249 3250
 *
 * Attempt to add a page to bio considering stripe alignment etc.
 *
3251 3252 3253
 * Return >= 0 for the number of bytes added to the bio.
 * Can return 0 if the current bio is already at stripe/zone boundary.
 * Return <0 for error.
3254
 */
3255 3256 3257 3258
static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
			      struct page *page,
			      u64 disk_bytenr, unsigned int size,
			      unsigned int pg_offset,
3259
			      enum btrfs_compression_type compress_type)
3260
{
3261 3262
	struct bio *bio = bio_ctrl->bio;
	u32 bio_size = bio->bi_iter.bi_size;
3263
	u32 real_size;
3264 3265
	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
	bool contig;
3266
	int ret;
3267

3268 3269 3270
	ASSERT(bio);
	/* The limit should be calculated when bio_ctrl->bio is allocated */
	ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
3271
	if (bio_ctrl->compress_type != compress_type)
3272
		return 0;
3273

3274
	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
3275 3276 3277 3278
		contig = bio->bi_iter.bi_sector == sector;
	else
		contig = bio_end_sector(bio) == sector;
	if (!contig)
3279
		return 0;
3280

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
	real_size = min(bio_ctrl->len_to_oe_boundary,
			bio_ctrl->len_to_stripe_boundary) - bio_size;
	real_size = min(real_size, size);

	/*
	 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
	 * bio will still execute its endio function on the page!
	 */
	if (real_size == 0)
		return 0;
3291

3292
	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3293
		ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
3294
	else
3295
		ret = bio_add_page(bio, page, real_size, pg_offset);
3296

3297
	return ret;
3298 3299
}

3300
static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
3301
			       struct btrfs_inode *inode, u64 file_offset)
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct btrfs_io_geometry geom;
	struct btrfs_ordered_extent *ordered;
	struct extent_map *em;
	u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
	int ret;

	/*
	 * Pages for compressed extent are never submitted to disk directly,
	 * thus it has no real boundary, just set them to U32_MAX.
	 *
	 * The split happens for real compressed bio, which happens in
	 * btrfs_submit_compressed_read/write().
	 */
3317
	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
		return 0;
	}
	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
	if (IS_ERR(em))
		return PTR_ERR(em);
	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
				    logical, &geom);
	free_extent_map(em);
	if (ret < 0) {
		return ret;
	}
	if (geom.len > U32_MAX)
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
	else
		bio_ctrl->len_to_stripe_boundary = (u32)geom.len;

3336
	if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
3337 3338 3339 3340 3341
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	/* Ordered extent not yet created, so we're good */
3342
	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
	if (!ordered) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
		ordered->disk_bytenr + ordered->disk_num_bytes - logical);
	btrfs_put_ordered_extent(ordered);
	return 0;
}

3354 3355 3356 3357 3358
static int alloc_new_bio(struct btrfs_inode *inode,
			 struct btrfs_bio_ctrl *bio_ctrl,
			 struct writeback_control *wbc,
			 unsigned int opf,
			 bio_end_io_t end_io_func,
3359
			 u64 disk_bytenr, u32 offset, u64 file_offset,
3360
			 enum btrfs_compression_type compress_type)
3361 3362 3363 3364 3365
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct bio *bio;
	int ret;

3366
	bio = btrfs_bio_alloc(BIO_MAX_VECS);
3367 3368 3369 3370
	/*
	 * For compressed page range, its disk_bytenr is always @disk_bytenr
	 * passed in, no matter if we have added any range into previous bio.
	 */
3371
	if (compress_type != BTRFS_COMPRESS_NONE)
Q
Qu Wenruo 已提交
3372
		bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
3373
	else
Q
Qu Wenruo 已提交
3374
		bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
3375
	bio_ctrl->bio = bio;
3376
	bio_ctrl->compress_type = compress_type;
3377 3378
	bio->bi_end_io = end_io_func;
	bio->bi_opf = opf;
3379 3380 3381
	ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
	if (ret < 0)
		goto error;
3382

3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
	if (wbc) {
		/*
		 * For Zone append we need the correct block_device that we are
		 * going to write to set in the bio to be able to respect the
		 * hardware limitation.  Look it up here:
		 */
		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
			struct btrfs_device *dev;

			dev = btrfs_zoned_get_device(fs_info, disk_bytenr,
						     fs_info->sectorsize);
			if (IS_ERR(dev)) {
				ret = PTR_ERR(dev);
				goto error;
			}
3398

3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
			bio_set_dev(bio, dev->bdev);
		} else {
			/*
			 * Otherwise pick the last added device to support
			 * cgroup writeback.  For multi-device file systems this
			 * means blk-cgroup policies have to always be set on the
			 * last added/replaced device.  This is a bit odd but has
			 * been like that for a long time.
			 */
			bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev);
3409
		}
3410 3411 3412
		wbc_init_bio(wbc, bio);
	} else {
		ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND);
3413 3414 3415 3416 3417 3418 3419 3420 3421
	}
	return 0;
error:
	bio_ctrl->bio = NULL;
	bio->bi_status = errno_to_blk_status(ret);
	bio_endio(bio);
	return ret;
}

3422 3423
/*
 * @opf:	bio REQ_OP_* and REQ_* flags as one value
3424 3425
 * @wbc:	optional writeback control for io accounting
 * @page:	page to add to the bio
3426 3427
 * @disk_bytenr: logical bytenr where the write will be
 * @size:	portion of page that we want to write to
3428 3429
 * @pg_offset:	offset of the new bio or to check whether we are adding
 *              a contiguous page to the previous one
3430
 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3431 3432 3433
 * @end_io_func:     end_io callback for new bio
 * @mirror_num:	     desired mirror to read/write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3434
 * @compress_type:   compress type for current bio
3435
 */
3436
static int submit_extent_page(unsigned int opf,
3437
			      struct writeback_control *wbc,
3438
			      struct btrfs_bio_ctrl *bio_ctrl,
3439
			      struct page *page, u64 disk_bytenr,
3440
			      size_t size, unsigned long pg_offset,
3441
			      bio_end_io_t end_io_func,
3442
			      enum btrfs_compression_type compress_type,
3443
			      bool force_bio_submit)
3444 3445
{
	int ret = 0;
3446
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3447
	unsigned int cur = pg_offset;
3448

3449
	ASSERT(bio_ctrl);
3450

3451 3452
	ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
	       pg_offset + size <= PAGE_SIZE);
3453 3454
	if (force_bio_submit)
		submit_one_bio(bio_ctrl);
3455 3456 3457 3458 3459 3460 3461 3462 3463

	while (cur < pg_offset + size) {
		u32 offset = cur - pg_offset;
		int added;

		/* Allocate new bio if needed */
		if (!bio_ctrl->bio) {
			ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
					    end_io_func, disk_bytenr, offset,
3464
					    page_offset(page) + cur,
3465
					    compress_type);
3466 3467 3468 3469 3470 3471 3472
			if (ret < 0)
				return ret;
		}
		/*
		 * We must go through btrfs_bio_add_page() to ensure each
		 * page range won't cross various boundaries.
		 */
3473
		if (compress_type != BTRFS_COMPRESS_NONE)
3474 3475
			added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
					size - offset, pg_offset + offset,
3476
					compress_type);
3477 3478 3479
		else
			added = btrfs_bio_add_page(bio_ctrl, page,
					disk_bytenr + offset, size - offset,
3480
					pg_offset + offset, compress_type);
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493

		/* Metadata page range should never be split */
		if (!is_data_inode(&inode->vfs_inode))
			ASSERT(added == 0 || added == size - offset);

		/* At least we added some page, update the account */
		if (wbc && added)
			wbc_account_cgroup_owner(wbc, page, added);

		/* We have reached boundary, submit right now */
		if (added < size - offset) {
			/* The bio should contain some page(s) */
			ASSERT(bio_ctrl->bio->bi_iter.bi_size);
3494
			submit_one_bio(bio_ctrl);
3495
		}
3496
		cur += added;
3497
	}
3498
	return 0;
3499 3500
}

3501 3502 3503
static int attach_extent_buffer_page(struct extent_buffer *eb,
				     struct page *page,
				     struct btrfs_subpage *prealloc)
3504
{
3505 3506 3507
	struct btrfs_fs_info *fs_info = eb->fs_info;
	int ret = 0;

3508 3509 3510 3511 3512 3513 3514 3515 3516
	/*
	 * If the page is mapped to btree inode, we should hold the private
	 * lock to prevent race.
	 * For cloned or dummy extent buffers, their pages are not mapped and
	 * will not race with any other ebs.
	 */
	if (page->mapping)
		lockdep_assert_held(&page->mapping->private_lock);

3517
	if (fs_info->nodesize >= PAGE_SIZE) {
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
		if (!PagePrivate(page))
			attach_page_private(page, eb);
		else
			WARN_ON(page->private != (unsigned long)eb);
		return 0;
	}

	/* Already mapped, just free prealloc */
	if (PagePrivate(page)) {
		btrfs_free_subpage(prealloc);
		return 0;
	}

	if (prealloc)
		/* Has preallocated memory for subpage */
		attach_page_private(page, prealloc);
3534
	else
3535 3536 3537 3538
		/* Do new allocation to attach subpage */
		ret = btrfs_attach_subpage(fs_info, page,
					   BTRFS_SUBPAGE_METADATA);
	return ret;
3539 3540
}

3541
int set_page_extent_mapped(struct page *page)
3542
{
3543 3544 3545 3546 3547 3548 3549 3550 3551
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

	if (PagePrivate(page))
		return 0;

	fs_info = btrfs_sb(page->mapping->host->i_sb);

3552
	if (btrfs_is_subpage(fs_info, page))
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);

	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
	return 0;
}

void clear_page_extent_mapped(struct page *page)
{
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

3565
	if (!PagePrivate(page))
3566 3567 3568
		return;

	fs_info = btrfs_sb(page->mapping->host->i_sb);
3569
	if (btrfs_is_subpage(fs_info, page))
3570 3571 3572
		return btrfs_detach_subpage(fs_info, page);

	detach_page_private(page);
3573 3574
}

3575 3576
static struct extent_map *
__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3577
		 u64 start, u64 len, struct extent_map **em_cached)
3578 3579 3580 3581 3582
{
	struct extent_map *em;

	if (em_cached && *em_cached) {
		em = *em_cached;
3583
		if (extent_map_in_tree(em) && start >= em->start &&
3584
		    start < extent_map_end(em)) {
3585
			refcount_inc(&em->refs);
3586 3587 3588 3589 3590 3591 3592
			return em;
		}

		free_extent_map(em);
		*em_cached = NULL;
	}

3593
	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3594
	if (em_cached && !IS_ERR(em)) {
3595
		BUG_ON(*em_cached);
3596
		refcount_inc(&em->refs);
3597 3598 3599 3600
		*em_cached = em;
	}
	return em;
}
3601 3602 3603 3604
/*
 * basic readpage implementation.  Locked extent state structs are inserted
 * into the tree that are removed when the IO is done (by the end_io
 * handlers)
3605
 * XXX JDM: This needs looking at to ensure proper page locking
3606
 * return 0 on success, otherwise return error
3607
 */
3608
static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3609
		      struct btrfs_bio_ctrl *bio_ctrl,
3610
		      unsigned int read_flags, u64 *prev_em_start)
3611 3612
{
	struct inode *inode = page->mapping->host;
3613
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
M
Miao Xie 已提交
3614
	u64 start = page_offset(page);
3615
	const u64 end = start + PAGE_SIZE - 1;
3616 3617 3618 3619 3620 3621
	u64 cur = start;
	u64 extent_offset;
	u64 last_byte = i_size_read(inode);
	u64 block_start;
	u64 cur_end;
	struct extent_map *em;
3622
	int ret = 0;
3623
	size_t pg_offset = 0;
3624 3625
	size_t iosize;
	size_t blocksize = inode->i_sb->s_blocksize;
3626
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3627

3628 3629 3630
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		unlock_extent(tree, start, end);
3631 3632
		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
		unlock_page(page);
3633 3634
		goto out;
	}
3635

3636
	if (page->index == last_byte >> PAGE_SHIFT) {
3637
		size_t zero_offset = offset_in_page(last_byte);
C
Chris Mason 已提交
3638 3639

		if (zero_offset) {
3640
			iosize = PAGE_SIZE - zero_offset;
3641
			memzero_page(page, zero_offset, iosize);
C
Chris Mason 已提交
3642 3643
		}
	}
3644
	begin_page_read(fs_info, page);
3645
	while (cur <= end) {
3646
		unsigned long this_bio_flag = 0;
3647
		bool force_bio_submit = false;
3648
		u64 disk_bytenr;
3649

3650
		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
3651
		if (cur >= last_byte) {
3652 3653
			struct extent_state *cached = NULL;

3654
			iosize = PAGE_SIZE - pg_offset;
3655
			memzero_page(page, pg_offset, iosize);
3656
			set_extent_uptodate(tree, cur, cur + iosize - 1,
3657
					    &cached, GFP_NOFS);
3658
			unlock_extent_cached(tree, cur,
3659
					     cur + iosize - 1, &cached);
3660
			end_page_read(page, true, cur, iosize);
3661 3662
			break;
		}
3663
		em = __get_extent_map(inode, page, pg_offset, cur,
3664
				      end - cur + 1, em_cached);
3665
		if (IS_ERR(em)) {
3666
			unlock_extent(tree, cur, end);
3667
			end_page_read(page, false, cur, end + 1 - cur);
3668
			ret = PTR_ERR(em);
3669 3670 3671 3672 3673 3674
			break;
		}
		extent_offset = cur - em->start;
		BUG_ON(extent_map_end(em) <= cur);
		BUG_ON(end < cur);

3675 3676
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			this_bio_flag = em->compress_type;
C
Chris Mason 已提交
3677

3678 3679
		iosize = min(extent_map_end(em) - cur, end - cur + 1);
		cur_end = min(extent_map_end(em) - 1, end);
3680
		iosize = ALIGN(iosize, blocksize);
3681
		if (this_bio_flag != BTRFS_COMPRESS_NONE)
3682
			disk_bytenr = em->block_start;
3683
		else
3684
			disk_bytenr = em->block_start + extent_offset;
3685
		block_start = em->block_start;
Y
Yan Zheng 已提交
3686 3687
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			block_start = EXTENT_MAP_HOLE;
3688 3689 3690

		/*
		 * If we have a file range that points to a compressed extent
3691
		 * and it's followed by a consecutive file range that points
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
		 * to the same compressed extent (possibly with a different
		 * offset and/or length, so it either points to the whole extent
		 * or only part of it), we must make sure we do not submit a
		 * single bio to populate the pages for the 2 ranges because
		 * this makes the compressed extent read zero out the pages
		 * belonging to the 2nd range. Imagine the following scenario:
		 *
		 *  File layout
		 *  [0 - 8K]                     [8K - 24K]
		 *    |                               |
		 *    |                               |
		 * points to extent X,         points to extent X,
		 * offset 4K, length of 8K     offset 0, length 16K
		 *
		 * [extent X, compressed length = 4K uncompressed length = 16K]
		 *
		 * If the bio to read the compressed extent covers both ranges,
		 * it will decompress extent X into the pages belonging to the
		 * first range and then it will stop, zeroing out the remaining
		 * pages that belong to the other range that points to extent X.
		 * So here we make sure we submit 2 bios, one for the first
		 * range and another one for the third range. Both will target
		 * the same physical extent from disk, but we can't currently
		 * make the compressed bio endio callback populate the pages
		 * for both ranges because each compressed bio is tightly
		 * coupled with a single extent map, and each range can have
		 * an extent map with a different offset value relative to the
		 * uncompressed data of our extent and different lengths. This
		 * is a corner case so we prioritize correctness over
		 * non-optimal behavior (submitting 2 bios for the same extent).
		 */
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
		    prev_em_start && *prev_em_start != (u64)-1 &&
3725
		    *prev_em_start != em->start)
3726 3727 3728
			force_bio_submit = true;

		if (prev_em_start)
3729
			*prev_em_start = em->start;
3730

3731 3732 3733 3734 3735
		free_extent_map(em);
		em = NULL;

		/* we've found a hole, just zero and go on */
		if (block_start == EXTENT_MAP_HOLE) {
3736 3737
			struct extent_state *cached = NULL;

3738
			memzero_page(page, pg_offset, iosize);
3739 3740

			set_extent_uptodate(tree, cur, cur + iosize - 1,
3741
					    &cached, GFP_NOFS);
3742
			unlock_extent_cached(tree, cur,
3743
					     cur + iosize - 1, &cached);
3744
			end_page_read(page, true, cur, iosize);
3745
			cur = cur + iosize;
3746
			pg_offset += iosize;
3747 3748 3749
			continue;
		}
		/* the get_extent function already copied into the page */
3750 3751
		if (test_range_bit(tree, cur, cur_end,
				   EXTENT_UPTODATE, 1, NULL)) {
3752
			unlock_extent(tree, cur, cur + iosize - 1);
3753
			end_page_read(page, true, cur, iosize);
3754
			cur = cur + iosize;
3755
			pg_offset += iosize;
3756 3757
			continue;
		}
3758 3759 3760 3761
		/* we have an inline extent but it didn't get marked up
		 * to date.  Error out
		 */
		if (block_start == EXTENT_MAP_INLINE) {
3762
			unlock_extent(tree, cur, cur + iosize - 1);
3763
			end_page_read(page, false, cur, iosize);
3764
			cur = cur + iosize;
3765
			pg_offset += iosize;
3766 3767
			continue;
		}
3768

3769
		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3770
					 bio_ctrl, page, disk_bytenr, iosize,
3771 3772
					 pg_offset, end_bio_extent_readpage,
					 this_bio_flag, force_bio_submit);
3773
		if (ret) {
3774 3775 3776 3777 3778 3779
			/*
			 * We have to unlock the remaining range, or the page
			 * will never be unlocked.
			 */
			unlock_extent(tree, cur, end);
			end_page_read(page, false, cur, end + 1 - cur);
3780
			goto out;
3781
		}
3782
		cur = cur + iosize;
3783
		pg_offset += iosize;
3784
	}
D
Dan Magenheimer 已提交
3785
out:
3786
	return ret;
3787 3788
}

3789
int btrfs_read_folio(struct file *file, struct folio *folio)
3790
{
3791
	struct page *page = &folio->page;
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
	u64 start = page_offset(page);
	u64 end = start + PAGE_SIZE - 1;
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
	int ret;

	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);

	ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
	/*
	 * If btrfs_do_readpage() failed we will want to submit the assembled
	 * bio to do the cleanup.
	 */
3805
	submit_one_bio(&bio_ctrl);
3806 3807 3808
	return ret;
}

3809
static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3810 3811 3812 3813
					u64 start, u64 end,
					struct extent_map **em_cached,
					struct btrfs_bio_ctrl *bio_ctrl,
					u64 *prev_em_start)
3814
{
3815
	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3816 3817
	int index;

3818
	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3819 3820

	for (index = 0; index < nr_pages; index++) {
3821
		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3822
				  REQ_RAHEAD, prev_em_start);
3823
		put_page(pages[index]);
3824 3825 3826
	}
}

3827
/*
3828 3829
 * helper for __extent_writepage, doing all of the delayed allocation setup.
 *
3830
 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3831 3832 3833 3834 3835
 * to write the page (copy into inline extent).  In this case the IO has
 * been started and the page is already unlocked.
 *
 * This returns 0 if all went well (page still locked)
 * This returns < 0 if there were errors (page still locked)
3836
 */
3837
static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3838
		struct page *page, struct writeback_control *wbc)
3839
{
3840
	const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
3841
	u64 delalloc_start = page_offset(page);
3842
	u64 delalloc_to_write = 0;
3843 3844
	/* How many pages are started by btrfs_run_delalloc_range() */
	unsigned long nr_written = 0;
3845 3846 3847
	int ret;
	int page_started = 0;

3848 3849 3850
	while (delalloc_start < page_end) {
		u64 delalloc_end = page_end;
		bool found;
3851

3852
		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3853
					       &delalloc_start,
3854
					       &delalloc_end);
3855
		if (!found) {
3856 3857 3858
			delalloc_start = delalloc_end + 1;
			continue;
		}
3859
		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3860
				delalloc_end, &page_started, &nr_written, wbc);
3861
		if (ret) {
3862 3863
			btrfs_page_set_error(inode->root->fs_info, page,
					     page_offset(page), PAGE_SIZE);
3864
			return ret;
3865 3866
		}
		/*
3867 3868
		 * delalloc_end is already one less than the total length, so
		 * we don't subtract one from PAGE_SIZE
3869 3870
		 */
		delalloc_to_write += (delalloc_end - delalloc_start +
3871
				      PAGE_SIZE) >> PAGE_SHIFT;
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
		delalloc_start = delalloc_end + 1;
	}
	if (wbc->nr_to_write < delalloc_to_write) {
		int thresh = 8192;

		if (delalloc_to_write < thresh * 2)
			thresh = delalloc_to_write;
		wbc->nr_to_write = min_t(u64, delalloc_to_write,
					 thresh);
	}

3883
	/* Did btrfs_run_dealloc_range() already unlock and start the IO? */
3884 3885
	if (page_started) {
		/*
3886 3887
		 * We've unlocked the page, so we can't update the mapping's
		 * writeback index, just update nr_to_write.
3888
		 */
3889
		wbc->nr_to_write -= nr_written;
3890 3891 3892
		return 1;
	}

3893
	return 0;
3894 3895
}

3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
/*
 * Find the first byte we need to write.
 *
 * For subpage, one page can contain several sectors, and
 * __extent_writepage_io() will just grab all extent maps in the page
 * range and try to submit all non-inline/non-compressed extents.
 *
 * This is a big problem for subpage, we shouldn't re-submit already written
 * data at all.
 * This function will lookup subpage dirty bit to find which range we really
 * need to submit.
 *
 * Return the next dirty range in [@start, @end).
 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
 */
static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
				 struct page *page, u64 *start, u64 *end)
{
	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
3915
	struct btrfs_subpage_info *spi = fs_info->subpage_info;
3916 3917 3918
	u64 orig_start = *start;
	/* Declare as unsigned long so we can use bitmap ops */
	unsigned long flags;
3919
	int range_start_bit;
3920 3921 3922 3923 3924 3925
	int range_end_bit;

	/*
	 * For regular sector size == page size case, since one page only
	 * contains one sector, we return the page offset directly.
	 */
3926
	if (!btrfs_is_subpage(fs_info, page)) {
3927 3928 3929 3930 3931
		*start = page_offset(page);
		*end = page_offset(page) + PAGE_SIZE;
		return;
	}

3932 3933 3934
	range_start_bit = spi->dirty_offset +
			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);

3935 3936
	/* We should have the page locked, but just in case */
	spin_lock_irqsave(&subpage->lock, flags);
3937 3938
	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
			       spi->dirty_offset + spi->bitmap_nr_bits);
3939 3940
	spin_unlock_irqrestore(&subpage->lock, flags);

3941 3942 3943
	range_start_bit -= spi->dirty_offset;
	range_end_bit -= spi->dirty_offset;

3944 3945 3946 3947
	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
}

3948 3949 3950 3951 3952 3953 3954 3955
/*
 * helper for __extent_writepage.  This calls the writepage start hooks,
 * and does the loop to map the page into extents and bios.
 *
 * We return 1 if the IO is started and the page is unlocked,
 * 0 if all went well (page still locked)
 * < 0 if there were errors (page still locked)
 */
3956
static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3957 3958 3959 3960
				 struct page *page,
				 struct writeback_control *wbc,
				 struct extent_page_data *epd,
				 loff_t i_size,
3961
				 int *nr_ret)
3962
{
3963
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3964 3965
	u64 cur = page_offset(page);
	u64 end = cur + PAGE_SIZE - 1;
3966 3967 3968
	u64 extent_offset;
	u64 block_start;
	struct extent_map *em;
3969
	int saved_ret = 0;
3970 3971
	int ret = 0;
	int nr = 0;
3972
	u32 opf = REQ_OP_WRITE;
3973
	const unsigned int write_flags = wbc_to_write_flags(wbc);
3974
	bool has_error = false;
3975
	bool compressed;
C
Chris Mason 已提交
3976

3977
	ret = btrfs_writepage_cow_fixup(page);
3978 3979
	if (ret) {
		/* Fixup worker will requeue */
3980
		redirty_page_for_writepage(wbc, page);
3981 3982
		unlock_page(page);
		return 1;
3983 3984
	}

3985 3986 3987 3988
	/*
	 * we don't want to touch the inode after unlocking the page,
	 * so we update the mapping writeback index now
	 */
3989
	wbc->nr_to_write--;
3990

3991
	while (cur <= end) {
3992
		u64 disk_bytenr;
3993
		u64 em_end;
3994 3995
		u64 dirty_range_start = cur;
		u64 dirty_range_end;
3996
		u32 iosize;
3997

3998
		if (cur >= i_size) {
3999
			btrfs_writepage_endio_finish_ordered(inode, page, cur,
4000
							     end, true);
4001 4002 4003 4004 4005 4006 4007 4008 4009
			/*
			 * This range is beyond i_size, thus we don't need to
			 * bother writing back.
			 * But we still need to clear the dirty subpage bit, or
			 * the next time the page gets dirtied, we will try to
			 * writeback the sectors with subpage dirty bits,
			 * causing writeback without ordered extent.
			 */
			btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
4010 4011
			break;
		}
4012 4013 4014 4015 4016 4017 4018 4019

		find_next_dirty_byte(fs_info, page, &dirty_range_start,
				     &dirty_range_end);
		if (cur < dirty_range_start) {
			cur = dirty_range_start;
			continue;
		}

4020
		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
4021
		if (IS_ERR(em)) {
4022
			btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
4023
			ret = PTR_ERR_OR_ZERO(em);
4024 4025 4026
			has_error = true;
			if (!saved_ret)
				saved_ret = ret;
4027 4028 4029 4030
			break;
		}

		extent_offset = cur - em->start;
4031
		em_end = extent_map_end(em);
4032 4033 4034 4035
		ASSERT(cur <= em_end);
		ASSERT(cur < end);
		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
4036
		block_start = em->block_start;
C
Chris Mason 已提交
4037
		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4038 4039
		disk_bytenr = em->block_start + extent_offset;

4040 4041 4042 4043 4044
		/*
		 * Note that em_end from extent_map_end() and dirty_range_end from
		 * find_next_dirty_byte() are all exclusive
		 */
		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
4045

4046
		if (btrfs_use_zone_append(inode, em->block_start))
4047 4048
			opf = REQ_OP_ZONE_APPEND;

4049 4050 4051
		free_extent_map(em);
		em = NULL;

C
Chris Mason 已提交
4052 4053 4054 4055 4056
		/*
		 * compressed and inline extents are written through other
		 * paths in the FS
		 */
		if (compressed || block_start == EXTENT_MAP_HOLE ||
4057
		    block_start == EXTENT_MAP_INLINE) {
4058
			if (compressed)
C
Chris Mason 已提交
4059
				nr++;
4060
			else
4061
				btrfs_writepage_endio_finish_ordered(inode,
4062
						page, cur, cur + iosize - 1, true);
4063
			btrfs_page_clear_dirty(fs_info, page, cur, iosize);
C
Chris Mason 已提交
4064
			cur += iosize;
4065 4066
			continue;
		}
C
Chris Mason 已提交
4067

4068
		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
4069
		if (!PageWriteback(page)) {
4070
			btrfs_err(inode->root->fs_info,
4071 4072
				   "page %lu not writeback, cur %llu end %llu",
			       page->index, cur, end);
4073
		}
4074

4075 4076 4077 4078 4079 4080 4081 4082
		/*
		 * Although the PageDirty bit is cleared before entering this
		 * function, subpage dirty bit is not cleared.
		 * So clear subpage dirty bit here so next time we won't submit
		 * page for range already written to disk.
		 */
		btrfs_page_clear_dirty(fs_info, page, cur, iosize);

4083 4084
		ret = submit_extent_page(opf | write_flags, wbc,
					 &epd->bio_ctrl, page,
4085
					 disk_bytenr, iosize,
4086
					 cur - page_offset(page),
4087
					 end_bio_extent_writepage,
4088
					 0, false);
4089
		if (ret) {
4090 4091 4092 4093
			has_error = true;
			if (!saved_ret)
				saved_ret = ret;

4094
			btrfs_page_set_error(fs_info, page, cur, iosize);
4095
			if (PageWriteback(page))
4096 4097
				btrfs_page_clear_writeback(fs_info, page, cur,
							   iosize);
4098
		}
4099

4100
		cur += iosize;
4101 4102
		nr++;
	}
4103 4104 4105 4106
	/*
	 * If we finish without problem, we should not only clear page dirty,
	 * but also empty subpage dirty bits
	 */
4107
	if (!has_error)
4108
		btrfs_page_assert_not_dirty(fs_info, page);
4109 4110
	else
		ret = saved_ret;
4111 4112 4113 4114 4115 4116 4117 4118 4119
	*nr_ret = nr;
	return ret;
}

/*
 * the writepage semantics are similar to regular writepage.  extent
 * records are inserted to lock ranges in the tree, and as dirty areas
 * are found, they are marked writeback.  Then the lock bits are removed
 * and the end_io handler clears the writeback ranges
4120 4121 4122
 *
 * Return 0 if everything goes well.
 * Return <0 for error.
4123 4124
 */
static int __extent_writepage(struct page *page, struct writeback_control *wbc,
4125
			      struct extent_page_data *epd)
4126
{
4127
	struct folio *folio = page_folio(page);
4128
	struct inode *inode = page->mapping->host;
4129
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4130 4131
	const u64 page_start = page_offset(page);
	const u64 page_end = page_start + PAGE_SIZE - 1;
4132 4133
	int ret;
	int nr = 0;
4134
	size_t pg_offset;
4135
	loff_t i_size = i_size_read(inode);
4136
	unsigned long end_index = i_size >> PAGE_SHIFT;
4137 4138 4139 4140 4141

	trace___extent_writepage(page, inode, wbc);

	WARN_ON(!PageLocked(page));

4142 4143
	btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
			       page_offset(page), PAGE_SIZE);
4144

4145
	pg_offset = offset_in_page(i_size);
4146 4147
	if (page->index > end_index ||
	   (page->index == end_index && !pg_offset)) {
4148 4149
		folio_invalidate(folio, 0, folio_size(folio));
		folio_unlock(folio);
4150 4151 4152
		return 0;
	}

4153
	if (page->index == end_index)
4154
		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
4155

4156 4157 4158 4159 4160
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		SetPageError(page);
		goto done;
	}
4161

4162
	if (!epd->extent_locked) {
4163
		ret = writepage_delalloc(BTRFS_I(inode), page, wbc);
4164
		if (ret == 1)
4165
			return 0;
4166 4167 4168
		if (ret)
			goto done;
	}
4169

4170
	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
4171
				    &nr);
4172
	if (ret == 1)
4173
		return 0;
4174

4175 4176 4177 4178 4179 4180
done:
	if (nr == 0) {
		/* make sure the mapping tag for page dirty gets cleared */
		set_page_writeback(page);
		end_page_writeback(page);
	}
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
	/*
	 * Here we used to have a check for PageError() and then set @ret and
	 * call end_extent_writepage().
	 *
	 * But in fact setting @ret here will cause different error paths
	 * between subpage and regular sectorsize.
	 *
	 * For regular page size, we never submit current page, but only add
	 * current page to current bio.
	 * The bio submission can only happen in next page.
	 * Thus if we hit the PageError() branch, @ret is already set to
	 * non-zero value and will not get updated for regular sectorsize.
	 *
	 * But for subpage case, it's possible we submit part of current page,
	 * thus can get PageError() set by submitted bio of the same page,
	 * while our @ret is still 0.
	 *
	 * So here we unify the behavior and don't set @ret.
	 * Error can still be properly passed to higher layer as page will
	 * be set error, here we just don't handle the IO failure.
	 *
	 * NOTE: This is just a hotfix for subpage.
	 * The root fix will be properly ending ordered extent when we hit
	 * an error during writeback.
	 *
	 * But that needs a bigger refactoring, as we not only need to grab the
	 * submitted OE, but also need to know exactly at which bytenr we hit
	 * the error.
	 * Currently the full page based __extent_writepage_io() is not
	 * capable of that.
	 */
	if (PageError(page))
4213
		end_extent_writepage(page, ret, page_start, page_end);
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
	if (epd->extent_locked) {
		/*
		 * If epd->extent_locked, it's from extent_write_locked_range(),
		 * the page can either be locked by lock_page() or
		 * process_one_page().
		 * Let btrfs_page_unlock_writer() handle both cases.
		 */
		ASSERT(wbc);
		btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
					 wbc->range_end + 1 - wbc->range_start);
	} else {
		unlock_page(page);
	}
4227
	ASSERT(ret <= 0);
4228
	return ret;
4229 4230
}

4231
void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
4232
{
4233 4234
	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
		       TASK_UNINTERRUPTIBLE);
4235 4236
}

4237 4238 4239 4240 4241 4242 4243
static void end_extent_buffer_writeback(struct extent_buffer *eb)
{
	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
	smp_mb__after_atomic();
	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
}

4244
/*
4245
 * Lock extent buffer status and pages for writeback.
4246
 *
4247 4248 4249 4250 4251 4252
 * May try to flush write bio if we can't get the lock.
 *
 * Return  0 if the extent buffer doesn't need to be submitted.
 *           (E.g. the extent buffer is not dirty)
 * Return >0 is the extent buffer is submitted to bio.
 * Return <0 if something went wrong, no page is locked.
4253
 */
4254
static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
4255
			  struct extent_page_data *epd)
4256
{
4257
	struct btrfs_fs_info *fs_info = eb->fs_info;
4258
	int i, num_pages;
4259 4260 4261 4262
	int flush = 0;
	int ret = 0;

	if (!btrfs_try_tree_write_lock(eb)) {
4263
		submit_write_bio(epd, 0);
4264
		flush = 1;
4265 4266 4267 4268 4269 4270 4271 4272
		btrfs_tree_lock(eb);
	}

	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
		btrfs_tree_unlock(eb);
		if (!epd->sync_io)
			return 0;
		if (!flush) {
4273
			submit_write_bio(epd, 0);
4274 4275
			flush = 1;
		}
C
Chris Mason 已提交
4276 4277 4278 4279 4280
		while (1) {
			wait_on_extent_buffer_writeback(eb);
			btrfs_tree_lock(eb);
			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
				break;
4281 4282 4283 4284
			btrfs_tree_unlock(eb);
		}
	}

4285 4286 4287 4288 4289 4290
	/*
	 * We need to do this to prevent races in people who check if the eb is
	 * under IO since we can end up having no IO bits set for a short period
	 * of time.
	 */
	spin_lock(&eb->refs_lock);
4291 4292
	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4293
		spin_unlock(&eb->refs_lock);
4294
		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4295 4296 4297
		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
					 -eb->len,
					 fs_info->dirty_metadata_batch);
4298
		ret = 1;
4299 4300
	} else {
		spin_unlock(&eb->refs_lock);
4301 4302 4303 4304
	}

	btrfs_tree_unlock(eb);

4305 4306 4307 4308 4309 4310
	/*
	 * Either we don't need to submit any tree block, or we're submitting
	 * subpage eb.
	 * Subpage metadata doesn't use page locking at all, so we can skip
	 * the page locking.
	 */
4311
	if (!ret || fs_info->nodesize < PAGE_SIZE)
4312 4313
		return ret;

4314
	num_pages = num_extent_pages(eb);
4315
	for (i = 0; i < num_pages; i++) {
4316
		struct page *p = eb->pages[i];
4317 4318 4319

		if (!trylock_page(p)) {
			if (!flush) {
4320
				submit_write_bio(epd, 0);
4321 4322 4323 4324 4325 4326
				flush = 1;
			}
			lock_page(p);
		}
	}

4327
	return ret;
4328 4329
}

4330
static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4331
{
4332
	struct btrfs_fs_info *fs_info = eb->fs_info;
4333

4334
	btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4335 4336 4337
	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
		return;

4338 4339 4340 4341 4342 4343
	/*
	 * A read may stumble upon this buffer later, make sure that it gets an
	 * error and knows there was an error.
	 */
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);

4344 4345 4346 4347 4348 4349 4350 4351
	/*
	 * We need to set the mapping with the io error as well because a write
	 * error will flip the file system readonly, and then syncfs() will
	 * return a 0 because we are readonly if we don't modify the err seq for
	 * the superblock.
	 */
	mapping_set_error(page->mapping, -EIO);

4352 4353 4354 4355 4356 4357 4358
	/*
	 * If we error out, we should add back the dirty_metadata_bytes
	 * to make it consistent.
	 */
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
				 eb->len, fs_info->dirty_metadata_batch);

4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
	/*
	 * If writeback for a btree extent that doesn't belong to a log tree
	 * failed, increment the counter transaction->eb_write_errors.
	 * We do this because while the transaction is running and before it's
	 * committing (when we call filemap_fdata[write|wait]_range against
	 * the btree inode), we might have
	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
	 * returns an error or an error happens during writeback, when we're
	 * committing the transaction we wouldn't know about it, since the pages
	 * can be no longer dirty nor marked anymore for writeback (if a
	 * subsequent modification to the extent buffer didn't happen before the
	 * transaction commit), which makes filemap_fdata[write|wait]_range not
	 * able to find the pages tagged with SetPageError at transaction
	 * commit time. So if this happens we must abort the transaction,
	 * otherwise we commit a super block with btree roots that point to
	 * btree nodes/leafs whose content on disk is invalid - either garbage
	 * or the content of some node/leaf from a past generation that got
	 * cowed or deleted and is no longer valid.
	 *
	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
	 * not be enough - we need to distinguish between log tree extents vs
	 * non-log tree extents, and the next filemap_fdatawait_range() call
	 * will catch and clear such errors in the mapping - and that call might
	 * be from a log sync and not from a transaction commit. Also, checking
	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
	 * not done and would not be reliable - the eb might have been released
	 * from memory and reading it back again means that flag would not be
	 * set (since it's a runtime flag, not persisted on disk).
	 *
	 * Using the flags below in the btree inode also makes us achieve the
	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
	 * writeback for all dirty pages and before filemap_fdatawait_range()
	 * is called, the writeback for all dirty pages had already finished
	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
	 * filemap_fdatawait_range() would return success, as it could not know
	 * that writeback errors happened (the pages were no longer tagged for
	 * writeback).
	 */
	switch (eb->log_index) {
	case -1:
4399
		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4400 4401
		break;
	case 0:
4402
		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4403 4404
		break;
	case 1:
4405
		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4406 4407 4408 4409 4410 4411
		break;
	default:
		BUG(); /* unexpected, logic error */
	}
}

4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
/*
 * The endio specific version which won't touch any unsafe spinlock in endio
 * context.
 */
static struct extent_buffer *find_extent_buffer_nolock(
		struct btrfs_fs_info *fs_info, u64 start)
{
	struct extent_buffer *eb;

	rcu_read_lock();
4422 4423
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       start >> fs_info->sectorsize_bits);
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
	if (eb && atomic_inc_not_zero(&eb->refs)) {
		rcu_read_unlock();
		return eb;
	}
	rcu_read_unlock();
	return NULL;
}

/*
 * The endio function for subpage extent buffer write.
 *
 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
 * after all extent buffers in the page has finished their writeback.
 */
4438
static void end_bio_subpage_eb_writepage(struct bio *bio)
4439
{
4440
	struct btrfs_fs_info *fs_info;
4441 4442 4443
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

4444
	fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
4445
	ASSERT(fs_info->nodesize < PAGE_SIZE);
4446

4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
	ASSERT(!bio_flagged(bio, BIO_CLONED));
	bio_for_each_segment_all(bvec, bio, iter_all) {
		struct page *page = bvec->bv_page;
		u64 bvec_start = page_offset(page) + bvec->bv_offset;
		u64 bvec_end = bvec_start + bvec->bv_len - 1;
		u64 cur_bytenr = bvec_start;

		ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));

		/* Iterate through all extent buffers in the range */
		while (cur_bytenr <= bvec_end) {
			struct extent_buffer *eb;
			int done;

			/*
			 * Here we can't use find_extent_buffer(), as it may
			 * try to lock eb->refs_lock, which is not safe in endio
			 * context.
			 */
			eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
			ASSERT(eb);

			cur_bytenr = eb->start + eb->len;

			ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
			done = atomic_dec_and_test(&eb->io_pages);
			ASSERT(done);

			if (bio->bi_status ||
			    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
				ClearPageUptodate(page);
				set_btree_ioerr(page, eb);
			}

			btrfs_subpage_clear_writeback(fs_info, page, eb->start,
						      eb->len);
			end_extent_buffer_writeback(eb);
			/*
			 * free_extent_buffer() will grab spinlock which is not
			 * safe in endio context. Thus here we manually dec
			 * the ref.
			 */
			atomic_dec(&eb->refs);
		}
	}
	bio_put(bio);
}

4495
static void end_bio_extent_buffer_writepage(struct bio *bio)
4496
{
4497
	struct bio_vec *bvec;
4498
	struct extent_buffer *eb;
4499
	int done;
4500
	struct bvec_iter_all iter_all;
4501

4502
	ASSERT(!bio_flagged(bio, BIO_CLONED));
4503
	bio_for_each_segment_all(bvec, bio, iter_all) {
4504 4505 4506 4507 4508 4509
		struct page *page = bvec->bv_page;

		eb = (struct extent_buffer *)page->private;
		BUG_ON(!eb);
		done = atomic_dec_and_test(&eb->io_pages);

4510
		if (bio->bi_status ||
4511
		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4512
			ClearPageUptodate(page);
4513
			set_btree_ioerr(page, eb);
4514 4515 4516 4517 4518 4519 4520 4521
		}

		end_page_writeback(page);

		if (!done)
			continue;

		end_extent_buffer_writeback(eb);
4522
	}
4523 4524 4525 4526

	bio_put(bio);
}

4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551
static void prepare_eb_write(struct extent_buffer *eb)
{
	u32 nritems;
	unsigned long start;
	unsigned long end;

	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
	atomic_set(&eb->io_pages, num_extent_pages(eb));

	/* Set btree blocks beyond nritems with 0 to avoid stale content */
	nritems = btrfs_header_nritems(eb);
	if (btrfs_header_level(eb) > 0) {
		end = btrfs_node_key_ptr_offset(nritems);
		memzero_extent_buffer(eb, end, eb->len - end);
	} else {
		/*
		 * Leaf:
		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
		 */
		start = btrfs_item_nr_offset(nritems);
		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
		memzero_extent_buffer(eb, start, end - start);
	}
}

4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
/*
 * Unlike the work in write_one_eb(), we rely completely on extent locking.
 * Page locking is only utilized at minimum to keep the VMM code happy.
 */
static int write_one_subpage_eb(struct extent_buffer *eb,
				struct writeback_control *wbc,
				struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
4562
	unsigned int write_flags = wbc_to_write_flags(wbc);
4563 4564 4565
	bool no_dirty_ebs = false;
	int ret;

4566 4567
	prepare_eb_write(eb);

4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
	/* clear_page_dirty_for_io() in subpage helper needs page locked */
	lock_page(page);
	btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);

	/* Check if this is the last dirty bit to update nr_written */
	no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
							  eb->start, eb->len);
	if (no_dirty_ebs)
		clear_page_dirty_for_io(page);

4578 4579 4580
	ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
			&epd->bio_ctrl, page, eb->start, eb->len,
			eb->start - page_offset(page),
4581
			end_bio_subpage_eb_writepage, 0, false);
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
	if (ret) {
		btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
		set_btree_ioerr(page, eb);
		unlock_page(page);

		if (atomic_dec_and_test(&eb->io_pages))
			end_extent_buffer_writeback(eb);
		return -EIO;
	}
	unlock_page(page);
	/*
	 * Submission finished without problem, if no range of the page is
	 * dirty anymore, we have submitted a page.  Update nr_written in wbc.
	 */
	if (no_dirty_ebs)
4597
		wbc->nr_to_write--;
4598 4599 4600
	return ret;
}

4601
static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4602 4603 4604
			struct writeback_control *wbc,
			struct extent_page_data *epd)
{
4605
	u64 disk_bytenr = eb->start;
4606
	int i, num_pages;
4607
	unsigned int write_flags = wbc_to_write_flags(wbc);
4608
	int ret = 0;
4609

4610
	prepare_eb_write(eb);
4611

4612
	num_pages = num_extent_pages(eb);
4613
	for (i = 0; i < num_pages; i++) {
4614
		struct page *p = eb->pages[i];
4615 4616 4617

		clear_page_dirty_for_io(p);
		set_page_writeback(p);
4618
		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4619 4620
					 &epd->bio_ctrl, p, disk_bytenr,
					 PAGE_SIZE, 0,
4621
					 end_bio_extent_buffer_writepage,
4622
					 0, false);
4623
		if (ret) {
4624
			set_btree_ioerr(p, eb);
4625 4626
			if (PageWriteback(p))
				end_page_writeback(p);
4627 4628 4629 4630 4631
			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
				end_extent_buffer_writeback(eb);
			ret = -EIO;
			break;
		}
4632
		disk_bytenr += PAGE_SIZE;
4633
		wbc->nr_to_write--;
4634 4635 4636 4637 4638
		unlock_page(p);
	}

	if (unlikely(ret)) {
		for (; i < num_pages; i++) {
4639
			struct page *p = eb->pages[i];
4640
			clear_page_dirty_for_io(p);
4641 4642 4643 4644 4645 4646 4647
			unlock_page(p);
		}
	}

	return ret;
}

4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
/*
 * Submit one subpage btree page.
 *
 * The main difference to submit_eb_page() is:
 * - Page locking
 *   For subpage, we don't rely on page locking at all.
 *
 * - Flush write bio
 *   We only flush bio if we may be unable to fit current extent buffers into
 *   current bio.
 *
 * Return >=0 for the number of submitted extent buffers.
 * Return <0 for fatal error.
 */
static int submit_eb_subpage(struct page *page,
			     struct writeback_control *wbc,
			     struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	int submitted = 0;
	u64 page_start = page_offset(page);
	int bit_start = 0;
	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
	int ret;

	/* Lock and write each dirty extent buffers in the range */
4674
	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
		struct extent_buffer *eb;
		unsigned long flags;
		u64 start;

		/*
		 * Take private lock to ensure the subpage won't be detached
		 * in the meantime.
		 */
		spin_lock(&page->mapping->private_lock);
		if (!PagePrivate(page)) {
			spin_unlock(&page->mapping->private_lock);
			break;
		}
		spin_lock_irqsave(&subpage->lock, flags);
4690 4691
		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
			      subpage->bitmaps)) {
4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
			spin_unlock_irqrestore(&subpage->lock, flags);
			spin_unlock(&page->mapping->private_lock);
			bit_start++;
			continue;
		}

		start = page_start + bit_start * fs_info->sectorsize;
		bit_start += sectors_per_node;

		/*
		 * Here we just want to grab the eb without touching extra
		 * spin locks, so call find_extent_buffer_nolock().
		 */
		eb = find_extent_buffer_nolock(fs_info, start);
		spin_unlock_irqrestore(&subpage->lock, flags);
		spin_unlock(&page->mapping->private_lock);

		/*
		 * The eb has already reached 0 refs thus find_extent_buffer()
		 * doesn't return it. We don't need to write back such eb
		 * anyway.
		 */
		if (!eb)
			continue;

		ret = lock_extent_buffer_for_io(eb, epd);
		if (ret == 0) {
			free_extent_buffer(eb);
			continue;
		}
		if (ret < 0) {
			free_extent_buffer(eb);
			goto cleanup;
		}
4726
		ret = write_one_subpage_eb(eb, wbc, epd);
4727 4728 4729 4730 4731 4732 4733 4734 4735
		free_extent_buffer(eb);
		if (ret < 0)
			goto cleanup;
		submitted++;
	}
	return submitted;

cleanup:
	/* We hit error, end bio for the submitted extent buffers */
4736
	submit_write_bio(epd, ret);
4737 4738 4739
	return ret;
}

4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
/*
 * Submit all page(s) of one extent buffer.
 *
 * @page:	the page of one extent buffer
 * @eb_context:	to determine if we need to submit this page, if current page
 *		belongs to this eb, we don't need to submit
 *
 * The caller should pass each page in their bytenr order, and here we use
 * @eb_context to determine if we have submitted pages of one extent buffer.
 *
 * If we have, we just skip until we hit a new page that doesn't belong to
 * current @eb_context.
 *
 * If not, we submit all the page(s) of the extent buffer.
 *
 * Return >0 if we have submitted the extent buffer successfully.
 * Return 0 if we don't need to submit the page, as it's already submitted by
 * previous call.
 * Return <0 for fatal error.
 */
static int submit_eb_page(struct page *page, struct writeback_control *wbc,
			  struct extent_page_data *epd,
			  struct extent_buffer **eb_context)
{
	struct address_space *mapping = page->mapping;
4765
	struct btrfs_block_group *cache = NULL;
4766 4767 4768 4769 4770 4771
	struct extent_buffer *eb;
	int ret;

	if (!PagePrivate(page))
		return 0;

4772
	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
4773 4774
		return submit_eb_subpage(page, wbc, epd);

4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
	spin_lock(&mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	eb = (struct extent_buffer *)page->private;

	/*
	 * Shouldn't happen and normally this would be a BUG_ON but no point
	 * crashing the machine for something we can survive anyway.
	 */
	if (WARN_ON(!eb)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	if (eb == *eb_context) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}
	ret = atomic_inc_not_zero(&eb->refs);
	spin_unlock(&mapping->private_lock);
	if (!ret)
		return 0;

4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
		/*
		 * If for_sync, this hole will be filled with
		 * trasnsaction commit.
		 */
		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
			ret = -EAGAIN;
		else
			ret = 0;
		free_extent_buffer(eb);
		return ret;
	}

4814 4815 4816 4817
	*eb_context = eb;

	ret = lock_extent_buffer_for_io(eb, epd);
	if (ret <= 0) {
4818 4819 4820
		btrfs_revert_meta_write_pointer(cache, eb);
		if (cache)
			btrfs_put_block_group(cache);
4821 4822 4823
		free_extent_buffer(eb);
		return ret;
	}
4824
	if (cache) {
4825 4826 4827
		/*
		 * Implies write in zoned mode. Mark the last eb in a block group.
		 */
4828
		btrfs_schedule_zone_finish_bg(cache, eb);
4829
		btrfs_put_block_group(cache);
4830
	}
4831 4832 4833 4834 4835 4836 4837
	ret = write_one_eb(eb, wbc, epd);
	free_extent_buffer(eb);
	if (ret < 0)
		return ret;
	return 1;
}

4838 4839 4840
int btree_write_cache_pages(struct address_space *mapping,
				   struct writeback_control *wbc)
{
4841
	struct extent_buffer *eb_context = NULL;
4842
	struct extent_page_data epd = {
4843
		.bio_ctrl = { 0 },
4844 4845 4846
		.extent_locked = 0,
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
	};
4847
	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4848 4849 4850 4851 4852 4853 4854 4855
	int ret = 0;
	int done = 0;
	int nr_to_write_done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	int scanned = 0;
M
Matthew Wilcox 已提交
4856
	xa_mark_t tag;
4857

4858
	pagevec_init(&pvec);
4859 4860 4861
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4862 4863 4864 4865 4866
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4867
	} else {
4868 4869
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4870 4871 4872 4873 4874 4875
		scanned = 1;
	}
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4876
	btrfs_zoned_meta_io_lock(fs_info);
4877 4878 4879 4880
retry:
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);
	while (!done && !nr_to_write_done && (index <= end) &&
J
Jan Kara 已提交
4881
	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4882
			tag))) {
4883 4884 4885 4886 4887
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4888 4889
			ret = submit_eb_page(page, wbc, &epd, &eb_context);
			if (ret == 0)
4890
				continue;
4891
			if (ret < 0) {
4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
				done = 1;
				break;
			}

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	if (!scanned && !done) {
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
		goto retry;
	}
4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
	/*
	 * If something went wrong, don't allow any metadata write bio to be
	 * submitted.
	 *
	 * This would prevent use-after-free if we had dirty pages not
	 * cleaned up, which can still happen by fuzzed images.
	 *
	 * - Bad extent tree
	 *   Allowing existing tree block to be allocated for other trees.
	 *
	 * - Log tree operations
	 *   Exiting tree blocks get allocated to log tree, bumps its
	 *   generation, then get cleaned in tree re-balance.
	 *   Such tree block will not be written back, since it's clean,
	 *   thus no WRITTEN flag set.
	 *   And after log writes back, this tree block is not traced by
	 *   any dirty extent_io_tree.
	 *
	 * - Offending tree block gets re-dirtied from its original owner
	 *   Since it has bumped generation, no WRITTEN flag, it can be
	 *   reused without COWing. This tree block will not be traced
	 *   by btrfs_transaction::dirty_pages.
	 *
	 *   Now such dirty tree block will not be cleaned by any dirty
	 *   extent io tree. Thus we don't want to submit such wild eb
	 *   if the fs already has error.
4941
	 *
4942 4943 4944 4945 4946
	 * We can get ret > 0 from submit_extent_page() indicating how many ebs
	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
	 */
	if (ret > 0)
		ret = 0;
4947 4948 4949 4950 4951
	if (!ret && BTRFS_FS_ERROR(fs_info))
		ret = -EROFS;
	submit_write_bio(&epd, ret);

	btrfs_zoned_meta_io_unlock(fs_info);
4952 4953 4954
	return ret;
}

4955
/**
4956 4957
 * Walk the list of dirty pages of the given address space and write all of them.
 *
4958
 * @mapping: address space structure to write
4959 4960
 * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
 * @epd:     holds context for the write, namely the bio
4961 4962 4963 4964 4965 4966 4967 4968 4969
 *
 * If a page is already under I/O, write_cache_pages() skips it, even
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
 */
4970
static int extent_write_cache_pages(struct address_space *mapping,
C
Chris Mason 已提交
4971
			     struct writeback_control *wbc,
4972
			     struct extent_page_data *epd)
4973
{
4974
	struct inode *inode = mapping->host;
4975 4976
	int ret = 0;
	int done = 0;
4977
	int nr_to_write_done = 0;
4978 4979 4980 4981
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
4982 4983
	pgoff_t done_index;
	int range_whole = 0;
4984
	int scanned = 0;
M
Matthew Wilcox 已提交
4985
	xa_mark_t tag;
4986

4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998
	/*
	 * We have to hold onto the inode so that ordered extents can do their
	 * work when the IO finishes.  The alternative to this is failing to add
	 * an ordered extent if the igrab() fails there and that is a huge pain
	 * to deal with, so instead just hold onto the inode throughout the
	 * writepages operation.  If it fails here we are freeing up the inode
	 * anyway and we'd rather not waste our time writing out stuff that is
	 * going to be truncated anyway.
	 */
	if (!igrab(inode))
		return 0;

4999
	pagevec_init(&pvec);
5000 5001 5002
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
5003 5004 5005 5006 5007
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
5008
	} else {
5009 5010
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
5011 5012
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
5013 5014
		scanned = 1;
	}
5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028

	/*
	 * We do the tagged writepage as long as the snapshot flush bit is set
	 * and we are the first one who do the filemap_flush() on this inode.
	 *
	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
	 * not race in and drop the bit.
	 */
	if (range_whole && wbc->nr_to_write == LONG_MAX &&
	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
			       &BTRFS_I(inode)->runtime_flags))
		wbc->tagged_writepages = 1;

	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5029 5030 5031
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
5032
retry:
5033
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5034
		tag_pages_for_writeback(mapping, index, end);
5035
	done_index = index;
5036
	while (!done && !nr_to_write_done && (index <= end) &&
5037 5038
			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
						&index, end, tag))) {
5039 5040 5041 5042 5043
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

5044
			done_index = page->index + 1;
5045
			/*
M
Matthew Wilcox 已提交
5046 5047 5048 5049 5050
			 * At this point we hold neither the i_pages lock nor
			 * the page lock: the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to
			 * tmpfs file mapping
5051
			 */
5052
			if (!trylock_page(page)) {
5053
				submit_write_bio(epd, 0);
5054
				lock_page(page);
5055
			}
5056 5057 5058 5059 5060 5061

			if (unlikely(page->mapping != mapping)) {
				unlock_page(page);
				continue;
			}

C
Chris Mason 已提交
5062
			if (wbc->sync_mode != WB_SYNC_NONE) {
5063
				if (PageWriteback(page))
5064
					submit_write_bio(epd, 0);
5065
				wait_on_page_writeback(page);
C
Chris Mason 已提交
5066
			}
5067 5068 5069 5070 5071 5072 5073

			if (PageWriteback(page) ||
			    !clear_page_dirty_for_io(page)) {
				unlock_page(page);
				continue;
			}

5074
			ret = __extent_writepage(page, wbc, epd);
5075 5076 5077 5078
			if (ret < 0) {
				done = 1;
				break;
			}
5079 5080 5081 5082 5083 5084 5085

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
5086 5087 5088 5089
		}
		pagevec_release(&pvec);
		cond_resched();
	}
5090
	if (!scanned && !done) {
5091 5092 5093 5094 5095 5096
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
5097 5098 5099 5100 5101 5102 5103

		/*
		 * If we're looping we could run into a page that is locked by a
		 * writer and that writer could be waiting on writeback for a
		 * page in our current bio, and thus deadlock, so flush the
		 * write bio here.
		 */
5104
		submit_write_bio(epd, 0);
5105
		goto retry;
5106
	}
5107 5108 5109 5110

	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
		mapping->writeback_index = done_index;

5111
	btrfs_add_delayed_iput(inode);
5112
	return ret;
5113 5114
}

5115 5116 5117 5118 5119 5120
/*
 * Submit the pages in the range to bio for call sites which delalloc range has
 * already been ran (aka, ordered extent inserted) and all pages are still
 * locked.
 */
int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
5121
{
5122 5123
	bool found_error = false;
	int first_error = 0;
5124 5125 5126
	int ret = 0;
	struct address_space *mapping = inode->i_mapping;
	struct page *page;
5127
	u64 cur = start;
5128 5129
	unsigned long nr_pages;
	const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
5130
	struct extent_page_data epd = {
5131
		.bio_ctrl = { 0 },
5132
		.extent_locked = 1,
5133
		.sync_io = 1,
5134 5135
	};
	struct writeback_control wbc_writepages = {
5136
		.sync_mode	= WB_SYNC_ALL,
5137 5138
		.range_start	= start,
		.range_end	= end + 1,
5139 5140 5141
		/* We're called from an async helper function */
		.punt_to_cgroup	= 1,
		.no_cgroup_owner = 1,
5142 5143
	};

5144 5145 5146 5147 5148
	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
	nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
		   PAGE_SHIFT;
	wbc_writepages.nr_to_write = nr_pages * 2;

5149
	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
5150
	while (cur <= end) {
5151 5152
		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);

5153 5154 5155 5156 5157 5158
		page = find_get_page(mapping, cur >> PAGE_SHIFT);
		/*
		 * All pages in the range are locked since
		 * btrfs_run_delalloc_range(), thus there is no way to clear
		 * the page dirty flag.
		 */
5159
		ASSERT(PageLocked(page));
5160 5161 5162 5163 5164 5165 5166
		ASSERT(PageDirty(page));
		clear_page_dirty_for_io(page);
		ret = __extent_writepage(page, &wbc_writepages, &epd);
		ASSERT(ret <= 0);
		if (ret < 0) {
			found_error = true;
			first_error = ret;
5167
		}
5168
		put_page(page);
5169
		cur = cur_end + 1;
5170 5171
	}

5172
	submit_write_bio(&epd, found_error ? ret : 0);
5173 5174

	wbc_detach_inode(&wbc_writepages);
5175 5176
	if (found_error)
		return first_error;
5177 5178
	return ret;
}
5179

5180
int extent_writepages(struct address_space *mapping,
5181 5182
		      struct writeback_control *wbc)
{
5183
	struct inode *inode = mapping->host;
5184 5185
	int ret = 0;
	struct extent_page_data epd = {
5186
		.bio_ctrl = { 0 },
5187
		.extent_locked = 0,
5188
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5189 5190
	};

5191 5192 5193 5194
	/*
	 * Allow only a single thread to do the reloc work in zoned mode to
	 * protect the write pointer updates.
	 */
5195
	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
5196
	ret = extent_write_cache_pages(mapping, wbc, &epd);
5197
	submit_write_bio(&epd, ret);
5198
	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
5199 5200 5201
	return ret;
}

5202
void extent_readahead(struct readahead_control *rac)
5203
{
5204
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
L
Liu Bo 已提交
5205
	struct page *pagepool[16];
5206
	struct extent_map *em_cached = NULL;
5207
	u64 prev_em_start = (u64)-1;
5208
	int nr;
5209

5210
	while ((nr = readahead_page_batch(rac, pagepool))) {
5211 5212
		u64 contig_start = readahead_pos(rac);
		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
5213

5214
		contiguous_readpages(pagepool, nr, contig_start, contig_end,
5215
				&em_cached, &bio_ctrl, &prev_em_start);
5216
	}
L
Liu Bo 已提交
5217

5218 5219
	if (em_cached)
		free_extent_map(em_cached);
5220
	submit_one_bio(&bio_ctrl);
5221 5222 5223
}

/*
5224 5225
 * basic invalidate_folio code, this waits on any locked or writeback
 * ranges corresponding to the folio, and then deletes any extent state
5226 5227
 * records from the tree
 */
5228 5229
int extent_invalidate_folio(struct extent_io_tree *tree,
			  struct folio *folio, size_t offset)
5230
{
5231
	struct extent_state *cached_state = NULL;
5232 5233 5234
	u64 start = folio_pos(folio);
	u64 end = start + folio_size(folio) - 1;
	size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
5235

5236 5237 5238
	/* This function is only called for the btree inode */
	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);

5239
	start += ALIGN(offset, blocksize);
5240 5241 5242
	if (start > end)
		return 0;

5243
	lock_extent_bits(tree, start, end, &cached_state);
5244
	folio_wait_writeback(folio);
5245 5246 5247 5248 5249 5250 5251

	/*
	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
	 * so here we only need to unlock the extent range to free any
	 * existing extent state.
	 */
	unlock_extent_cached(tree, start, end, &cached_state);
5252 5253 5254
	return 0;
}

5255
/*
5256
 * a helper for release_folio, this tests for areas of the page that
5257 5258 5259
 * are locked or under IO and drops the related state bits if it is safe
 * to drop the page.
 */
5260
static int try_release_extent_state(struct extent_io_tree *tree,
5261
				    struct page *page, gfp_t mask)
5262
{
M
Miao Xie 已提交
5263
	u64 start = page_offset(page);
5264
	u64 end = start + PAGE_SIZE - 1;
5265 5266
	int ret = 1;

N
Nikolay Borisov 已提交
5267
	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
5268
		ret = 0;
N
Nikolay Borisov 已提交
5269
	} else {
5270
		/*
5271 5272 5273 5274
		 * At this point we can safely clear everything except the
		 * locked bit, the nodatasum bit and the delalloc new bit.
		 * The delalloc new bit will be cleared by ordered extent
		 * completion.
5275
		 */
5276
		ret = __clear_extent_bit(tree, start, end,
5277 5278
			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
			 0, 0, NULL, mask, NULL);
5279 5280 5281 5282 5283 5284 5285 5286

		/* if clear_extent_bit failed for enomem reasons,
		 * we can't allow the release to continue.
		 */
		if (ret < 0)
			ret = 0;
		else
			ret = 1;
5287 5288 5289 5290
	}
	return ret;
}

5291
/*
5292
 * a helper for release_folio.  As long as there are no locked extents
5293 5294 5295
 * in the range corresponding to the page, both state records and extent
 * map records are removed
 */
5296
int try_release_extent_mapping(struct page *page, gfp_t mask)
5297 5298
{
	struct extent_map *em;
M
Miao Xie 已提交
5299
	u64 start = page_offset(page);
5300
	u64 end = start + PAGE_SIZE - 1;
5301 5302 5303
	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
	struct extent_io_tree *tree = &btrfs_inode->io_tree;
	struct extent_map_tree *map = &btrfs_inode->extent_tree;
5304

5305
	if (gfpflags_allow_blocking(mask) &&
5306
	    page->mapping->host->i_size > SZ_16M) {
5307
		u64 len;
5308
		while (start <= end) {
5309 5310 5311
			struct btrfs_fs_info *fs_info;
			u64 cur_gen;

5312
			len = end - start + 1;
5313
			write_lock(&map->lock);
5314
			em = lookup_extent_mapping(map, start, len);
5315
			if (!em) {
5316
				write_unlock(&map->lock);
5317 5318
				break;
			}
5319 5320
			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
			    em->start != start) {
5321
				write_unlock(&map->lock);
5322 5323 5324
				free_extent_map(em);
				break;
			}
5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335
			if (test_range_bit(tree, em->start,
					   extent_map_end(em) - 1,
					   EXTENT_LOCKED, 0, NULL))
				goto next;
			/*
			 * If it's not in the list of modified extents, used
			 * by a fast fsync, we can remove it. If it's being
			 * logged we can safely remove it since fsync took an
			 * extra reference on the em.
			 */
			if (list_empty(&em->list) ||
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
				goto remove_em;
			/*
			 * If it's in the list of modified extents, remove it
			 * only if its generation is older then the current one,
			 * in which case we don't need it for a fast fsync.
			 * Otherwise don't remove it, we could be racing with an
			 * ongoing fast fsync that could miss the new extent.
			 */
			fs_info = btrfs_inode->root->fs_info;
			spin_lock(&fs_info->trans_lock);
			cur_gen = fs_info->generation;
			spin_unlock(&fs_info->trans_lock);
			if (em->generation >= cur_gen)
				goto next;
remove_em:
5352 5353 5354 5355 5356 5357 5358 5359
			/*
			 * We only remove extent maps that are not in the list of
			 * modified extents or that are in the list but with a
			 * generation lower then the current generation, so there
			 * is no need to set the full fsync flag on the inode (it
			 * hurts the fsync performance for workloads with a data
			 * size that exceeds or is close to the system's memory).
			 */
5360 5361 5362
			remove_extent_mapping(map, em);
			/* once for the rb tree */
			free_extent_map(em);
5363
next:
5364
			start = extent_map_end(em);
5365
			write_unlock(&map->lock);
5366 5367

			/* once for us */
5368
			free_extent_map(em);
5369 5370

			cond_resched(); /* Allow large-extent preemption. */
5371 5372
		}
	}
5373
	return try_release_extent_state(tree, page, mask);
5374 5375
}

5376 5377 5378 5379
/*
 * helper function for fiemap, which doesn't want to see any holes.
 * This maps until we find something past 'last'
 */
5380
static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
5381
						u64 offset, u64 last)
5382
{
5383
	u64 sectorsize = btrfs_inode_sectorsize(inode);
5384 5385 5386 5387 5388 5389
	struct extent_map *em;
	u64 len;

	if (offset >= last)
		return NULL;

5390
	while (1) {
5391 5392 5393
		len = last - offset;
		if (len == 0)
			break;
5394
		len = ALIGN(len, sectorsize);
5395
		em = btrfs_get_extent_fiemap(inode, offset, len);
5396
		if (IS_ERR(em))
5397 5398 5399
			return em;

		/* if this isn't a hole return it */
5400
		if (em->block_start != EXTENT_MAP_HOLE)
5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
			return em;

		/* this is a hole, advance to the next extent */
		offset = extent_map_end(em);
		free_extent_map(em);
		if (offset >= last)
			break;
	}
	return NULL;
}

5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
/*
 * To cache previous fiemap extent
 *
 * Will be used for merging fiemap extent
 */
struct fiemap_cache {
	u64 offset;
	u64 phys;
	u64 len;
	u32 flags;
	bool cached;
};

/*
 * Helper to submit fiemap extent.
 *
 * Will try to merge current fiemap extent specified by @offset, @phys,
 * @len and @flags with cached one.
 * And only when we fails to merge, cached one will be submitted as
 * fiemap extent.
 *
 * Return value is the same as fiemap_fill_next_extent().
 */
static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
				struct fiemap_cache *cache,
				u64 offset, u64 phys, u64 len, u32 flags)
{
	int ret = 0;

	if (!cache->cached)
		goto assign;

	/*
	 * Sanity check, extent_fiemap() should have ensured that new
5446
	 * fiemap extent won't overlap with cached one.
5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497
	 * Not recoverable.
	 *
	 * NOTE: Physical address can overlap, due to compression
	 */
	if (cache->offset + cache->len > offset) {
		WARN_ON(1);
		return -EINVAL;
	}

	/*
	 * Only merges fiemap extents if
	 * 1) Their logical addresses are continuous
	 *
	 * 2) Their physical addresses are continuous
	 *    So truly compressed (physical size smaller than logical size)
	 *    extents won't get merged with each other
	 *
	 * 3) Share same flags except FIEMAP_EXTENT_LAST
	 *    So regular extent won't get merged with prealloc extent
	 */
	if (cache->offset + cache->len  == offset &&
	    cache->phys + cache->len == phys  &&
	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
			(flags & ~FIEMAP_EXTENT_LAST)) {
		cache->len += len;
		cache->flags |= flags;
		goto try_submit_last;
	}

	/* Not mergeable, need to submit cached one */
	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret)
		return ret;
assign:
	cache->cached = true;
	cache->offset = offset;
	cache->phys = phys;
	cache->len = len;
	cache->flags = flags;
try_submit_last:
	if (cache->flags & FIEMAP_EXTENT_LAST) {
		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
				cache->phys, cache->len, cache->flags);
		cache->cached = false;
	}
	return ret;
}

/*
5498
 * Emit last fiemap cache
5499
 *
5500 5501 5502 5503 5504 5505 5506
 * The last fiemap cache may still be cached in the following case:
 * 0		      4k		    8k
 * |<- Fiemap range ->|
 * |<------------  First extent ----------->|
 *
 * In this case, the first extent range will be cached but not emitted.
 * So we must emit it before ending extent_fiemap().
5507
 */
5508
static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5509
				  struct fiemap_cache *cache)
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523
{
	int ret;

	if (!cache->cached)
		return 0;

	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret > 0)
		ret = 0;
	return ret;
}

5524
int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
5525
		  u64 start, u64 len)
Y
Yehuda Sadeh 已提交
5526
{
J
Josef Bacik 已提交
5527
	int ret = 0;
5528
	u64 off;
Y
Yehuda Sadeh 已提交
5529 5530
	u64 max = start + len;
	u32 flags = 0;
J
Josef Bacik 已提交
5531 5532
	u32 found_type;
	u64 last;
5533
	u64 last_for_get_extent = 0;
Y
Yehuda Sadeh 已提交
5534
	u64 disko = 0;
5535
	u64 isize = i_size_read(&inode->vfs_inode);
J
Josef Bacik 已提交
5536
	struct btrfs_key found_key;
Y
Yehuda Sadeh 已提交
5537
	struct extent_map *em = NULL;
5538
	struct extent_state *cached_state = NULL;
J
Josef Bacik 已提交
5539
	struct btrfs_path *path;
5540
	struct btrfs_root *root = inode->root;
5541
	struct fiemap_cache cache = { 0 };
5542 5543
	struct ulist *roots;
	struct ulist *tmp_ulist;
Y
Yehuda Sadeh 已提交
5544
	int end = 0;
5545 5546 5547
	u64 em_start = 0;
	u64 em_len = 0;
	u64 em_end = 0;
Y
Yehuda Sadeh 已提交
5548 5549 5550 5551

	if (len == 0)
		return -EINVAL;

J
Josef Bacik 已提交
5552 5553 5554 5555
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

5556 5557 5558 5559 5560 5561 5562
	roots = ulist_alloc(GFP_KERNEL);
	tmp_ulist = ulist_alloc(GFP_KERNEL);
	if (!roots || !tmp_ulist) {
		ret = -ENOMEM;
		goto out_free_ulist;
	}

5563 5564 5565 5566 5567
	/*
	 * We can't initialize that to 'start' as this could miss extents due
	 * to extent item merging
	 */
	off = 0;
5568 5569
	start = round_down(start, btrfs_inode_sectorsize(inode));
	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5570

5571 5572 5573 5574
	/*
	 * lookup the last file extent.  We're not using i_size here
	 * because there might be preallocation past i_size
	 */
5575 5576
	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
				       0);
J
Josef Bacik 已提交
5577
	if (ret < 0) {
5578
		goto out_free_ulist;
5579 5580 5581 5582
	} else {
		WARN_ON(!ret);
		if (ret == 1)
			ret = 0;
J
Josef Bacik 已提交
5583
	}
5584

J
Josef Bacik 已提交
5585 5586
	path->slots[0]--;
	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5587
	found_type = found_key.type;
J
Josef Bacik 已提交
5588

5589
	/* No extents, but there might be delalloc bits */
5590
	if (found_key.objectid != btrfs_ino(inode) ||
J
Josef Bacik 已提交
5591
	    found_type != BTRFS_EXTENT_DATA_KEY) {
5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
		/* have to trust i_size as the end */
		last = (u64)-1;
		last_for_get_extent = isize;
	} else {
		/*
		 * remember the start of the last extent.  There are a
		 * bunch of different factors that go into the length of the
		 * extent, so its much less complex to remember where it started
		 */
		last = found_key.offset;
		last_for_get_extent = last + 1;
J
Josef Bacik 已提交
5603
	}
5604
	btrfs_release_path(path);
J
Josef Bacik 已提交
5605

5606 5607 5608 5609 5610 5611 5612 5613 5614 5615
	/*
	 * we might have some extents allocated but more delalloc past those
	 * extents.  so, we trust isize unless the start of the last extent is
	 * beyond isize
	 */
	if (last < isize) {
		last = (u64)-1;
		last_for_get_extent = isize;
	}

5616
	lock_extent_bits(&inode->io_tree, start, start + len - 1,
5617
			 &cached_state);
5618

5619
	em = get_extent_skip_holes(inode, start, last_for_get_extent);
Y
Yehuda Sadeh 已提交
5620 5621 5622 5623 5624 5625
	if (!em)
		goto out;
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out;
	}
J
Josef Bacik 已提交
5626

Y
Yehuda Sadeh 已提交
5627
	while (!end) {
5628
		u64 offset_in_extent = 0;
5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640

		/* break if the extent we found is outside the range */
		if (em->start >= max || extent_map_end(em) < off)
			break;

		/*
		 * get_extent may return an extent that starts before our
		 * requested range.  We have to make sure the ranges
		 * we return to fiemap always move forward and don't
		 * overlap, so adjust the offsets here
		 */
		em_start = max(em->start, off);
Y
Yehuda Sadeh 已提交
5641

5642 5643
		/*
		 * record the offset from the start of the extent
5644 5645 5646
		 * for adjusting the disk offset below.  Only do this if the
		 * extent isn't compressed since our in ram offset may be past
		 * what we have actually allocated on disk.
5647
		 */
5648 5649
		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			offset_in_extent = em_start - em->start;
5650
		em_end = extent_map_end(em);
5651
		em_len = em_end - em_start;
Y
Yehuda Sadeh 已提交
5652
		flags = 0;
5653 5654 5655 5656
		if (em->block_start < EXTENT_MAP_LAST_BYTE)
			disko = em->block_start + offset_in_extent;
		else
			disko = 0;
Y
Yehuda Sadeh 已提交
5657

5658 5659 5660 5661 5662 5663 5664
		/*
		 * bump off for our next call to get_extent
		 */
		off = extent_map_end(em);
		if (off >= max)
			end = 1;

5665
		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
Y
Yehuda Sadeh 已提交
5666 5667
			end = 1;
			flags |= FIEMAP_EXTENT_LAST;
5668
		} else if (em->block_start == EXTENT_MAP_INLINE) {
Y
Yehuda Sadeh 已提交
5669 5670
			flags |= (FIEMAP_EXTENT_DATA_INLINE |
				  FIEMAP_EXTENT_NOT_ALIGNED);
5671
		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
Y
Yehuda Sadeh 已提交
5672 5673
			flags |= (FIEMAP_EXTENT_DELALLOC |
				  FIEMAP_EXTENT_UNKNOWN);
5674 5675 5676
		} else if (fieinfo->fi_extents_max) {
			u64 bytenr = em->block_start -
				(em->start - em->orig_start);
5677 5678 5679 5680

			/*
			 * As btrfs supports shared space, this information
			 * can be exported to userspace tools via
5681 5682 5683
			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
			 * then we're just getting a count and we can skip the
			 * lookup stuff.
5684
			 */
5685
			ret = btrfs_check_shared(root, btrfs_ino(inode),
5686
						 bytenr, roots, tmp_ulist);
5687
			if (ret < 0)
5688
				goto out_free;
5689
			if (ret)
5690
				flags |= FIEMAP_EXTENT_SHARED;
5691
			ret = 0;
Y
Yehuda Sadeh 已提交
5692 5693 5694
		}
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			flags |= FIEMAP_EXTENT_ENCODED;
5695 5696
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			flags |= FIEMAP_EXTENT_UNWRITTEN;
Y
Yehuda Sadeh 已提交
5697 5698 5699

		free_extent_map(em);
		em = NULL;
5700 5701
		if ((em_start >= last) || em_len == (u64)-1 ||
		   (last == (u64)-1 && isize <= em_end)) {
Y
Yehuda Sadeh 已提交
5702 5703 5704 5705
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}

5706
		/* now scan forward to see if this is really the last extent. */
5707
		em = get_extent_skip_holes(inode, off, last_for_get_extent);
5708 5709 5710 5711 5712
		if (IS_ERR(em)) {
			ret = PTR_ERR(em);
			goto out;
		}
		if (!em) {
J
Josef Bacik 已提交
5713 5714 5715
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}
5716 5717
		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
					   em_len, flags);
5718 5719 5720
		if (ret) {
			if (ret == 1)
				ret = 0;
5721
			goto out_free;
5722
		}
Y
Yehuda Sadeh 已提交
5723 5724
	}
out_free:
5725
	if (!ret)
5726
		ret = emit_last_fiemap_cache(fieinfo, &cache);
Y
Yehuda Sadeh 已提交
5727 5728
	free_extent_map(em);
out:
5729
	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5730
			     &cached_state);
5731 5732

out_free_ulist:
5733
	btrfs_free_path(path);
5734 5735
	ulist_free(roots);
	ulist_free(tmp_ulist);
Y
Yehuda Sadeh 已提交
5736 5737 5738
	return ret;
}

5739 5740 5741 5742 5743
static void __free_extent_buffer(struct extent_buffer *eb)
{
	kmem_cache_free(extent_buffer_cache, eb);
}

5744
int extent_buffer_under_io(const struct extent_buffer *eb)
5745 5746 5747 5748 5749 5750
{
	return (atomic_read(&eb->io_pages) ||
		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
}

5751
static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5752
{
5753
	struct btrfs_subpage *subpage;
5754

5755
	lockdep_assert_held(&page->mapping->private_lock);
5756

5757 5758 5759 5760
	if (PagePrivate(page)) {
		subpage = (struct btrfs_subpage *)page->private;
		if (atomic_read(&subpage->eb_refs))
			return true;
5761 5762 5763 5764 5765 5766
		/*
		 * Even there is no eb refs here, we may still have
		 * end_page_read() call relying on page::private.
		 */
		if (atomic_read(&subpage->readers))
			return true;
5767 5768 5769
	}
	return false;
}
5770

5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783
static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);

	/*
	 * For mapped eb, we're going to change the page private, which should
	 * be done under the private_lock.
	 */
	if (mapped)
		spin_lock(&page->mapping->private_lock);

	if (!PagePrivate(page)) {
5784
		if (mapped)
5785 5786 5787 5788
			spin_unlock(&page->mapping->private_lock);
		return;
	}

5789
	if (fs_info->nodesize >= PAGE_SIZE) {
5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801
		/*
		 * We do this since we'll remove the pages after we've
		 * removed the eb from the radix tree, so we could race
		 * and have this page now attached to the new eb.  So
		 * only clear page_private if it's still connected to
		 * this eb.
		 */
		if (PagePrivate(page) &&
		    page->private == (unsigned long)eb) {
			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
			BUG_ON(PageDirty(page));
			BUG_ON(PageWriteback(page));
5802
			/*
5803 5804
			 * We need to make sure we haven't be attached
			 * to a new eb.
5805
			 */
5806
			detach_page_private(page);
5807
		}
5808 5809
		if (mapped)
			spin_unlock(&page->mapping->private_lock);
5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826
		return;
	}

	/*
	 * For subpage, we can have dummy eb with page private.  In this case,
	 * we can directly detach the private as such page is only attached to
	 * one dummy eb, no sharing.
	 */
	if (!mapped) {
		btrfs_detach_subpage(fs_info, page);
		return;
	}

	btrfs_page_dec_eb_refs(fs_info, page);

	/*
	 * We can only detach the page private if there are no other ebs in the
5827
	 * page range and no unfinished IO.
5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850
	 */
	if (!page_range_has_eb(fs_info, page))
		btrfs_detach_subpage(fs_info, page);

	spin_unlock(&page->mapping->private_lock);
}

/* Release all pages attached to the extent buffer */
static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
{
	int i;
	int num_pages;

	ASSERT(!extent_buffer_under_io(eb));

	num_pages = num_extent_pages(eb);
	for (i = 0; i < num_pages; i++) {
		struct page *page = eb->pages[i];

		if (!page)
			continue;

		detach_extent_buffer_page(eb, page);
5851

5852
		/* One for when we allocated the page */
5853
		put_page(page);
5854
	}
5855 5856 5857 5858 5859 5860 5861
}

/*
 * Helper for releasing the extent buffer.
 */
static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
{
5862
	btrfs_release_extent_buffer_pages(eb);
5863
	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5864 5865 5866
	__free_extent_buffer(eb);
}

5867 5868
static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5869
		      unsigned long len)
5870 5871 5872
{
	struct extent_buffer *eb = NULL;

5873
	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5874 5875
	eb->start = start;
	eb->len = len;
5876
	eb->fs_info = fs_info;
5877
	eb->bflags = 0;
5878
	init_rwsem(&eb->lock);
5879

5880 5881
	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
			     &fs_info->allocated_ebs);
5882
	INIT_LIST_HEAD(&eb->release_list);
5883

5884
	spin_lock_init(&eb->refs_lock);
5885
	atomic_set(&eb->refs, 1);
5886
	atomic_set(&eb->io_pages, 0);
5887

5888
	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5889 5890 5891 5892

	return eb;
}

5893
struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5894
{
5895
	int i;
5896
	struct extent_buffer *new;
5897
	int num_pages = num_extent_pages(src);
5898
	int ret;
5899

5900
	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5901 5902 5903
	if (new == NULL)
		return NULL;

5904 5905 5906 5907 5908 5909 5910
	/*
	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
	 * btrfs_release_extent_buffer() have different behavior for
	 * UNMAPPED subpage extent buffer.
	 */
	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);

5911 5912 5913 5914 5915 5916 5917
	memset(new->pages, 0, sizeof(*new->pages) * num_pages);
	ret = btrfs_alloc_page_array(num_pages, new->pages);
	if (ret) {
		btrfs_release_extent_buffer(new);
		return NULL;
	}

5918
	for (i = 0; i < num_pages; i++) {
5919
		int ret;
5920
		struct page *p = new->pages[i];
5921 5922 5923 5924 5925 5926

		ret = attach_extent_buffer_page(new, p, NULL);
		if (ret < 0) {
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5927
		WARN_ON(PageDirty(p));
5928
		copy_page(page_address(p), page_address(src->pages[i]));
5929
	}
5930
	set_extent_buffer_uptodate(new);
5931 5932 5933 5934

	return new;
}

5935 5936
struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
						  u64 start, unsigned long len)
5937 5938
{
	struct extent_buffer *eb;
5939 5940
	int num_pages;
	int i;
5941
	int ret;
5942

5943
	eb = __alloc_extent_buffer(fs_info, start, len);
5944 5945 5946
	if (!eb)
		return NULL;

5947
	num_pages = num_extent_pages(eb);
5948 5949 5950 5951
	ret = btrfs_alloc_page_array(num_pages, eb->pages);
	if (ret)
		goto err;

5952
	for (i = 0; i < num_pages; i++) {
5953
		struct page *p = eb->pages[i];
5954

5955
		ret = attach_extent_buffer_page(eb, p, NULL);
5956 5957
		if (ret < 0)
			goto err;
5958
	}
5959

5960 5961
	set_extent_buffer_uptodate(eb);
	btrfs_set_header_nritems(eb, 0);
5962
	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5963 5964 5965

	return eb;
err:
5966 5967 5968 5969 5970
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i]) {
			detach_extent_buffer_page(eb, eb->pages[i]);
			__free_page(eb->pages[i]);
		}
5971
	}
5972 5973 5974 5975
	__free_extent_buffer(eb);
	return NULL;
}

5976
struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5977
						u64 start)
5978
{
5979
	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5980 5981
}

5982 5983
static void check_buffer_tree_ref(struct extent_buffer *eb)
{
5984
	int refs;
5985 5986 5987 5988
	/*
	 * The TREE_REF bit is first set when the extent_buffer is added
	 * to the radix tree. It is also reset, if unset, when a new reference
	 * is created by find_extent_buffer.
5989
	 *
5990 5991
	 * It is only cleared in two cases: freeing the last non-tree
	 * reference to the extent_buffer when its STALE bit is set or
5992
	 * calling release_folio when the tree reference is the only reference.
5993
	 *
5994
	 * In both cases, care is taken to ensure that the extent_buffer's
5995
	 * pages are not under io. However, release_folio can be concurrently
5996 5997 5998
	 * called with creating new references, which is prone to race
	 * conditions between the calls to check_buffer_tree_ref in those
	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5999
	 *
6000 6001 6002 6003 6004 6005 6006
	 * The actual lifetime of the extent_buffer in the radix tree is
	 * adequately protected by the refcount, but the TREE_REF bit and
	 * its corresponding reference are not. To protect against this
	 * class of races, we call check_buffer_tree_ref from the codepaths
	 * which trigger io after they set eb->io_pages. Note that once io is
	 * initiated, TREE_REF can no longer be cleared, so that is the
	 * moment at which any such race is best fixed.
6007
	 */
6008 6009 6010 6011
	refs = atomic_read(&eb->refs);
	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		return;

6012 6013
	spin_lock(&eb->refs_lock);
	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6014
		atomic_inc(&eb->refs);
6015
	spin_unlock(&eb->refs_lock);
6016 6017
}

6018 6019
static void mark_extent_buffer_accessed(struct extent_buffer *eb,
		struct page *accessed)
6020
{
6021
	int num_pages, i;
6022

6023 6024
	check_buffer_tree_ref(eb);

6025
	num_pages = num_extent_pages(eb);
6026
	for (i = 0; i < num_pages; i++) {
6027 6028
		struct page *p = eb->pages[i];

6029 6030
		if (p != accessed)
			mark_page_accessed(p);
6031 6032 6033
	}
}

6034 6035
struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
					 u64 start)
6036 6037 6038
{
	struct extent_buffer *eb;

6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057
	eb = find_extent_buffer_nolock(fs_info, start);
	if (!eb)
		return NULL;
	/*
	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
	 * another task running free_extent_buffer() might have seen that flag
	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
	 * writeback flags not set) and it's still in the tree (flag
	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
	 * decrementing the extent buffer's reference count twice.  So here we
	 * could race and increment the eb's reference count, clear its stale
	 * flag, mark it as dirty and drop our reference before the other task
	 * finishes executing free_extent_buffer, which would later result in
	 * an attempt to free an extent buffer that is dirty.
	 */
	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
		spin_lock(&eb->refs_lock);
		spin_unlock(&eb->refs_lock);
6058
	}
6059 6060
	mark_extent_buffer_accessed(eb, NULL);
	return eb;
6061 6062
}

6063 6064
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
6065
					u64 start)
6066 6067 6068 6069 6070 6071 6072
{
	struct extent_buffer *eb, *exists = NULL;
	int ret;

	eb = find_extent_buffer(fs_info, start);
	if (eb)
		return eb;
6073
	eb = alloc_dummy_extent_buffer(fs_info, start);
6074
	if (!eb)
6075
		return ERR_PTR(-ENOMEM);
6076
	eb->fs_info = fs_info;
6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090
again:
	ret = radix_tree_preload(GFP_NOFS);
	if (ret) {
		exists = ERR_PTR(ret);
		goto free_eb;
	}
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
				start >> fs_info->sectorsize_bits, eb);
	spin_unlock(&fs_info->buffer_lock);
	radix_tree_preload_end();
	if (ret == -EEXIST) {
		exists = find_extent_buffer(fs_info, start);
		if (exists)
6091
			goto free_eb;
6092 6093 6094
		else
			goto again;
	}
6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
	check_buffer_tree_ref(eb);
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);

	return eb;
free_eb:
	btrfs_release_extent_buffer(eb);
	return exists;
}
#endif

6105 6106
static struct extent_buffer *grab_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page)
6107 6108 6109
{
	struct extent_buffer *exists;

6110 6111 6112 6113 6114
	/*
	 * For subpage case, we completely rely on radix tree to ensure we
	 * don't try to insert two ebs for the same bytenr.  So here we always
	 * return NULL and just continue.
	 */
6115
	if (fs_info->nodesize < PAGE_SIZE)
6116 6117
		return NULL;

6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136
	/* Page not yet attached to an extent buffer */
	if (!PagePrivate(page))
		return NULL;

	/*
	 * We could have already allocated an eb for this page and attached one
	 * so lets see if we can get a ref on the existing eb, and if we can we
	 * know it's good and we can just return that one, else we know we can
	 * just overwrite page->private.
	 */
	exists = (struct extent_buffer *)page->private;
	if (atomic_inc_not_zero(&exists->refs))
		return exists;

	WARN_ON(PageDirty(page));
	detach_page_private(page);
	return NULL;
}

6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151
static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
{
	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
		btrfs_err(fs_info, "bad tree block start %llu", start);
		return -EINVAL;
	}

	if (fs_info->nodesize < PAGE_SIZE &&
	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
		btrfs_err(fs_info,
		"tree block crosses page boundary, start %llu nodesize %u",
			  start, fs_info->nodesize);
		return -EINVAL;
	}
	if (fs_info->nodesize >= PAGE_SIZE &&
6152
	    !PAGE_ALIGNED(start)) {
6153 6154 6155 6156 6157 6158 6159 6160
		btrfs_err(fs_info,
		"tree block is not page aligned, start %llu nodesize %u",
			  start, fs_info->nodesize);
		return -EINVAL;
	}
	return 0;
}

6161
struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
6162
					  u64 start, u64 owner_root, int level)
6163
{
6164
	unsigned long len = fs_info->nodesize;
6165 6166
	int num_pages;
	int i;
6167
	unsigned long index = start >> PAGE_SHIFT;
6168
	struct extent_buffer *eb;
6169
	struct extent_buffer *exists = NULL;
6170
	struct page *p;
6171
	struct address_space *mapping = fs_info->btree_inode->i_mapping;
6172
	int uptodate = 1;
6173
	int ret;
6174

6175
	if (check_eb_alignment(fs_info, start))
6176 6177
		return ERR_PTR(-EINVAL);

6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188
#if BITS_PER_LONG == 32
	if (start >= MAX_LFS_FILESIZE) {
		btrfs_err_rl(fs_info,
		"extent buffer %llu is beyond 32bit page cache limit", start);
		btrfs_err_32bit_limit(fs_info);
		return ERR_PTR(-EOVERFLOW);
	}
	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
		btrfs_warn_32bit_limit(fs_info);
#endif

6189
	eb = find_extent_buffer(fs_info, start);
6190
	if (eb)
6191 6192
		return eb;

6193
	eb = __alloc_extent_buffer(fs_info, start, len);
6194
	if (!eb)
6195
		return ERR_PTR(-ENOMEM);
6196
	btrfs_set_buffer_lockdep_class(owner_root, eb, level);
6197

6198
	num_pages = num_extent_pages(eb);
6199
	for (i = 0; i < num_pages; i++, index++) {
6200 6201
		struct btrfs_subpage *prealloc = NULL;

6202
		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
6203 6204
		if (!p) {
			exists = ERR_PTR(-ENOMEM);
6205
			goto free_eb;
6206
		}
J
Josef Bacik 已提交
6207

6208 6209 6210 6211 6212 6213 6214 6215 6216 6217
		/*
		 * Preallocate page->private for subpage case, so that we won't
		 * allocate memory with private_lock hold.  The memory will be
		 * freed by attach_extent_buffer_page() or freed manually if
		 * we exit earlier.
		 *
		 * Although we have ensured one subpage eb can only have one
		 * page, but it may change in the future for 16K page size
		 * support, so we still preallocate the memory in the loop.
		 */
6218
		if (fs_info->nodesize < PAGE_SIZE) {
6219 6220 6221
			prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
			if (IS_ERR(prealloc)) {
				ret = PTR_ERR(prealloc);
6222 6223 6224 6225 6226
				unlock_page(p);
				put_page(p);
				exists = ERR_PTR(ret);
				goto free_eb;
			}
6227 6228
		}

J
Josef Bacik 已提交
6229
		spin_lock(&mapping->private_lock);
6230
		exists = grab_extent_buffer(fs_info, p);
6231 6232 6233 6234 6235
		if (exists) {
			spin_unlock(&mapping->private_lock);
			unlock_page(p);
			put_page(p);
			mark_extent_buffer_accessed(exists, p);
6236
			btrfs_free_subpage(prealloc);
6237
			goto free_eb;
6238
		}
6239 6240 6241
		/* Should not fail, as we have preallocated the memory */
		ret = attach_extent_buffer_page(eb, p, prealloc);
		ASSERT(!ret);
6242 6243 6244 6245 6246 6247 6248 6249 6250 6251
		/*
		 * To inform we have extra eb under allocation, so that
		 * detach_extent_buffer_page() won't release the page private
		 * when the eb hasn't yet been inserted into radix tree.
		 *
		 * The ref will be decreased when the eb released the page, in
		 * detach_extent_buffer_page().
		 * Thus needs no special handling in error path.
		 */
		btrfs_page_inc_eb_refs(fs_info, p);
J
Josef Bacik 已提交
6252
		spin_unlock(&mapping->private_lock);
6253

6254
		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6255
		eb->pages[i] = p;
6256 6257
		if (!PageUptodate(p))
			uptodate = 0;
C
Chris Mason 已提交
6258 6259

		/*
6260 6261
		 * We can't unlock the pages just yet since the extent buffer
		 * hasn't been properly inserted in the radix tree, this
6262
		 * opens a race with btree_release_folio which can free a page
6263 6264
		 * while we are still filling in all pages for the buffer and
		 * we could crash.
C
Chris Mason 已提交
6265
		 */
6266 6267
	}
	if (uptodate)
6268
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
again:
	ret = radix_tree_preload(GFP_NOFS);
	if (ret) {
		exists = ERR_PTR(ret);
		goto free_eb;
	}

	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
				start >> fs_info->sectorsize_bits, eb);
	spin_unlock(&fs_info->buffer_lock);
	radix_tree_preload_end();
	if (ret == -EEXIST) {
		exists = find_extent_buffer(fs_info, start);
		if (exists)
6284
			goto free_eb;
6285 6286 6287
		else
			goto again;
	}
6288
	/* add one reference for the tree */
6289
	check_buffer_tree_ref(eb);
6290
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
C
Chris Mason 已提交
6291 6292

	/*
6293
	 * Now it's safe to unlock the pages because any calls to
6294
	 * btree_release_folio will correctly detect that a page belongs to a
6295
	 * live buffer and won't free them prematurely.
C
Chris Mason 已提交
6296
	 */
6297 6298
	for (i = 0; i < num_pages; i++)
		unlock_page(eb->pages[i]);
6299 6300
	return eb;

6301
free_eb:
6302
	WARN_ON(!atomic_dec_and_test(&eb->refs));
6303 6304 6305 6306
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i])
			unlock_page(eb->pages[i]);
	}
C
Chris Mason 已提交
6307

6308
	btrfs_release_extent_buffer(eb);
6309
	return exists;
6310 6311
}

6312 6313 6314 6315 6316 6317 6318 6319
static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
{
	struct extent_buffer *eb =
			container_of(head, struct extent_buffer, rcu_head);

	__free_extent_buffer(eb);
}

6320
static int release_extent_buffer(struct extent_buffer *eb)
6321
	__releases(&eb->refs_lock)
6322
{
6323 6324
	lockdep_assert_held(&eb->refs_lock);

6325 6326
	WARN_ON(atomic_read(&eb->refs) == 0);
	if (atomic_dec_and_test(&eb->refs)) {
6327
		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6328
			struct btrfs_fs_info *fs_info = eb->fs_info;
6329

6330
			spin_unlock(&eb->refs_lock);
6331

6332 6333 6334 6335
			spin_lock(&fs_info->buffer_lock);
			radix_tree_delete(&fs_info->buffer_radix,
					  eb->start >> fs_info->sectorsize_bits);
			spin_unlock(&fs_info->buffer_lock);
6336 6337
		} else {
			spin_unlock(&eb->refs_lock);
6338
		}
6339

6340
		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6341
		/* Should be safe to release our pages at this point */
6342
		btrfs_release_extent_buffer_pages(eb);
6343
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6344
		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6345 6346 6347 6348
			__free_extent_buffer(eb);
			return 1;
		}
#endif
6349
		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6350
		return 1;
6351 6352
	}
	spin_unlock(&eb->refs_lock);
6353 6354

	return 0;
6355 6356
}

6357 6358
void free_extent_buffer(struct extent_buffer *eb)
{
6359 6360
	int refs;
	int old;
6361 6362 6363
	if (!eb)
		return;

6364 6365
	while (1) {
		refs = atomic_read(&eb->refs);
6366 6367 6368
		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
			refs == 1))
6369 6370 6371 6372 6373 6374
			break;
		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
		if (old == refs)
			return;
	}

6375 6376 6377
	spin_lock(&eb->refs_lock);
	if (atomic_read(&eb->refs) == 2 &&
	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6378
	    !extent_buffer_under_io(eb) &&
6379 6380 6381 6382 6383 6384 6385
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);

	/*
	 * I know this is terrible, but it's temporary until we stop tracking
	 * the uptodate bits and such for the extent buffers.
	 */
6386
	release_extent_buffer(eb);
6387 6388 6389 6390 6391
}

void free_extent_buffer_stale(struct extent_buffer *eb)
{
	if (!eb)
6392 6393
		return;

6394 6395 6396
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);

6397
	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6398 6399
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);
6400
	release_extent_buffer(eb);
6401 6402
}

6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430
static void btree_clear_page_dirty(struct page *page)
{
	ASSERT(PageDirty(page));
	ASSERT(PageLocked(page));
	clear_page_dirty_for_io(page);
	xa_lock_irq(&page->mapping->i_pages);
	if (!PageDirty(page))
		__xa_clear_mark(&page->mapping->i_pages,
				page_index(page), PAGECACHE_TAG_DIRTY);
	xa_unlock_irq(&page->mapping->i_pages);
}

static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
	bool last;

	/* btree_clear_page_dirty() needs page locked */
	lock_page(page);
	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
						  eb->len);
	if (last)
		btree_clear_page_dirty(page);
	unlock_page(page);
	WARN_ON(atomic_read(&eb->refs) == 0);
}

6431
void clear_extent_buffer_dirty(const struct extent_buffer *eb)
6432
{
6433 6434
	int i;
	int num_pages;
6435 6436
	struct page *page;

6437
	if (eb->fs_info->nodesize < PAGE_SIZE)
6438 6439
		return clear_subpage_extent_buffer_dirty(eb);

6440
	num_pages = num_extent_pages(eb);
6441 6442

	for (i = 0; i < num_pages; i++) {
6443
		page = eb->pages[i];
6444
		if (!PageDirty(page))
C
Chris Mason 已提交
6445
			continue;
6446
		lock_page(page);
6447
		btree_clear_page_dirty(page);
6448
		ClearPageError(page);
6449
		unlock_page(page);
6450
	}
6451
	WARN_ON(atomic_read(&eb->refs) == 0);
6452 6453
}

6454
bool set_extent_buffer_dirty(struct extent_buffer *eb)
6455
{
6456 6457
	int i;
	int num_pages;
6458
	bool was_dirty;
6459

6460 6461
	check_buffer_tree_ref(eb);

6462
	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6463

6464
	num_pages = num_extent_pages(eb);
6465
	WARN_ON(atomic_read(&eb->refs) == 0);
6466 6467
	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));

6468
	if (!was_dirty) {
6469
		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
6470

6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489
		/*
		 * For subpage case, we can have other extent buffers in the
		 * same page, and in clear_subpage_extent_buffer_dirty() we
		 * have to clear page dirty without subpage lock held.
		 * This can cause race where our page gets dirty cleared after
		 * we just set it.
		 *
		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
		 * its page for other reasons, we can use page lock to prevent
		 * the above race.
		 */
		if (subpage)
			lock_page(eb->pages[0]);
		for (i = 0; i < num_pages; i++)
			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
					     eb->start, eb->len);
		if (subpage)
			unlock_page(eb->pages[0]);
	}
6490 6491 6492 6493 6494
#ifdef CONFIG_BTRFS_DEBUG
	for (i = 0; i < num_pages; i++)
		ASSERT(PageDirty(eb->pages[i]));
#endif

6495
	return was_dirty;
6496 6497
}

6498
void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6499
{
6500
	struct btrfs_fs_info *fs_info = eb->fs_info;
6501
	struct page *page;
6502
	int num_pages;
6503
	int i;
6504

6505
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6506
	num_pages = num_extent_pages(eb);
6507
	for (i = 0; i < num_pages; i++) {
6508
		page = eb->pages[i];
6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520
		if (!page)
			continue;

		/*
		 * This is special handling for metadata subpage, as regular
		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
		 */
		if (fs_info->nodesize >= PAGE_SIZE)
			ClearPageUptodate(page);
		else
			btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
						     eb->len);
6521 6522 6523
	}
}

6524
void set_extent_buffer_uptodate(struct extent_buffer *eb)
6525
{
6526
	struct btrfs_fs_info *fs_info = eb->fs_info;
6527
	struct page *page;
6528
	int num_pages;
6529
	int i;
6530

6531
	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6532
	num_pages = num_extent_pages(eb);
6533
	for (i = 0; i < num_pages; i++) {
6534
		page = eb->pages[i];
6535 6536 6537 6538 6539 6540 6541 6542 6543 6544

		/*
		 * This is special handling for metadata subpage, as regular
		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
		 */
		if (fs_info->nodesize >= PAGE_SIZE)
			SetPageUptodate(page);
		else
			btrfs_subpage_set_uptodate(fs_info, page, eb->start,
						   eb->len);
6545 6546 6547
	}
}

6548 6549 6550 6551 6552 6553
static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
				      int mirror_num)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct extent_io_tree *io_tree;
	struct page *page = eb->pages[0];
6554 6555 6556
	struct btrfs_bio_ctrl bio_ctrl = {
		.mirror_num = mirror_num,
	};
6557 6558 6559 6560 6561 6562 6563
	int ret = 0;

	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
	ASSERT(PagePrivate(page));
	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;

	if (wait == WAIT_NONE) {
6564 6565
		if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
			return -EAGAIN;
6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586
	} else {
		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		if (ret < 0)
			return ret;
	}

	ret = 0;
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
	    PageUptodate(page) ||
	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		return ret;
	}

	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
	eb->read_mirror = 0;
	atomic_set(&eb->io_pages, 1);
	check_buffer_tree_ref(eb);
	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);

6587
	btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
6588
	ret = submit_extent_page(REQ_OP_READ, NULL, &bio_ctrl,
6589 6590
				 page, eb->start, eb->len,
				 eb->start - page_offset(page),
6591
				 end_bio_extent_readpage, 0, true);
6592 6593 6594 6595 6596 6597 6598 6599
	if (ret) {
		/*
		 * In the endio function, if we hit something wrong we will
		 * increase the io_pages, so here we need to decrease it for
		 * error path.
		 */
		atomic_dec(&eb->io_pages);
	}
6600
	submit_one_bio(&bio_ctrl);
6601 6602 6603 6604 6605 6606 6607 6608 6609
	if (ret || wait != WAIT_COMPLETE)
		return ret;

	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
		ret = -EIO;
	return ret;
}

6610
int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6611
{
6612
	int i;
6613 6614 6615
	struct page *page;
	int err;
	int ret = 0;
6616 6617
	int locked_pages = 0;
	int all_uptodate = 1;
6618
	int num_pages;
6619
	unsigned long num_reads = 0;
6620 6621 6622
	struct btrfs_bio_ctrl bio_ctrl = {
		.mirror_num = mirror_num,
	};
6623

6624
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6625 6626
		return 0;

6627 6628 6629 6630 6631 6632 6633 6634
	/*
	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
	 * operation, which could potentially still be in flight.  In this case
	 * we simply want to return an error.
	 */
	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
		return -EIO;

6635
	if (eb->fs_info->nodesize < PAGE_SIZE)
6636 6637
		return read_extent_buffer_subpage(eb, wait, mirror_num);

6638
	num_pages = num_extent_pages(eb);
6639
	for (i = 0; i < num_pages; i++) {
6640
		page = eb->pages[i];
6641
		if (wait == WAIT_NONE) {
6642 6643 6644 6645 6646 6647 6648
			/*
			 * WAIT_NONE is only utilized by readahead. If we can't
			 * acquire the lock atomically it means either the eb
			 * is being read out or under modification.
			 * Either way the eb will be or has been cached,
			 * readahead can exit safely.
			 */
6649
			if (!trylock_page(page))
6650
				goto unlock_exit;
6651 6652 6653
		} else {
			lock_page(page);
		}
6654
		locked_pages++;
6655 6656 6657 6658 6659 6660
	}
	/*
	 * We need to firstly lock all pages to make sure that
	 * the uptodate bit of our pages won't be affected by
	 * clear_extent_buffer_uptodate().
	 */
6661
	for (i = 0; i < num_pages; i++) {
6662
		page = eb->pages[i];
6663 6664
		if (!PageUptodate(page)) {
			num_reads++;
6665
			all_uptodate = 0;
6666
		}
6667
	}
6668

6669
	if (all_uptodate) {
6670
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6671 6672 6673
		goto unlock_exit;
	}

6674
	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6675
	eb->read_mirror = 0;
6676
	atomic_set(&eb->io_pages, num_reads);
6677
	/*
6678
	 * It is possible for release_folio to clear the TREE_REF bit before we
6679 6680 6681
	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
	 */
	check_buffer_tree_ref(eb);
6682
	for (i = 0; i < num_pages; i++) {
6683
		page = eb->pages[i];
6684

6685
		if (!PageUptodate(page)) {
6686 6687 6688 6689 6690 6691
			if (ret) {
				atomic_dec(&eb->io_pages);
				unlock_page(page);
				continue;
			}

6692
			ClearPageError(page);
6693
			err = submit_extent_page(REQ_OP_READ, NULL,
6694 6695
					 &bio_ctrl, page, page_offset(page),
					 PAGE_SIZE, 0, end_bio_extent_readpage,
6696
					 0, false);
6697 6698
			if (err) {
				/*
6699 6700 6701
				 * We failed to submit the bio so it's the
				 * caller's responsibility to perform cleanup
				 * i.e unlock page/set error bit.
6702
				 */
6703 6704 6705
				ret = err;
				SetPageError(page);
				unlock_page(page);
6706 6707
				atomic_dec(&eb->io_pages);
			}
6708 6709 6710 6711 6712
		} else {
			unlock_page(page);
		}
	}

6713
	submit_one_bio(&bio_ctrl);
6714

6715
	if (ret || wait != WAIT_COMPLETE)
6716
		return ret;
C
Chris Mason 已提交
6717

6718
	for (i = 0; i < num_pages; i++) {
6719
		page = eb->pages[i];
6720
		wait_on_page_locked(page);
C
Chris Mason 已提交
6721
		if (!PageUptodate(page))
6722 6723
			ret = -EIO;
	}
C
Chris Mason 已提交
6724

6725
	return ret;
6726 6727

unlock_exit:
C
Chris Mason 已提交
6728
	while (locked_pages > 0) {
6729
		locked_pages--;
6730 6731
		page = eb->pages[locked_pages];
		unlock_page(page);
6732 6733
	}
	return ret;
6734 6735
}

6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765
static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
			    unsigned long len)
{
	btrfs_warn(eb->fs_info,
		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
		eb->start, eb->len, start, len);
	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));

	return true;
}

/*
 * Check if the [start, start + len) range is valid before reading/writing
 * the eb.
 * NOTE: @start and @len are offset inside the eb, not logical address.
 *
 * Caller should not touch the dst/src memory if this function returns error.
 */
static inline int check_eb_range(const struct extent_buffer *eb,
				 unsigned long start, unsigned long len)
{
	unsigned long offset;

	/* start, start + len should not go beyond eb->len nor overflow */
	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
		return report_eb_range(eb, start, len);

	return false;
}

6766 6767
void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
			unsigned long start, unsigned long len)
6768 6769 6770 6771 6772 6773
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *dst = (char *)dstv;
6774
	unsigned long i = get_eb_page_index(start);
6775

6776
	if (check_eb_range(eb, start, len))
6777
		return;
6778

6779
	offset = get_eb_offset_in_page(eb, start);
6780

C
Chris Mason 已提交
6781
	while (len > 0) {
6782
		page = eb->pages[i];
6783

6784
		cur = min(len, (PAGE_SIZE - offset));
6785
		kaddr = page_address(page);
6786 6787 6788 6789 6790 6791 6792 6793 6794
		memcpy(dst, kaddr + offset, cur);

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6795 6796 6797
int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
				       void __user *dstv,
				       unsigned long start, unsigned long len)
6798 6799 6800 6801 6802 6803
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char __user *dst = (char __user *)dstv;
6804
	unsigned long i = get_eb_page_index(start);
6805 6806 6807 6808 6809
	int ret = 0;

	WARN_ON(start > eb->len);
	WARN_ON(start + len > eb->start + eb->len);

6810
	offset = get_eb_offset_in_page(eb, start);
6811 6812

	while (len > 0) {
6813
		page = eb->pages[i];
6814

6815
		cur = min(len, (PAGE_SIZE - offset));
6816
		kaddr = page_address(page);
6817
		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830
			ret = -EFAULT;
			break;
		}

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}

	return ret;
}

6831 6832
int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
			 unsigned long start, unsigned long len)
6833 6834 6835 6836 6837 6838
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *ptr = (char *)ptrv;
6839
	unsigned long i = get_eb_page_index(start);
6840 6841
	int ret = 0;

6842 6843
	if (check_eb_range(eb, start, len))
		return -EINVAL;
6844

6845
	offset = get_eb_offset_in_page(eb, start);
6846

C
Chris Mason 已提交
6847
	while (len > 0) {
6848
		page = eb->pages[i];
6849

6850
		cur = min(len, (PAGE_SIZE - offset));
6851

6852
		kaddr = page_address(page);
6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864
		ret = memcmp(ptr, kaddr + offset, cur);
		if (ret)
			break;

		ptr += cur;
		len -= cur;
		offset = 0;
		i++;
	}
	return ret;
}

6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875
/*
 * Check that the extent buffer is uptodate.
 *
 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
 */
static void assert_eb_page_uptodate(const struct extent_buffer *eb,
				    struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;

6876 6877 6878 6879 6880 6881 6882 6883 6884
	/*
	 * If we are using the commit root we could potentially clear a page
	 * Uptodate while we're using the extent buffer that we've previously
	 * looked up.  We don't want to complain in this case, as the page was
	 * valid before, we just didn't write it out.  Instead we want to catch
	 * the case where we didn't actually read the block properly, which
	 * would have !PageUptodate && !PageError, as we clear PageError before
	 * reading.
	 */
6885
	if (fs_info->nodesize < PAGE_SIZE) {
6886
		bool uptodate, error;
6887 6888 6889

		uptodate = btrfs_subpage_test_uptodate(fs_info, page,
						       eb->start, eb->len);
6890 6891
		error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len);
		WARN_ON(!uptodate && !error);
6892
	} else {
6893
		WARN_ON(!PageUptodate(page) && !PageError(page));
6894 6895 6896
	}
}

6897
void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6898 6899 6900 6901
		const void *srcv)
{
	char *kaddr;

6902
	assert_eb_page_uptodate(eb, eb->pages[0]);
6903 6904 6905 6906
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
						   chunk_tree_uuid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6907 6908
}

6909
void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6910 6911 6912
{
	char *kaddr;

6913
	assert_eb_page_uptodate(eb, eb->pages[0]);
6914 6915 6916
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6917 6918
}

6919
void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6920 6921 6922 6923 6924 6925 6926
			 unsigned long start, unsigned long len)
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *src = (char *)srcv;
6927
	unsigned long i = get_eb_page_index(start);
6928

6929 6930
	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));

6931 6932
	if (check_eb_range(eb, start, len))
		return;
6933

6934
	offset = get_eb_offset_in_page(eb, start);
6935

C
Chris Mason 已提交
6936
	while (len > 0) {
6937
		page = eb->pages[i];
6938
		assert_eb_page_uptodate(eb, page);
6939

6940
		cur = min(len, PAGE_SIZE - offset);
6941
		kaddr = page_address(page);
6942 6943 6944 6945 6946 6947 6948 6949 6950
		memcpy(kaddr + offset, src, cur);

		src += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6951
void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6952
		unsigned long len)
6953 6954 6955 6956 6957
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
6958
	unsigned long i = get_eb_page_index(start);
6959

6960 6961
	if (check_eb_range(eb, start, len))
		return;
6962

6963
	offset = get_eb_offset_in_page(eb, start);
6964

C
Chris Mason 已提交
6965
	while (len > 0) {
6966
		page = eb->pages[i];
6967
		assert_eb_page_uptodate(eb, page);
6968

6969
		cur = min(len, PAGE_SIZE - offset);
6970
		kaddr = page_address(page);
6971
		memset(kaddr + offset, 0, cur);
6972 6973 6974 6975 6976 6977 6978

		len -= cur;
		offset = 0;
		i++;
	}
}

6979 6980
void copy_extent_buffer_full(const struct extent_buffer *dst,
			     const struct extent_buffer *src)
6981 6982
{
	int i;
6983
	int num_pages;
6984 6985 6986

	ASSERT(dst->len == src->len);

6987
	if (dst->fs_info->nodesize >= PAGE_SIZE) {
6988 6989 6990 6991 6992 6993 6994 6995
		num_pages = num_extent_pages(dst);
		for (i = 0; i < num_pages; i++)
			copy_page(page_address(dst->pages[i]),
				  page_address(src->pages[i]));
	} else {
		size_t src_offset = get_eb_offset_in_page(src, 0);
		size_t dst_offset = get_eb_offset_in_page(dst, 0);

6996
		ASSERT(src->fs_info->nodesize < PAGE_SIZE);
6997 6998 6999 7000
		memcpy(page_address(dst->pages[0]) + dst_offset,
		       page_address(src->pages[0]) + src_offset,
		       src->len);
	}
7001 7002
}

7003 7004
void copy_extent_buffer(const struct extent_buffer *dst,
			const struct extent_buffer *src,
7005 7006 7007 7008 7009 7010 7011 7012
			unsigned long dst_offset, unsigned long src_offset,
			unsigned long len)
{
	u64 dst_len = dst->len;
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
7013
	unsigned long i = get_eb_page_index(dst_offset);
7014

7015 7016 7017 7018
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(src, src_offset, len))
		return;

7019 7020
	WARN_ON(src->len != dst_len);

7021
	offset = get_eb_offset_in_page(dst, dst_offset);
7022

C
Chris Mason 已提交
7023
	while (len > 0) {
7024
		page = dst->pages[i];
7025
		assert_eb_page_uptodate(dst, page);
7026

7027
		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
7028

7029
		kaddr = page_address(page);
7030 7031 7032 7033 7034 7035 7036 7037 7038
		read_extent_buffer(src, kaddr + offset, src_offset, cur);

		src_offset += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051
/*
 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
 * given bit number
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number
 * @page_index: return index of the page in the extent buffer that contains the
 * given bit number
 * @page_offset: return offset into the page given by page_index
 *
 * This helper hides the ugliness of finding the byte in an extent buffer which
 * contains a given bit.
 */
7052
static inline void eb_bitmap_offset(const struct extent_buffer *eb,
7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064
				    unsigned long start, unsigned long nr,
				    unsigned long *page_index,
				    size_t *page_offset)
{
	size_t byte_offset = BIT_BYTE(nr);
	size_t offset;

	/*
	 * The byte we want is the offset of the extent buffer + the offset of
	 * the bitmap item in the extent buffer + the offset of the byte in the
	 * bitmap item.
	 */
7065
	offset = start + offset_in_page(eb->start) + byte_offset;
7066

7067
	*page_index = offset >> PAGE_SHIFT;
7068
	*page_offset = offset_in_page(offset);
7069 7070 7071 7072 7073 7074 7075 7076
}

/**
 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number to test
 */
7077
int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
7078 7079
			   unsigned long nr)
{
7080
	u8 *kaddr;
7081 7082 7083 7084 7085 7086
	struct page *page;
	unsigned long i;
	size_t offset;

	eb_bitmap_offset(eb, start, nr, &i, &offset);
	page = eb->pages[i];
7087
	assert_eb_page_uptodate(eb, page);
7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098
	kaddr = page_address(page);
	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
}

/**
 * extent_buffer_bitmap_set - set an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to set
 */
7099
void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
7100 7101
			      unsigned long pos, unsigned long len)
{
7102
	u8 *kaddr;
7103 7104 7105 7106 7107
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7108
	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
7109 7110 7111

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
7112
	assert_eb_page_uptodate(eb, page);
7113 7114 7115 7116 7117 7118
	kaddr = page_address(page);

	while (len >= bits_to_set) {
		kaddr[offset] |= mask_to_set;
		len -= bits_to_set;
		bits_to_set = BITS_PER_BYTE;
D
Dan Carpenter 已提交
7119
		mask_to_set = ~0;
7120
		if (++offset >= PAGE_SIZE && len > 0) {
7121 7122
			offset = 0;
			page = eb->pages[++i];
7123
			assert_eb_page_uptodate(eb, page);
7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] |= mask_to_set;
	}
}


/**
 * extent_buffer_bitmap_clear - clear an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to clear
 */
7141 7142 7143
void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
				unsigned long start, unsigned long pos,
				unsigned long len)
7144
{
7145
	u8 *kaddr;
7146 7147 7148 7149 7150
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7151
	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
7152 7153 7154

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
7155
	assert_eb_page_uptodate(eb, page);
7156 7157 7158 7159 7160 7161
	kaddr = page_address(page);

	while (len >= bits_to_clear) {
		kaddr[offset] &= ~mask_to_clear;
		len -= bits_to_clear;
		bits_to_clear = BITS_PER_BYTE;
D
Dan Carpenter 已提交
7162
		mask_to_clear = ~0;
7163
		if (++offset >= PAGE_SIZE && len > 0) {
7164 7165
			offset = 0;
			page = eb->pages[++i];
7166
			assert_eb_page_uptodate(eb, page);
7167 7168 7169 7170 7171 7172 7173 7174 7175
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] &= ~mask_to_clear;
	}
}

7176 7177 7178 7179 7180 7181
static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
{
	unsigned long distance = (src > dst) ? src - dst : dst - src;
	return distance < len;
}

7182 7183 7184 7185
static void copy_pages(struct page *dst_page, struct page *src_page,
		       unsigned long dst_off, unsigned long src_off,
		       unsigned long len)
{
7186
	char *dst_kaddr = page_address(dst_page);
7187
	char *src_kaddr;
7188
	int must_memmove = 0;
7189

7190
	if (dst_page != src_page) {
7191
		src_kaddr = page_address(src_page);
7192
	} else {
7193
		src_kaddr = dst_kaddr;
7194 7195
		if (areas_overlap(src_off, dst_off, len))
			must_memmove = 1;
7196
	}
7197

7198 7199 7200 7201
	if (must_memmove)
		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
	else
		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
7202 7203
}

7204 7205 7206
void memcpy_extent_buffer(const struct extent_buffer *dst,
			  unsigned long dst_offset, unsigned long src_offset,
			  unsigned long len)
7207 7208 7209 7210 7211 7212 7213
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_i;
	unsigned long src_i;

7214 7215 7216
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
7217

C
Chris Mason 已提交
7218
	while (len > 0) {
7219 7220
		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
7221

7222 7223
		dst_i = get_eb_page_index(dst_offset);
		src_i = get_eb_page_index(src_offset);
7224

7225
		cur = min(len, (unsigned long)(PAGE_SIZE -
7226 7227
					       src_off_in_page));
		cur = min_t(unsigned long, cur,
7228
			(unsigned long)(PAGE_SIZE - dst_off_in_page));
7229

7230
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7231 7232 7233 7234 7235 7236 7237 7238
			   dst_off_in_page, src_off_in_page, cur);

		src_offset += cur;
		dst_offset += cur;
		len -= cur;
	}
}

7239 7240 7241
void memmove_extent_buffer(const struct extent_buffer *dst,
			   unsigned long dst_offset, unsigned long src_offset,
			   unsigned long len)
7242 7243 7244 7245 7246 7247 7248 7249 7250
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_end = dst_offset + len - 1;
	unsigned long src_end = src_offset + len - 1;
	unsigned long dst_i;
	unsigned long src_i;

7251 7252 7253
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
7254
	if (dst_offset < src_offset) {
7255 7256 7257
		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
		return;
	}
C
Chris Mason 已提交
7258
	while (len > 0) {
7259 7260
		dst_i = get_eb_page_index(dst_end);
		src_i = get_eb_page_index(src_end);
7261

7262 7263
		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
		src_off_in_page = get_eb_offset_in_page(dst, src_end);
7264 7265 7266

		cur = min_t(unsigned long, len, src_off_in_page + 1);
		cur = min(cur, dst_off_in_page + 1);
7267
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7268 7269 7270 7271 7272 7273 7274 7275
			   dst_off_in_page - cur + 1,
			   src_off_in_page - cur + 1, cur);

		dst_end -= cur;
		src_end -= cur;
		len -= cur;
	}
}
7276

7277
#define GANG_LOOKUP_SIZE	16
7278 7279 7280
static struct extent_buffer *get_next_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
7281 7282
	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
	struct extent_buffer *found = NULL;
7283
	u64 page_start = page_offset(page);
7284
	u64 cur = page_start;
7285 7286 7287 7288

	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
	lockdep_assert_held(&fs_info->buffer_lock);

7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309
	while (cur < page_start + PAGE_SIZE) {
		int ret;
		int i;

		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
				(void **)gang, cur >> fs_info->sectorsize_bits,
				min_t(unsigned int, GANG_LOOKUP_SIZE,
				      PAGE_SIZE / fs_info->nodesize));
		if (ret == 0)
			goto out;
		for (i = 0; i < ret; i++) {
			/* Already beyond page end */
			if (gang[i]->start >= page_start + PAGE_SIZE)
				goto out;
			/* Found one */
			if (gang[i]->start >= bytenr) {
				found = gang[i];
				goto out;
			}
		}
		cur = gang[ret - 1]->start + gang[ret - 1]->len;
7310
	}
7311 7312
out:
	return found;
7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384
}

static int try_release_subpage_extent_buffer(struct page *page)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	u64 cur = page_offset(page);
	const u64 end = page_offset(page) + PAGE_SIZE;
	int ret;

	while (cur < end) {
		struct extent_buffer *eb = NULL;

		/*
		 * Unlike try_release_extent_buffer() which uses page->private
		 * to grab buffer, for subpage case we rely on radix tree, thus
		 * we need to ensure radix tree consistency.
		 *
		 * We also want an atomic snapshot of the radix tree, thus go
		 * with spinlock rather than RCU.
		 */
		spin_lock(&fs_info->buffer_lock);
		eb = get_next_extent_buffer(fs_info, page, cur);
		if (!eb) {
			/* No more eb in the page range after or at cur */
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		cur = eb->start + eb->len;

		/*
		 * The same as try_release_extent_buffer(), to ensure the eb
		 * won't disappear out from under us.
		 */
		spin_lock(&eb->refs_lock);
		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
			spin_unlock(&eb->refs_lock);
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		spin_unlock(&fs_info->buffer_lock);

		/*
		 * If tree ref isn't set then we know the ref on this eb is a
		 * real ref, so just return, this eb will likely be freed soon
		 * anyway.
		 */
		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
			spin_unlock(&eb->refs_lock);
			break;
		}

		/*
		 * Here we don't care about the return value, we will always
		 * check the page private at the end.  And
		 * release_extent_buffer() will release the refs_lock.
		 */
		release_extent_buffer(eb);
	}
	/*
	 * Finally to check if we have cleared page private, as if we have
	 * released all ebs in the page, the page private should be cleared now.
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page))
		ret = 1;
	else
		ret = 0;
	spin_unlock(&page->mapping->private_lock);
	return ret;

}

7385
int try_release_extent_buffer(struct page *page)
7386
{
7387 7388
	struct extent_buffer *eb;

7389
	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
7390 7391
		return try_release_subpage_extent_buffer(page);

7392
	/*
7393 7394
	 * We need to make sure nobody is changing page->private, as we rely on
	 * page->private as the pointer to extent buffer.
7395 7396 7397 7398
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&page->mapping->private_lock);
J
Josef Bacik 已提交
7399
		return 1;
7400
	}
7401

7402 7403
	eb = (struct extent_buffer *)page->private;
	BUG_ON(!eb);
7404 7405

	/*
7406 7407 7408
	 * This is a little awful but should be ok, we need to make sure that
	 * the eb doesn't disappear out from under us while we're looking at
	 * this page.
7409
	 */
7410
	spin_lock(&eb->refs_lock);
7411
	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7412 7413 7414
		spin_unlock(&eb->refs_lock);
		spin_unlock(&page->mapping->private_lock);
		return 0;
7415
	}
7416
	spin_unlock(&page->mapping->private_lock);
7417

7418
	/*
7419 7420
	 * If tree ref isn't set then we know the ref on this eb is a real ref,
	 * so just return, this page will likely be freed soon anyway.
7421
	 */
7422 7423 7424
	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
		spin_unlock(&eb->refs_lock);
		return 0;
7425
	}
7426

7427
	return release_extent_buffer(eb);
7428
}
7429 7430 7431 7432 7433

/*
 * btrfs_readahead_tree_block - attempt to readahead a child block
 * @fs_info:	the fs_info
 * @bytenr:	bytenr to read
7434
 * @owner_root: objectid of the root that owns this eb
7435
 * @gen:	generation for the uptodate check, can be 0
7436
 * @level:	level for the eb
7437 7438 7439 7440 7441 7442
 *
 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
 * normal uptodate check of the eb, without checking the generation.  If we have
 * to read the block we will not block on anything.
 */
void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7443
				u64 bytenr, u64 owner_root, u64 gen, int level)
7444 7445 7446 7447
{
	struct extent_buffer *eb;
	int ret;

7448
	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475
	if (IS_ERR(eb))
		return;

	if (btrfs_buffer_uptodate(eb, gen, 1)) {
		free_extent_buffer(eb);
		return;
	}

	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
	if (ret < 0)
		free_extent_buffer_stale(eb);
	else
		free_extent_buffer(eb);
}

/*
 * btrfs_readahead_node_child - readahead a node's child block
 * @node:	parent node we're reading from
 * @slot:	slot in the parent node for the child we want to read
 *
 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
 * the slot in the node provided.
 */
void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
{
	btrfs_readahead_tree_block(node->fs_info,
				   btrfs_node_blockptr(node, slot),
7476 7477 7478
				   btrfs_header_owner(node),
				   btrfs_node_ptr_generation(node, slot),
				   btrfs_header_level(node) - 1);
7479
}