extent_io.c 204.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2

3 4 5 6 7 8
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/bio.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/page-flags.h>
9
#include <linux/sched/mm.h>
10 11 12 13 14
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
15
#include <linux/prefetch.h>
B
Boris Burkov 已提交
16
#include <linux/fsverity.h>
17
#include "misc.h"
18
#include "extent_io.h"
19
#include "extent-io-tree.h"
20
#include "extent_map.h"
21 22
#include "ctree.h"
#include "btrfs_inode.h"
23
#include "volumes.h"
24
#include "check-integrity.h"
25
#include "locking.h"
26
#include "rcu-string.h"
27
#include "backref.h"
28
#include "disk-io.h"
29
#include "subpage.h"
30
#include "zoned.h"
31
#include "block-group.h"
32
#include "compression.h"
33 34 35 36

static struct kmem_cache *extent_state_cache;
static struct kmem_cache *extent_buffer_cache;

37 38 39 40 41
static inline bool extent_state_in_tree(const struct extent_state *state)
{
	return !RB_EMPTY_NODE(&state->rb_node);
}

42
#ifdef CONFIG_BTRFS_DEBUG
43
static LIST_HEAD(states);
C
Chris Mason 已提交
44
static DEFINE_SPINLOCK(leak_lock);
45

46 47 48
static inline void btrfs_leak_debug_add(spinlock_t *lock,
					struct list_head *new,
					struct list_head *head)
49 50 51
{
	unsigned long flags;

52
	spin_lock_irqsave(lock, flags);
53
	list_add(new, head);
54
	spin_unlock_irqrestore(lock, flags);
55 56
}

57 58
static inline void btrfs_leak_debug_del(spinlock_t *lock,
					struct list_head *entry)
59 60 61
{
	unsigned long flags;

62
	spin_lock_irqsave(lock, flags);
63
	list_del(entry);
64
	spin_unlock_irqrestore(lock, flags);
65 66
}

67
void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
68 69
{
	struct extent_buffer *eb;
70
	unsigned long flags;
71

72 73 74 75 76 77 78
	/*
	 * If we didn't get into open_ctree our allocated_ebs will not be
	 * initialized, so just skip this.
	 */
	if (!fs_info->allocated_ebs.next)
		return;

79
	WARN_ON(!list_empty(&fs_info->allocated_ebs));
80 81 82 83
	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
	while (!list_empty(&fs_info->allocated_ebs)) {
		eb = list_first_entry(&fs_info->allocated_ebs,
				      struct extent_buffer, leak_list);
84 85 86 87
		pr_err(
	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
		       btrfs_header_owner(eb));
88 89 90
		list_del(&eb->leak_list);
		kmem_cache_free(extent_buffer_cache, eb);
	}
91
	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
92 93 94 95 96 97
}

static inline void btrfs_extent_state_leak_debug_check(void)
{
	struct extent_state *state;

98 99
	while (!list_empty(&states)) {
		state = list_entry(states.next, struct extent_state, leak_list);
100
		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
101 102
		       state->start, state->end, state->state,
		       extent_state_in_tree(state),
103
		       refcount_read(&state->refs));
104 105 106 107
		list_del(&state->leak_list);
		kmem_cache_free(extent_state_cache, state);
	}
}
108

109 110
#define btrfs_debug_check_extent_io_range(tree, start, end)		\
	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
111
static inline void __btrfs_debug_check_extent_io_range(const char *caller,
112
		struct extent_io_tree *tree, u64 start, u64 end)
113
{
114 115 116 117 118 119 120 121 122 123 124 125
	struct inode *inode = tree->private_data;
	u64 isize;

	if (!inode || !is_data_inode(inode))
		return;

	isize = i_size_read(inode);
	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
	}
126
}
127
#else
128 129
#define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
#define btrfs_leak_debug_del(lock, entry)	do {} while (0)
130
#define btrfs_extent_state_leak_debug_check()	do {} while (0)
131
#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
C
Chris Mason 已提交
132
#endif
133 134 135 136 137 138 139

struct tree_entry {
	u64 start;
	u64 end;
	struct rb_node rb_node;
};

140 141 142 143 144 145
/*
 * Structure to record info about the bio being assembled, and other info like
 * how many bytes are there before stripe/ordered extent boundary.
 */
struct btrfs_bio_ctrl {
	struct bio *bio;
146
	int mirror_num;
147
	enum btrfs_compression_type compress_type;
148 149 150 151
	u32 len_to_stripe_boundary;
	u32 len_to_oe_boundary;
};

152
struct extent_page_data {
153
	struct btrfs_bio_ctrl bio_ctrl;
154 155 156
	/* tells writepage not to lock the state bits for this range
	 * it still does the unlocking
	 */
157 158
	unsigned int extent_locked:1;

159
	/* tells the submit_bio code to use REQ_SYNC */
160
	unsigned int sync_io:1;
161 162
};

163
static int add_extent_changeset(struct extent_state *state, u32 bits,
164 165 166 167 168 169
				 struct extent_changeset *changeset,
				 int set)
{
	int ret;

	if (!changeset)
170
		return 0;
171
	if (set && (state->state & bits) == bits)
172
		return 0;
173
	if (!set && (state->state & bits) == 0)
174
		return 0;
175
	changeset->bytes_changed += state->end - state->start + 1;
176
	ret = ulist_add(&changeset->range_changed, state->start, state->end,
177
			GFP_ATOMIC);
178
	return ret;
179 180
}

181
static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
182
{
183
	struct bio *bio;
184
	struct bio_vec *bv;
185 186 187 188 189
	struct inode *inode;
	int mirror_num;

	if (!bio_ctrl->bio)
		return;
190

191
	bio = bio_ctrl->bio;
192 193
	bv = bio_first_bvec_all(bio);
	inode = bv->bv_page->mapping->host;
194
	mirror_num = bio_ctrl->mirror_num;
195

196 197
	/* Caller should ensure the bio has at least some range added */
	ASSERT(bio->bi_iter.bi_size);
198

199
	btrfs_bio(bio)->file_offset = page_offset(bv->bv_page) + bv->bv_offset;
200

201 202 203 204
	if (!is_data_inode(inode))
		btrfs_submit_metadata_bio(inode, bio, mirror_num);
	else if (btrfs_op(bio) == BTRFS_MAP_WRITE)
		btrfs_submit_data_write_bio(inode, bio, mirror_num);
205
	else
206 207
		btrfs_submit_data_read_bio(inode, bio, mirror_num,
					   bio_ctrl->compress_type);
208

209
	/* The bio is owned by the end_io handler now */
210
	bio_ctrl->bio = NULL;
211 212
}

213
/*
214
 * Submit or fail the current bio in an extent_page_data structure.
215
 */
216
static void submit_write_bio(struct extent_page_data *epd, int ret)
217
{
218
	struct bio *bio = epd->bio_ctrl.bio;
219

220 221 222 223 224
	if (!bio)
		return;

	if (ret) {
		ASSERT(ret < 0);
225 226
		btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
		/* The bio is owned by the end_io handler now */
227
		epd->bio_ctrl.bio = NULL;
228
	} else {
229
		submit_one_bio(&epd->bio_ctrl);
230 231
	}
}
232

233
int __init extent_io_init(void)
234
{
D
David Sterba 已提交
235
	extent_state_cache = kmem_cache_create("btrfs_extent_state",
236
			sizeof(struct extent_state), 0,
237
			SLAB_MEM_SPREAD, NULL);
238 239 240
	if (!extent_state_cache)
		return -ENOMEM;

D
David Sterba 已提交
241
	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
242
			sizeof(struct extent_buffer), 0,
243
			SLAB_MEM_SPREAD, NULL);
244 245
	if (!extent_buffer_cache) {
		kmem_cache_destroy(extent_state_cache);
246
		return -ENOMEM;
247
	}
248

249 250 251
	return 0;
}

252
void __cold extent_io_exit(void)
253
{
254 255 256 257 258
	/*
	 * Make sure all delayed rcu free are flushed before we
	 * destroy caches.
	 */
	rcu_barrier();
259
	kmem_cache_destroy(extent_buffer_cache);
260 261
	btrfs_extent_state_leak_debug_check();
	kmem_cache_destroy(extent_state_cache);
262 263
}

264 265 266 267 268 269 270 271 272
/*
 * For the file_extent_tree, we want to hold the inode lock when we lookup and
 * update the disk_i_size, but lockdep will complain because our io_tree we hold
 * the tree lock and get the inode lock when setting delalloc.  These two things
 * are unrelated, so make a class for the file_extent_tree so we don't get the
 * two locking patterns mixed up.
 */
static struct lock_class_key file_extent_tree_class;

273
void extent_io_tree_init(struct btrfs_fs_info *fs_info,
274 275
			 struct extent_io_tree *tree, unsigned int owner,
			 void *private_data)
276
{
277
	tree->fs_info = fs_info;
278
	tree->state = RB_ROOT;
279
	tree->dirty_bytes = 0;
280
	spin_lock_init(&tree->lock);
281
	tree->private_data = private_data;
282
	tree->owner = owner;
283 284
	if (owner == IO_TREE_INODE_FILE_EXTENT)
		lockdep_set_class(&tree->lock, &file_extent_tree_class);
285 286
}

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
void extent_io_tree_release(struct extent_io_tree *tree)
{
	spin_lock(&tree->lock);
	/*
	 * Do a single barrier for the waitqueue_active check here, the state
	 * of the waitqueue should not change once extent_io_tree_release is
	 * called.
	 */
	smp_mb();
	while (!RB_EMPTY_ROOT(&tree->state)) {
		struct rb_node *node;
		struct extent_state *state;

		node = rb_first(&tree->state);
		state = rb_entry(node, struct extent_state, rb_node);
		rb_erase(&state->rb_node, &tree->state);
		RB_CLEAR_NODE(&state->rb_node);
		/*
		 * btree io trees aren't supposed to have tasks waiting for
		 * changes in the flags of extent states ever.
		 */
		ASSERT(!waitqueue_active(&state->wq));
		free_extent_state(state);

		cond_resched_lock(&tree->lock);
	}
	spin_unlock(&tree->lock);
}

316
static struct extent_state *alloc_extent_state(gfp_t mask)
317 318 319
{
	struct extent_state *state;

320 321 322 323 324
	/*
	 * The given mask might be not appropriate for the slab allocator,
	 * drop the unsupported bits
	 */
	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
325
	state = kmem_cache_alloc(extent_state_cache, mask);
326
	if (!state)
327 328
		return state;
	state->state = 0;
329
	state->failrec = NULL;
330
	RB_CLEAR_NODE(&state->rb_node);
331
	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
332
	refcount_set(&state->refs, 1);
333
	init_waitqueue_head(&state->wq);
334
	trace_alloc_extent_state(state, mask, _RET_IP_);
335 336 337
	return state;
}

338
void free_extent_state(struct extent_state *state)
339 340 341
{
	if (!state)
		return;
342
	if (refcount_dec_and_test(&state->refs)) {
343
		WARN_ON(extent_state_in_tree(state));
344
		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
345
		trace_free_extent_state(state, _RET_IP_);
346 347 348 349
		kmem_cache_free(extent_state_cache, state);
	}
}

N
Nikolay Borisov 已提交
350
/**
351 352
 * Search @tree for an entry that contains @offset. Such entry would have
 * entry->start <= offset && entry->end >= offset.
N
Nikolay Borisov 已提交
353
 *
354 355
 * @tree:       the tree to search
 * @offset:     offset that should fall within an entry in @tree
356
 * @node_ret:   pointer where new node should be anchored (used when inserting an
357 358
 *	        entry in the tree)
 * @parent_ret: points to entry which would have been the parent of the entry,
N
Nikolay Borisov 已提交
359 360
 *               containing @offset
 *
361 362 363 364 365
 * Return a pointer to the entry that contains @offset byte address and don't change
 * @node_ret and @parent_ret.
 *
 * If no such entry exists, return pointer to entry that ends before @offset
 * and fill parameters @node_ret and @parent_ret, ie. does not return NULL.
N
Nikolay Borisov 已提交
366
 */
367 368 369 370
static inline struct rb_node *tree_search_for_insert(struct extent_io_tree *tree,
					             u64 offset,
						     struct rb_node ***node_ret,
						     struct rb_node **parent_ret)
371
{
372
	struct rb_root *root = &tree->state;
373
	struct rb_node **node = &root->rb_node;
374 375 376
	struct rb_node *prev = NULL;
	struct tree_entry *entry;

377 378
	while (*node) {
		prev = *node;
379
		entry = rb_entry(prev, struct tree_entry, rb_node);
380 381

		if (offset < entry->start)
382
			node = &(*node)->rb_left;
383
		else if (offset > entry->end)
384
			node = &(*node)->rb_right;
C
Chris Mason 已提交
385
		else
386
			return *node;
387 388
	}

389 390
	if (node_ret)
		*node_ret = node;
391 392 393
	if (parent_ret)
		*parent_ret = prev;

394 395 396 397
	/* Search neighbors until we find the first one past the end */
	while (prev && offset > entry->end) {
		prev = rb_next(prev);
		entry = rb_entry(prev, struct tree_entry, rb_node);
398 399
	}

400
	return prev;
401 402
}

403 404 405 406
/*
 * Inexact rb-tree search, return the next entry if @offset is not found
 */
static inline struct rb_node *tree_search(struct extent_io_tree *tree, u64 offset)
407
{
408
	return tree_search_for_insert(tree, offset, NULL, NULL);
409 410
}

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
/**
 * Search offset in the tree or fill neighbor rbtree node pointers.
 *
 * @tree:      the tree to search
 * @offset:    offset that should fall within an entry in @tree
 * @next_ret:  pointer to the first entry whose range ends after @offset
 * @prev_ret:  pointer to the first entry whose range begins before @offset
 *
 * Return a pointer to the entry that contains @offset byte address. If no
 * such entry exists, then return NULL and fill @prev_ret and @next_ret.
 * Otherwise return the found entry and other pointers are left untouched.
 */
static struct rb_node *tree_search_prev_next(struct extent_io_tree *tree,
					     u64 offset,
					     struct rb_node **prev_ret,
					     struct rb_node **next_ret)
427
{
428 429 430
	struct rb_root *root = &tree->state;
	struct rb_node **node = &root->rb_node;
	struct rb_node *prev = NULL;
431
	struct rb_node *orig_prev = NULL;
432 433
	struct tree_entry *entry;

434 435 436
	ASSERT(prev_ret);
	ASSERT(next_ret);

437 438 439 440 441 442 443 444 445 446 447 448
	while (*node) {
		prev = *node;
		entry = rb_entry(prev, struct tree_entry, rb_node);

		if (offset < entry->start)
			node = &(*node)->rb_left;
		else if (offset > entry->end)
			node = &(*node)->rb_right;
		else
			return *node;
	}

449
	orig_prev = prev;
450 451 452 453
	while (prev && offset > entry->end) {
		prev = rb_next(prev);
		entry = rb_entry(prev, struct tree_entry, rb_node);
	}
454 455
	*next_ret = prev;
	prev = orig_prev;
456

457 458 459 460 461 462
	entry = rb_entry(prev, struct tree_entry, rb_node);
	while (prev && offset < entry->start) {
		prev = rb_prev(prev);
		entry = rb_entry(prev, struct tree_entry, rb_node);
	}
	*prev_ret = prev;
463

464
	return NULL;
465 466
}

467 468 469 470 471 472 473 474 475
/*
 * utility function to look for merge candidates inside a given range.
 * Any extents with matching state are merged together into a single
 * extent in the tree.  Extents with EXTENT_IO in their state field
 * are not merged because the end_io handlers need to be able to do
 * operations on them without sleeping (or doing allocations/splits).
 *
 * This should be called with the tree lock held.
 */
476 477
static void merge_state(struct extent_io_tree *tree,
		        struct extent_state *state)
478 479 480 481
{
	struct extent_state *other;
	struct rb_node *other_node;

N
Nikolay Borisov 已提交
482
	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
483
		return;
484 485 486 487 488 489

	other_node = rb_prev(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->end == state->start - 1 &&
		    other->state == state->state) {
490 491 492 493
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
494 495
			state->start = other->start;
			rb_erase(&other->rb_node, &tree->state);
496
			RB_CLEAR_NODE(&other->rb_node);
497 498 499 500 501 502 503 504
			free_extent_state(other);
		}
	}
	other_node = rb_next(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->start == state->end + 1 &&
		    other->state == state->state) {
505 506 507 508
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
509 510
			state->end = other->end;
			rb_erase(&other->rb_node, &tree->state);
511
			RB_CLEAR_NODE(&other->rb_node);
512
			free_extent_state(other);
513 514 515 516
		}
	}
}

517
static void set_state_bits(struct extent_io_tree *tree,
518
			   struct extent_state *state, u32 bits,
519
			   struct extent_changeset *changeset);
520

521 522 523 524 525 526 527 528 529 530 531
/*
 * insert an extent_state struct into the tree.  'bits' are set on the
 * struct before it is inserted.
 *
 * This may return -EEXIST if the extent is already there, in which case the
 * state struct is freed.
 *
 * The tree lock is not taken internally.  This is a utility function and
 * probably isn't what you want to call (see set/clear_extent_bit).
 */
static int insert_state(struct extent_io_tree *tree,
532
			struct extent_state *state,
533
			u32 bits, struct extent_changeset *changeset)
534
{
535 536
	struct rb_node **node;
	struct rb_node *parent;
537
	const u64 end = state->end;
J
Josef Bacik 已提交
538

539
	set_state_bits(tree, state, bits, changeset);
540

541 542 543 544 545 546 547 548 549 550 551 552 553 554
	node = &tree->state.rb_node;
	while (*node) {
		struct tree_entry *entry;

		parent = *node;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (end < entry->start) {
			node = &(*node)->rb_left;
		} else if (end > entry->end) {
			node = &(*node)->rb_right;
		} else {
			btrfs_err(tree->fs_info,
			       "found node %llu %llu on insert of %llu %llu",
555
			       entry->start, entry->end, state->start, end);
556 557
			return -EEXIST;
		}
558
	}
559 560 561 562

	rb_link_node(&state->rb_node, parent, node);
	rb_insert_color(&state->rb_node, &tree->state);

563 564 565 566
	merge_state(tree, state);
	return 0;
}

567 568 569 570 571 572 573 574 575 576 577 578 579 580
/*
 * Insert state to @tree to the location given by @node and @parent.
 */
static void insert_state_fast(struct extent_io_tree *tree,
			      struct extent_state *state, struct rb_node **node,
			      struct rb_node *parent, unsigned bits,
			      struct extent_changeset *changeset)
{
	set_state_bits(tree, state, bits, changeset);
	rb_link_node(&state->rb_node, parent, node);
	rb_insert_color(&state->rb_node, &tree->state);
	merge_state(tree, state);
}

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
/*
 * split a given extent state struct in two, inserting the preallocated
 * struct 'prealloc' as the newly created second half.  'split' indicates an
 * offset inside 'orig' where it should be split.
 *
 * Before calling,
 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 * are two extent state structs in the tree:
 * prealloc: [orig->start, split - 1]
 * orig: [ split, orig->end ]
 *
 * The tree locks are not taken by this function. They need to be held
 * by the caller.
 */
static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
		       struct extent_state *prealloc, u64 split)
{
598 599
	struct rb_node *parent = NULL;
	struct rb_node **node;
J
Josef Bacik 已提交
600

601 602
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_split_delalloc_extent(tree->private_data, orig, split);
J
Josef Bacik 已提交
603

604 605 606 607 608
	prealloc->start = orig->start;
	prealloc->end = split - 1;
	prealloc->state = orig->state;
	orig->start = split;

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
	parent = &orig->rb_node;
	node = &parent;
	while (*node) {
		struct tree_entry *entry;

		parent = *node;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (prealloc->end < entry->start) {
			node = &(*node)->rb_left;
		} else if (prealloc->end > entry->end) {
			node = &(*node)->rb_right;
		} else {
			free_extent_state(prealloc);
			return -EEXIST;
		}
625
	}
626 627 628 629

	rb_link_node(&prealloc->rb_node, parent, node);
	rb_insert_color(&prealloc->rb_node, &tree->state);

630 631 632
	return 0;
}

633 634 635 636 637 638 639 640 641
static struct extent_state *next_state(struct extent_state *state)
{
	struct rb_node *next = rb_next(&state->rb_node);
	if (next)
		return rb_entry(next, struct extent_state, rb_node);
	else
		return NULL;
}

642 643
/*
 * utility function to clear some bits in an extent state struct.
644
 * it will optionally wake up anyone waiting on this state (wake == 1).
645 646 647 648
 *
 * If no bits are set on the state struct after clearing things, the
 * struct is freed and removed from the tree
 */
649 650
static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
					    struct extent_state *state,
651
					    u32 bits, int wake,
652
					    struct extent_changeset *changeset)
653
{
654
	struct extent_state *next;
655
	u32 bits_to_clear = bits & ~EXTENT_CTLBITS;
656
	int ret;
657

658
	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
659 660 661 662
		u64 range = state->end - state->start + 1;
		WARN_ON(range > tree->dirty_bytes);
		tree->dirty_bytes -= range;
	}
663 664 665 666

	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_clear_delalloc_extent(tree->private_data, state, bits);

667 668
	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
	BUG_ON(ret < 0);
669
	state->state &= ~bits_to_clear;
670 671
	if (wake)
		wake_up(&state->wq);
672
	if (state->state == 0) {
673
		next = next_state(state);
674
		if (extent_state_in_tree(state)) {
675
			rb_erase(&state->rb_node, &tree->state);
676
			RB_CLEAR_NODE(&state->rb_node);
677 678 679 680 681 682
			free_extent_state(state);
		} else {
			WARN_ON(1);
		}
	} else {
		merge_state(tree, state);
683
		next = next_state(state);
684
	}
685
	return next;
686 687
}

688 689 690 691 692 693 694 695 696
static struct extent_state *
alloc_extent_state_atomic(struct extent_state *prealloc)
{
	if (!prealloc)
		prealloc = alloc_extent_state(GFP_ATOMIC);

	return prealloc;
}

697
static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
698
{
699
	btrfs_panic(tree->fs_info, err,
700
	"locking error: extent tree was modified by another thread while locked");
701 702
}

703 704 705 706 707 708 709 710 711 712
/*
 * clear some bits on a range in the tree.  This may require splitting
 * or inserting elements in the tree, so the gfp mask is used to
 * indicate which allocations or sleeping are allowed.
 *
 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 * the given range from the tree regardless of state (ie for truncate).
 *
 * the range [start, end] is inclusive.
 *
713
 * This takes the tree lock, and returns 0 on success and < 0 on error.
714
 */
715
int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
716 717 718
		       u32 bits, int wake, int delete,
		       struct extent_state **cached_state,
		       gfp_t mask, struct extent_changeset *changeset)
719 720
{
	struct extent_state *state;
721
	struct extent_state *cached;
722 723
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
724
	u64 last_end;
725
	int err;
726
	int clear = 0;
727

728
	btrfs_debug_check_extent_io_range(tree, start, end);
729
	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
730

731 732 733
	if (bits & EXTENT_DELALLOC)
		bits |= EXTENT_NORESERVE;

734 735 736
	if (delete)
		bits |= ~EXTENT_CTLBITS;

N
Nikolay Borisov 已提交
737
	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
738
		clear = 1;
739
again:
740
	if (!prealloc && gfpflags_allow_blocking(mask)) {
741 742 743 744 745 746 747
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
748 749 750
		prealloc = alloc_extent_state(mask);
	}

751
	spin_lock(&tree->lock);
752 753
	if (cached_state) {
		cached = *cached_state;
754 755 756 757 758 759

		if (clear) {
			*cached_state = NULL;
			cached_state = NULL;
		}

760 761
		if (cached && extent_state_in_tree(cached) &&
		    cached->start <= start && cached->end > start) {
762
			if (clear)
763
				refcount_dec(&cached->refs);
764
			state = cached;
765
			goto hit_next;
766
		}
767 768
		if (clear)
			free_extent_state(cached);
769
	}
770 771 772 773
	/*
	 * this search will find the extents that end after
	 * our range starts
	 */
774
	node = tree_search(tree, start);
775 776 777
	if (!node)
		goto out;
	state = rb_entry(node, struct extent_state, rb_node);
778
hit_next:
779 780 781
	if (state->start > end)
		goto out;
	WARN_ON(state->end < start);
782
	last_end = state->end;
783

784
	/* the state doesn't have the wanted bits, go ahead */
785 786
	if (!(state->state & bits)) {
		state = next_state(state);
787
		goto next;
788
	}
789

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
	/*
	 *     | ---- desired range ---- |
	 *  | state | or
	 *  | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip
	 * bits on second half.
	 *
	 * If the extent we found extends past our range, we
	 * just split and search again.  It'll get split again
	 * the next time though.
	 *
	 * If the extent we found is inside our range, we clear
	 * the desired bit on it.
	 */

	if (state->start < start) {
807 808
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
809
		err = split_state(tree, state, prealloc, start);
810 811 812
		if (err)
			extent_io_tree_panic(tree, err);

813 814 815 816
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
817
			state = clear_state_bit(tree, state, bits, wake, changeset);
818
			goto next;
819 820 821 822 823 824 825 826 827 828
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and clear the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
829 830
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
831
		err = split_state(tree, state, prealloc, end + 1);
832 833 834
		if (err)
			extent_io_tree_panic(tree, err);

835 836
		if (wake)
			wake_up(&state->wq);
837

838
		clear_state_bit(tree, prealloc, bits, wake, changeset);
J
Josef Bacik 已提交
839

840 841 842
		prealloc = NULL;
		goto out;
	}
843

844
	state = clear_state_bit(tree, state, bits, wake, changeset);
845
next:
846 847 848
	if (last_end == (u64)-1)
		goto out;
	start = last_end + 1;
849
	if (start <= end && state && !need_resched())
850
		goto hit_next;
851 852 853 854

search_again:
	if (start > end)
		goto out;
855
	spin_unlock(&tree->lock);
856
	if (gfpflags_allow_blocking(mask))
857 858
		cond_resched();
	goto again;
859 860 861 862 863 864 865 866

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return 0;

867 868
}

869 870
static void wait_on_state(struct extent_io_tree *tree,
			  struct extent_state *state)
871 872
		__releases(tree->lock)
		__acquires(tree->lock)
873 874 875
{
	DEFINE_WAIT(wait);
	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
876
	spin_unlock(&tree->lock);
877
	schedule();
878
	spin_lock(&tree->lock);
879 880 881 882 883 884 885 886
	finish_wait(&state->wq, &wait);
}

/*
 * waits for one or more bits to clear on a range in the state tree.
 * The range [start, end] is inclusive.
 * The tree lock is taken by this function
 */
887
static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
888
			    u32 bits)
889 890 891 892
{
	struct extent_state *state;
	struct rb_node *node;

893
	btrfs_debug_check_extent_io_range(tree, start, end);
894

895
	spin_lock(&tree->lock);
896 897 898 899 900 901
again:
	while (1) {
		/*
		 * this search will find all the extents that end after
		 * our range starts
		 */
902
		node = tree_search(tree, start);
903
process_node:
904 905 906 907 908 909 910 911 912 913
		if (!node)
			break;

		state = rb_entry(node, struct extent_state, rb_node);

		if (state->start > end)
			goto out;

		if (state->state & bits) {
			start = state->start;
914
			refcount_inc(&state->refs);
915 916 917 918 919 920 921 922 923
			wait_on_state(tree, state);
			free_extent_state(state);
			goto again;
		}
		start = state->end + 1;

		if (start > end)
			break;

924 925 926 927
		if (!cond_resched_lock(&tree->lock)) {
			node = rb_next(node);
			goto process_node;
		}
928 929
	}
out:
930
	spin_unlock(&tree->lock);
931 932
}

933
static void set_state_bits(struct extent_io_tree *tree,
934
			   struct extent_state *state,
935
			   u32 bits, struct extent_changeset *changeset)
936
{
937
	u32 bits_to_set = bits & ~EXTENT_CTLBITS;
938
	int ret;
J
Josef Bacik 已提交
939

940 941 942
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_set_delalloc_extent(tree->private_data, state, bits);

943
	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
944 945 946
		u64 range = state->end - state->start + 1;
		tree->dirty_bytes += range;
	}
947 948
	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
	BUG_ON(ret < 0);
949
	state->state |= bits_to_set;
950 951
}

952 953
static void cache_state_if_flags(struct extent_state *state,
				 struct extent_state **cached_ptr,
954
				 unsigned flags)
955 956
{
	if (cached_ptr && !(*cached_ptr)) {
957
		if (!flags || (state->state & flags)) {
958
			*cached_ptr = state;
959
			refcount_inc(&state->refs);
960 961 962 963
		}
	}
}

964 965 966 967
static void cache_state(struct extent_state *state,
			struct extent_state **cached_ptr)
{
	return cache_state_if_flags(state, cached_ptr,
N
Nikolay Borisov 已提交
968
				    EXTENT_LOCKED | EXTENT_BOUNDARY);
969 970
}

971
/*
972 973
 * set some bits on a range in the tree.  This may require allocations or
 * sleeping, so the gfp mask is used to indicate what is allowed.
974
 *
975 976 977
 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 * part of the range already has the desired bits set.  The start of the
 * existing range is returned in failed_start in this case.
978
 *
979
 * [start, end] is inclusive This takes the tree lock.
980
 */
981 982
int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
		   u32 exclusive_bits, u64 *failed_start,
983 984
		   struct extent_state **cached_state, gfp_t mask,
		   struct extent_changeset *changeset)
985 986 987 988
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
989 990
	struct rb_node **p;
	struct rb_node *parent;
991 992 993
	int err = 0;
	u64 last_start;
	u64 last_end;
994

995
	btrfs_debug_check_extent_io_range(tree, start, end);
996
	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
997

998 999 1000 1001
	if (exclusive_bits)
		ASSERT(failed_start);
	else
		ASSERT(failed_start == NULL);
1002
again:
1003
	if (!prealloc && gfpflags_allow_blocking(mask)) {
1004 1005 1006 1007 1008 1009 1010
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
1011 1012 1013
		prealloc = alloc_extent_state(mask);
	}

1014
	spin_lock(&tree->lock);
1015 1016
	if (cached_state && *cached_state) {
		state = *cached_state;
1017
		if (state->start <= start && state->end > start &&
1018
		    extent_state_in_tree(state)) {
1019 1020 1021 1022
			node = &state->rb_node;
			goto hit_next;
		}
	}
1023 1024 1025 1026
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1027
	node = tree_search_for_insert(tree, start, &p, &parent);
1028
	if (!node) {
1029 1030
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1031 1032
		prealloc->start = start;
		prealloc->end = end;
1033
		insert_state_fast(tree, prealloc, p, parent, bits, changeset);
1034
		cache_state(prealloc, cached_state);
1035 1036 1037 1038
		prealloc = NULL;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1039
hit_next:
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1050
		if (state->state & exclusive_bits) {
1051 1052 1053 1054
			*failed_start = state->start;
			err = -EEXIST;
			goto out;
		}
1055

1056
		set_state_bits(tree, state, bits, changeset);
1057
		cache_state(state, cached_state);
1058
		merge_state(tree, state);
1059 1060 1061
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1062 1063 1064 1065
		state = next_state(state);
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
1086
		if (state->state & exclusive_bits) {
1087 1088 1089 1090
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1091

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
		/*
		 * If this extent already has all the bits we want set, then
		 * skip it, not necessary to split it or do anything with it.
		 */
		if ((state->state & bits) == bits) {
			start = state->end + 1;
			cache_state(state, cached_state);
			goto search_again;
		}

1102 1103
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1104
		err = split_state(tree, state, prealloc, start);
1105 1106 1107
		if (err)
			extent_io_tree_panic(tree, err);

1108 1109 1110 1111
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1112
			set_state_bits(tree, state, bits, changeset);
1113
			cache_state(state, cached_state);
1114
			merge_state(tree, state);
1115 1116 1117
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1118 1119 1120 1121
			state = next_state(state);
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
C
Chris Mason 已提交
1137
			this_end = last_start - 1;
1138 1139 1140

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1141 1142 1143 1144 1145

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
1146 1147
		prealloc->start = start;
		prealloc->end = this_end;
1148
		err = insert_state(tree, prealloc, bits, changeset);
1149 1150 1151
		if (err)
			extent_io_tree_panic(tree, err);

J
Josef Bacik 已提交
1152 1153
		cache_state(prealloc, cached_state);
		prealloc = NULL;
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
1164
		if (state->state & exclusive_bits) {
1165 1166 1167 1168
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1169 1170 1171

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1172
		err = split_state(tree, state, prealloc, end + 1);
1173 1174
		if (err)
			extent_io_tree_panic(tree, err);
1175

1176
		set_state_bits(tree, prealloc, bits, changeset);
1177
		cache_state(prealloc, cached_state);
1178 1179 1180 1181 1182
		merge_state(tree, prealloc);
		prealloc = NULL;
		goto out;
	}

1183 1184 1185 1186 1187 1188 1189
search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
	if (gfpflags_allow_blocking(mask))
		cond_resched();
	goto again;
1190 1191

out:
1192
	spin_unlock(&tree->lock);
1193 1194 1195 1196 1197 1198 1199
	if (prealloc)
		free_extent_state(prealloc);

	return err;

}

J
Josef Bacik 已提交
1200
/**
L
Liu Bo 已提交
1201 1202
 * convert_extent_bit - convert all bits in a given range from one bit to
 * 			another
J
Josef Bacik 已提交
1203 1204 1205 1206 1207
 * @tree:	the io tree to search
 * @start:	the start offset in bytes
 * @end:	the end offset in bytes (inclusive)
 * @bits:	the bits to set in this range
 * @clear_bits:	the bits to clear in this range
1208
 * @cached_state:	state that we're going to cache
J
Josef Bacik 已提交
1209 1210 1211 1212 1213 1214
 *
 * This will go through and set bits for the given range.  If any states exist
 * already in this range they are set with the given bit and cleared of the
 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 * boundary bits like LOCK.
1215 1216
 *
 * All allocations are done with GFP_NOFS.
J
Josef Bacik 已提交
1217 1218
 */
int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1219
		       u32 bits, u32 clear_bits,
1220
		       struct extent_state **cached_state)
J
Josef Bacik 已提交
1221 1222 1223 1224
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
1225 1226
	struct rb_node **p;
	struct rb_node *parent;
J
Josef Bacik 已提交
1227 1228 1229
	int err = 0;
	u64 last_start;
	u64 last_end;
1230
	bool first_iteration = true;
J
Josef Bacik 已提交
1231

1232
	btrfs_debug_check_extent_io_range(tree, start, end);
1233 1234
	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
				       clear_bits);
1235

J
Josef Bacik 已提交
1236
again:
1237
	if (!prealloc) {
1238 1239 1240 1241 1242 1243 1244
		/*
		 * Best effort, don't worry if extent state allocation fails
		 * here for the first iteration. We might have a cached state
		 * that matches exactly the target range, in which case no
		 * extent state allocations are needed. We'll only know this
		 * after locking the tree.
		 */
1245
		prealloc = alloc_extent_state(GFP_NOFS);
1246
		if (!prealloc && !first_iteration)
J
Josef Bacik 已提交
1247 1248 1249 1250
			return -ENOMEM;
	}

	spin_lock(&tree->lock);
1251 1252 1253
	if (cached_state && *cached_state) {
		state = *cached_state;
		if (state->start <= start && state->end > start &&
1254
		    extent_state_in_tree(state)) {
1255 1256 1257 1258 1259
			node = &state->rb_node;
			goto hit_next;
		}
	}

J
Josef Bacik 已提交
1260 1261 1262 1263
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1264
	node = tree_search_for_insert(tree, start, &p, &parent);
J
Josef Bacik 已提交
1265 1266
	if (!node) {
		prealloc = alloc_extent_state_atomic(prealloc);
1267 1268 1269 1270
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
1271 1272
		prealloc->start = start;
		prealloc->end = end;
1273
		insert_state_fast(tree, prealloc, p, parent, bits, NULL);
1274 1275
		cache_state(prealloc, cached_state);
		prealloc = NULL;
J
Josef Bacik 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
hit_next:
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1290
		set_state_bits(tree, state, bits, NULL);
1291
		cache_state(state, cached_state);
1292
		state = clear_state_bit(tree, state, clear_bits, 0, NULL);
J
Josef Bacik 已提交
1293 1294 1295
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1296 1297 1298
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
J
Josef Bacik 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
		prealloc = alloc_extent_state_atomic(prealloc);
1320 1321 1322 1323
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1324
		err = split_state(tree, state, prealloc, start);
1325 1326
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1327 1328 1329 1330
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1331
			set_state_bits(tree, state, bits, NULL);
1332
			cache_state(state, cached_state);
1333
			state = clear_state_bit(tree, state, clear_bits, 0, NULL);
J
Josef Bacik 已提交
1334 1335 1336
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1337 1338 1339
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
J
Josef Bacik 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
			this_end = last_start - 1;

		prealloc = alloc_extent_state_atomic(prealloc);
1358 1359 1360 1361
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1362 1363 1364 1365 1366

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
1367 1368
		prealloc->start = start;
		prealloc->end = this_end;
1369
		err = insert_state(tree, prealloc, bits, NULL);
1370 1371
		if (err)
			extent_io_tree_panic(tree, err);
1372
		cache_state(prealloc, cached_state);
J
Josef Bacik 已提交
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
		prealloc = NULL;
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
		prealloc = alloc_extent_state_atomic(prealloc);
1385 1386 1387 1388
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1389 1390

		err = split_state(tree, state, prealloc, end + 1);
1391 1392
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1393

1394
		set_state_bits(tree, prealloc, bits, NULL);
1395
		cache_state(prealloc, cached_state);
1396
		clear_state_bit(tree, prealloc, clear_bits, 0, NULL);
J
Josef Bacik 已提交
1397 1398 1399 1400 1401 1402 1403 1404
		prealloc = NULL;
		goto out;
	}

search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
1405
	cond_resched();
1406
	first_iteration = false;
J
Josef Bacik 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	goto again;

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return err;
}

1417
/* wrappers around set/clear extent bit */
1418
int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1419
			   u32 bits, struct extent_changeset *changeset)
1420 1421 1422 1423 1424 1425 1426 1427 1428
{
	/*
	 * We don't support EXTENT_LOCKED yet, as current changeset will
	 * record any bits changed, so for EXTENT_LOCKED case, it will
	 * either fail with -EEXIST or changeset will record the whole
	 * range.
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1429 1430
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
			      changeset);
1431 1432
}

1433
int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1434
			   u32 bits)
1435
{
1436 1437
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
			      GFP_NOWAIT, NULL);
1438 1439
}

1440
int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1441
		     u32 bits, int wake, int delete,
1442
		     struct extent_state **cached)
1443 1444
{
	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1445
				  cached, GFP_NOFS, NULL);
1446 1447 1448
}

int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1449
		u32 bits, struct extent_changeset *changeset)
1450 1451 1452 1453 1454 1455 1456
{
	/*
	 * Don't support EXTENT_LOCKED case, same reason as
	 * set_record_extent_bits().
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1457
	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1458 1459 1460
				  changeset);
}

C
Chris Mason 已提交
1461 1462 1463 1464
/*
 * either insert or lock state struct between start and end use mask to tell
 * us if waiting is desired.
 */
1465
int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1466
		     struct extent_state **cached_state)
1467 1468 1469
{
	int err;
	u64 failed_start;
1470

1471
	while (1) {
1472 1473 1474
		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
				     EXTENT_LOCKED, &failed_start,
				     cached_state, GFP_NOFS, NULL);
1475
		if (err == -EEXIST) {
1476 1477
			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
			start = failed_start;
1478
		} else
1479 1480 1481 1482 1483 1484
			break;
		WARN_ON(start > end);
	}
	return err;
}

1485
int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1486 1487 1488 1489
{
	int err;
	u64 failed_start;

1490 1491
	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
			     &failed_start, NULL, GFP_NOFS, NULL);
Y
Yan Zheng 已提交
1492 1493 1494
	if (err == -EEXIST) {
		if (failed_start > start)
			clear_extent_bit(tree, start, failed_start - 1,
1495
					 EXTENT_LOCKED, 1, 0, NULL);
1496
		return 0;
Y
Yan Zheng 已提交
1497
	}
1498 1499 1500
	return 1;
}

1501
void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1502
{
1503 1504
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1505 1506 1507 1508 1509 1510
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		clear_page_dirty_for_io(page);
1511
		put_page(page);
1512 1513 1514 1515
		index++;
	}
}

1516
void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1517
{
1518
	struct address_space *mapping = inode->i_mapping;
1519 1520
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1521
	struct folio *folio;
1522 1523

	while (index <= end_index) {
1524 1525 1526 1527 1528
		folio = filemap_get_folio(mapping, index);
		filemap_dirty_folio(mapping, folio);
		folio_account_redirty(folio);
		index += folio_nr_pages(folio);
		folio_put(folio);
1529 1530 1531
	}
}

C
Chris Mason 已提交
1532 1533 1534 1535
/* find the first state struct with 'bits' set after 'start', and
 * return it.  tree->lock must be held.  NULL will returned if
 * nothing was found after 'start'
 */
1536
static struct extent_state *
1537
find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
C
Chris Mason 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546
{
	struct rb_node *node;
	struct extent_state *state;

	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
	node = tree_search(tree, start);
C
Chris Mason 已提交
1547
	if (!node)
C
Chris Mason 已提交
1548 1549
		goto out;

C
Chris Mason 已提交
1550
	while (1) {
C
Chris Mason 已提交
1551
		state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1552
		if (state->end >= start && (state->state & bits))
C
Chris Mason 已提交
1553
			return state;
C
Chris Mason 已提交
1554

C
Chris Mason 已提交
1555 1556 1557 1558 1559 1560 1561 1562
		node = rb_next(node);
		if (!node)
			break;
	}
out:
	return NULL;
}

1563
/*
1564
 * Find the first offset in the io tree with one or more @bits set.
1565
 *
1566 1567 1568 1569
 * Note: If there are multiple bits set in @bits, any of them will match.
 *
 * Return 0 if we find something, and update @start_ret and @end_ret.
 * Return 1 if we found nothing.
1570 1571
 */
int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1572
			  u64 *start_ret, u64 *end_ret, u32 bits,
1573
			  struct extent_state **cached_state)
1574 1575 1576 1577 1578
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
1579 1580
	if (cached_state && *cached_state) {
		state = *cached_state;
1581
		if (state->end == start - 1 && extent_state_in_tree(state)) {
1582
			while ((state = next_state(state)) != NULL) {
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
				if (state->state & bits)
					goto got_it;
			}
			free_extent_state(*cached_state);
			*cached_state = NULL;
			goto out;
		}
		free_extent_state(*cached_state);
		*cached_state = NULL;
	}

1594
	state = find_first_extent_bit_state(tree, start, bits);
1595
got_it:
1596
	if (state) {
1597
		cache_state_if_flags(state, cached_state, 0);
1598 1599 1600 1601
		*start_ret = state->start;
		*end_ret = state->end;
		ret = 0;
	}
1602
out:
1603 1604 1605 1606
	spin_unlock(&tree->lock);
	return ret;
}

1607
/**
1608 1609 1610 1611 1612 1613 1614
 * Find a contiguous area of bits
 *
 * @tree:      io tree to check
 * @start:     offset to start the search from
 * @start_ret: the first offset we found with the bits set
 * @end_ret:   the final contiguous range of the bits that were set
 * @bits:      bits to look for
1615 1616 1617 1618 1619 1620 1621 1622 1623
 *
 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
 * to set bits appropriately, and then merge them again.  During this time it
 * will drop the tree->lock, so use this helper if you want to find the actual
 * contiguous area for given bits.  We will search to the first bit we find, and
 * then walk down the tree until we find a non-contiguous area.  The area
 * returned will be the full contiguous area with the bits set.
 */
int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1624
			       u64 *start_ret, u64 *end_ret, u32 bits)
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
	state = find_first_extent_bit_state(tree, start, bits);
	if (state) {
		*start_ret = state->start;
		*end_ret = state->end;
		while ((state = next_state(state)) != NULL) {
			if (state->start > (*end_ret + 1))
				break;
			*end_ret = state->end;
		}
		ret = 0;
	}
	spin_unlock(&tree->lock);
	return ret;
}

1645
/**
1646 1647
 * Find the first range that has @bits not set. This range could start before
 * @start.
1648
 *
1649 1650 1651 1652 1653
 * @tree:      the tree to search
 * @start:     offset at/after which the found extent should start
 * @start_ret: records the beginning of the range
 * @end_ret:   records the end of the range (inclusive)
 * @bits:      the set of bits which must be unset
1654 1655 1656 1657 1658 1659 1660
 *
 * Since unallocated range is also considered one which doesn't have the bits
 * set it's possible that @end_ret contains -1, this happens in case the range
 * spans (last_range_end, end of device]. In this case it's up to the caller to
 * trim @end_ret to the appropriate size.
 */
void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1661
				 u64 *start_ret, u64 *end_ret, u32 bits)
1662 1663 1664 1665 1666 1667 1668 1669
{
	struct extent_state *state;
	struct rb_node *node, *prev = NULL, *next;

	spin_lock(&tree->lock);

	/* Find first extent with bits cleared */
	while (1) {
1670
		node = tree_search_prev_next(tree, start, &prev, &next);
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
		if (!node && !next && !prev) {
			/*
			 * Tree is completely empty, send full range and let
			 * caller deal with it
			 */
			*start_ret = 0;
			*end_ret = -1;
			goto out;
		} else if (!node && !next) {
			/*
			 * We are past the last allocated chunk, set start at
			 * the end of the last extent.
			 */
			state = rb_entry(prev, struct extent_state, rb_node);
			*start_ret = state->end + 1;
			*end_ret = -1;
			goto out;
		} else if (!node) {
1689 1690
			node = next;
		}
1691 1692 1693 1694
		/*
		 * At this point 'node' either contains 'start' or start is
		 * before 'node'
		 */
1695
		state = rb_entry(node, struct extent_state, rb_node);
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717

		if (in_range(start, state->start, state->end - state->start + 1)) {
			if (state->state & bits) {
				/*
				 * |--range with bits sets--|
				 *    |
				 *    start
				 */
				start = state->end + 1;
			} else {
				/*
				 * 'start' falls within a range that doesn't
				 * have the bits set, so take its start as
				 * the beginning of the desired range
				 *
				 * |--range with bits cleared----|
				 *      |
				 *      start
				 */
				*start_ret = state->start;
				break;
			}
1718
		} else {
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
			/*
			 * |---prev range---|---hole/unset---|---node range---|
			 *                          |
			 *                        start
			 *
			 *                        or
			 *
			 * |---hole/unset--||--first node--|
			 * 0   |
			 *    start
			 */
			if (prev) {
				state = rb_entry(prev, struct extent_state,
						 rb_node);
				*start_ret = state->end + 1;
			} else {
				*start_ret = 0;
			}
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
			break;
		}
	}

	/*
	 * Find the longest stretch from start until an entry which has the
	 * bits set
	 */
	while (1) {
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->end >= start && !(state->state & bits)) {
			*end_ret = state->end;
		} else {
			*end_ret = state->start - 1;
			break;
		}

		node = rb_next(node);
		if (!node)
			break;
	}
out:
	spin_unlock(&tree->lock);
}

C
Chris Mason 已提交
1762 1763 1764 1765
/*
 * find a contiguous range of bytes in the file marked as delalloc, not
 * more than 'max_bytes'.  start and end are used to return the range,
 *
1766
 * true is returned if we find something, false if nothing was in the tree
C
Chris Mason 已提交
1767
 */
J
Josef Bacik 已提交
1768 1769 1770
bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
			       u64 *end, u64 max_bytes,
			       struct extent_state **cached_state)
1771 1772 1773 1774
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
1775
	bool found = false;
1776 1777
	u64 total_bytes = 0;

1778
	spin_lock(&tree->lock);
C
Chris Mason 已提交
1779

1780 1781 1782 1783
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1784
	node = tree_search(tree, cur_start);
1785
	if (!node) {
1786
		*end = (u64)-1;
1787 1788 1789
		goto out;
	}

C
Chris Mason 已提交
1790
	while (1) {
1791
		state = rb_entry(node, struct extent_state, rb_node);
1792 1793
		if (found && (state->start != cur_start ||
			      (state->state & EXTENT_BOUNDARY))) {
1794 1795 1796 1797 1798 1799 1800
			goto out;
		}
		if (!(state->state & EXTENT_DELALLOC)) {
			if (!found)
				*end = state->end;
			goto out;
		}
1801
		if (!found) {
1802
			*start = state->start;
1803
			*cached_state = state;
1804
			refcount_inc(&state->refs);
1805
		}
1806
		found = true;
1807 1808 1809 1810
		*end = state->end;
		cur_start = state->end + 1;
		node = rb_next(node);
		total_bytes += state->end - state->start + 1;
1811
		if (total_bytes >= max_bytes)
1812 1813
			break;
		if (!node)
1814 1815 1816
			break;
	}
out:
1817
	spin_unlock(&tree->lock);
1818 1819 1820
	return found;
}

1821 1822 1823 1824 1825 1826 1827 1828
/*
 * Process one page for __process_pages_contig().
 *
 * Return >0 if we hit @page == @locked_page.
 * Return 0 if we updated the page status.
 * Return -EGAIN if the we need to try again.
 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
 */
1829 1830
static int process_one_page(struct btrfs_fs_info *fs_info,
			    struct address_space *mapping,
1831
			    struct page *page, struct page *locked_page,
1832
			    unsigned long page_ops, u64 start, u64 end)
1833
{
1834 1835 1836 1837 1838
	u32 len;

	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
	len = end + 1 - start;

1839
	if (page_ops & PAGE_SET_ORDERED)
1840
		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1841
	if (page_ops & PAGE_SET_ERROR)
1842
		btrfs_page_clamp_set_error(fs_info, page, start, len);
1843
	if (page_ops & PAGE_START_WRITEBACK) {
1844 1845
		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1846 1847
	}
	if (page_ops & PAGE_END_WRITEBACK)
1848
		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1849 1850 1851 1852

	if (page == locked_page)
		return 1;

1853
	if (page_ops & PAGE_LOCK) {
1854 1855 1856 1857 1858
		int ret;

		ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
		if (ret)
			return ret;
1859
		if (!PageDirty(page) || page->mapping != mapping) {
1860
			btrfs_page_end_writer_lock(fs_info, page, start, len);
1861 1862 1863 1864
			return -EAGAIN;
		}
	}
	if (page_ops & PAGE_UNLOCK)
1865
		btrfs_page_end_writer_lock(fs_info, page, start, len);
1866 1867 1868
	return 0;
}

1869 1870
static int __process_pages_contig(struct address_space *mapping,
				  struct page *locked_page,
1871
				  u64 start, u64 end, unsigned long page_ops,
1872 1873
				  u64 *processed_end)
{
1874
	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
	pgoff_t start_index = start >> PAGE_SHIFT;
	pgoff_t end_index = end >> PAGE_SHIFT;
	pgoff_t index = start_index;
	unsigned long nr_pages = end_index - start_index + 1;
	unsigned long pages_processed = 0;
	struct page *pages[16];
	int err = 0;
	int i;

	if (page_ops & PAGE_LOCK) {
		ASSERT(page_ops == PAGE_LOCK);
		ASSERT(processed_end && *processed_end == start);
	}

	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
		mapping_set_error(mapping, -EIO);

	while (nr_pages > 0) {
		int found_pages;

		found_pages = find_get_pages_contig(mapping, index,
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
		if (found_pages == 0) {
			/*
			 * Only if we're going to lock these pages, we can find
			 * nothing at @index.
			 */
			ASSERT(page_ops & PAGE_LOCK);
			err = -EAGAIN;
			goto out;
		}

		for (i = 0; i < found_pages; i++) {
			int process_ret;

1911 1912 1913
			process_ret = process_one_page(fs_info, mapping,
					pages[i], locked_page, page_ops,
					start, end);
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
			if (process_ret < 0) {
				for (; i < found_pages; i++)
					put_page(pages[i]);
				err = -EAGAIN;
				goto out;
			}
			put_page(pages[i]);
			pages_processed++;
		}
		nr_pages -= found_pages;
		index += found_pages;
		cond_resched();
	}
out:
	if (err && processed_end) {
		/*
		 * Update @processed_end. I know this is awful since it has
		 * two different return value patterns (inclusive vs exclusive).
		 *
		 * But the exclusive pattern is necessary if @start is 0, or we
		 * underflow and check against processed_end won't work as
		 * expected.
		 */
		if (pages_processed)
			*processed_end = min(end,
			((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
		else
			*processed_end = start;
	}
	return err;
}
1945

1946 1947 1948
static noinline void __unlock_for_delalloc(struct inode *inode,
					   struct page *locked_page,
					   u64 start, u64 end)
C
Chris Mason 已提交
1949
{
1950 1951
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
C
Chris Mason 已提交
1952

1953
	ASSERT(locked_page);
C
Chris Mason 已提交
1954
	if (index == locked_page->index && end_index == index)
1955
		return;
C
Chris Mason 已提交
1956

1957
	__process_pages_contig(inode->i_mapping, locked_page, start, end,
1958
			       PAGE_UNLOCK, NULL);
C
Chris Mason 已提交
1959 1960 1961 1962 1963 1964 1965
}

static noinline int lock_delalloc_pages(struct inode *inode,
					struct page *locked_page,
					u64 delalloc_start,
					u64 delalloc_end)
{
1966 1967
	unsigned long index = delalloc_start >> PAGE_SHIFT;
	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1968
	u64 processed_end = delalloc_start;
C
Chris Mason 已提交
1969 1970
	int ret;

1971
	ASSERT(locked_page);
C
Chris Mason 已提交
1972 1973 1974
	if (index == locked_page->index && index == end_index)
		return 0;

1975 1976 1977
	ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
				     delalloc_end, PAGE_LOCK, &processed_end);
	if (ret == -EAGAIN && processed_end > delalloc_start)
1978
		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1979
				      processed_end);
C
Chris Mason 已提交
1980 1981 1982 1983
	return ret;
}

/*
1984
 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1985
 * more than @max_bytes.
C
Chris Mason 已提交
1986
 *
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
 * @start:	The original start bytenr to search.
 *		Will store the extent range start bytenr.
 * @end:	The original end bytenr of the search range
 *		Will store the extent range end bytenr.
 *
 * Return true if we find a delalloc range which starts inside the original
 * range, and @start/@end will store the delalloc range start/end.
 *
 * Return false if we can't find any delalloc range which starts inside the
 * original range, and @start/@end will be the non-delalloc range start/end.
C
Chris Mason 已提交
1997
 */
1998
EXPORT_FOR_TESTS
1999
noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
2000
				    struct page *locked_page, u64 *start,
2001
				    u64 *end)
C
Chris Mason 已提交
2002
{
2003
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2004
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2005 2006
	const u64 orig_start = *start;
	const u64 orig_end = *end;
2007 2008
	/* The sanity tests may not set a valid fs_info. */
	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
C
Chris Mason 已提交
2009 2010
	u64 delalloc_start;
	u64 delalloc_end;
2011
	bool found;
2012
	struct extent_state *cached_state = NULL;
C
Chris Mason 已提交
2013 2014 2015
	int ret;
	int loops = 0;

2016 2017 2018 2019 2020 2021
	/* Caller should pass a valid @end to indicate the search range end */
	ASSERT(orig_end > orig_start);

	/* The range should at least cover part of the page */
	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
		 orig_end <= page_offset(locked_page)));
C
Chris Mason 已提交
2022 2023 2024 2025
again:
	/* step one, find a bunch of delalloc bytes starting at start */
	delalloc_start = *start;
	delalloc_end = 0;
J
Josef Bacik 已提交
2026 2027
	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
					  max_bytes, &cached_state);
2028
	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
C
Chris Mason 已提交
2029
		*start = delalloc_start;
2030 2031 2032

		/* @delalloc_end can be -1, never go beyond @orig_end */
		*end = min(delalloc_end, orig_end);
2033
		free_extent_state(cached_state);
2034
		return false;
C
Chris Mason 已提交
2035 2036
	}

C
Chris Mason 已提交
2037 2038 2039 2040 2041
	/*
	 * start comes from the offset of locked_page.  We have to lock
	 * pages in order, so we can't process delalloc bytes before
	 * locked_page
	 */
C
Chris Mason 已提交
2042
	if (delalloc_start < *start)
C
Chris Mason 已提交
2043 2044
		delalloc_start = *start;

C
Chris Mason 已提交
2045 2046 2047
	/*
	 * make sure to limit the number of pages we try to lock down
	 */
2048 2049
	if (delalloc_end + 1 - delalloc_start > max_bytes)
		delalloc_end = delalloc_start + max_bytes - 1;
C
Chris Mason 已提交
2050

C
Chris Mason 已提交
2051 2052 2053
	/* step two, lock all the pages after the page that has start */
	ret = lock_delalloc_pages(inode, locked_page,
				  delalloc_start, delalloc_end);
2054
	ASSERT(!ret || ret == -EAGAIN);
C
Chris Mason 已提交
2055 2056 2057 2058
	if (ret == -EAGAIN) {
		/* some of the pages are gone, lets avoid looping by
		 * shortening the size of the delalloc range we're searching
		 */
2059
		free_extent_state(cached_state);
2060
		cached_state = NULL;
C
Chris Mason 已提交
2061
		if (!loops) {
2062
			max_bytes = PAGE_SIZE;
C
Chris Mason 已提交
2063 2064 2065
			loops = 1;
			goto again;
		} else {
2066
			found = false;
C
Chris Mason 已提交
2067 2068 2069 2070 2071
			goto out_failed;
		}
	}

	/* step three, lock the state bits for the whole range */
2072
	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
C
Chris Mason 已提交
2073 2074 2075

	/* then test to make sure it is all still delalloc */
	ret = test_range_bit(tree, delalloc_start, delalloc_end,
2076
			     EXTENT_DELALLOC, 1, cached_state);
C
Chris Mason 已提交
2077
	if (!ret) {
2078
		unlock_extent_cached(tree, delalloc_start, delalloc_end,
2079
				     &cached_state);
C
Chris Mason 已提交
2080 2081 2082 2083 2084
		__unlock_for_delalloc(inode, locked_page,
			      delalloc_start, delalloc_end);
		cond_resched();
		goto again;
	}
2085
	free_extent_state(cached_state);
C
Chris Mason 已提交
2086 2087 2088 2089 2090 2091
	*start = delalloc_start;
	*end = delalloc_end;
out_failed:
	return found;
}

2092
void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2093
				  struct page *locked_page,
2094
				  u32 clear_bits, unsigned long page_ops)
2095
{
2096
	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2097

2098
	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2099
			       start, end, page_ops, NULL);
2100 2101
}

C
Chris Mason 已提交
2102 2103 2104 2105 2106
/*
 * count the number of bytes in the tree that have a given bit(s)
 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
 * cached.  The total number found is returned.
 */
2107 2108
u64 count_range_bits(struct extent_io_tree *tree,
		     u64 *start, u64 search_end, u64 max_bytes,
2109
		     u32 bits, int contig)
2110 2111 2112 2113 2114
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
	u64 total_bytes = 0;
2115
	u64 last = 0;
2116 2117
	int found = 0;

2118
	if (WARN_ON(search_end <= cur_start))
2119 2120
		return 0;

2121
	spin_lock(&tree->lock);
2122 2123 2124 2125 2126 2127 2128 2129
	if (cur_start == 0 && bits == EXTENT_DIRTY) {
		total_bytes = tree->dirty_bytes;
		goto out;
	}
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2130
	node = tree_search(tree, cur_start);
C
Chris Mason 已提交
2131
	if (!node)
2132 2133
		goto out;

C
Chris Mason 已提交
2134
	while (1) {
2135 2136 2137
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->start > search_end)
			break;
2138 2139 2140
		if (contig && found && state->start > last + 1)
			break;
		if (state->end >= cur_start && (state->state & bits) == bits) {
2141 2142 2143 2144 2145
			total_bytes += min(search_end, state->end) + 1 -
				       max(cur_start, state->start);
			if (total_bytes >= max_bytes)
				break;
			if (!found) {
2146
				*start = max(cur_start, state->start);
2147 2148
				found = 1;
			}
2149 2150 2151
			last = state->end;
		} else if (contig && found) {
			break;
2152 2153 2154 2155 2156 2157
		}
		node = rb_next(node);
		if (!node)
			break;
	}
out:
2158
	spin_unlock(&tree->lock);
2159 2160
	return total_bytes;
}
2161

C
Chris Mason 已提交
2162 2163 2164 2165
/*
 * set the private field for a given byte offset in the tree.  If there isn't
 * an extent_state there already, this does nothing.
 */
2166 2167
static int set_state_failrec(struct extent_io_tree *tree, u64 start,
			     struct io_failure_record *failrec)
2168 2169 2170 2171 2172
{
	struct rb_node *node;
	struct extent_state *state;
	int ret = 0;

2173
	spin_lock(&tree->lock);
2174 2175 2176 2177
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2178
	node = tree_search(tree, start);
2179
	if (!node) {
2180 2181 2182 2183 2184 2185 2186 2187
		ret = -ENOENT;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
		ret = -ENOENT;
		goto out;
	}
2188
	state->failrec = failrec;
2189
out:
2190
	spin_unlock(&tree->lock);
2191 2192 2193
	return ret;
}

2194 2195
static struct io_failure_record *get_state_failrec(struct extent_io_tree *tree,
						   u64 start)
2196 2197 2198
{
	struct rb_node *node;
	struct extent_state *state;
2199
	struct io_failure_record *failrec;
2200

2201
	spin_lock(&tree->lock);
2202 2203 2204 2205
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2206
	node = tree_search(tree, start);
2207
	if (!node) {
2208
		failrec = ERR_PTR(-ENOENT);
2209 2210 2211 2212
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
2213
		failrec = ERR_PTR(-ENOENT);
2214 2215
		goto out;
	}
2216 2217

	failrec = state->failrec;
2218
out:
2219
	spin_unlock(&tree->lock);
2220
	return failrec;
2221 2222 2223 2224
}

/*
 * searches a range in the state tree for a given mask.
2225
 * If 'filled' == 1, this returns 1 only if every extent in the tree
2226 2227 2228 2229
 * has the bits set.  Otherwise, 1 is returned if any bit in the
 * range is found set.
 */
int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2230
		   u32 bits, int filled, struct extent_state *cached)
2231 2232 2233 2234 2235
{
	struct extent_state *state = NULL;
	struct rb_node *node;
	int bitset = 0;

2236
	spin_lock(&tree->lock);
2237
	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2238
	    cached->end > start)
2239 2240 2241
		node = &cached->rb_node;
	else
		node = tree_search(tree, start);
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
	while (node && start <= end) {
		state = rb_entry(node, struct extent_state, rb_node);

		if (filled && state->start > start) {
			bitset = 0;
			break;
		}

		if (state->start > end)
			break;

		if (state->state & bits) {
			bitset = 1;
			if (!filled)
				break;
		} else if (filled) {
			bitset = 0;
			break;
		}
2261 2262 2263 2264

		if (state->end == (u64)-1)
			break;

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
		start = state->end + 1;
		if (start > end)
			break;
		node = rb_next(node);
		if (!node) {
			if (filled)
				bitset = 0;
			break;
		}
	}
2275
	spin_unlock(&tree->lock);
2276 2277 2278
	return bitset;
}

2279 2280 2281
static int free_io_failure(struct extent_io_tree *failure_tree,
			   struct extent_io_tree *io_tree,
			   struct io_failure_record *rec)
2282 2283 2284 2285
{
	int ret;
	int err = 0;

2286
	set_state_failrec(failure_tree, rec->start, NULL);
2287 2288
	ret = clear_extent_bits(failure_tree, rec->start,
				rec->start + rec->len - 1,
2289
				EXTENT_LOCKED | EXTENT_DIRTY);
2290 2291 2292
	if (ret)
		err = ret;

2293
	ret = clear_extent_bits(io_tree, rec->start,
D
David Woodhouse 已提交
2294
				rec->start + rec->len - 1,
2295
				EXTENT_DAMAGED);
D
David Woodhouse 已提交
2296 2297
	if (ret && !err)
		err = ret;
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307

	kfree(rec);
	return err;
}

/*
 * this bypasses the standard btrfs submit functions deliberately, as
 * the standard behavior is to write all copies in a raid setup. here we only
 * want to write the one bad copy. so we do the mapping for ourselves and issue
 * submit_bio directly.
2308
 * to avoid any synchronization issues, wait for the data after writing, which
2309 2310 2311 2312
 * actually prevents the read that triggered the error from finishing.
 * currently, there can be no more than two copies of every data bit. thus,
 * exactly one rewrite is required.
 */
Q
Qu Wenruo 已提交
2313 2314 2315
static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
			     u64 length, u64 logical, struct page *page,
			     unsigned int pg_offset, int mirror_num)
2316 2317
{
	struct btrfs_device *dev;
2318 2319
	struct bio_vec bvec;
	struct bio bio;
2320 2321
	u64 map_length = 0;
	u64 sector;
2322
	struct btrfs_io_context *bioc = NULL;
2323
	int ret = 0;
2324

2325
	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2326 2327
	BUG_ON(!mirror_num);

2328 2329
	if (btrfs_repair_one_zone(fs_info, logical))
		return 0;
2330

2331 2332
	map_length = length;

2333
	/*
2334
	 * Avoid races with device replace and make sure our bioc has devices
2335 2336 2337 2338
	 * associated to its stripes that don't go away while we are doing the
	 * read repair operation.
	 */
	btrfs_bio_counter_inc_blocked(fs_info);
2339
	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2340 2341 2342 2343 2344 2345 2346
		/*
		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
		 * to update all raid stripes, but here we just want to correct
		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
		 * stripe's dev and sector.
		 */
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2347
				      &map_length, &bioc, 0);
2348 2349
		if (ret)
			goto out_counter_dec;
2350
		ASSERT(bioc->mirror_num == 1);
2351 2352
	} else {
		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2353
				      &map_length, &bioc, mirror_num);
2354 2355
		if (ret)
			goto out_counter_dec;
2356
		BUG_ON(mirror_num != bioc->mirror_num);
2357
	}
2358

2359 2360 2361
	sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
	dev = bioc->stripes[bioc->mirror_num - 1].dev;
	btrfs_put_bioc(bioc);
2362

2363 2364
	if (!dev || !dev->bdev ||
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2365 2366
		ret = -EIO;
		goto out_counter_dec;
2367 2368
	}

2369 2370 2371 2372 2373 2374 2375
	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
	bio.bi_iter.bi_sector = sector;
	__bio_add_page(&bio, page, length, pg_offset);

	btrfsic_check_bio(&bio);
	ret = submit_bio_wait(&bio);
	if (ret) {
2376
		/* try to remap that extent elsewhere? */
2377
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2378
		goto out_bio_uninit;
2379 2380
	}

2381 2382
	btrfs_info_rl_in_rcu(fs_info,
		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2383
				  ino, start,
2384
				  rcu_str_deref(dev->name), sector);
2385 2386 2387 2388 2389
	ret = 0;

out_bio_uninit:
	bio_uninit(&bio);
out_counter_dec:
2390
	btrfs_bio_counter_dec(fs_info);
2391
	return ret;
2392 2393
}

2394
int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2395
{
2396
	struct btrfs_fs_info *fs_info = eb->fs_info;
2397
	u64 start = eb->start;
2398
	int i, num_pages = num_extent_pages(eb);
2399
	int ret = 0;
2400

2401
	if (sb_rdonly(fs_info->sb))
2402 2403
		return -EROFS;

2404
	for (i = 0; i < num_pages; i++) {
2405
		struct page *p = eb->pages[i];
2406

2407
		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2408
					start - page_offset(p), mirror_num);
2409 2410
		if (ret)
			break;
2411
		start += PAGE_SIZE;
2412 2413 2414 2415 2416
	}

	return ret;
}

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
static int next_mirror(const struct io_failure_record *failrec, int cur_mirror)
{
	if (cur_mirror == failrec->num_copies)
		return cur_mirror + 1 - failrec->num_copies;
	return cur_mirror + 1;
}

static int prev_mirror(const struct io_failure_record *failrec, int cur_mirror)
{
	if (cur_mirror == 1)
		return failrec->num_copies;
	return cur_mirror - 1;
}

2431 2432 2433 2434
/*
 * each time an IO finishes, we do a fast check in the IO failure tree
 * to see if we need to process or clean up an io_failure_record
 */
2435 2436
int btrfs_clean_io_failure(struct btrfs_inode *inode, u64 start,
			   struct page *page, unsigned int pg_offset)
2437
{
2438 2439 2440 2441
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
	struct extent_io_tree *io_tree = &inode->io_tree;
	u64 ino = btrfs_ino(inode);
2442 2443 2444
	u64 private;
	struct io_failure_record *failrec;
	struct extent_state *state;
2445
	int mirror;
2446 2447 2448
	int ret;

	private = 0;
2449 2450
	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
			       EXTENT_DIRTY, 0);
2451 2452 2453
	if (!ret)
		return 0;

2454 2455
	failrec = get_state_failrec(failure_tree, start);
	if (IS_ERR(failrec))
2456 2457 2458 2459
		return 0;

	BUG_ON(!failrec->this_mirror);

2460
	if (sb_rdonly(fs_info->sb))
2461
		goto out;
2462

2463 2464
	spin_lock(&io_tree->lock);
	state = find_first_extent_bit_state(io_tree,
2465 2466
					    failrec->start,
					    EXTENT_LOCKED);
2467
	spin_unlock(&io_tree->lock);
2468

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
	if (!state || state->start > failrec->start ||
	    state->end < failrec->start + failrec->len - 1)
		goto out;

	mirror = failrec->this_mirror;
	do {
		mirror = prev_mirror(failrec, mirror);
		repair_io_failure(fs_info, ino, start, failrec->len,
				  failrec->logical, page, pg_offset, mirror);
	} while (mirror != failrec->failed_mirror);
2479 2480

out:
2481
	free_io_failure(failure_tree, io_tree, failrec);
2482
	return 0;
2483 2484
}

2485 2486 2487 2488 2489 2490
/*
 * Can be called when
 * - hold extent lock
 * - under ordered extent
 * - the inode is freeing
 */
2491
void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2492
{
2493
	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
	struct io_failure_record *failrec;
	struct extent_state *state, *next;

	if (RB_EMPTY_ROOT(&failure_tree->state))
		return;

	spin_lock(&failure_tree->lock);
	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
	while (state) {
		if (state->start > end)
			break;

		ASSERT(state->end <= end);

		next = next_state(state);

2510
		failrec = state->failrec;
2511 2512 2513 2514 2515 2516 2517 2518
		free_extent_state(state);
		kfree(failrec);

		state = next;
	}
	spin_unlock(&failure_tree->lock);
}

2519
static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2520 2521
							     struct btrfs_bio *bbio,
							     unsigned int bio_offset)
2522
{
2523
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2524
	u64 start = bbio->file_offset + bio_offset;
2525
	struct io_failure_record *failrec;
2526 2527
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2528
	const u32 sectorsize = fs_info->sectorsize;
2529 2530
	int ret;

2531
	failrec = get_state_failrec(failure_tree, start);
2532
	if (!IS_ERR(failrec)) {
2533
		btrfs_debug(fs_info,
2534 2535
	"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
			failrec->logical, failrec->start, failrec->len);
2536 2537 2538 2539 2540
		/*
		 * when data can be on disk more than twice, add to failrec here
		 * (e.g. with a list for failed_mirror) to make
		 * clean_io_failure() clean all those errors at once.
		 */
2541
		ASSERT(failrec->this_mirror == bbio->mirror_num);
2542
		ASSERT(failrec->len == fs_info->sectorsize);
2543
		return failrec;
2544
	}
2545

2546 2547 2548
	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
	if (!failrec)
		return ERR_PTR(-ENOMEM);
2549

2550
	failrec->start = start;
2551
	failrec->len = sectorsize;
2552 2553
	failrec->failed_mirror = bbio->mirror_num;
	failrec->this_mirror = bbio->mirror_num;
2554
	failrec->logical = (bbio->iter.bi_sector << SECTOR_SHIFT) + bio_offset;
2555 2556

	btrfs_debug(fs_info,
2557 2558
		    "new io failure record logical %llu start %llu",
		    failrec->logical, start);
2559

2560
	failrec->num_copies = btrfs_num_copies(fs_info, failrec->logical, sectorsize);
2561 2562 2563 2564 2565 2566 2567 2568 2569
	if (failrec->num_copies == 1) {
		/*
		 * We only have a single copy of the data, so don't bother with
		 * all the retry and error correction code that follows. No
		 * matter what the error is, it is very likely to persist.
		 */
		btrfs_debug(fs_info,
			"cannot repair logical %llu num_copies %d",
			failrec->logical, failrec->num_copies);
2570 2571 2572 2573 2574
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	/* Set the bits in the private failure tree */
2575
	ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2576 2577 2578 2579
			      EXTENT_LOCKED | EXTENT_DIRTY);
	if (ret >= 0) {
		ret = set_state_failrec(failure_tree, start, failrec);
		/* Set the bits in the inode's tree */
2580 2581
		ret = set_extent_bits(tree, start, start + sectorsize - 1,
				      EXTENT_DAMAGED);
2582 2583 2584 2585 2586 2587
	} else if (ret < 0) {
		kfree(failrec);
		return ERR_PTR(ret);
	}

	return failrec;
2588 2589
}

2590 2591
int btrfs_repair_one_sector(struct inode *inode, struct btrfs_bio *failed_bbio,
			    u32 bio_offset, struct page *page, unsigned int pgoff,
2592
			    submit_bio_hook_t *submit_bio_hook)
2593
{
2594
	u64 start = failed_bbio->file_offset + bio_offset;
2595
	struct io_failure_record *failrec;
2596
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2597
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2598
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2599
	struct bio *failed_bio = &failed_bbio->bio;
2600
	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2601
	struct bio *repair_bio;
2602
	struct btrfs_bio *repair_bbio;
2603

2604 2605
	btrfs_debug(fs_info,
		   "repair read error: read error at %llu", start);
2606

2607
	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2608

2609
	failrec = btrfs_get_io_failure_record(inode, failed_bbio, bio_offset);
2610
	if (IS_ERR(failrec))
2611
		return PTR_ERR(failrec);
2612

2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
	/*
	 * There are two premises:
	 * a) deliver good data to the caller
	 * b) correct the bad sectors on disk
	 *
	 * Since we're only doing repair for one sector, we only need to get
	 * a good copy of the failed sector and if we succeed, we have setup
	 * everything for repair_io_failure to do the rest for us.
	 */
	failrec->this_mirror = next_mirror(failrec, failrec->this_mirror);
	if (failrec->this_mirror == failrec->failed_mirror) {
		btrfs_debug(fs_info,
			"failed to repair num_copies %d this_mirror %d failed_mirror %d",
			failrec->num_copies, failrec->this_mirror, failrec->failed_mirror);
2627
		free_io_failure(failure_tree, tree, failrec);
2628
		return -EIO;
2629 2630
	}

2631 2632
	repair_bio = btrfs_bio_alloc(1, REQ_OP_READ, failed_bbio->end_io,
				     failed_bbio->private);
2633
	repair_bbio = btrfs_bio(repair_bio);
2634
	repair_bbio->file_offset = start;
2635
	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2636

2637
	if (failed_bbio->csum) {
2638
		const u32 csum_size = fs_info->csum_size;
2639

2640 2641 2642
		repair_bbio->csum = repair_bbio->csum_inline;
		memcpy(repair_bbio->csum,
		       failed_bbio->csum + csum_size * icsum, csum_size);
2643
	}
2644

2645
	bio_add_page(repair_bio, page, failrec->len, pgoff);
2646
	repair_bbio->iter = repair_bio->bi_iter;
2647

2648
	btrfs_debug(btrfs_sb(inode->i_sb),
2649 2650
		    "repair read error: submitting new read to mirror %d",
		    failrec->this_mirror);
2651

2652 2653 2654 2655 2656
	/*
	 * At this point we have a bio, so any errors from submit_bio_hook()
	 * will be handled by the endio on the repair_bio, so we can't return an
	 * error here.
	 */
2657
	submit_bio_hook(inode, repair_bio, failrec->this_mirror, 0);
2658
	return BLK_STS_OK;
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
}

static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);

	ASSERT(page_offset(page) <= start &&
	       start + len <= page_offset(page) + PAGE_SIZE);

	if (uptodate) {
B
Boris Burkov 已提交
2669 2670 2671 2672 2673 2674 2675 2676 2677
		if (fsverity_active(page->mapping->host) &&
		    !PageError(page) &&
		    !PageUptodate(page) &&
		    start < i_size_read(page->mapping->host) &&
		    !fsverity_verify_page(page)) {
			btrfs_page_set_error(fs_info, page, start, len);
		} else {
			btrfs_page_set_uptodate(fs_info, page, start, len);
		}
2678 2679 2680 2681 2682
	} else {
		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
	}

2683
	if (!btrfs_is_subpage(fs_info, page))
2684
		unlock_page(page);
2685
	else
2686 2687 2688
		btrfs_subpage_end_reader(fs_info, page, start, len);
}

2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
static void end_sector_io(struct page *page, u64 offset, bool uptodate)
{
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
	const u32 sectorsize = inode->root->fs_info->sectorsize;
	struct extent_state *cached = NULL;

	end_page_read(page, uptodate, offset, sectorsize);
	if (uptodate)
		set_extent_uptodate(&inode->io_tree, offset,
				    offset + sectorsize - 1, &cached, GFP_ATOMIC);
	unlock_extent_cached_atomic(&inode->io_tree, offset,
				    offset + sectorsize - 1, &cached);
}

2703 2704
static void submit_data_read_repair(struct inode *inode,
				    struct btrfs_bio *failed_bbio,
2705
				    u32 bio_offset, const struct bio_vec *bvec,
2706
				    unsigned int error_bitmap)
2707
{
2708
	const unsigned int pgoff = bvec->bv_offset;
2709
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2710 2711 2712
	struct page *page = bvec->bv_page;
	const u64 start = page_offset(bvec->bv_page) + bvec->bv_offset;
	const u64 end = start + bvec->bv_len - 1;
2713 2714 2715 2716
	const u32 sectorsize = fs_info->sectorsize;
	const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
	int i;

2717
	BUG_ON(bio_op(&failed_bbio->bio) == REQ_OP_WRITE);
2718

2719 2720 2721
	/* This repair is only for data */
	ASSERT(is_data_inode(inode));

2722 2723 2724 2725 2726 2727 2728
	/* We're here because we had some read errors or csum mismatch */
	ASSERT(error_bitmap);

	/*
	 * We only get called on buffered IO, thus page must be mapped and bio
	 * must not be cloned.
	 */
2729
	ASSERT(page->mapping && !bio_flagged(&failed_bbio->bio, BIO_CLONED));
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745

	/* Iterate through all the sectors in the range */
	for (i = 0; i < nr_bits; i++) {
		const unsigned int offset = i * sectorsize;
		bool uptodate = false;
		int ret;

		if (!(error_bitmap & (1U << i))) {
			/*
			 * This sector has no error, just end the page read
			 * and unlock the range.
			 */
			uptodate = true;
			goto next;
		}

2746 2747 2748
		ret = btrfs_repair_one_sector(inode, failed_bbio,
				bio_offset + offset, page, pgoff + offset,
				btrfs_submit_data_read_bio);
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
		if (!ret) {
			/*
			 * We have submitted the read repair, the page release
			 * will be handled by the endio function of the
			 * submitted repair bio.
			 * Thus we don't need to do any thing here.
			 */
			continue;
		}
		/*
2759 2760
		 * Continue on failed repair, otherwise the remaining sectors
		 * will not be properly unlocked.
2761 2762
		 */
next:
2763
		end_sector_io(page, start + offset, uptodate);
2764
	}
2765 2766
}

2767 2768
/* lots and lots of room for performance fixes in the end_bio funcs */

2769
void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2770
{
2771
	struct btrfs_inode *inode;
2772
	const bool uptodate = (err == 0);
2773
	int ret = 0;
2774

2775 2776 2777
	ASSERT(page && page->mapping);
	inode = BTRFS_I(page->mapping->host);
	btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2778 2779

	if (!uptodate) {
2780 2781 2782 2783 2784 2785 2786 2787
		const struct btrfs_fs_info *fs_info = inode->root->fs_info;
		u32 len;

		ASSERT(end + 1 - start <= U32_MAX);
		len = end + 1 - start;

		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
2788
		ret = err < 0 ? err : -EIO;
2789
		mapping_set_error(page->mapping, ret);
2790 2791 2792
	}
}

2793 2794 2795 2796 2797 2798 2799 2800 2801
/*
 * after a writepage IO is done, we need to:
 * clear the uptodate bits on error
 * clear the writeback bits in the extent tree for this IO
 * end_page_writeback if the page has no more pending IO
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2802
static void end_bio_extent_writepage(struct btrfs_bio *bbio)
2803
{
2804
	struct bio *bio = &bbio->bio;
2805
	int error = blk_status_to_errno(bio->bi_status);
2806
	struct bio_vec *bvec;
2807 2808
	u64 start;
	u64 end;
2809
	struct bvec_iter_all iter_all;
2810
	bool first_bvec = true;
2811

2812
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2813
	bio_for_each_segment_all(bvec, bio, iter_all) {
2814
		struct page *page = bvec->bv_page;
2815 2816
		struct inode *inode = page->mapping->host;
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
		const u32 sectorsize = fs_info->sectorsize;

		/* Our read/write should always be sector aligned. */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page write in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
			btrfs_info(fs_info,
		"incomplete page write with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
2831

2832 2833 2834 2835 2836
		if (first_bvec) {
			btrfs_record_physical_zoned(inode, start, bio);
			first_bvec = false;
		}

2837
		end_extent_writepage(page, error, start, end);
2838 2839

		btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2840
	}
2841

2842 2843 2844
	bio_put(bio);
}

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
/*
 * Record previously processed extent range
 *
 * For endio_readpage_release_extent() to handle a full extent range, reducing
 * the extent io operations.
 */
struct processed_extent {
	struct btrfs_inode *inode;
	/* Start of the range in @inode */
	u64 start;
2855
	/* End of the range in @inode */
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
	u64 end;
	bool uptodate;
};

/*
 * Try to release processed extent range
 *
 * May not release the extent range right now if the current range is
 * contiguous to processed extent.
 *
 * Will release processed extent when any of @inode, @uptodate, the range is
 * no longer contiguous to the processed range.
 *
 * Passing @inode == NULL will force processed extent to be released.
 */
static void endio_readpage_release_extent(struct processed_extent *processed,
			      struct btrfs_inode *inode, u64 start, u64 end,
			      bool uptodate)
2874 2875
{
	struct extent_state *cached = NULL;
2876 2877 2878 2879 2880
	struct extent_io_tree *tree;

	/* The first extent, initialize @processed */
	if (!processed->inode)
		goto update;
2881

2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
	/*
	 * Contiguous to processed extent, just uptodate the end.
	 *
	 * Several things to notice:
	 *
	 * - bio can be merged as long as on-disk bytenr is contiguous
	 *   This means we can have page belonging to other inodes, thus need to
	 *   check if the inode still matches.
	 * - bvec can contain range beyond current page for multi-page bvec
	 *   Thus we need to do processed->end + 1 >= start check
	 */
	if (processed->inode == inode && processed->uptodate == uptodate &&
	    processed->end + 1 >= start && end >= processed->end) {
		processed->end = end;
		return;
	}

	tree = &processed->inode->io_tree;
	/*
	 * Now we don't have range contiguous to the processed range, release
	 * the processed range now.
	 */
	unlock_extent_cached_atomic(tree, processed->start, processed->end,
				    &cached);

update:
	/* Update processed to current range */
	processed->inode = inode;
	processed->start = start;
	processed->end = end;
	processed->uptodate = uptodate;
2913 2914
}

2915 2916 2917
static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
{
	ASSERT(PageLocked(page));
2918
	if (!btrfs_is_subpage(fs_info, page))
2919 2920 2921 2922 2923 2924
		return;

	ASSERT(PagePrivate(page));
	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
}

2925
/*
2926
 * Find extent buffer for a givne bytenr.
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
 *
 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
 * in endio context.
 */
static struct extent_buffer *find_extent_buffer_readpage(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
	struct extent_buffer *eb;

	/*
	 * For regular sectorsize, we can use page->private to grab extent
	 * buffer
	 */
2940
	if (fs_info->nodesize >= PAGE_SIZE) {
2941 2942 2943 2944
		ASSERT(PagePrivate(page) && page->private);
		return (struct extent_buffer *)page->private;
	}

2945 2946 2947 2948 2949
	/* For subpage case, we need to lookup buffer radix tree */
	rcu_read_lock();
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       bytenr >> fs_info->sectorsize_bits);
	rcu_read_unlock();
2950 2951 2952 2953
	ASSERT(eb);
	return eb;
}

2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
/*
 * after a readpage IO is done, we need to:
 * clear the uptodate bits on error
 * set the uptodate bits if things worked
 * set the page up to date if all extents in the tree are uptodate
 * clear the lock bit in the extent tree
 * unlock the page if there are no other extents locked for it
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2965
static void end_bio_extent_readpage(struct btrfs_bio *bbio)
2966
{
2967
	struct bio *bio = &bbio->bio;
2968
	struct bio_vec *bvec;
2969
	struct processed_extent processed = { 0 };
2970 2971 2972 2973 2974
	/*
	 * The offset to the beginning of a bio, since one bio can never be
	 * larger than UINT_MAX, u32 here is enough.
	 */
	u32 bio_offset = 0;
2975
	int mirror;
2976
	struct bvec_iter_all iter_all;
2977

2978
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2979
	bio_for_each_segment_all(bvec, bio, iter_all) {
2980
		bool uptodate = !bio->bi_status;
2981
		struct page *page = bvec->bv_page;
2982
		struct inode *inode = page->mapping->host;
2983
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2984
		const u32 sectorsize = fs_info->sectorsize;
2985
		unsigned int error_bitmap = (unsigned int)-1;
2986
		bool repair = false;
2987 2988 2989
		u64 start;
		u64 end;
		u32 len;
2990

2991 2992
		btrfs_debug(fs_info,
			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
D
David Sterba 已提交
2993
			bio->bi_iter.bi_sector, bio->bi_status,
2994
			bbio->mirror_num);
2995

2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
		/*
		 * We always issue full-sector reads, but if some block in a
		 * page fails to read, blk_update_request() will advance
		 * bv_offset and adjust bv_len to compensate.  Print a warning
		 * for unaligned offsets, and an error if they don't add up to
		 * a full sector.
		 */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page read in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
				     sectorsize))
			btrfs_info(fs_info,
		"incomplete page read with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
3015
		len = bvec->bv_len;
3016

3017
		mirror = bbio->mirror_num;
3018
		if (likely(uptodate)) {
3019
			if (is_data_inode(inode)) {
3020
				error_bitmap = btrfs_verify_data_csum(bbio,
3021
						bio_offset, page, start, end);
3022 3023
				if (error_bitmap)
					uptodate = false;
3024
			} else {
3025 3026 3027
				if (btrfs_validate_metadata_buffer(bbio,
						page, start, end, mirror))
					uptodate = false;
3028
			}
3029
		}
3030

3031
		if (likely(uptodate)) {
3032
			loff_t i_size = i_size_read(inode);
3033
			pgoff_t end_index = i_size >> PAGE_SHIFT;
3034

3035
			btrfs_clean_io_failure(BTRFS_I(inode), start, page, 0);
3036

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
			/*
			 * Zero out the remaining part if this range straddles
			 * i_size.
			 *
			 * Here we should only zero the range inside the bvec,
			 * not touch anything else.
			 *
			 * NOTE: i_size is exclusive while end is inclusive.
			 */
			if (page->index == end_index && i_size <= end) {
				u32 zero_start = max(offset_in_page(i_size),
3048
						     offset_in_page(start));
3049 3050 3051 3052

				zero_user_segment(page, zero_start,
						  offset_in_page(end) + 1);
			}
3053 3054 3055 3056 3057
		} else if (is_data_inode(inode)) {
			/*
			 * Only try to repair bios that actually made it to a
			 * device.  If the bio failed to be submitted mirror
			 * is 0 and we need to fail it without retrying.
3058 3059 3060 3061
			 *
			 * This also includes the high level bios for compressed
			 * extents - these never make it to a device and repair
			 * is already handled on the lower compressed bio.
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
			 */
			if (mirror > 0)
				repair = true;
		} else {
			struct extent_buffer *eb;

			eb = find_extent_buffer_readpage(fs_info, page, start);
			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
			eb->read_mirror = mirror;
			atomic_dec(&eb->io_pages);
3072
		}
3073 3074 3075 3076 3077 3078

		if (repair) {
			/*
			 * submit_data_read_repair() will handle all the good
			 * and bad sectors, we just continue to the next bvec.
			 */
3079 3080
			submit_data_read_repair(inode, bbio, bio_offset, bvec,
						error_bitmap);
3081 3082 3083 3084 3085
		} else {
			/* Update page status and unlock */
			end_page_read(page, uptodate, start, len);
			endio_readpage_release_extent(&processed, BTRFS_I(inode),
					start, end, PageUptodate(page));
3086
		}
3087

3088 3089
		ASSERT(bio_offset + len > bio_offset);
		bio_offset += len;
3090

3091
	}
3092 3093
	/* Release the last extent */
	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3094
	btrfs_bio_free_csum(bbio);
3095 3096 3097
	bio_put(bio);
}

3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
/**
 * Populate every free slot in a provided array with pages.
 *
 * @nr_pages:   number of pages to allocate
 * @page_array: the array to fill with pages; any existing non-null entries in
 * 		the array will be skipped
 *
 * Return: 0        if all pages were able to be allocated;
 *         -ENOMEM  otherwise, and the caller is responsible for freeing all
 *                  non-null page pointers in the array.
 */
int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
{
3111
	unsigned int allocated;
3112

3113 3114
	for (allocated = 0; allocated < nr_pages;) {
		unsigned int last = allocated;
3115

3116 3117
		allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);

3118 3119 3120
		if (allocated == nr_pages)
			return 0;

3121 3122 3123 3124 3125 3126
		/*
		 * During this iteration, no page could be allocated, even
		 * though alloc_pages_bulk_array() falls back to alloc_page()
		 * if  it could not bulk-allocate. So we must be out of memory.
		 */
		if (allocated == last)
3127
			return -ENOMEM;
3128 3129

		memalloc_retry_wait(GFP_NOFS);
3130 3131 3132 3133
	}
	return 0;
}

3134 3135 3136
/**
 * Attempt to add a page to bio
 *
3137
 * @bio_ctrl:	record both the bio, and its bio_flags
3138 3139 3140 3141
 * @page:	page to add to the bio
 * @disk_bytenr:  offset of the new bio or to check whether we are adding
 *                a contiguous page to the previous one
 * @size:	portion of page that we want to write
3142
 * @pg_offset:	starting offset in the page
3143
 * @compress_type:   compression type of the current bio to see if we can merge them
3144 3145 3146
 *
 * Attempt to add a page to bio considering stripe alignment etc.
 *
3147 3148 3149
 * Return >= 0 for the number of bytes added to the bio.
 * Can return 0 if the current bio is already at stripe/zone boundary.
 * Return <0 for error.
3150
 */
3151 3152 3153 3154
static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
			      struct page *page,
			      u64 disk_bytenr, unsigned int size,
			      unsigned int pg_offset,
3155
			      enum btrfs_compression_type compress_type)
3156
{
3157 3158
	struct bio *bio = bio_ctrl->bio;
	u32 bio_size = bio->bi_iter.bi_size;
3159
	u32 real_size;
3160
	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
3161
	bool contig = false;
3162
	int ret;
3163

3164 3165 3166
	ASSERT(bio);
	/* The limit should be calculated when bio_ctrl->bio is allocated */
	ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
3167
	if (bio_ctrl->compress_type != compress_type)
3168
		return 0;
3169

3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195

	if (bio->bi_iter.bi_size == 0) {
		/* We can always add a page into an empty bio. */
		contig = true;
	} else if (bio_ctrl->compress_type == BTRFS_COMPRESS_NONE) {
		struct bio_vec *bvec = bio_last_bvec_all(bio);

		/*
		 * The contig check requires the following conditions to be met:
		 * 1) The pages are belonging to the same inode
		 *    This is implied by the call chain.
		 *
		 * 2) The range has adjacent logical bytenr
		 *
		 * 3) The range has adjacent file offset
		 *    This is required for the usage of btrfs_bio->file_offset.
		 */
		if (bio_end_sector(bio) == sector &&
		    page_offset(bvec->bv_page) + bvec->bv_offset +
		    bvec->bv_len == page_offset(page) + pg_offset)
			contig = true;
	} else {
		/*
		 * For compression, all IO should have its logical bytenr
		 * set to the starting bytenr of the compressed extent.
		 */
3196
		contig = bio->bi_iter.bi_sector == sector;
3197 3198
	}

3199
	if (!contig)
3200
		return 0;
3201

3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
	real_size = min(bio_ctrl->len_to_oe_boundary,
			bio_ctrl->len_to_stripe_boundary) - bio_size;
	real_size = min(real_size, size);

	/*
	 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
	 * bio will still execute its endio function on the page!
	 */
	if (real_size == 0)
		return 0;
3212

3213
	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3214
		ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
3215
	else
3216
		ret = bio_add_page(bio, page, real_size, pg_offset);
3217

3218
	return ret;
3219 3220
}

3221
static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
3222
			       struct btrfs_inode *inode, u64 file_offset)
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct btrfs_io_geometry geom;
	struct btrfs_ordered_extent *ordered;
	struct extent_map *em;
	u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
	int ret;

	/*
	 * Pages for compressed extent are never submitted to disk directly,
	 * thus it has no real boundary, just set them to U32_MAX.
	 *
	 * The split happens for real compressed bio, which happens in
	 * btrfs_submit_compressed_read/write().
	 */
3238
	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
		return 0;
	}
	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
	if (IS_ERR(em))
		return PTR_ERR(em);
	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
				    logical, &geom);
	free_extent_map(em);
	if (ret < 0) {
		return ret;
	}
	if (geom.len > U32_MAX)
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
	else
		bio_ctrl->len_to_stripe_boundary = (u32)geom.len;

3257
	if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
3258 3259 3260 3261 3262
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	/* Ordered extent not yet created, so we're good */
3263
	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
	if (!ordered) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
		ordered->disk_bytenr + ordered->disk_num_bytes - logical);
	btrfs_put_ordered_extent(ordered);
	return 0;
}

3275 3276 3277
static int alloc_new_bio(struct btrfs_inode *inode,
			 struct btrfs_bio_ctrl *bio_ctrl,
			 struct writeback_control *wbc,
3278
			 blk_opf_t opf,
3279
			 btrfs_bio_end_io_t end_io_func,
3280
			 u64 disk_bytenr, u32 offset, u64 file_offset,
3281
			 enum btrfs_compression_type compress_type)
3282 3283 3284 3285 3286
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct bio *bio;
	int ret;

3287
	bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, end_io_func, NULL);
3288 3289 3290 3291
	/*
	 * For compressed page range, its disk_bytenr is always @disk_bytenr
	 * passed in, no matter if we have added any range into previous bio.
	 */
3292
	if (compress_type != BTRFS_COMPRESS_NONE)
Q
Qu Wenruo 已提交
3293
		bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
3294
	else
Q
Qu Wenruo 已提交
3295
		bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
3296
	bio_ctrl->bio = bio;
3297
	bio_ctrl->compress_type = compress_type;
3298 3299 3300
	ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
	if (ret < 0)
		goto error;
3301

3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
	if (wbc) {
		/*
		 * For Zone append we need the correct block_device that we are
		 * going to write to set in the bio to be able to respect the
		 * hardware limitation.  Look it up here:
		 */
		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
			struct btrfs_device *dev;

			dev = btrfs_zoned_get_device(fs_info, disk_bytenr,
						     fs_info->sectorsize);
			if (IS_ERR(dev)) {
				ret = PTR_ERR(dev);
				goto error;
			}
3317

3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
			bio_set_dev(bio, dev->bdev);
		} else {
			/*
			 * Otherwise pick the last added device to support
			 * cgroup writeback.  For multi-device file systems this
			 * means blk-cgroup policies have to always be set on the
			 * last added/replaced device.  This is a bit odd but has
			 * been like that for a long time.
			 */
			bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev);
3328
		}
3329 3330 3331
		wbc_init_bio(wbc, bio);
	} else {
		ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND);
3332 3333 3334 3335
	}
	return 0;
error:
	bio_ctrl->bio = NULL;
3336
	btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
3337 3338 3339
	return ret;
}

3340 3341
/*
 * @opf:	bio REQ_OP_* and REQ_* flags as one value
3342 3343
 * @wbc:	optional writeback control for io accounting
 * @page:	page to add to the bio
3344 3345
 * @disk_bytenr: logical bytenr where the write will be
 * @size:	portion of page that we want to write to
3346 3347
 * @pg_offset:	offset of the new bio or to check whether we are adding
 *              a contiguous page to the previous one
3348
 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3349 3350 3351
 * @end_io_func:     end_io callback for new bio
 * @mirror_num:	     desired mirror to read/write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3352
 * @compress_type:   compress type for current bio
3353
 */
3354
static int submit_extent_page(blk_opf_t opf,
3355
			      struct writeback_control *wbc,
3356
			      struct btrfs_bio_ctrl *bio_ctrl,
3357
			      struct page *page, u64 disk_bytenr,
3358
			      size_t size, unsigned long pg_offset,
3359
			      btrfs_bio_end_io_t end_io_func,
3360
			      enum btrfs_compression_type compress_type,
3361
			      bool force_bio_submit)
3362 3363
{
	int ret = 0;
3364
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3365
	unsigned int cur = pg_offset;
3366

3367
	ASSERT(bio_ctrl);
3368

3369 3370
	ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
	       pg_offset + size <= PAGE_SIZE);
3371 3372
	if (force_bio_submit)
		submit_one_bio(bio_ctrl);
3373 3374 3375 3376 3377 3378 3379 3380 3381

	while (cur < pg_offset + size) {
		u32 offset = cur - pg_offset;
		int added;

		/* Allocate new bio if needed */
		if (!bio_ctrl->bio) {
			ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
					    end_io_func, disk_bytenr, offset,
3382
					    page_offset(page) + cur,
3383
					    compress_type);
3384 3385 3386 3387 3388 3389 3390
			if (ret < 0)
				return ret;
		}
		/*
		 * We must go through btrfs_bio_add_page() to ensure each
		 * page range won't cross various boundaries.
		 */
3391
		if (compress_type != BTRFS_COMPRESS_NONE)
3392 3393
			added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
					size - offset, pg_offset + offset,
3394
					compress_type);
3395 3396 3397
		else
			added = btrfs_bio_add_page(bio_ctrl, page,
					disk_bytenr + offset, size - offset,
3398
					pg_offset + offset, compress_type);
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411

		/* Metadata page range should never be split */
		if (!is_data_inode(&inode->vfs_inode))
			ASSERT(added == 0 || added == size - offset);

		/* At least we added some page, update the account */
		if (wbc && added)
			wbc_account_cgroup_owner(wbc, page, added);

		/* We have reached boundary, submit right now */
		if (added < size - offset) {
			/* The bio should contain some page(s) */
			ASSERT(bio_ctrl->bio->bi_iter.bi_size);
3412
			submit_one_bio(bio_ctrl);
3413
		}
3414
		cur += added;
3415
	}
3416
	return 0;
3417 3418
}

3419 3420 3421
static int attach_extent_buffer_page(struct extent_buffer *eb,
				     struct page *page,
				     struct btrfs_subpage *prealloc)
3422
{
3423 3424 3425
	struct btrfs_fs_info *fs_info = eb->fs_info;
	int ret = 0;

3426 3427 3428 3429 3430 3431 3432 3433 3434
	/*
	 * If the page is mapped to btree inode, we should hold the private
	 * lock to prevent race.
	 * For cloned or dummy extent buffers, their pages are not mapped and
	 * will not race with any other ebs.
	 */
	if (page->mapping)
		lockdep_assert_held(&page->mapping->private_lock);

3435
	if (fs_info->nodesize >= PAGE_SIZE) {
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
		if (!PagePrivate(page))
			attach_page_private(page, eb);
		else
			WARN_ON(page->private != (unsigned long)eb);
		return 0;
	}

	/* Already mapped, just free prealloc */
	if (PagePrivate(page)) {
		btrfs_free_subpage(prealloc);
		return 0;
	}

	if (prealloc)
		/* Has preallocated memory for subpage */
		attach_page_private(page, prealloc);
3452
	else
3453 3454 3455 3456
		/* Do new allocation to attach subpage */
		ret = btrfs_attach_subpage(fs_info, page,
					   BTRFS_SUBPAGE_METADATA);
	return ret;
3457 3458
}

3459
int set_page_extent_mapped(struct page *page)
3460
{
3461 3462 3463 3464 3465 3466 3467 3468 3469
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

	if (PagePrivate(page))
		return 0;

	fs_info = btrfs_sb(page->mapping->host->i_sb);

3470
	if (btrfs_is_subpage(fs_info, page))
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);

	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
	return 0;
}

void clear_page_extent_mapped(struct page *page)
{
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

3483
	if (!PagePrivate(page))
3484 3485 3486
		return;

	fs_info = btrfs_sb(page->mapping->host->i_sb);
3487
	if (btrfs_is_subpage(fs_info, page))
3488 3489 3490
		return btrfs_detach_subpage(fs_info, page);

	detach_page_private(page);
3491 3492
}

3493 3494
static struct extent_map *
__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3495
		 u64 start, u64 len, struct extent_map **em_cached)
3496 3497 3498 3499 3500
{
	struct extent_map *em;

	if (em_cached && *em_cached) {
		em = *em_cached;
3501
		if (extent_map_in_tree(em) && start >= em->start &&
3502
		    start < extent_map_end(em)) {
3503
			refcount_inc(&em->refs);
3504 3505 3506 3507 3508 3509 3510
			return em;
		}

		free_extent_map(em);
		*em_cached = NULL;
	}

3511
	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3512
	if (em_cached && !IS_ERR(em)) {
3513
		BUG_ON(*em_cached);
3514
		refcount_inc(&em->refs);
3515 3516 3517 3518
		*em_cached = em;
	}
	return em;
}
3519 3520 3521 3522
/*
 * basic readpage implementation.  Locked extent state structs are inserted
 * into the tree that are removed when the IO is done (by the end_io
 * handlers)
3523
 * XXX JDM: This needs looking at to ensure proper page locking
3524
 * return 0 on success, otherwise return error
3525
 */
3526
static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3527
		      struct btrfs_bio_ctrl *bio_ctrl,
3528
		      blk_opf_t read_flags, u64 *prev_em_start)
3529 3530
{
	struct inode *inode = page->mapping->host;
3531
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
M
Miao Xie 已提交
3532
	u64 start = page_offset(page);
3533
	const u64 end = start + PAGE_SIZE - 1;
3534 3535 3536 3537 3538
	u64 cur = start;
	u64 extent_offset;
	u64 last_byte = i_size_read(inode);
	u64 block_start;
	struct extent_map *em;
3539
	int ret = 0;
3540
	size_t pg_offset = 0;
3541 3542
	size_t iosize;
	size_t blocksize = inode->i_sb->s_blocksize;
3543
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3544

3545 3546 3547
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		unlock_extent(tree, start, end);
3548 3549
		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
		unlock_page(page);
3550 3551
		goto out;
	}
3552

3553
	if (page->index == last_byte >> PAGE_SHIFT) {
3554
		size_t zero_offset = offset_in_page(last_byte);
C
Chris Mason 已提交
3555 3556

		if (zero_offset) {
3557
			iosize = PAGE_SIZE - zero_offset;
3558
			memzero_page(page, zero_offset, iosize);
C
Chris Mason 已提交
3559 3560
		}
	}
3561
	begin_page_read(fs_info, page);
3562
	while (cur <= end) {
3563
		unsigned long this_bio_flag = 0;
3564
		bool force_bio_submit = false;
3565
		u64 disk_bytenr;
3566

3567
		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
3568
		if (cur >= last_byte) {
3569 3570
			struct extent_state *cached = NULL;

3571
			iosize = PAGE_SIZE - pg_offset;
3572
			memzero_page(page, pg_offset, iosize);
3573
			set_extent_uptodate(tree, cur, cur + iosize - 1,
3574
					    &cached, GFP_NOFS);
3575
			unlock_extent_cached(tree, cur,
3576
					     cur + iosize - 1, &cached);
3577
			end_page_read(page, true, cur, iosize);
3578 3579
			break;
		}
3580
		em = __get_extent_map(inode, page, pg_offset, cur,
3581
				      end - cur + 1, em_cached);
3582
		if (IS_ERR(em)) {
3583
			unlock_extent(tree, cur, end);
3584
			end_page_read(page, false, cur, end + 1 - cur);
3585
			ret = PTR_ERR(em);
3586 3587 3588 3589 3590 3591
			break;
		}
		extent_offset = cur - em->start;
		BUG_ON(extent_map_end(em) <= cur);
		BUG_ON(end < cur);

3592 3593
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			this_bio_flag = em->compress_type;
C
Chris Mason 已提交
3594

3595
		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3596
		iosize = ALIGN(iosize, blocksize);
3597
		if (this_bio_flag != BTRFS_COMPRESS_NONE)
3598
			disk_bytenr = em->block_start;
3599
		else
3600
			disk_bytenr = em->block_start + extent_offset;
3601
		block_start = em->block_start;
Y
Yan Zheng 已提交
3602 3603
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			block_start = EXTENT_MAP_HOLE;
3604 3605 3606

		/*
		 * If we have a file range that points to a compressed extent
3607
		 * and it's followed by a consecutive file range that points
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
		 * to the same compressed extent (possibly with a different
		 * offset and/or length, so it either points to the whole extent
		 * or only part of it), we must make sure we do not submit a
		 * single bio to populate the pages for the 2 ranges because
		 * this makes the compressed extent read zero out the pages
		 * belonging to the 2nd range. Imagine the following scenario:
		 *
		 *  File layout
		 *  [0 - 8K]                     [8K - 24K]
		 *    |                               |
		 *    |                               |
		 * points to extent X,         points to extent X,
		 * offset 4K, length of 8K     offset 0, length 16K
		 *
		 * [extent X, compressed length = 4K uncompressed length = 16K]
		 *
		 * If the bio to read the compressed extent covers both ranges,
		 * it will decompress extent X into the pages belonging to the
		 * first range and then it will stop, zeroing out the remaining
		 * pages that belong to the other range that points to extent X.
		 * So here we make sure we submit 2 bios, one for the first
		 * range and another one for the third range. Both will target
		 * the same physical extent from disk, but we can't currently
		 * make the compressed bio endio callback populate the pages
		 * for both ranges because each compressed bio is tightly
		 * coupled with a single extent map, and each range can have
		 * an extent map with a different offset value relative to the
		 * uncompressed data of our extent and different lengths. This
		 * is a corner case so we prioritize correctness over
		 * non-optimal behavior (submitting 2 bios for the same extent).
		 */
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
		    prev_em_start && *prev_em_start != (u64)-1 &&
3641
		    *prev_em_start != em->start)
3642 3643 3644
			force_bio_submit = true;

		if (prev_em_start)
3645
			*prev_em_start = em->start;
3646

3647 3648 3649 3650 3651
		free_extent_map(em);
		em = NULL;

		/* we've found a hole, just zero and go on */
		if (block_start == EXTENT_MAP_HOLE) {
3652 3653
			struct extent_state *cached = NULL;

3654
			memzero_page(page, pg_offset, iosize);
3655 3656

			set_extent_uptodate(tree, cur, cur + iosize - 1,
3657
					    &cached, GFP_NOFS);
3658
			unlock_extent_cached(tree, cur,
3659
					     cur + iosize - 1, &cached);
3660
			end_page_read(page, true, cur, iosize);
3661
			cur = cur + iosize;
3662
			pg_offset += iosize;
3663 3664 3665
			continue;
		}
		/* the get_extent function already copied into the page */
3666
		if (block_start == EXTENT_MAP_INLINE) {
3667
			unlock_extent(tree, cur, cur + iosize - 1);
3668
			end_page_read(page, true, cur, iosize);
3669
			cur = cur + iosize;
3670
			pg_offset += iosize;
3671 3672
			continue;
		}
3673

3674
		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3675
					 bio_ctrl, page, disk_bytenr, iosize,
3676 3677
					 pg_offset, end_bio_extent_readpage,
					 this_bio_flag, force_bio_submit);
3678
		if (ret) {
3679 3680 3681 3682 3683 3684
			/*
			 * We have to unlock the remaining range, or the page
			 * will never be unlocked.
			 */
			unlock_extent(tree, cur, end);
			end_page_read(page, false, cur, end + 1 - cur);
3685
			goto out;
3686
		}
3687
		cur = cur + iosize;
3688
		pg_offset += iosize;
3689
	}
D
Dan Magenheimer 已提交
3690
out:
3691
	return ret;
3692 3693
}

3694
int btrfs_read_folio(struct file *file, struct folio *folio)
3695
{
3696
	struct page *page = &folio->page;
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
	u64 start = page_offset(page);
	u64 end = start + PAGE_SIZE - 1;
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
	int ret;

	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);

	ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
	/*
	 * If btrfs_do_readpage() failed we will want to submit the assembled
	 * bio to do the cleanup.
	 */
3710
	submit_one_bio(&bio_ctrl);
3711 3712 3713
	return ret;
}

3714
static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3715 3716 3717 3718
					u64 start, u64 end,
					struct extent_map **em_cached,
					struct btrfs_bio_ctrl *bio_ctrl,
					u64 *prev_em_start)
3719
{
3720
	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3721 3722
	int index;

3723
	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3724 3725

	for (index = 0; index < nr_pages; index++) {
3726
		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3727
				  REQ_RAHEAD, prev_em_start);
3728
		put_page(pages[index]);
3729 3730 3731
	}
}

3732
/*
3733 3734
 * helper for __extent_writepage, doing all of the delayed allocation setup.
 *
3735
 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3736 3737 3738 3739 3740
 * to write the page (copy into inline extent).  In this case the IO has
 * been started and the page is already unlocked.
 *
 * This returns 0 if all went well (page still locked)
 * This returns < 0 if there were errors (page still locked)
3741
 */
3742
static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3743
		struct page *page, struct writeback_control *wbc)
3744
{
3745
	const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
3746
	u64 delalloc_start = page_offset(page);
3747
	u64 delalloc_to_write = 0;
3748 3749
	/* How many pages are started by btrfs_run_delalloc_range() */
	unsigned long nr_written = 0;
3750 3751 3752
	int ret;
	int page_started = 0;

3753 3754 3755
	while (delalloc_start < page_end) {
		u64 delalloc_end = page_end;
		bool found;
3756

3757
		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3758
					       &delalloc_start,
3759
					       &delalloc_end);
3760
		if (!found) {
3761 3762 3763
			delalloc_start = delalloc_end + 1;
			continue;
		}
3764
		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3765
				delalloc_end, &page_started, &nr_written, wbc);
3766
		if (ret) {
3767 3768
			btrfs_page_set_error(inode->root->fs_info, page,
					     page_offset(page), PAGE_SIZE);
3769
			return ret;
3770 3771
		}
		/*
3772 3773
		 * delalloc_end is already one less than the total length, so
		 * we don't subtract one from PAGE_SIZE
3774 3775
		 */
		delalloc_to_write += (delalloc_end - delalloc_start +
3776
				      PAGE_SIZE) >> PAGE_SHIFT;
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
		delalloc_start = delalloc_end + 1;
	}
	if (wbc->nr_to_write < delalloc_to_write) {
		int thresh = 8192;

		if (delalloc_to_write < thresh * 2)
			thresh = delalloc_to_write;
		wbc->nr_to_write = min_t(u64, delalloc_to_write,
					 thresh);
	}

3788
	/* Did btrfs_run_dealloc_range() already unlock and start the IO? */
3789 3790
	if (page_started) {
		/*
3791 3792
		 * We've unlocked the page, so we can't update the mapping's
		 * writeback index, just update nr_to_write.
3793
		 */
3794
		wbc->nr_to_write -= nr_written;
3795 3796 3797
		return 1;
	}

3798
	return 0;
3799 3800
}

3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
/*
 * Find the first byte we need to write.
 *
 * For subpage, one page can contain several sectors, and
 * __extent_writepage_io() will just grab all extent maps in the page
 * range and try to submit all non-inline/non-compressed extents.
 *
 * This is a big problem for subpage, we shouldn't re-submit already written
 * data at all.
 * This function will lookup subpage dirty bit to find which range we really
 * need to submit.
 *
 * Return the next dirty range in [@start, @end).
 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
 */
static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
				 struct page *page, u64 *start, u64 *end)
{
	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
3820
	struct btrfs_subpage_info *spi = fs_info->subpage_info;
3821 3822 3823
	u64 orig_start = *start;
	/* Declare as unsigned long so we can use bitmap ops */
	unsigned long flags;
3824
	int range_start_bit;
3825 3826 3827 3828 3829 3830
	int range_end_bit;

	/*
	 * For regular sector size == page size case, since one page only
	 * contains one sector, we return the page offset directly.
	 */
3831
	if (!btrfs_is_subpage(fs_info, page)) {
3832 3833 3834 3835 3836
		*start = page_offset(page);
		*end = page_offset(page) + PAGE_SIZE;
		return;
	}

3837 3838 3839
	range_start_bit = spi->dirty_offset +
			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);

3840 3841
	/* We should have the page locked, but just in case */
	spin_lock_irqsave(&subpage->lock, flags);
3842 3843
	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
			       spi->dirty_offset + spi->bitmap_nr_bits);
3844 3845
	spin_unlock_irqrestore(&subpage->lock, flags);

3846 3847 3848
	range_start_bit -= spi->dirty_offset;
	range_end_bit -= spi->dirty_offset;

3849 3850 3851 3852
	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
}

3853 3854 3855 3856 3857 3858 3859 3860
/*
 * helper for __extent_writepage.  This calls the writepage start hooks,
 * and does the loop to map the page into extents and bios.
 *
 * We return 1 if the IO is started and the page is unlocked,
 * 0 if all went well (page still locked)
 * < 0 if there were errors (page still locked)
 */
3861
static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3862 3863 3864 3865
				 struct page *page,
				 struct writeback_control *wbc,
				 struct extent_page_data *epd,
				 loff_t i_size,
3866
				 int *nr_ret)
3867
{
3868
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3869 3870
	u64 cur = page_offset(page);
	u64 end = cur + PAGE_SIZE - 1;
3871 3872 3873
	u64 extent_offset;
	u64 block_start;
	struct extent_map *em;
3874
	int saved_ret = 0;
3875 3876
	int ret = 0;
	int nr = 0;
3877 3878
	enum req_op op = REQ_OP_WRITE;
	const blk_opf_t write_flags = wbc_to_write_flags(wbc);
3879
	bool has_error = false;
3880
	bool compressed;
C
Chris Mason 已提交
3881

3882
	ret = btrfs_writepage_cow_fixup(page);
3883 3884
	if (ret) {
		/* Fixup worker will requeue */
3885
		redirty_page_for_writepage(wbc, page);
3886 3887
		unlock_page(page);
		return 1;
3888 3889
	}

3890 3891 3892 3893
	/*
	 * we don't want to touch the inode after unlocking the page,
	 * so we update the mapping writeback index now
	 */
3894
	wbc->nr_to_write--;
3895

3896
	while (cur <= end) {
3897
		u64 disk_bytenr;
3898
		u64 em_end;
3899 3900
		u64 dirty_range_start = cur;
		u64 dirty_range_end;
3901
		u32 iosize;
3902

3903
		if (cur >= i_size) {
3904
			btrfs_writepage_endio_finish_ordered(inode, page, cur,
3905
							     end, true);
3906 3907 3908 3909 3910 3911 3912 3913 3914
			/*
			 * This range is beyond i_size, thus we don't need to
			 * bother writing back.
			 * But we still need to clear the dirty subpage bit, or
			 * the next time the page gets dirtied, we will try to
			 * writeback the sectors with subpage dirty bits,
			 * causing writeback without ordered extent.
			 */
			btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
3915 3916
			break;
		}
3917 3918 3919 3920 3921 3922 3923 3924

		find_next_dirty_byte(fs_info, page, &dirty_range_start,
				     &dirty_range_end);
		if (cur < dirty_range_start) {
			cur = dirty_range_start;
			continue;
		}

3925
		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3926
		if (IS_ERR(em)) {
3927
			btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
3928
			ret = PTR_ERR_OR_ZERO(em);
3929 3930 3931
			has_error = true;
			if (!saved_ret)
				saved_ret = ret;
3932 3933 3934 3935
			break;
		}

		extent_offset = cur - em->start;
3936
		em_end = extent_map_end(em);
3937 3938 3939 3940
		ASSERT(cur <= em_end);
		ASSERT(cur < end);
		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
3941
		block_start = em->block_start;
C
Chris Mason 已提交
3942
		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3943 3944
		disk_bytenr = em->block_start + extent_offset;

3945 3946 3947 3948 3949
		/*
		 * Note that em_end from extent_map_end() and dirty_range_end from
		 * find_next_dirty_byte() are all exclusive
		 */
		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
3950

3951
		if (btrfs_use_zone_append(inode, em->block_start))
3952
			op = REQ_OP_ZONE_APPEND;
3953

3954 3955 3956
		free_extent_map(em);
		em = NULL;

C
Chris Mason 已提交
3957 3958 3959 3960 3961
		/*
		 * compressed and inline extents are written through other
		 * paths in the FS
		 */
		if (compressed || block_start == EXTENT_MAP_HOLE ||
3962
		    block_start == EXTENT_MAP_INLINE) {
3963
			if (compressed)
C
Chris Mason 已提交
3964
				nr++;
3965
			else
3966
				btrfs_writepage_endio_finish_ordered(inode,
3967
						page, cur, cur + iosize - 1, true);
3968
			btrfs_page_clear_dirty(fs_info, page, cur, iosize);
C
Chris Mason 已提交
3969
			cur += iosize;
3970 3971
			continue;
		}
C
Chris Mason 已提交
3972

3973
		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
3974
		if (!PageWriteback(page)) {
3975
			btrfs_err(inode->root->fs_info,
3976 3977
				   "page %lu not writeback, cur %llu end %llu",
			       page->index, cur, end);
3978
		}
3979

3980 3981 3982 3983 3984 3985 3986 3987
		/*
		 * Although the PageDirty bit is cleared before entering this
		 * function, subpage dirty bit is not cleared.
		 * So clear subpage dirty bit here so next time we won't submit
		 * page for range already written to disk.
		 */
		btrfs_page_clear_dirty(fs_info, page, cur, iosize);

3988
		ret = submit_extent_page(op | write_flags, wbc,
3989
					 &epd->bio_ctrl, page,
3990
					 disk_bytenr, iosize,
3991
					 cur - page_offset(page),
3992
					 end_bio_extent_writepage,
3993
					 0, false);
3994
		if (ret) {
3995 3996 3997 3998
			has_error = true;
			if (!saved_ret)
				saved_ret = ret;

3999
			btrfs_page_set_error(fs_info, page, cur, iosize);
4000
			if (PageWriteback(page))
4001 4002
				btrfs_page_clear_writeback(fs_info, page, cur,
							   iosize);
4003
		}
4004

4005
		cur += iosize;
4006 4007
		nr++;
	}
4008 4009 4010 4011
	/*
	 * If we finish without problem, we should not only clear page dirty,
	 * but also empty subpage dirty bits
	 */
4012
	if (!has_error)
4013
		btrfs_page_assert_not_dirty(fs_info, page);
4014 4015
	else
		ret = saved_ret;
4016 4017 4018 4019 4020 4021 4022 4023 4024
	*nr_ret = nr;
	return ret;
}

/*
 * the writepage semantics are similar to regular writepage.  extent
 * records are inserted to lock ranges in the tree, and as dirty areas
 * are found, they are marked writeback.  Then the lock bits are removed
 * and the end_io handler clears the writeback ranges
4025 4026 4027
 *
 * Return 0 if everything goes well.
 * Return <0 for error.
4028 4029
 */
static int __extent_writepage(struct page *page, struct writeback_control *wbc,
4030
			      struct extent_page_data *epd)
4031
{
4032
	struct folio *folio = page_folio(page);
4033
	struct inode *inode = page->mapping->host;
4034
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4035 4036
	const u64 page_start = page_offset(page);
	const u64 page_end = page_start + PAGE_SIZE - 1;
4037 4038
	int ret;
	int nr = 0;
4039
	size_t pg_offset;
4040
	loff_t i_size = i_size_read(inode);
4041
	unsigned long end_index = i_size >> PAGE_SHIFT;
4042 4043 4044 4045 4046

	trace___extent_writepage(page, inode, wbc);

	WARN_ON(!PageLocked(page));

4047 4048
	btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
			       page_offset(page), PAGE_SIZE);
4049

4050
	pg_offset = offset_in_page(i_size);
4051 4052
	if (page->index > end_index ||
	   (page->index == end_index && !pg_offset)) {
4053 4054
		folio_invalidate(folio, 0, folio_size(folio));
		folio_unlock(folio);
4055 4056 4057
		return 0;
	}

4058
	if (page->index == end_index)
4059
		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
4060

4061 4062 4063 4064 4065
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		SetPageError(page);
		goto done;
	}
4066

4067
	if (!epd->extent_locked) {
4068
		ret = writepage_delalloc(BTRFS_I(inode), page, wbc);
4069
		if (ret == 1)
4070
			return 0;
4071 4072 4073
		if (ret)
			goto done;
	}
4074

4075
	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
4076
				    &nr);
4077
	if (ret == 1)
4078
		return 0;
4079

4080 4081 4082 4083 4084 4085
done:
	if (nr == 0) {
		/* make sure the mapping tag for page dirty gets cleared */
		set_page_writeback(page);
		end_page_writeback(page);
	}
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
	/*
	 * Here we used to have a check for PageError() and then set @ret and
	 * call end_extent_writepage().
	 *
	 * But in fact setting @ret here will cause different error paths
	 * between subpage and regular sectorsize.
	 *
	 * For regular page size, we never submit current page, but only add
	 * current page to current bio.
	 * The bio submission can only happen in next page.
	 * Thus if we hit the PageError() branch, @ret is already set to
	 * non-zero value and will not get updated for regular sectorsize.
	 *
	 * But for subpage case, it's possible we submit part of current page,
	 * thus can get PageError() set by submitted bio of the same page,
	 * while our @ret is still 0.
	 *
	 * So here we unify the behavior and don't set @ret.
	 * Error can still be properly passed to higher layer as page will
	 * be set error, here we just don't handle the IO failure.
	 *
	 * NOTE: This is just a hotfix for subpage.
	 * The root fix will be properly ending ordered extent when we hit
	 * an error during writeback.
	 *
	 * But that needs a bigger refactoring, as we not only need to grab the
	 * submitted OE, but also need to know exactly at which bytenr we hit
	 * the error.
	 * Currently the full page based __extent_writepage_io() is not
	 * capable of that.
	 */
	if (PageError(page))
4118
		end_extent_writepage(page, ret, page_start, page_end);
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
	if (epd->extent_locked) {
		/*
		 * If epd->extent_locked, it's from extent_write_locked_range(),
		 * the page can either be locked by lock_page() or
		 * process_one_page().
		 * Let btrfs_page_unlock_writer() handle both cases.
		 */
		ASSERT(wbc);
		btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
					 wbc->range_end + 1 - wbc->range_start);
	} else {
		unlock_page(page);
	}
4132
	ASSERT(ret <= 0);
4133
	return ret;
4134 4135
}

4136
void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
4137
{
4138 4139
	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
		       TASK_UNINTERRUPTIBLE);
4140 4141
}

4142 4143 4144 4145 4146 4147 4148
static void end_extent_buffer_writeback(struct extent_buffer *eb)
{
	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
	smp_mb__after_atomic();
	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
}

4149
/*
4150
 * Lock extent buffer status and pages for writeback.
4151
 *
4152 4153 4154 4155 4156 4157
 * May try to flush write bio if we can't get the lock.
 *
 * Return  0 if the extent buffer doesn't need to be submitted.
 *           (E.g. the extent buffer is not dirty)
 * Return >0 is the extent buffer is submitted to bio.
 * Return <0 if something went wrong, no page is locked.
4158
 */
4159
static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
4160
			  struct extent_page_data *epd)
4161
{
4162
	struct btrfs_fs_info *fs_info = eb->fs_info;
4163
	int i, num_pages;
4164 4165 4166 4167
	int flush = 0;
	int ret = 0;

	if (!btrfs_try_tree_write_lock(eb)) {
4168
		submit_write_bio(epd, 0);
4169
		flush = 1;
4170 4171 4172 4173 4174 4175 4176 4177
		btrfs_tree_lock(eb);
	}

	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
		btrfs_tree_unlock(eb);
		if (!epd->sync_io)
			return 0;
		if (!flush) {
4178
			submit_write_bio(epd, 0);
4179 4180
			flush = 1;
		}
C
Chris Mason 已提交
4181 4182 4183 4184 4185
		while (1) {
			wait_on_extent_buffer_writeback(eb);
			btrfs_tree_lock(eb);
			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
				break;
4186 4187 4188 4189
			btrfs_tree_unlock(eb);
		}
	}

4190 4191 4192 4193 4194 4195
	/*
	 * We need to do this to prevent races in people who check if the eb is
	 * under IO since we can end up having no IO bits set for a short period
	 * of time.
	 */
	spin_lock(&eb->refs_lock);
4196 4197
	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4198
		spin_unlock(&eb->refs_lock);
4199
		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4200 4201 4202
		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
					 -eb->len,
					 fs_info->dirty_metadata_batch);
4203
		ret = 1;
4204 4205
	} else {
		spin_unlock(&eb->refs_lock);
4206 4207 4208 4209
	}

	btrfs_tree_unlock(eb);

4210 4211 4212 4213 4214 4215
	/*
	 * Either we don't need to submit any tree block, or we're submitting
	 * subpage eb.
	 * Subpage metadata doesn't use page locking at all, so we can skip
	 * the page locking.
	 */
4216
	if (!ret || fs_info->nodesize < PAGE_SIZE)
4217 4218
		return ret;

4219
	num_pages = num_extent_pages(eb);
4220
	for (i = 0; i < num_pages; i++) {
4221
		struct page *p = eb->pages[i];
4222 4223 4224

		if (!trylock_page(p)) {
			if (!flush) {
4225
				submit_write_bio(epd, 0);
4226 4227 4228 4229 4230 4231
				flush = 1;
			}
			lock_page(p);
		}
	}

4232
	return ret;
4233 4234
}

4235
static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4236
{
4237
	struct btrfs_fs_info *fs_info = eb->fs_info;
4238

4239
	btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4240 4241 4242
	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
		return;

4243 4244 4245 4246 4247 4248
	/*
	 * A read may stumble upon this buffer later, make sure that it gets an
	 * error and knows there was an error.
	 */
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);

4249 4250 4251 4252 4253 4254 4255 4256
	/*
	 * We need to set the mapping with the io error as well because a write
	 * error will flip the file system readonly, and then syncfs() will
	 * return a 0 because we are readonly if we don't modify the err seq for
	 * the superblock.
	 */
	mapping_set_error(page->mapping, -EIO);

4257 4258 4259 4260 4261 4262 4263
	/*
	 * If we error out, we should add back the dirty_metadata_bytes
	 * to make it consistent.
	 */
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
				 eb->len, fs_info->dirty_metadata_batch);

4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
	/*
	 * If writeback for a btree extent that doesn't belong to a log tree
	 * failed, increment the counter transaction->eb_write_errors.
	 * We do this because while the transaction is running and before it's
	 * committing (when we call filemap_fdata[write|wait]_range against
	 * the btree inode), we might have
	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
	 * returns an error or an error happens during writeback, when we're
	 * committing the transaction we wouldn't know about it, since the pages
	 * can be no longer dirty nor marked anymore for writeback (if a
	 * subsequent modification to the extent buffer didn't happen before the
	 * transaction commit), which makes filemap_fdata[write|wait]_range not
	 * able to find the pages tagged with SetPageError at transaction
	 * commit time. So if this happens we must abort the transaction,
	 * otherwise we commit a super block with btree roots that point to
	 * btree nodes/leafs whose content on disk is invalid - either garbage
	 * or the content of some node/leaf from a past generation that got
	 * cowed or deleted and is no longer valid.
	 *
	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
	 * not be enough - we need to distinguish between log tree extents vs
	 * non-log tree extents, and the next filemap_fdatawait_range() call
	 * will catch and clear such errors in the mapping - and that call might
	 * be from a log sync and not from a transaction commit. Also, checking
	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
	 * not done and would not be reliable - the eb might have been released
	 * from memory and reading it back again means that flag would not be
	 * set (since it's a runtime flag, not persisted on disk).
	 *
	 * Using the flags below in the btree inode also makes us achieve the
	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
	 * writeback for all dirty pages and before filemap_fdatawait_range()
	 * is called, the writeback for all dirty pages had already finished
	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
	 * filemap_fdatawait_range() would return success, as it could not know
	 * that writeback errors happened (the pages were no longer tagged for
	 * writeback).
	 */
	switch (eb->log_index) {
	case -1:
4304
		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4305 4306
		break;
	case 0:
4307
		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4308 4309
		break;
	case 1:
4310
		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4311 4312 4313 4314 4315 4316
		break;
	default:
		BUG(); /* unexpected, logic error */
	}
}

4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
/*
 * The endio specific version which won't touch any unsafe spinlock in endio
 * context.
 */
static struct extent_buffer *find_extent_buffer_nolock(
		struct btrfs_fs_info *fs_info, u64 start)
{
	struct extent_buffer *eb;

	rcu_read_lock();
4327 4328
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       start >> fs_info->sectorsize_bits);
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
	if (eb && atomic_inc_not_zero(&eb->refs)) {
		rcu_read_unlock();
		return eb;
	}
	rcu_read_unlock();
	return NULL;
}

/*
 * The endio function for subpage extent buffer write.
 *
 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
 * after all extent buffers in the page has finished their writeback.
 */
4343
static void end_bio_subpage_eb_writepage(struct btrfs_bio *bbio)
4344
{
4345
	struct bio *bio = &bbio->bio;
4346
	struct btrfs_fs_info *fs_info;
4347 4348 4349
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

4350
	fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
4351
	ASSERT(fs_info->nodesize < PAGE_SIZE);
4352

4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
	ASSERT(!bio_flagged(bio, BIO_CLONED));
	bio_for_each_segment_all(bvec, bio, iter_all) {
		struct page *page = bvec->bv_page;
		u64 bvec_start = page_offset(page) + bvec->bv_offset;
		u64 bvec_end = bvec_start + bvec->bv_len - 1;
		u64 cur_bytenr = bvec_start;

		ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));

		/* Iterate through all extent buffers in the range */
		while (cur_bytenr <= bvec_end) {
			struct extent_buffer *eb;
			int done;

			/*
			 * Here we can't use find_extent_buffer(), as it may
			 * try to lock eb->refs_lock, which is not safe in endio
			 * context.
			 */
			eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
			ASSERT(eb);

			cur_bytenr = eb->start + eb->len;

			ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
			done = atomic_dec_and_test(&eb->io_pages);
			ASSERT(done);

			if (bio->bi_status ||
			    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
				ClearPageUptodate(page);
				set_btree_ioerr(page, eb);
			}

			btrfs_subpage_clear_writeback(fs_info, page, eb->start,
						      eb->len);
			end_extent_buffer_writeback(eb);
			/*
			 * free_extent_buffer() will grab spinlock which is not
			 * safe in endio context. Thus here we manually dec
			 * the ref.
			 */
			atomic_dec(&eb->refs);
		}
	}
	bio_put(bio);
}

4401
static void end_bio_extent_buffer_writepage(struct btrfs_bio *bbio)
4402
{
4403
	struct bio *bio = &bbio->bio;
4404
	struct bio_vec *bvec;
4405
	struct extent_buffer *eb;
4406
	int done;
4407
	struct bvec_iter_all iter_all;
4408

4409
	ASSERT(!bio_flagged(bio, BIO_CLONED));
4410
	bio_for_each_segment_all(bvec, bio, iter_all) {
4411 4412 4413 4414 4415 4416
		struct page *page = bvec->bv_page;

		eb = (struct extent_buffer *)page->private;
		BUG_ON(!eb);
		done = atomic_dec_and_test(&eb->io_pages);

4417
		if (bio->bi_status ||
4418
		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4419
			ClearPageUptodate(page);
4420
			set_btree_ioerr(page, eb);
4421 4422 4423 4424 4425 4426 4427 4428
		}

		end_page_writeback(page);

		if (!done)
			continue;

		end_extent_buffer_writeback(eb);
4429
	}
4430 4431 4432 4433

	bio_put(bio);
}

4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
static void prepare_eb_write(struct extent_buffer *eb)
{
	u32 nritems;
	unsigned long start;
	unsigned long end;

	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
	atomic_set(&eb->io_pages, num_extent_pages(eb));

	/* Set btree blocks beyond nritems with 0 to avoid stale content */
	nritems = btrfs_header_nritems(eb);
	if (btrfs_header_level(eb) > 0) {
		end = btrfs_node_key_ptr_offset(nritems);
		memzero_extent_buffer(eb, end, eb->len - end);
	} else {
		/*
		 * Leaf:
		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
		 */
		start = btrfs_item_nr_offset(nritems);
		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
		memzero_extent_buffer(eb, start, end - start);
	}
}

4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
/*
 * Unlike the work in write_one_eb(), we rely completely on extent locking.
 * Page locking is only utilized at minimum to keep the VMM code happy.
 */
static int write_one_subpage_eb(struct extent_buffer *eb,
				struct writeback_control *wbc,
				struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
4469
	blk_opf_t write_flags = wbc_to_write_flags(wbc);
4470 4471 4472
	bool no_dirty_ebs = false;
	int ret;

4473 4474
	prepare_eb_write(eb);

4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
	/* clear_page_dirty_for_io() in subpage helper needs page locked */
	lock_page(page);
	btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);

	/* Check if this is the last dirty bit to update nr_written */
	no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
							  eb->start, eb->len);
	if (no_dirty_ebs)
		clear_page_dirty_for_io(page);

4485 4486 4487
	ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
			&epd->bio_ctrl, page, eb->start, eb->len,
			eb->start - page_offset(page),
4488
			end_bio_subpage_eb_writepage, 0, false);
4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503
	if (ret) {
		btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
		set_btree_ioerr(page, eb);
		unlock_page(page);

		if (atomic_dec_and_test(&eb->io_pages))
			end_extent_buffer_writeback(eb);
		return -EIO;
	}
	unlock_page(page);
	/*
	 * Submission finished without problem, if no range of the page is
	 * dirty anymore, we have submitted a page.  Update nr_written in wbc.
	 */
	if (no_dirty_ebs)
4504
		wbc->nr_to_write--;
4505 4506 4507
	return ret;
}

4508
static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4509 4510 4511
			struct writeback_control *wbc,
			struct extent_page_data *epd)
{
4512
	u64 disk_bytenr = eb->start;
4513
	int i, num_pages;
4514
	blk_opf_t write_flags = wbc_to_write_flags(wbc);
4515
	int ret = 0;
4516

4517
	prepare_eb_write(eb);
4518

4519
	num_pages = num_extent_pages(eb);
4520
	for (i = 0; i < num_pages; i++) {
4521
		struct page *p = eb->pages[i];
4522 4523 4524

		clear_page_dirty_for_io(p);
		set_page_writeback(p);
4525
		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4526 4527
					 &epd->bio_ctrl, p, disk_bytenr,
					 PAGE_SIZE, 0,
4528
					 end_bio_extent_buffer_writepage,
4529
					 0, false);
4530
		if (ret) {
4531
			set_btree_ioerr(p, eb);
4532 4533
			if (PageWriteback(p))
				end_page_writeback(p);
4534 4535 4536 4537 4538
			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
				end_extent_buffer_writeback(eb);
			ret = -EIO;
			break;
		}
4539
		disk_bytenr += PAGE_SIZE;
4540
		wbc->nr_to_write--;
4541 4542 4543 4544 4545
		unlock_page(p);
	}

	if (unlikely(ret)) {
		for (; i < num_pages; i++) {
4546
			struct page *p = eb->pages[i];
4547
			clear_page_dirty_for_io(p);
4548 4549 4550 4551 4552 4553 4554
			unlock_page(p);
		}
	}

	return ret;
}

4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
/*
 * Submit one subpage btree page.
 *
 * The main difference to submit_eb_page() is:
 * - Page locking
 *   For subpage, we don't rely on page locking at all.
 *
 * - Flush write bio
 *   We only flush bio if we may be unable to fit current extent buffers into
 *   current bio.
 *
 * Return >=0 for the number of submitted extent buffers.
 * Return <0 for fatal error.
 */
static int submit_eb_subpage(struct page *page,
			     struct writeback_control *wbc,
			     struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	int submitted = 0;
	u64 page_start = page_offset(page);
	int bit_start = 0;
	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
	int ret;

	/* Lock and write each dirty extent buffers in the range */
4581
	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
		struct extent_buffer *eb;
		unsigned long flags;
		u64 start;

		/*
		 * Take private lock to ensure the subpage won't be detached
		 * in the meantime.
		 */
		spin_lock(&page->mapping->private_lock);
		if (!PagePrivate(page)) {
			spin_unlock(&page->mapping->private_lock);
			break;
		}
		spin_lock_irqsave(&subpage->lock, flags);
4597 4598
		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
			      subpage->bitmaps)) {
4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
			spin_unlock_irqrestore(&subpage->lock, flags);
			spin_unlock(&page->mapping->private_lock);
			bit_start++;
			continue;
		}

		start = page_start + bit_start * fs_info->sectorsize;
		bit_start += sectors_per_node;

		/*
		 * Here we just want to grab the eb without touching extra
		 * spin locks, so call find_extent_buffer_nolock().
		 */
		eb = find_extent_buffer_nolock(fs_info, start);
		spin_unlock_irqrestore(&subpage->lock, flags);
		spin_unlock(&page->mapping->private_lock);

		/*
		 * The eb has already reached 0 refs thus find_extent_buffer()
		 * doesn't return it. We don't need to write back such eb
		 * anyway.
		 */
		if (!eb)
			continue;

		ret = lock_extent_buffer_for_io(eb, epd);
		if (ret == 0) {
			free_extent_buffer(eb);
			continue;
		}
		if (ret < 0) {
			free_extent_buffer(eb);
			goto cleanup;
		}
4633
		ret = write_one_subpage_eb(eb, wbc, epd);
4634 4635 4636 4637 4638 4639 4640 4641 4642
		free_extent_buffer(eb);
		if (ret < 0)
			goto cleanup;
		submitted++;
	}
	return submitted;

cleanup:
	/* We hit error, end bio for the submitted extent buffers */
4643
	submit_write_bio(epd, ret);
4644 4645 4646
	return ret;
}

4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
/*
 * Submit all page(s) of one extent buffer.
 *
 * @page:	the page of one extent buffer
 * @eb_context:	to determine if we need to submit this page, if current page
 *		belongs to this eb, we don't need to submit
 *
 * The caller should pass each page in their bytenr order, and here we use
 * @eb_context to determine if we have submitted pages of one extent buffer.
 *
 * If we have, we just skip until we hit a new page that doesn't belong to
 * current @eb_context.
 *
 * If not, we submit all the page(s) of the extent buffer.
 *
 * Return >0 if we have submitted the extent buffer successfully.
 * Return 0 if we don't need to submit the page, as it's already submitted by
 * previous call.
 * Return <0 for fatal error.
 */
static int submit_eb_page(struct page *page, struct writeback_control *wbc,
			  struct extent_page_data *epd,
			  struct extent_buffer **eb_context)
{
	struct address_space *mapping = page->mapping;
4672
	struct btrfs_block_group *cache = NULL;
4673 4674 4675 4676 4677 4678
	struct extent_buffer *eb;
	int ret;

	if (!PagePrivate(page))
		return 0;

4679
	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
4680 4681
		return submit_eb_subpage(page, wbc, epd);

4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
	spin_lock(&mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	eb = (struct extent_buffer *)page->private;

	/*
	 * Shouldn't happen and normally this would be a BUG_ON but no point
	 * crashing the machine for something we can survive anyway.
	 */
	if (WARN_ON(!eb)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	if (eb == *eb_context) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}
	ret = atomic_inc_not_zero(&eb->refs);
	spin_unlock(&mapping->private_lock);
	if (!ret)
		return 0;

4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
		/*
		 * If for_sync, this hole will be filled with
		 * trasnsaction commit.
		 */
		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
			ret = -EAGAIN;
		else
			ret = 0;
		free_extent_buffer(eb);
		return ret;
	}

4721 4722 4723 4724
	*eb_context = eb;

	ret = lock_extent_buffer_for_io(eb, epd);
	if (ret <= 0) {
4725 4726 4727
		btrfs_revert_meta_write_pointer(cache, eb);
		if (cache)
			btrfs_put_block_group(cache);
4728 4729 4730
		free_extent_buffer(eb);
		return ret;
	}
4731
	if (cache) {
4732 4733 4734
		/*
		 * Implies write in zoned mode. Mark the last eb in a block group.
		 */
4735
		btrfs_schedule_zone_finish_bg(cache, eb);
4736
		btrfs_put_block_group(cache);
4737
	}
4738 4739 4740 4741 4742 4743 4744
	ret = write_one_eb(eb, wbc, epd);
	free_extent_buffer(eb);
	if (ret < 0)
		return ret;
	return 1;
}

4745 4746 4747
int btree_write_cache_pages(struct address_space *mapping,
				   struct writeback_control *wbc)
{
4748
	struct extent_buffer *eb_context = NULL;
4749
	struct extent_page_data epd = {
4750
		.bio_ctrl = { 0 },
4751 4752 4753
		.extent_locked = 0,
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
	};
4754
	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4755 4756 4757 4758 4759 4760 4761 4762
	int ret = 0;
	int done = 0;
	int nr_to_write_done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	int scanned = 0;
M
Matthew Wilcox 已提交
4763
	xa_mark_t tag;
4764

4765
	pagevec_init(&pvec);
4766 4767 4768
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4769 4770 4771 4772 4773
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4774
	} else {
4775 4776
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4777 4778 4779 4780 4781 4782
		scanned = 1;
	}
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4783
	btrfs_zoned_meta_io_lock(fs_info);
4784 4785 4786 4787
retry:
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);
	while (!done && !nr_to_write_done && (index <= end) &&
J
Jan Kara 已提交
4788
	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4789
			tag))) {
4790 4791 4792 4793 4794
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4795 4796
			ret = submit_eb_page(page, wbc, &epd, &eb_context);
			if (ret == 0)
4797
				continue;
4798
			if (ret < 0) {
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821
				done = 1;
				break;
			}

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	if (!scanned && !done) {
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
		goto retry;
	}
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847
	/*
	 * If something went wrong, don't allow any metadata write bio to be
	 * submitted.
	 *
	 * This would prevent use-after-free if we had dirty pages not
	 * cleaned up, which can still happen by fuzzed images.
	 *
	 * - Bad extent tree
	 *   Allowing existing tree block to be allocated for other trees.
	 *
	 * - Log tree operations
	 *   Exiting tree blocks get allocated to log tree, bumps its
	 *   generation, then get cleaned in tree re-balance.
	 *   Such tree block will not be written back, since it's clean,
	 *   thus no WRITTEN flag set.
	 *   And after log writes back, this tree block is not traced by
	 *   any dirty extent_io_tree.
	 *
	 * - Offending tree block gets re-dirtied from its original owner
	 *   Since it has bumped generation, no WRITTEN flag, it can be
	 *   reused without COWing. This tree block will not be traced
	 *   by btrfs_transaction::dirty_pages.
	 *
	 *   Now such dirty tree block will not be cleaned by any dirty
	 *   extent io tree. Thus we don't want to submit such wild eb
	 *   if the fs already has error.
4848
	 *
4849 4850 4851 4852 4853
	 * We can get ret > 0 from submit_extent_page() indicating how many ebs
	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
	 */
	if (ret > 0)
		ret = 0;
4854 4855 4856 4857 4858
	if (!ret && BTRFS_FS_ERROR(fs_info))
		ret = -EROFS;
	submit_write_bio(&epd, ret);

	btrfs_zoned_meta_io_unlock(fs_info);
4859 4860 4861
	return ret;
}

4862
/**
4863 4864
 * Walk the list of dirty pages of the given address space and write all of them.
 *
4865
 * @mapping: address space structure to write
4866 4867
 * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
 * @epd:     holds context for the write, namely the bio
4868 4869 4870 4871 4872 4873 4874 4875 4876
 *
 * If a page is already under I/O, write_cache_pages() skips it, even
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
 */
4877
static int extent_write_cache_pages(struct address_space *mapping,
C
Chris Mason 已提交
4878
			     struct writeback_control *wbc,
4879
			     struct extent_page_data *epd)
4880
{
4881
	struct inode *inode = mapping->host;
4882 4883
	int ret = 0;
	int done = 0;
4884
	int nr_to_write_done = 0;
4885 4886 4887 4888
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
4889 4890
	pgoff_t done_index;
	int range_whole = 0;
4891
	int scanned = 0;
M
Matthew Wilcox 已提交
4892
	xa_mark_t tag;
4893

4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
	/*
	 * We have to hold onto the inode so that ordered extents can do their
	 * work when the IO finishes.  The alternative to this is failing to add
	 * an ordered extent if the igrab() fails there and that is a huge pain
	 * to deal with, so instead just hold onto the inode throughout the
	 * writepages operation.  If it fails here we are freeing up the inode
	 * anyway and we'd rather not waste our time writing out stuff that is
	 * going to be truncated anyway.
	 */
	if (!igrab(inode))
		return 0;

4906
	pagevec_init(&pvec);
4907 4908 4909
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4910 4911 4912 4913 4914
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4915
	} else {
4916 4917
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4918 4919
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
4920 4921
		scanned = 1;
	}
4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935

	/*
	 * We do the tagged writepage as long as the snapshot flush bit is set
	 * and we are the first one who do the filemap_flush() on this inode.
	 *
	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
	 * not race in and drop the bit.
	 */
	if (range_whole && wbc->nr_to_write == LONG_MAX &&
	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
			       &BTRFS_I(inode)->runtime_flags))
		wbc->tagged_writepages = 1;

	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4936 4937 4938
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4939
retry:
4940
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4941
		tag_pages_for_writeback(mapping, index, end);
4942
	done_index = index;
4943
	while (!done && !nr_to_write_done && (index <= end) &&
4944 4945
			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
						&index, end, tag))) {
4946 4947 4948 4949 4950
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4951
			done_index = page->index + 1;
4952
			/*
M
Matthew Wilcox 已提交
4953 4954 4955 4956 4957
			 * At this point we hold neither the i_pages lock nor
			 * the page lock: the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to
			 * tmpfs file mapping
4958
			 */
4959
			if (!trylock_page(page)) {
4960
				submit_write_bio(epd, 0);
4961
				lock_page(page);
4962
			}
4963 4964 4965 4966 4967 4968

			if (unlikely(page->mapping != mapping)) {
				unlock_page(page);
				continue;
			}

C
Chris Mason 已提交
4969
			if (wbc->sync_mode != WB_SYNC_NONE) {
4970
				if (PageWriteback(page))
4971
					submit_write_bio(epd, 0);
4972
				wait_on_page_writeback(page);
C
Chris Mason 已提交
4973
			}
4974 4975 4976 4977 4978 4979 4980

			if (PageWriteback(page) ||
			    !clear_page_dirty_for_io(page)) {
				unlock_page(page);
				continue;
			}

4981
			ret = __extent_writepage(page, wbc, epd);
4982 4983 4984 4985
			if (ret < 0) {
				done = 1;
				break;
			}
4986 4987 4988 4989 4990 4991 4992

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
4993 4994 4995 4996
		}
		pagevec_release(&pvec);
		cond_resched();
	}
4997
	if (!scanned && !done) {
4998 4999 5000 5001 5002 5003
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
5004 5005 5006 5007 5008 5009 5010

		/*
		 * If we're looping we could run into a page that is locked by a
		 * writer and that writer could be waiting on writeback for a
		 * page in our current bio, and thus deadlock, so flush the
		 * write bio here.
		 */
5011
		submit_write_bio(epd, 0);
5012
		goto retry;
5013
	}
5014 5015 5016 5017

	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
		mapping->writeback_index = done_index;

5018
	btrfs_add_delayed_iput(inode);
5019
	return ret;
5020 5021
}

5022 5023 5024 5025 5026 5027
/*
 * Submit the pages in the range to bio for call sites which delalloc range has
 * already been ran (aka, ordered extent inserted) and all pages are still
 * locked.
 */
int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
5028
{
5029 5030
	bool found_error = false;
	int first_error = 0;
5031 5032 5033
	int ret = 0;
	struct address_space *mapping = inode->i_mapping;
	struct page *page;
5034
	u64 cur = start;
5035 5036
	unsigned long nr_pages;
	const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
5037
	struct extent_page_data epd = {
5038
		.bio_ctrl = { 0 },
5039
		.extent_locked = 1,
5040
		.sync_io = 1,
5041 5042
	};
	struct writeback_control wbc_writepages = {
5043
		.sync_mode	= WB_SYNC_ALL,
5044 5045
		.range_start	= start,
		.range_end	= end + 1,
5046 5047 5048
		/* We're called from an async helper function */
		.punt_to_cgroup	= 1,
		.no_cgroup_owner = 1,
5049 5050
	};

5051 5052 5053 5054 5055
	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
	nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
		   PAGE_SHIFT;
	wbc_writepages.nr_to_write = nr_pages * 2;

5056
	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
5057
	while (cur <= end) {
5058 5059
		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);

5060 5061 5062 5063 5064 5065
		page = find_get_page(mapping, cur >> PAGE_SHIFT);
		/*
		 * All pages in the range are locked since
		 * btrfs_run_delalloc_range(), thus there is no way to clear
		 * the page dirty flag.
		 */
5066
		ASSERT(PageLocked(page));
5067 5068 5069 5070 5071 5072 5073
		ASSERT(PageDirty(page));
		clear_page_dirty_for_io(page);
		ret = __extent_writepage(page, &wbc_writepages, &epd);
		ASSERT(ret <= 0);
		if (ret < 0) {
			found_error = true;
			first_error = ret;
5074
		}
5075
		put_page(page);
5076
		cur = cur_end + 1;
5077 5078
	}

5079
	submit_write_bio(&epd, found_error ? ret : 0);
5080 5081

	wbc_detach_inode(&wbc_writepages);
5082 5083
	if (found_error)
		return first_error;
5084 5085
	return ret;
}
5086

5087
int extent_writepages(struct address_space *mapping,
5088 5089
		      struct writeback_control *wbc)
{
5090
	struct inode *inode = mapping->host;
5091 5092
	int ret = 0;
	struct extent_page_data epd = {
5093
		.bio_ctrl = { 0 },
5094
		.extent_locked = 0,
5095
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5096 5097
	};

5098 5099 5100 5101
	/*
	 * Allow only a single thread to do the reloc work in zoned mode to
	 * protect the write pointer updates.
	 */
5102
	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
5103
	ret = extent_write_cache_pages(mapping, wbc, &epd);
5104
	submit_write_bio(&epd, ret);
5105
	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
5106 5107 5108
	return ret;
}

5109
void extent_readahead(struct readahead_control *rac)
5110
{
5111
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
L
Liu Bo 已提交
5112
	struct page *pagepool[16];
5113
	struct extent_map *em_cached = NULL;
5114
	u64 prev_em_start = (u64)-1;
5115
	int nr;
5116

5117
	while ((nr = readahead_page_batch(rac, pagepool))) {
5118 5119
		u64 contig_start = readahead_pos(rac);
		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
5120

5121
		contiguous_readpages(pagepool, nr, contig_start, contig_end,
5122
				&em_cached, &bio_ctrl, &prev_em_start);
5123
	}
L
Liu Bo 已提交
5124

5125 5126
	if (em_cached)
		free_extent_map(em_cached);
5127
	submit_one_bio(&bio_ctrl);
5128 5129 5130
}

/*
5131 5132
 * basic invalidate_folio code, this waits on any locked or writeback
 * ranges corresponding to the folio, and then deletes any extent state
5133 5134
 * records from the tree
 */
5135 5136
int extent_invalidate_folio(struct extent_io_tree *tree,
			  struct folio *folio, size_t offset)
5137
{
5138
	struct extent_state *cached_state = NULL;
5139 5140 5141
	u64 start = folio_pos(folio);
	u64 end = start + folio_size(folio) - 1;
	size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
5142

5143 5144 5145
	/* This function is only called for the btree inode */
	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);

5146
	start += ALIGN(offset, blocksize);
5147 5148 5149
	if (start > end)
		return 0;

5150
	lock_extent_bits(tree, start, end, &cached_state);
5151
	folio_wait_writeback(folio);
5152 5153 5154 5155 5156 5157 5158

	/*
	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
	 * so here we only need to unlock the extent range to free any
	 * existing extent state.
	 */
	unlock_extent_cached(tree, start, end, &cached_state);
5159 5160 5161
	return 0;
}

5162
/*
5163
 * a helper for release_folio, this tests for areas of the page that
5164 5165 5166
 * are locked or under IO and drops the related state bits if it is safe
 * to drop the page.
 */
5167
static int try_release_extent_state(struct extent_io_tree *tree,
5168
				    struct page *page, gfp_t mask)
5169
{
M
Miao Xie 已提交
5170
	u64 start = page_offset(page);
5171
	u64 end = start + PAGE_SIZE - 1;
5172 5173
	int ret = 1;

N
Nikolay Borisov 已提交
5174
	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
5175
		ret = 0;
N
Nikolay Borisov 已提交
5176
	} else {
5177
		/*
5178 5179 5180 5181
		 * At this point we can safely clear everything except the
		 * locked bit, the nodatasum bit and the delalloc new bit.
		 * The delalloc new bit will be cleared by ordered extent
		 * completion.
5182
		 */
5183
		ret = __clear_extent_bit(tree, start, end,
5184 5185
			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
			 0, 0, NULL, mask, NULL);
5186 5187 5188 5189 5190 5191 5192 5193

		/* if clear_extent_bit failed for enomem reasons,
		 * we can't allow the release to continue.
		 */
		if (ret < 0)
			ret = 0;
		else
			ret = 1;
5194 5195 5196 5197
	}
	return ret;
}

5198
/*
5199
 * a helper for release_folio.  As long as there are no locked extents
5200 5201 5202
 * in the range corresponding to the page, both state records and extent
 * map records are removed
 */
5203
int try_release_extent_mapping(struct page *page, gfp_t mask)
5204 5205
{
	struct extent_map *em;
M
Miao Xie 已提交
5206
	u64 start = page_offset(page);
5207
	u64 end = start + PAGE_SIZE - 1;
5208 5209 5210
	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
	struct extent_io_tree *tree = &btrfs_inode->io_tree;
	struct extent_map_tree *map = &btrfs_inode->extent_tree;
5211

5212
	if (gfpflags_allow_blocking(mask) &&
5213
	    page->mapping->host->i_size > SZ_16M) {
5214
		u64 len;
5215
		while (start <= end) {
5216 5217 5218
			struct btrfs_fs_info *fs_info;
			u64 cur_gen;

5219
			len = end - start + 1;
5220
			write_lock(&map->lock);
5221
			em = lookup_extent_mapping(map, start, len);
5222
			if (!em) {
5223
				write_unlock(&map->lock);
5224 5225
				break;
			}
5226 5227
			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
			    em->start != start) {
5228
				write_unlock(&map->lock);
5229 5230 5231
				free_extent_map(em);
				break;
			}
5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242
			if (test_range_bit(tree, em->start,
					   extent_map_end(em) - 1,
					   EXTENT_LOCKED, 0, NULL))
				goto next;
			/*
			 * If it's not in the list of modified extents, used
			 * by a fast fsync, we can remove it. If it's being
			 * logged we can safely remove it since fsync took an
			 * extra reference on the em.
			 */
			if (list_empty(&em->list) ||
5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258
			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
				goto remove_em;
			/*
			 * If it's in the list of modified extents, remove it
			 * only if its generation is older then the current one,
			 * in which case we don't need it for a fast fsync.
			 * Otherwise don't remove it, we could be racing with an
			 * ongoing fast fsync that could miss the new extent.
			 */
			fs_info = btrfs_inode->root->fs_info;
			spin_lock(&fs_info->trans_lock);
			cur_gen = fs_info->generation;
			spin_unlock(&fs_info->trans_lock);
			if (em->generation >= cur_gen)
				goto next;
remove_em:
5259 5260 5261 5262 5263 5264 5265 5266
			/*
			 * We only remove extent maps that are not in the list of
			 * modified extents or that are in the list but with a
			 * generation lower then the current generation, so there
			 * is no need to set the full fsync flag on the inode (it
			 * hurts the fsync performance for workloads with a data
			 * size that exceeds or is close to the system's memory).
			 */
5267 5268 5269
			remove_extent_mapping(map, em);
			/* once for the rb tree */
			free_extent_map(em);
5270
next:
5271
			start = extent_map_end(em);
5272
			write_unlock(&map->lock);
5273 5274

			/* once for us */
5275
			free_extent_map(em);
5276 5277

			cond_resched(); /* Allow large-extent preemption. */
5278 5279
		}
	}
5280
	return try_release_extent_state(tree, page, mask);
5281 5282
}

5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311
/*
 * To cache previous fiemap extent
 *
 * Will be used for merging fiemap extent
 */
struct fiemap_cache {
	u64 offset;
	u64 phys;
	u64 len;
	u32 flags;
	bool cached;
};

/*
 * Helper to submit fiemap extent.
 *
 * Will try to merge current fiemap extent specified by @offset, @phys,
 * @len and @flags with cached one.
 * And only when we fails to merge, cached one will be submitted as
 * fiemap extent.
 *
 * Return value is the same as fiemap_fill_next_extent().
 */
static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
				struct fiemap_cache *cache,
				u64 offset, u64 phys, u64 len, u32 flags)
{
	int ret = 0;

5312 5313 5314
	/* Set at the end of extent_fiemap(). */
	ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);

5315 5316 5317 5318 5319
	if (!cache->cached)
		goto assign;

	/*
	 * Sanity check, extent_fiemap() should have ensured that new
5320
	 * fiemap extent won't overlap with cached one.
5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
	 * Not recoverable.
	 *
	 * NOTE: Physical address can overlap, due to compression
	 */
	if (cache->offset + cache->len > offset) {
		WARN_ON(1);
		return -EINVAL;
	}

	/*
	 * Only merges fiemap extents if
	 * 1) Their logical addresses are continuous
	 *
	 * 2) Their physical addresses are continuous
	 *    So truly compressed (physical size smaller than logical size)
	 *    extents won't get merged with each other
	 *
5338
	 * 3) Share same flags
5339 5340 5341
	 */
	if (cache->offset + cache->len  == offset &&
	    cache->phys + cache->len == phys  &&
5342
	    cache->flags == flags) {
5343
		cache->len += len;
5344
		return 0;
5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
	}

	/* Not mergeable, need to submit cached one */
	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret)
		return ret;
assign:
	cache->cached = true;
	cache->offset = offset;
	cache->phys = phys;
	cache->len = len;
	cache->flags = flags;
5359 5360

	return 0;
5361 5362 5363
}

/*
5364
 * Emit last fiemap cache
5365
 *
5366 5367 5368 5369 5370 5371 5372
 * The last fiemap cache may still be cached in the following case:
 * 0		      4k		    8k
 * |<- Fiemap range ->|
 * |<------------  First extent ----------->|
 *
 * In this case, the first extent range will be cached but not emitted.
 * So we must emit it before ending extent_fiemap().
5373
 */
5374
static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5375
				  struct fiemap_cache *cache)
5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389
{
	int ret;

	if (!cache->cached)
		return 0;

	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret > 0)
		ret = 0;
	return ret;
}

5390
static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
Y
Yehuda Sadeh 已提交
5391
{
5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434
	struct extent_buffer *clone;
	struct btrfs_key key;
	int slot;
	int ret;

	path->slots[0]++;
	if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
		return 0;

	ret = btrfs_next_leaf(inode->root, path);
	if (ret != 0)
		return ret;

	/*
	 * Don't bother with cloning if there are no more file extent items for
	 * our inode.
	 */
	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
		return 1;

	/* See the comment at fiemap_search_slot() about why we clone. */
	clone = btrfs_clone_extent_buffer(path->nodes[0]);
	if (!clone)
		return -ENOMEM;

	slot = path->slots[0];
	btrfs_release_path(path);
	path->nodes[0] = clone;
	path->slots[0] = slot;

	return 0;
}

/*
 * Search for the first file extent item that starts at a given file offset or
 * the one that starts immediately before that offset.
 * Returns: 0 on success, < 0 on error, 1 if not found.
 */
static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
			      u64 file_offset)
{
	const u64 ino = btrfs_ino(inode);
5435
	struct btrfs_root *root = inode->root;
5436 5437 5438 5439
	struct extent_buffer *clone;
	struct btrfs_key key;
	int slot;
	int ret;
Y
Yehuda Sadeh 已提交
5440

5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462
	key.objectid = ino;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = file_offset;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	if (ret > 0 && path->slots[0] > 0) {
		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
			path->slots[0]--;
	}

	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
		ret = btrfs_next_leaf(root, path);
		if (ret != 0)
			return ret;

		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
			return 1;
5463 5464
	}

5465
	/*
5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
	 * We clone the leaf and use it during fiemap. This is because while
	 * using the leaf we do expensive things like checking if an extent is
	 * shared, which can take a long time. In order to prevent blocking
	 * other tasks for too long, we use a clone of the leaf. We have locked
	 * the file range in the inode's io tree, so we know none of our file
	 * extent items can change. This way we avoid blocking other tasks that
	 * want to insert items for other inodes in the same leaf or b+tree
	 * rebalance operations (triggered for example when someone is trying
	 * to push items into this leaf when trying to insert an item in a
	 * neighbour leaf).
	 * We also need the private clone because holding a read lock on an
	 * extent buffer of the subvolume's b+tree will make lockdep unhappy
	 * when we call fiemap_fill_next_extent(), because that may cause a page
	 * fault when filling the user space buffer with fiemap data.
5480
	 */
5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513
	clone = btrfs_clone_extent_buffer(path->nodes[0]);
	if (!clone)
		return -ENOMEM;

	slot = path->slots[0];
	btrfs_release_path(path);
	path->nodes[0] = clone;
	path->slots[0] = slot;

	return 0;
}

/*
 * Process a range which is a hole or a prealloc extent in the inode's subvolume
 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
 * extent. The end offset (@end) is inclusive.
 */
static int fiemap_process_hole(struct btrfs_inode *inode,
			       struct fiemap_extent_info *fieinfo,
			       struct fiemap_cache *cache,
			       struct btrfs_backref_shared_cache *backref_cache,
			       u64 disk_bytenr, u64 extent_offset,
			       u64 extent_gen,
			       struct ulist *roots, struct ulist *tmp_ulist,
			       u64 start, u64 end)
{
	const u64 i_size = i_size_read(&inode->vfs_inode);
	const u64 ino = btrfs_ino(inode);
	u64 cur_offset = start;
	u64 last_delalloc_end = 0;
	u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
	bool checked_extent_shared = false;
	int ret;
5514

5515
	/*
5516 5517
	 * There can be no delalloc past i_size, so don't waste time looking for
	 * it beyond i_size.
5518
	 */
5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530
	while (cur_offset < end && cur_offset < i_size) {
		u64 delalloc_start;
		u64 delalloc_end;
		u64 prealloc_start;
		u64 prealloc_len = 0;
		bool delalloc;

		delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
							&delalloc_start,
							&delalloc_end);
		if (!delalloc)
			break;
5531

5532
		/*
5533 5534
		 * If this is a prealloc extent we have to report every section
		 * of it that has no delalloc.
5535
		 */
5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653
		if (disk_bytenr != 0) {
			if (last_delalloc_end == 0) {
				prealloc_start = start;
				prealloc_len = delalloc_start - start;
			} else {
				prealloc_start = last_delalloc_end + 1;
				prealloc_len = delalloc_start - prealloc_start;
			}
		}

		if (prealloc_len > 0) {
			if (!checked_extent_shared && fieinfo->fi_extents_max) {
				ret = btrfs_is_data_extent_shared(inode->root,
							  ino, disk_bytenr,
							  extent_gen, roots,
							  tmp_ulist,
							  backref_cache);
				if (ret < 0)
					return ret;
				else if (ret > 0)
					prealloc_flags |= FIEMAP_EXTENT_SHARED;

				checked_extent_shared = true;
			}
			ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
						 disk_bytenr + extent_offset,
						 prealloc_len, prealloc_flags);
			if (ret)
				return ret;
			extent_offset += prealloc_len;
		}

		ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
					 delalloc_end + 1 - delalloc_start,
					 FIEMAP_EXTENT_DELALLOC |
					 FIEMAP_EXTENT_UNKNOWN);
		if (ret)
			return ret;

		last_delalloc_end = delalloc_end;
		cur_offset = delalloc_end + 1;
		extent_offset += cur_offset - delalloc_start;
		cond_resched();
	}

	/*
	 * Either we found no delalloc for the whole prealloc extent or we have
	 * a prealloc extent that spans i_size or starts at or after i_size.
	 */
	if (disk_bytenr != 0 && last_delalloc_end < end) {
		u64 prealloc_start;
		u64 prealloc_len;

		if (last_delalloc_end == 0) {
			prealloc_start = start;
			prealloc_len = end + 1 - start;
		} else {
			prealloc_start = last_delalloc_end + 1;
			prealloc_len = end + 1 - prealloc_start;
		}

		if (!checked_extent_shared && fieinfo->fi_extents_max) {
			ret = btrfs_is_data_extent_shared(inode->root,
							  ino, disk_bytenr,
							  extent_gen, roots,
							  tmp_ulist,
							  backref_cache);
			if (ret < 0)
				return ret;
			else if (ret > 0)
				prealloc_flags |= FIEMAP_EXTENT_SHARED;
		}
		ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
					 disk_bytenr + extent_offset,
					 prealloc_len, prealloc_flags);
		if (ret)
			return ret;
	}

	return 0;
}

static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
					  struct btrfs_path *path,
					  u64 *last_extent_end_ret)
{
	const u64 ino = btrfs_ino(inode);
	struct btrfs_root *root = inode->root;
	struct extent_buffer *leaf;
	struct btrfs_file_extent_item *ei;
	struct btrfs_key key;
	u64 disk_bytenr;
	int ret;

	/*
	 * Lookup the last file extent. We're not using i_size here because
	 * there might be preallocation past i_size.
	 */
	ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
	/* There can't be a file extent item at offset (u64)-1 */
	ASSERT(ret != 0);
	if (ret < 0)
		return ret;

	/*
	 * For a non-existing key, btrfs_search_slot() always leaves us at a
	 * slot > 0, except if the btree is empty, which is impossible because
	 * at least it has the inode item for this inode and all the items for
	 * the root inode 256.
	 */
	ASSERT(path->slots[0] > 0);
	path->slots[0]--;
	leaf = path->nodes[0];
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
		/* No file extent items in the subvolume tree. */
		*last_extent_end_ret = 0;
		return 0;
J
Josef Bacik 已提交
5654 5655
	}

5656
	/*
5657 5658 5659
	 * For an inline extent, the disk_bytenr is where inline data starts at,
	 * so first check if we have an inline extent item before checking if we
	 * have an implicit hole (disk_bytenr == 0).
5660
	 */
5661 5662 5663 5664
	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
	if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
		*last_extent_end_ret = btrfs_file_extent_end(path);
		return 0;
5665 5666
	}

5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688
	/*
	 * Find the last file extent item that is not a hole (when NO_HOLES is
	 * not enabled). This should take at most 2 iterations in the worst
	 * case: we have one hole file extent item at slot 0 of a leaf and
	 * another hole file extent item as the last item in the previous leaf.
	 * This is because we merge file extent items that represent holes.
	 */
	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
	while (disk_bytenr == 0) {
		ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
		if (ret < 0) {
			return ret;
		} else if (ret > 0) {
			/* No file extent items that are not holes. */
			*last_extent_end_ret = 0;
			return 0;
		}
		leaf = path->nodes[0];
		ei = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
	}
5689

5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717
	*last_extent_end_ret = btrfs_file_extent_end(path);
	return 0;
}

int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
		  u64 start, u64 len)
{
	const u64 ino = btrfs_ino(inode);
	struct extent_state *cached_state = NULL;
	struct btrfs_path *path;
	struct btrfs_root *root = inode->root;
	struct fiemap_cache cache = { 0 };
	struct btrfs_backref_shared_cache *backref_cache;
	struct ulist *roots;
	struct ulist *tmp_ulist;
	u64 last_extent_end;
	u64 prev_extent_end;
	u64 lockstart;
	u64 lockend;
	bool stopped = false;
	int ret;

	backref_cache = kzalloc(sizeof(*backref_cache), GFP_KERNEL);
	path = btrfs_alloc_path();
	roots = ulist_alloc(GFP_KERNEL);
	tmp_ulist = ulist_alloc(GFP_KERNEL);
	if (!backref_cache || !path || !roots || !tmp_ulist) {
		ret = -ENOMEM;
Y
Yehuda Sadeh 已提交
5718 5719
		goto out;
	}
J
Josef Bacik 已提交
5720

5721 5722 5723
	lockstart = round_down(start, btrfs_inode_sectorsize(inode));
	lockend = round_up(start + len, btrfs_inode_sectorsize(inode));
	prev_extent_end = lockstart;
5724

5725
	lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state);
5726

5727 5728 5729 5730
	ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
	if (ret < 0)
		goto out_unlock;
	btrfs_release_path(path);
Y
Yehuda Sadeh 已提交
5731

5732 5733 5734 5735 5736
	path->reada = READA_FORWARD;
	ret = fiemap_search_slot(inode, path, lockstart);
	if (ret < 0) {
		goto out_unlock;
	} else if (ret > 0) {
5737
		/*
5738 5739
		 * No file extent item found, but we may have delalloc between
		 * the current offset and i_size. So check for that.
5740
		 */
5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762
		ret = 0;
		goto check_eof_delalloc;
	}

	while (prev_extent_end < lockend) {
		struct extent_buffer *leaf = path->nodes[0];
		struct btrfs_file_extent_item *ei;
		struct btrfs_key key;
		u64 extent_end;
		u64 extent_len;
		u64 extent_offset = 0;
		u64 extent_gen;
		u64 disk_bytenr = 0;
		u64 flags = 0;
		int extent_type;
		u8 compression;

		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		extent_end = btrfs_file_extent_end(path);
Y
Yehuda Sadeh 已提交
5763

5764
		/*
5765 5766
		 * The first iteration can leave us at an extent item that ends
		 * before our range's start. Move to the next item.
5767
		 */
5768 5769
		if (extent_end <= lockstart)
			goto next_item;
5770

5771 5772 5773
		/* We have in implicit hole (NO_HOLES feature enabled). */
		if (prev_extent_end < key.offset) {
			const u64 range_end = min(key.offset, lockend) - 1;
5774

5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785
			ret = fiemap_process_hole(inode, fieinfo, &cache,
						  backref_cache, 0, 0, 0,
						  roots, tmp_ulist,
						  prev_extent_end, range_end);
			if (ret < 0) {
				goto out_unlock;
			} else if (ret > 0) {
				/* fiemap_fill_next_extent() told us to stop. */
				stopped = true;
				break;
			}
Y
Yehuda Sadeh 已提交
5786

5787 5788 5789 5790 5791
			/* We've reached the end of the fiemap range, stop. */
			if (key.offset >= lockend) {
				stopped = true;
				break;
			}
Y
Yehuda Sadeh 已提交
5792 5793
		}

5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804
		extent_len = extent_end - key.offset;
		ei = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		compression = btrfs_file_extent_compression(leaf, ei);
		extent_type = btrfs_file_extent_type(leaf, ei);
		extent_gen = btrfs_file_extent_generation(leaf, ei);

		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
			if (compression == BTRFS_COMPRESS_NONE)
				extent_offset = btrfs_file_extent_offset(leaf, ei);
5805
		}
5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844

		if (compression != BTRFS_COMPRESS_NONE)
			flags |= FIEMAP_EXTENT_ENCODED;

		if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
			flags |= FIEMAP_EXTENT_DATA_INLINE;
			flags |= FIEMAP_EXTENT_NOT_ALIGNED;
			ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
						 extent_len, flags);
		} else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
			ret = fiemap_process_hole(inode, fieinfo, &cache,
						  backref_cache,
						  disk_bytenr, extent_offset,
						  extent_gen, roots, tmp_ulist,
						  key.offset, extent_end - 1);
		} else if (disk_bytenr == 0) {
			/* We have an explicit hole. */
			ret = fiemap_process_hole(inode, fieinfo, &cache,
						  backref_cache, 0, 0, 0,
						  roots, tmp_ulist,
						  key.offset, extent_end - 1);
		} else {
			/* We have a regular extent. */
			if (fieinfo->fi_extents_max) {
				ret = btrfs_is_data_extent_shared(root, ino,
								  disk_bytenr,
								  extent_gen,
								  roots,
								  tmp_ulist,
								  backref_cache);
				if (ret < 0)
					goto out_unlock;
				else if (ret > 0)
					flags |= FIEMAP_EXTENT_SHARED;
			}

			ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
						 disk_bytenr + extent_offset,
						 extent_len, flags);
J
Josef Bacik 已提交
5845
		}
5846 5847 5848 5849 5850 5851 5852

		if (ret < 0) {
			goto out_unlock;
		} else if (ret > 0) {
			/* fiemap_fill_next_extent() told us to stop. */
			stopped = true;
			break;
5853
		}
5854

5855 5856
		prev_extent_end = extent_end;
next_item:
5857 5858
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
5859
			goto out_unlock;
5860
		}
5861 5862 5863 5864 5865 5866 5867 5868 5869

		ret = fiemap_next_leaf_item(inode, path);
		if (ret < 0) {
			goto out_unlock;
		} else if (ret > 0) {
			/* No more file extent items for this inode. */
			break;
		}
		cond_resched();
Y
Yehuda Sadeh 已提交
5870
	}
5871

5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916
check_eof_delalloc:
	/*
	 * Release (and free) the path before emitting any final entries to
	 * fiemap_fill_next_extent() to keep lockdep happy. This is because
	 * once we find no more file extent items exist, we may have a
	 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
	 * faults when copying data to the user space buffer.
	 */
	btrfs_free_path(path);
	path = NULL;

	if (!stopped && prev_extent_end < lockend) {
		ret = fiemap_process_hole(inode, fieinfo, &cache, backref_cache,
					  0, 0, 0, roots, tmp_ulist,
					  prev_extent_end, lockend - 1);
		if (ret < 0)
			goto out_unlock;
		prev_extent_end = lockend;
	}

	if (cache.cached && cache.offset + cache.len >= last_extent_end) {
		const u64 i_size = i_size_read(&inode->vfs_inode);

		if (prev_extent_end < i_size) {
			u64 delalloc_start;
			u64 delalloc_end;
			bool delalloc;

			delalloc = btrfs_find_delalloc_in_range(inode,
								prev_extent_end,
								i_size - 1,
								&delalloc_start,
								&delalloc_end);
			if (!delalloc)
				cache.flags |= FIEMAP_EXTENT_LAST;
		} else {
			cache.flags |= FIEMAP_EXTENT_LAST;
		}
	}

	ret = emit_last_fiemap_cache(fieinfo, &cache);

out_unlock:
	unlock_extent_cached(&inode->io_tree, lockstart, lockend, &cached_state);
out:
5917
	kfree(backref_cache);
5918
	btrfs_free_path(path);
5919 5920
	ulist_free(roots);
	ulist_free(tmp_ulist);
Y
Yehuda Sadeh 已提交
5921 5922 5923
	return ret;
}

5924 5925 5926 5927 5928
static void __free_extent_buffer(struct extent_buffer *eb)
{
	kmem_cache_free(extent_buffer_cache, eb);
}

5929
int extent_buffer_under_io(const struct extent_buffer *eb)
5930 5931 5932 5933 5934 5935
{
	return (atomic_read(&eb->io_pages) ||
		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
}

5936
static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5937
{
5938
	struct btrfs_subpage *subpage;
5939

5940
	lockdep_assert_held(&page->mapping->private_lock);
5941

5942 5943 5944 5945
	if (PagePrivate(page)) {
		subpage = (struct btrfs_subpage *)page->private;
		if (atomic_read(&subpage->eb_refs))
			return true;
5946 5947 5948 5949 5950 5951
		/*
		 * Even there is no eb refs here, we may still have
		 * end_page_read() call relying on page::private.
		 */
		if (atomic_read(&subpage->readers))
			return true;
5952 5953 5954
	}
	return false;
}
5955

5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968
static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);

	/*
	 * For mapped eb, we're going to change the page private, which should
	 * be done under the private_lock.
	 */
	if (mapped)
		spin_lock(&page->mapping->private_lock);

	if (!PagePrivate(page)) {
5969
		if (mapped)
5970 5971 5972 5973
			spin_unlock(&page->mapping->private_lock);
		return;
	}

5974
	if (fs_info->nodesize >= PAGE_SIZE) {
5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986
		/*
		 * We do this since we'll remove the pages after we've
		 * removed the eb from the radix tree, so we could race
		 * and have this page now attached to the new eb.  So
		 * only clear page_private if it's still connected to
		 * this eb.
		 */
		if (PagePrivate(page) &&
		    page->private == (unsigned long)eb) {
			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
			BUG_ON(PageDirty(page));
			BUG_ON(PageWriteback(page));
5987
			/*
5988 5989
			 * We need to make sure we haven't be attached
			 * to a new eb.
5990
			 */
5991
			detach_page_private(page);
5992
		}
5993 5994
		if (mapped)
			spin_unlock(&page->mapping->private_lock);
5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011
		return;
	}

	/*
	 * For subpage, we can have dummy eb with page private.  In this case,
	 * we can directly detach the private as such page is only attached to
	 * one dummy eb, no sharing.
	 */
	if (!mapped) {
		btrfs_detach_subpage(fs_info, page);
		return;
	}

	btrfs_page_dec_eb_refs(fs_info, page);

	/*
	 * We can only detach the page private if there are no other ebs in the
6012
	 * page range and no unfinished IO.
6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035
	 */
	if (!page_range_has_eb(fs_info, page))
		btrfs_detach_subpage(fs_info, page);

	spin_unlock(&page->mapping->private_lock);
}

/* Release all pages attached to the extent buffer */
static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
{
	int i;
	int num_pages;

	ASSERT(!extent_buffer_under_io(eb));

	num_pages = num_extent_pages(eb);
	for (i = 0; i < num_pages; i++) {
		struct page *page = eb->pages[i];

		if (!page)
			continue;

		detach_extent_buffer_page(eb, page);
6036

6037
		/* One for when we allocated the page */
6038
		put_page(page);
6039
	}
6040 6041 6042 6043 6044 6045 6046
}

/*
 * Helper for releasing the extent buffer.
 */
static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
{
6047
	btrfs_release_extent_buffer_pages(eb);
6048
	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6049 6050 6051
	__free_extent_buffer(eb);
}

6052 6053
static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
6054
		      unsigned long len)
6055 6056 6057
{
	struct extent_buffer *eb = NULL;

6058
	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
6059 6060
	eb->start = start;
	eb->len = len;
6061
	eb->fs_info = fs_info;
6062
	eb->bflags = 0;
6063
	init_rwsem(&eb->lock);
6064

6065 6066
	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
			     &fs_info->allocated_ebs);
6067
	INIT_LIST_HEAD(&eb->release_list);
6068

6069
	spin_lock_init(&eb->refs_lock);
6070
	atomic_set(&eb->refs, 1);
6071
	atomic_set(&eb->io_pages, 0);
6072

6073
	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
6074 6075 6076 6077

	return eb;
}

6078
struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
6079
{
6080
	int i;
6081
	struct extent_buffer *new;
6082
	int num_pages = num_extent_pages(src);
6083
	int ret;
6084

6085
	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
6086 6087 6088
	if (new == NULL)
		return NULL;

6089 6090 6091 6092 6093 6094 6095
	/*
	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
	 * btrfs_release_extent_buffer() have different behavior for
	 * UNMAPPED subpage extent buffer.
	 */
	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);

6096 6097 6098 6099 6100 6101 6102
	memset(new->pages, 0, sizeof(*new->pages) * num_pages);
	ret = btrfs_alloc_page_array(num_pages, new->pages);
	if (ret) {
		btrfs_release_extent_buffer(new);
		return NULL;
	}

6103
	for (i = 0; i < num_pages; i++) {
6104
		int ret;
6105
		struct page *p = new->pages[i];
6106 6107 6108 6109 6110 6111

		ret = attach_extent_buffer_page(new, p, NULL);
		if (ret < 0) {
			btrfs_release_extent_buffer(new);
			return NULL;
		}
6112
		WARN_ON(PageDirty(p));
6113
		copy_page(page_address(p), page_address(src->pages[i]));
6114
	}
6115
	set_extent_buffer_uptodate(new);
6116 6117 6118 6119

	return new;
}

6120 6121
struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
						  u64 start, unsigned long len)
6122 6123
{
	struct extent_buffer *eb;
6124 6125
	int num_pages;
	int i;
6126
	int ret;
6127

6128
	eb = __alloc_extent_buffer(fs_info, start, len);
6129 6130 6131
	if (!eb)
		return NULL;

6132
	num_pages = num_extent_pages(eb);
6133 6134 6135 6136
	ret = btrfs_alloc_page_array(num_pages, eb->pages);
	if (ret)
		goto err;

6137
	for (i = 0; i < num_pages; i++) {
6138
		struct page *p = eb->pages[i];
6139

6140
		ret = attach_extent_buffer_page(eb, p, NULL);
6141 6142
		if (ret < 0)
			goto err;
6143
	}
6144

6145 6146
	set_extent_buffer_uptodate(eb);
	btrfs_set_header_nritems(eb, 0);
6147
	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
6148 6149 6150

	return eb;
err:
6151 6152 6153 6154 6155
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i]) {
			detach_extent_buffer_page(eb, eb->pages[i]);
			__free_page(eb->pages[i]);
		}
6156
	}
6157 6158 6159 6160
	__free_extent_buffer(eb);
	return NULL;
}

6161
struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
6162
						u64 start)
6163
{
6164
	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
6165 6166
}

6167 6168
static void check_buffer_tree_ref(struct extent_buffer *eb)
{
6169
	int refs;
6170 6171 6172 6173
	/*
	 * The TREE_REF bit is first set when the extent_buffer is added
	 * to the radix tree. It is also reset, if unset, when a new reference
	 * is created by find_extent_buffer.
6174
	 *
6175 6176
	 * It is only cleared in two cases: freeing the last non-tree
	 * reference to the extent_buffer when its STALE bit is set or
6177
	 * calling release_folio when the tree reference is the only reference.
6178
	 *
6179
	 * In both cases, care is taken to ensure that the extent_buffer's
6180
	 * pages are not under io. However, release_folio can be concurrently
6181 6182 6183
	 * called with creating new references, which is prone to race
	 * conditions between the calls to check_buffer_tree_ref in those
	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
6184
	 *
6185 6186 6187 6188 6189 6190 6191
	 * The actual lifetime of the extent_buffer in the radix tree is
	 * adequately protected by the refcount, but the TREE_REF bit and
	 * its corresponding reference are not. To protect against this
	 * class of races, we call check_buffer_tree_ref from the codepaths
	 * which trigger io after they set eb->io_pages. Note that once io is
	 * initiated, TREE_REF can no longer be cleared, so that is the
	 * moment at which any such race is best fixed.
6192
	 */
6193 6194 6195 6196
	refs = atomic_read(&eb->refs);
	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		return;

6197 6198
	spin_lock(&eb->refs_lock);
	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6199
		atomic_inc(&eb->refs);
6200
	spin_unlock(&eb->refs_lock);
6201 6202
}

6203 6204
static void mark_extent_buffer_accessed(struct extent_buffer *eb,
		struct page *accessed)
6205
{
6206
	int num_pages, i;
6207

6208 6209
	check_buffer_tree_ref(eb);

6210
	num_pages = num_extent_pages(eb);
6211
	for (i = 0; i < num_pages; i++) {
6212 6213
		struct page *p = eb->pages[i];

6214 6215
		if (p != accessed)
			mark_page_accessed(p);
6216 6217 6218
	}
}

6219 6220
struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
					 u64 start)
6221 6222 6223
{
	struct extent_buffer *eb;

6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242
	eb = find_extent_buffer_nolock(fs_info, start);
	if (!eb)
		return NULL;
	/*
	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
	 * another task running free_extent_buffer() might have seen that flag
	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
	 * writeback flags not set) and it's still in the tree (flag
	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
	 * decrementing the extent buffer's reference count twice.  So here we
	 * could race and increment the eb's reference count, clear its stale
	 * flag, mark it as dirty and drop our reference before the other task
	 * finishes executing free_extent_buffer, which would later result in
	 * an attempt to free an extent buffer that is dirty.
	 */
	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
		spin_lock(&eb->refs_lock);
		spin_unlock(&eb->refs_lock);
6243
	}
6244 6245
	mark_extent_buffer_accessed(eb, NULL);
	return eb;
6246 6247
}

6248 6249
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
6250
					u64 start)
6251 6252 6253 6254 6255 6256 6257
{
	struct extent_buffer *eb, *exists = NULL;
	int ret;

	eb = find_extent_buffer(fs_info, start);
	if (eb)
		return eb;
6258
	eb = alloc_dummy_extent_buffer(fs_info, start);
6259
	if (!eb)
6260
		return ERR_PTR(-ENOMEM);
6261
	eb->fs_info = fs_info;
6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275
again:
	ret = radix_tree_preload(GFP_NOFS);
	if (ret) {
		exists = ERR_PTR(ret);
		goto free_eb;
	}
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
				start >> fs_info->sectorsize_bits, eb);
	spin_unlock(&fs_info->buffer_lock);
	radix_tree_preload_end();
	if (ret == -EEXIST) {
		exists = find_extent_buffer(fs_info, start);
		if (exists)
6276
			goto free_eb;
6277 6278 6279
		else
			goto again;
	}
6280 6281 6282 6283 6284 6285 6286 6287 6288 6289
	check_buffer_tree_ref(eb);
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);

	return eb;
free_eb:
	btrfs_release_extent_buffer(eb);
	return exists;
}
#endif

6290 6291
static struct extent_buffer *grab_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page)
6292 6293 6294
{
	struct extent_buffer *exists;

6295 6296 6297 6298 6299
	/*
	 * For subpage case, we completely rely on radix tree to ensure we
	 * don't try to insert two ebs for the same bytenr.  So here we always
	 * return NULL and just continue.
	 */
6300
	if (fs_info->nodesize < PAGE_SIZE)
6301 6302
		return NULL;

6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321
	/* Page not yet attached to an extent buffer */
	if (!PagePrivate(page))
		return NULL;

	/*
	 * We could have already allocated an eb for this page and attached one
	 * so lets see if we can get a ref on the existing eb, and if we can we
	 * know it's good and we can just return that one, else we know we can
	 * just overwrite page->private.
	 */
	exists = (struct extent_buffer *)page->private;
	if (atomic_inc_not_zero(&exists->refs))
		return exists;

	WARN_ON(PageDirty(page));
	detach_page_private(page);
	return NULL;
}

6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336
static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
{
	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
		btrfs_err(fs_info, "bad tree block start %llu", start);
		return -EINVAL;
	}

	if (fs_info->nodesize < PAGE_SIZE &&
	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
		btrfs_err(fs_info,
		"tree block crosses page boundary, start %llu nodesize %u",
			  start, fs_info->nodesize);
		return -EINVAL;
	}
	if (fs_info->nodesize >= PAGE_SIZE &&
6337
	    !PAGE_ALIGNED(start)) {
6338 6339 6340 6341 6342 6343 6344 6345
		btrfs_err(fs_info,
		"tree block is not page aligned, start %llu nodesize %u",
			  start, fs_info->nodesize);
		return -EINVAL;
	}
	return 0;
}

6346
struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
6347
					  u64 start, u64 owner_root, int level)
6348
{
6349
	unsigned long len = fs_info->nodesize;
6350 6351
	int num_pages;
	int i;
6352
	unsigned long index = start >> PAGE_SHIFT;
6353
	struct extent_buffer *eb;
6354
	struct extent_buffer *exists = NULL;
6355
	struct page *p;
6356
	struct address_space *mapping = fs_info->btree_inode->i_mapping;
6357
	u64 lockdep_owner = owner_root;
6358
	int uptodate = 1;
6359
	int ret;
6360

6361
	if (check_eb_alignment(fs_info, start))
6362 6363
		return ERR_PTR(-EINVAL);

6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374
#if BITS_PER_LONG == 32
	if (start >= MAX_LFS_FILESIZE) {
		btrfs_err_rl(fs_info,
		"extent buffer %llu is beyond 32bit page cache limit", start);
		btrfs_err_32bit_limit(fs_info);
		return ERR_PTR(-EOVERFLOW);
	}
	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
		btrfs_warn_32bit_limit(fs_info);
#endif

6375
	eb = find_extent_buffer(fs_info, start);
6376
	if (eb)
6377 6378
		return eb;

6379
	eb = __alloc_extent_buffer(fs_info, start, len);
6380
	if (!eb)
6381
		return ERR_PTR(-ENOMEM);
6382 6383 6384 6385 6386 6387 6388 6389 6390

	/*
	 * The reloc trees are just snapshots, so we need them to appear to be
	 * just like any other fs tree WRT lockdep.
	 */
	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
		lockdep_owner = BTRFS_FS_TREE_OBJECTID;

	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
6391

6392
	num_pages = num_extent_pages(eb);
6393
	for (i = 0; i < num_pages; i++, index++) {
6394 6395
		struct btrfs_subpage *prealloc = NULL;

6396
		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
6397 6398
		if (!p) {
			exists = ERR_PTR(-ENOMEM);
6399
			goto free_eb;
6400
		}
J
Josef Bacik 已提交
6401

6402 6403 6404 6405 6406 6407 6408 6409 6410 6411
		/*
		 * Preallocate page->private for subpage case, so that we won't
		 * allocate memory with private_lock hold.  The memory will be
		 * freed by attach_extent_buffer_page() or freed manually if
		 * we exit earlier.
		 *
		 * Although we have ensured one subpage eb can only have one
		 * page, but it may change in the future for 16K page size
		 * support, so we still preallocate the memory in the loop.
		 */
6412
		if (fs_info->nodesize < PAGE_SIZE) {
6413 6414 6415
			prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
			if (IS_ERR(prealloc)) {
				ret = PTR_ERR(prealloc);
6416 6417 6418 6419 6420
				unlock_page(p);
				put_page(p);
				exists = ERR_PTR(ret);
				goto free_eb;
			}
6421 6422
		}

J
Josef Bacik 已提交
6423
		spin_lock(&mapping->private_lock);
6424
		exists = grab_extent_buffer(fs_info, p);
6425 6426 6427 6428 6429
		if (exists) {
			spin_unlock(&mapping->private_lock);
			unlock_page(p);
			put_page(p);
			mark_extent_buffer_accessed(exists, p);
6430
			btrfs_free_subpage(prealloc);
6431
			goto free_eb;
6432
		}
6433 6434 6435
		/* Should not fail, as we have preallocated the memory */
		ret = attach_extent_buffer_page(eb, p, prealloc);
		ASSERT(!ret);
6436 6437 6438 6439 6440 6441 6442 6443 6444 6445
		/*
		 * To inform we have extra eb under allocation, so that
		 * detach_extent_buffer_page() won't release the page private
		 * when the eb hasn't yet been inserted into radix tree.
		 *
		 * The ref will be decreased when the eb released the page, in
		 * detach_extent_buffer_page().
		 * Thus needs no special handling in error path.
		 */
		btrfs_page_inc_eb_refs(fs_info, p);
J
Josef Bacik 已提交
6446
		spin_unlock(&mapping->private_lock);
6447

6448
		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6449
		eb->pages[i] = p;
6450 6451
		if (!PageUptodate(p))
			uptodate = 0;
C
Chris Mason 已提交
6452 6453

		/*
6454 6455
		 * We can't unlock the pages just yet since the extent buffer
		 * hasn't been properly inserted in the radix tree, this
6456
		 * opens a race with btree_release_folio which can free a page
6457 6458
		 * while we are still filling in all pages for the buffer and
		 * we could crash.
C
Chris Mason 已提交
6459
		 */
6460 6461
	}
	if (uptodate)
6462
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477
again:
	ret = radix_tree_preload(GFP_NOFS);
	if (ret) {
		exists = ERR_PTR(ret);
		goto free_eb;
	}

	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
				start >> fs_info->sectorsize_bits, eb);
	spin_unlock(&fs_info->buffer_lock);
	radix_tree_preload_end();
	if (ret == -EEXIST) {
		exists = find_extent_buffer(fs_info, start);
		if (exists)
6478
			goto free_eb;
6479 6480 6481
		else
			goto again;
	}
6482
	/* add one reference for the tree */
6483
	check_buffer_tree_ref(eb);
6484
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
C
Chris Mason 已提交
6485 6486

	/*
6487
	 * Now it's safe to unlock the pages because any calls to
6488
	 * btree_release_folio will correctly detect that a page belongs to a
6489
	 * live buffer and won't free them prematurely.
C
Chris Mason 已提交
6490
	 */
6491 6492
	for (i = 0; i < num_pages; i++)
		unlock_page(eb->pages[i]);
6493 6494
	return eb;

6495
free_eb:
6496
	WARN_ON(!atomic_dec_and_test(&eb->refs));
6497 6498 6499 6500
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i])
			unlock_page(eb->pages[i]);
	}
C
Chris Mason 已提交
6501

6502
	btrfs_release_extent_buffer(eb);
6503
	return exists;
6504 6505
}

6506 6507 6508 6509 6510 6511 6512 6513
static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
{
	struct extent_buffer *eb =
			container_of(head, struct extent_buffer, rcu_head);

	__free_extent_buffer(eb);
}

6514
static int release_extent_buffer(struct extent_buffer *eb)
6515
	__releases(&eb->refs_lock)
6516
{
6517 6518
	lockdep_assert_held(&eb->refs_lock);

6519 6520
	WARN_ON(atomic_read(&eb->refs) == 0);
	if (atomic_dec_and_test(&eb->refs)) {
6521
		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6522
			struct btrfs_fs_info *fs_info = eb->fs_info;
6523

6524
			spin_unlock(&eb->refs_lock);
6525

6526 6527 6528 6529
			spin_lock(&fs_info->buffer_lock);
			radix_tree_delete(&fs_info->buffer_radix,
					  eb->start >> fs_info->sectorsize_bits);
			spin_unlock(&fs_info->buffer_lock);
6530 6531
		} else {
			spin_unlock(&eb->refs_lock);
6532
		}
6533

6534
		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6535
		/* Should be safe to release our pages at this point */
6536
		btrfs_release_extent_buffer_pages(eb);
6537
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6538
		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6539 6540 6541 6542
			__free_extent_buffer(eb);
			return 1;
		}
#endif
6543
		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6544
		return 1;
6545 6546
	}
	spin_unlock(&eb->refs_lock);
6547 6548

	return 0;
6549 6550
}

6551 6552
void free_extent_buffer(struct extent_buffer *eb)
{
6553
	int refs;
6554 6555 6556
	if (!eb)
		return;

6557
	refs = atomic_read(&eb->refs);
6558
	while (1) {
6559 6560 6561
		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
			refs == 1))
6562
			break;
6563
		if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
6564 6565 6566
			return;
	}

6567 6568 6569
	spin_lock(&eb->refs_lock);
	if (atomic_read(&eb->refs) == 2 &&
	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6570
	    !extent_buffer_under_io(eb) &&
6571 6572 6573 6574 6575 6576 6577
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);

	/*
	 * I know this is terrible, but it's temporary until we stop tracking
	 * the uptodate bits and such for the extent buffers.
	 */
6578
	release_extent_buffer(eb);
6579 6580 6581 6582 6583
}

void free_extent_buffer_stale(struct extent_buffer *eb)
{
	if (!eb)
6584 6585
		return;

6586 6587 6588
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);

6589
	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6590 6591
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);
6592
	release_extent_buffer(eb);
6593 6594
}

6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622
static void btree_clear_page_dirty(struct page *page)
{
	ASSERT(PageDirty(page));
	ASSERT(PageLocked(page));
	clear_page_dirty_for_io(page);
	xa_lock_irq(&page->mapping->i_pages);
	if (!PageDirty(page))
		__xa_clear_mark(&page->mapping->i_pages,
				page_index(page), PAGECACHE_TAG_DIRTY);
	xa_unlock_irq(&page->mapping->i_pages);
}

static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
	bool last;

	/* btree_clear_page_dirty() needs page locked */
	lock_page(page);
	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
						  eb->len);
	if (last)
		btree_clear_page_dirty(page);
	unlock_page(page);
	WARN_ON(atomic_read(&eb->refs) == 0);
}

6623
void clear_extent_buffer_dirty(const struct extent_buffer *eb)
6624
{
6625 6626
	int i;
	int num_pages;
6627 6628
	struct page *page;

6629
	if (eb->fs_info->nodesize < PAGE_SIZE)
6630 6631
		return clear_subpage_extent_buffer_dirty(eb);

6632
	num_pages = num_extent_pages(eb);
6633 6634

	for (i = 0; i < num_pages; i++) {
6635
		page = eb->pages[i];
6636
		if (!PageDirty(page))
C
Chris Mason 已提交
6637
			continue;
6638
		lock_page(page);
6639
		btree_clear_page_dirty(page);
6640
		ClearPageError(page);
6641
		unlock_page(page);
6642
	}
6643
	WARN_ON(atomic_read(&eb->refs) == 0);
6644 6645
}

6646
bool set_extent_buffer_dirty(struct extent_buffer *eb)
6647
{
6648 6649
	int i;
	int num_pages;
6650
	bool was_dirty;
6651

6652 6653
	check_buffer_tree_ref(eb);

6654
	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6655

6656
	num_pages = num_extent_pages(eb);
6657
	WARN_ON(atomic_read(&eb->refs) == 0);
6658 6659
	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));

6660
	if (!was_dirty) {
6661
		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
6662

6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681
		/*
		 * For subpage case, we can have other extent buffers in the
		 * same page, and in clear_subpage_extent_buffer_dirty() we
		 * have to clear page dirty without subpage lock held.
		 * This can cause race where our page gets dirty cleared after
		 * we just set it.
		 *
		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
		 * its page for other reasons, we can use page lock to prevent
		 * the above race.
		 */
		if (subpage)
			lock_page(eb->pages[0]);
		for (i = 0; i < num_pages; i++)
			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
					     eb->start, eb->len);
		if (subpage)
			unlock_page(eb->pages[0]);
	}
6682 6683 6684 6685 6686
#ifdef CONFIG_BTRFS_DEBUG
	for (i = 0; i < num_pages; i++)
		ASSERT(PageDirty(eb->pages[i]));
#endif

6687
	return was_dirty;
6688 6689
}

6690
void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6691
{
6692
	struct btrfs_fs_info *fs_info = eb->fs_info;
6693
	struct page *page;
6694
	int num_pages;
6695
	int i;
6696

6697
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6698
	num_pages = num_extent_pages(eb);
6699
	for (i = 0; i < num_pages; i++) {
6700
		page = eb->pages[i];
6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712
		if (!page)
			continue;

		/*
		 * This is special handling for metadata subpage, as regular
		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
		 */
		if (fs_info->nodesize >= PAGE_SIZE)
			ClearPageUptodate(page);
		else
			btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
						     eb->len);
6713 6714 6715
	}
}

6716
void set_extent_buffer_uptodate(struct extent_buffer *eb)
6717
{
6718
	struct btrfs_fs_info *fs_info = eb->fs_info;
6719
	struct page *page;
6720
	int num_pages;
6721
	int i;
6722

6723
	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6724
	num_pages = num_extent_pages(eb);
6725
	for (i = 0; i < num_pages; i++) {
6726
		page = eb->pages[i];
6727 6728 6729 6730 6731 6732 6733 6734 6735 6736

		/*
		 * This is special handling for metadata subpage, as regular
		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
		 */
		if (fs_info->nodesize >= PAGE_SIZE)
			SetPageUptodate(page);
		else
			btrfs_subpage_set_uptodate(fs_info, page, eb->start,
						   eb->len);
6737 6738 6739
	}
}

6740 6741 6742 6743 6744 6745
static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
				      int mirror_num)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct extent_io_tree *io_tree;
	struct page *page = eb->pages[0];
6746 6747 6748
	struct btrfs_bio_ctrl bio_ctrl = {
		.mirror_num = mirror_num,
	};
6749 6750 6751 6752 6753 6754 6755
	int ret = 0;

	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
	ASSERT(PagePrivate(page));
	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;

	if (wait == WAIT_NONE) {
6756 6757
		if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
			return -EAGAIN;
6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778
	} else {
		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		if (ret < 0)
			return ret;
	}

	ret = 0;
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
	    PageUptodate(page) ||
	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		return ret;
	}

	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
	eb->read_mirror = 0;
	atomic_set(&eb->io_pages, 1);
	check_buffer_tree_ref(eb);
	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);

6779
	btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
6780
	ret = submit_extent_page(REQ_OP_READ, NULL, &bio_ctrl,
6781 6782
				 page, eb->start, eb->len,
				 eb->start - page_offset(page),
6783
				 end_bio_extent_readpage, 0, true);
6784 6785 6786 6787 6788 6789 6790 6791
	if (ret) {
		/*
		 * In the endio function, if we hit something wrong we will
		 * increase the io_pages, so here we need to decrease it for
		 * error path.
		 */
		atomic_dec(&eb->io_pages);
	}
6792
	submit_one_bio(&bio_ctrl);
6793 6794 6795 6796 6797 6798 6799 6800 6801
	if (ret || wait != WAIT_COMPLETE)
		return ret;

	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
		ret = -EIO;
	return ret;
}

6802
int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6803
{
6804
	int i;
6805 6806 6807
	struct page *page;
	int err;
	int ret = 0;
6808 6809
	int locked_pages = 0;
	int all_uptodate = 1;
6810
	int num_pages;
6811
	unsigned long num_reads = 0;
6812 6813 6814
	struct btrfs_bio_ctrl bio_ctrl = {
		.mirror_num = mirror_num,
	};
6815

6816
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6817 6818
		return 0;

6819 6820 6821 6822 6823 6824 6825 6826
	/*
	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
	 * operation, which could potentially still be in flight.  In this case
	 * we simply want to return an error.
	 */
	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
		return -EIO;

6827
	if (eb->fs_info->nodesize < PAGE_SIZE)
6828 6829
		return read_extent_buffer_subpage(eb, wait, mirror_num);

6830
	num_pages = num_extent_pages(eb);
6831
	for (i = 0; i < num_pages; i++) {
6832
		page = eb->pages[i];
6833
		if (wait == WAIT_NONE) {
6834 6835 6836 6837 6838 6839 6840
			/*
			 * WAIT_NONE is only utilized by readahead. If we can't
			 * acquire the lock atomically it means either the eb
			 * is being read out or under modification.
			 * Either way the eb will be or has been cached,
			 * readahead can exit safely.
			 */
6841
			if (!trylock_page(page))
6842
				goto unlock_exit;
6843 6844 6845
		} else {
			lock_page(page);
		}
6846
		locked_pages++;
6847 6848 6849 6850 6851 6852
	}
	/*
	 * We need to firstly lock all pages to make sure that
	 * the uptodate bit of our pages won't be affected by
	 * clear_extent_buffer_uptodate().
	 */
6853
	for (i = 0; i < num_pages; i++) {
6854
		page = eb->pages[i];
6855 6856
		if (!PageUptodate(page)) {
			num_reads++;
6857
			all_uptodate = 0;
6858
		}
6859
	}
6860

6861
	if (all_uptodate) {
6862
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6863 6864 6865
		goto unlock_exit;
	}

6866
	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6867
	eb->read_mirror = 0;
6868
	atomic_set(&eb->io_pages, num_reads);
6869
	/*
6870
	 * It is possible for release_folio to clear the TREE_REF bit before we
6871 6872 6873
	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
	 */
	check_buffer_tree_ref(eb);
6874
	for (i = 0; i < num_pages; i++) {
6875
		page = eb->pages[i];
6876

6877
		if (!PageUptodate(page)) {
6878 6879 6880 6881 6882 6883
			if (ret) {
				atomic_dec(&eb->io_pages);
				unlock_page(page);
				continue;
			}

6884
			ClearPageError(page);
6885
			err = submit_extent_page(REQ_OP_READ, NULL,
6886 6887
					 &bio_ctrl, page, page_offset(page),
					 PAGE_SIZE, 0, end_bio_extent_readpage,
6888
					 0, false);
6889 6890
			if (err) {
				/*
6891 6892 6893
				 * We failed to submit the bio so it's the
				 * caller's responsibility to perform cleanup
				 * i.e unlock page/set error bit.
6894
				 */
6895 6896 6897
				ret = err;
				SetPageError(page);
				unlock_page(page);
6898 6899
				atomic_dec(&eb->io_pages);
			}
6900 6901 6902 6903 6904
		} else {
			unlock_page(page);
		}
	}

6905
	submit_one_bio(&bio_ctrl);
6906

6907
	if (ret || wait != WAIT_COMPLETE)
6908
		return ret;
C
Chris Mason 已提交
6909

6910
	for (i = 0; i < num_pages; i++) {
6911
		page = eb->pages[i];
6912
		wait_on_page_locked(page);
C
Chris Mason 已提交
6913
		if (!PageUptodate(page))
6914 6915
			ret = -EIO;
	}
C
Chris Mason 已提交
6916

6917
	return ret;
6918 6919

unlock_exit:
C
Chris Mason 已提交
6920
	while (locked_pages > 0) {
6921
		locked_pages--;
6922 6923
		page = eb->pages[locked_pages];
		unlock_page(page);
6924 6925
	}
	return ret;
6926 6927
}

6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957
static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
			    unsigned long len)
{
	btrfs_warn(eb->fs_info,
		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
		eb->start, eb->len, start, len);
	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));

	return true;
}

/*
 * Check if the [start, start + len) range is valid before reading/writing
 * the eb.
 * NOTE: @start and @len are offset inside the eb, not logical address.
 *
 * Caller should not touch the dst/src memory if this function returns error.
 */
static inline int check_eb_range(const struct extent_buffer *eb,
				 unsigned long start, unsigned long len)
{
	unsigned long offset;

	/* start, start + len should not go beyond eb->len nor overflow */
	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
		return report_eb_range(eb, start, len);

	return false;
}

6958 6959
void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
			unsigned long start, unsigned long len)
6960 6961 6962 6963 6964 6965
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *dst = (char *)dstv;
6966
	unsigned long i = get_eb_page_index(start);
6967

6968
	if (check_eb_range(eb, start, len))
6969
		return;
6970

6971
	offset = get_eb_offset_in_page(eb, start);
6972

C
Chris Mason 已提交
6973
	while (len > 0) {
6974
		page = eb->pages[i];
6975

6976
		cur = min(len, (PAGE_SIZE - offset));
6977
		kaddr = page_address(page);
6978 6979 6980 6981 6982 6983 6984 6985 6986
		memcpy(dst, kaddr + offset, cur);

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6987 6988 6989
int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
				       void __user *dstv,
				       unsigned long start, unsigned long len)
6990 6991 6992 6993 6994 6995
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char __user *dst = (char __user *)dstv;
6996
	unsigned long i = get_eb_page_index(start);
6997 6998 6999 7000 7001
	int ret = 0;

	WARN_ON(start > eb->len);
	WARN_ON(start + len > eb->start + eb->len);

7002
	offset = get_eb_offset_in_page(eb, start);
7003 7004

	while (len > 0) {
7005
		page = eb->pages[i];
7006

7007
		cur = min(len, (PAGE_SIZE - offset));
7008
		kaddr = page_address(page);
7009
		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022
			ret = -EFAULT;
			break;
		}

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}

	return ret;
}

7023 7024
int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
			 unsigned long start, unsigned long len)
7025 7026 7027 7028 7029 7030
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *ptr = (char *)ptrv;
7031
	unsigned long i = get_eb_page_index(start);
7032 7033
	int ret = 0;

7034 7035
	if (check_eb_range(eb, start, len))
		return -EINVAL;
7036

7037
	offset = get_eb_offset_in_page(eb, start);
7038

C
Chris Mason 已提交
7039
	while (len > 0) {
7040
		page = eb->pages[i];
7041

7042
		cur = min(len, (PAGE_SIZE - offset));
7043

7044
		kaddr = page_address(page);
7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056
		ret = memcmp(ptr, kaddr + offset, cur);
		if (ret)
			break;

		ptr += cur;
		len -= cur;
		offset = 0;
		i++;
	}
	return ret;
}

7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067
/*
 * Check that the extent buffer is uptodate.
 *
 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
 */
static void assert_eb_page_uptodate(const struct extent_buffer *eb,
				    struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;

7068 7069 7070 7071 7072 7073 7074 7075 7076
	/*
	 * If we are using the commit root we could potentially clear a page
	 * Uptodate while we're using the extent buffer that we've previously
	 * looked up.  We don't want to complain in this case, as the page was
	 * valid before, we just didn't write it out.  Instead we want to catch
	 * the case where we didn't actually read the block properly, which
	 * would have !PageUptodate && !PageError, as we clear PageError before
	 * reading.
	 */
7077
	if (fs_info->nodesize < PAGE_SIZE) {
7078
		bool uptodate, error;
7079 7080 7081

		uptodate = btrfs_subpage_test_uptodate(fs_info, page,
						       eb->start, eb->len);
7082 7083
		error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len);
		WARN_ON(!uptodate && !error);
7084
	} else {
7085
		WARN_ON(!PageUptodate(page) && !PageError(page));
7086 7087 7088
	}
}

7089
void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
7090 7091 7092 7093
		const void *srcv)
{
	char *kaddr;

7094
	assert_eb_page_uptodate(eb, eb->pages[0]);
7095 7096 7097 7098
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
						   chunk_tree_uuid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
7099 7100
}

7101
void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
7102 7103 7104
{
	char *kaddr;

7105
	assert_eb_page_uptodate(eb, eb->pages[0]);
7106 7107 7108
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
7109 7110
}

7111
void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
7112 7113 7114 7115 7116 7117 7118
			 unsigned long start, unsigned long len)
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *src = (char *)srcv;
7119
	unsigned long i = get_eb_page_index(start);
7120

7121 7122
	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));

7123 7124
	if (check_eb_range(eb, start, len))
		return;
7125

7126
	offset = get_eb_offset_in_page(eb, start);
7127

C
Chris Mason 已提交
7128
	while (len > 0) {
7129
		page = eb->pages[i];
7130
		assert_eb_page_uptodate(eb, page);
7131

7132
		cur = min(len, PAGE_SIZE - offset);
7133
		kaddr = page_address(page);
7134 7135 7136 7137 7138 7139 7140 7141 7142
		memcpy(kaddr + offset, src, cur);

		src += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

7143
void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
7144
		unsigned long len)
7145 7146 7147 7148 7149
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
7150
	unsigned long i = get_eb_page_index(start);
7151

7152 7153
	if (check_eb_range(eb, start, len))
		return;
7154

7155
	offset = get_eb_offset_in_page(eb, start);
7156

C
Chris Mason 已提交
7157
	while (len > 0) {
7158
		page = eb->pages[i];
7159
		assert_eb_page_uptodate(eb, page);
7160

7161
		cur = min(len, PAGE_SIZE - offset);
7162
		kaddr = page_address(page);
7163
		memset(kaddr + offset, 0, cur);
7164 7165 7166 7167 7168 7169 7170

		len -= cur;
		offset = 0;
		i++;
	}
}

7171 7172
void copy_extent_buffer_full(const struct extent_buffer *dst,
			     const struct extent_buffer *src)
7173 7174
{
	int i;
7175
	int num_pages;
7176 7177 7178

	ASSERT(dst->len == src->len);

7179
	if (dst->fs_info->nodesize >= PAGE_SIZE) {
7180 7181 7182 7183 7184 7185 7186 7187
		num_pages = num_extent_pages(dst);
		for (i = 0; i < num_pages; i++)
			copy_page(page_address(dst->pages[i]),
				  page_address(src->pages[i]));
	} else {
		size_t src_offset = get_eb_offset_in_page(src, 0);
		size_t dst_offset = get_eb_offset_in_page(dst, 0);

7188
		ASSERT(src->fs_info->nodesize < PAGE_SIZE);
7189 7190 7191 7192
		memcpy(page_address(dst->pages[0]) + dst_offset,
		       page_address(src->pages[0]) + src_offset,
		       src->len);
	}
7193 7194
}

7195 7196
void copy_extent_buffer(const struct extent_buffer *dst,
			const struct extent_buffer *src,
7197 7198 7199 7200 7201 7202 7203 7204
			unsigned long dst_offset, unsigned long src_offset,
			unsigned long len)
{
	u64 dst_len = dst->len;
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
7205
	unsigned long i = get_eb_page_index(dst_offset);
7206

7207 7208 7209 7210
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(src, src_offset, len))
		return;

7211 7212
	WARN_ON(src->len != dst_len);

7213
	offset = get_eb_offset_in_page(dst, dst_offset);
7214

C
Chris Mason 已提交
7215
	while (len > 0) {
7216
		page = dst->pages[i];
7217
		assert_eb_page_uptodate(dst, page);
7218

7219
		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
7220

7221
		kaddr = page_address(page);
7222 7223 7224 7225 7226 7227 7228 7229 7230
		read_extent_buffer(src, kaddr + offset, src_offset, cur);

		src_offset += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243
/*
 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
 * given bit number
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number
 * @page_index: return index of the page in the extent buffer that contains the
 * given bit number
 * @page_offset: return offset into the page given by page_index
 *
 * This helper hides the ugliness of finding the byte in an extent buffer which
 * contains a given bit.
 */
7244
static inline void eb_bitmap_offset(const struct extent_buffer *eb,
7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256
				    unsigned long start, unsigned long nr,
				    unsigned long *page_index,
				    size_t *page_offset)
{
	size_t byte_offset = BIT_BYTE(nr);
	size_t offset;

	/*
	 * The byte we want is the offset of the extent buffer + the offset of
	 * the bitmap item in the extent buffer + the offset of the byte in the
	 * bitmap item.
	 */
7257
	offset = start + offset_in_page(eb->start) + byte_offset;
7258

7259
	*page_index = offset >> PAGE_SHIFT;
7260
	*page_offset = offset_in_page(offset);
7261 7262 7263 7264 7265 7266 7267 7268
}

/**
 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number to test
 */
7269
int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
7270 7271
			   unsigned long nr)
{
7272
	u8 *kaddr;
7273 7274 7275 7276 7277 7278
	struct page *page;
	unsigned long i;
	size_t offset;

	eb_bitmap_offset(eb, start, nr, &i, &offset);
	page = eb->pages[i];
7279
	assert_eb_page_uptodate(eb, page);
7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290
	kaddr = page_address(page);
	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
}

/**
 * extent_buffer_bitmap_set - set an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to set
 */
7291
void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
7292 7293
			      unsigned long pos, unsigned long len)
{
7294
	u8 *kaddr;
7295 7296 7297 7298 7299
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7300
	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
7301 7302 7303

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
7304
	assert_eb_page_uptodate(eb, page);
7305 7306 7307 7308 7309 7310
	kaddr = page_address(page);

	while (len >= bits_to_set) {
		kaddr[offset] |= mask_to_set;
		len -= bits_to_set;
		bits_to_set = BITS_PER_BYTE;
D
Dan Carpenter 已提交
7311
		mask_to_set = ~0;
7312
		if (++offset >= PAGE_SIZE && len > 0) {
7313 7314
			offset = 0;
			page = eb->pages[++i];
7315
			assert_eb_page_uptodate(eb, page);
7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] |= mask_to_set;
	}
}


/**
 * extent_buffer_bitmap_clear - clear an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to clear
 */
7333 7334 7335
void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
				unsigned long start, unsigned long pos,
				unsigned long len)
7336
{
7337
	u8 *kaddr;
7338 7339 7340 7341 7342
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7343
	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
7344 7345 7346

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
7347
	assert_eb_page_uptodate(eb, page);
7348 7349 7350 7351 7352 7353
	kaddr = page_address(page);

	while (len >= bits_to_clear) {
		kaddr[offset] &= ~mask_to_clear;
		len -= bits_to_clear;
		bits_to_clear = BITS_PER_BYTE;
D
Dan Carpenter 已提交
7354
		mask_to_clear = ~0;
7355
		if (++offset >= PAGE_SIZE && len > 0) {
7356 7357
			offset = 0;
			page = eb->pages[++i];
7358
			assert_eb_page_uptodate(eb, page);
7359 7360 7361 7362 7363 7364 7365 7366 7367
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] &= ~mask_to_clear;
	}
}

7368 7369 7370 7371 7372 7373
static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
{
	unsigned long distance = (src > dst) ? src - dst : dst - src;
	return distance < len;
}

7374 7375 7376 7377
static void copy_pages(struct page *dst_page, struct page *src_page,
		       unsigned long dst_off, unsigned long src_off,
		       unsigned long len)
{
7378
	char *dst_kaddr = page_address(dst_page);
7379
	char *src_kaddr;
7380
	int must_memmove = 0;
7381

7382
	if (dst_page != src_page) {
7383
		src_kaddr = page_address(src_page);
7384
	} else {
7385
		src_kaddr = dst_kaddr;
7386 7387
		if (areas_overlap(src_off, dst_off, len))
			must_memmove = 1;
7388
	}
7389

7390 7391 7392 7393
	if (must_memmove)
		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
	else
		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
7394 7395
}

7396 7397 7398
void memcpy_extent_buffer(const struct extent_buffer *dst,
			  unsigned long dst_offset, unsigned long src_offset,
			  unsigned long len)
7399 7400 7401 7402 7403 7404 7405
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_i;
	unsigned long src_i;

7406 7407 7408
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
7409

C
Chris Mason 已提交
7410
	while (len > 0) {
7411 7412
		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
7413

7414 7415
		dst_i = get_eb_page_index(dst_offset);
		src_i = get_eb_page_index(src_offset);
7416

7417
		cur = min(len, (unsigned long)(PAGE_SIZE -
7418 7419
					       src_off_in_page));
		cur = min_t(unsigned long, cur,
7420
			(unsigned long)(PAGE_SIZE - dst_off_in_page));
7421

7422
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7423 7424 7425 7426 7427 7428 7429 7430
			   dst_off_in_page, src_off_in_page, cur);

		src_offset += cur;
		dst_offset += cur;
		len -= cur;
	}
}

7431 7432 7433
void memmove_extent_buffer(const struct extent_buffer *dst,
			   unsigned long dst_offset, unsigned long src_offset,
			   unsigned long len)
7434 7435 7436 7437 7438 7439 7440 7441 7442
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_end = dst_offset + len - 1;
	unsigned long src_end = src_offset + len - 1;
	unsigned long dst_i;
	unsigned long src_i;

7443 7444 7445
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
7446
	if (dst_offset < src_offset) {
7447 7448 7449
		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
		return;
	}
C
Chris Mason 已提交
7450
	while (len > 0) {
7451 7452
		dst_i = get_eb_page_index(dst_end);
		src_i = get_eb_page_index(src_end);
7453

7454 7455
		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
		src_off_in_page = get_eb_offset_in_page(dst, src_end);
7456 7457 7458

		cur = min_t(unsigned long, len, src_off_in_page + 1);
		cur = min(cur, dst_off_in_page + 1);
7459
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7460 7461 7462 7463 7464 7465 7466 7467
			   dst_off_in_page - cur + 1,
			   src_off_in_page - cur + 1, cur);

		dst_end -= cur;
		src_end -= cur;
		len -= cur;
	}
}
7468

7469
#define GANG_LOOKUP_SIZE	16
7470 7471 7472
static struct extent_buffer *get_next_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
7473 7474
	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
	struct extent_buffer *found = NULL;
7475
	u64 page_start = page_offset(page);
7476
	u64 cur = page_start;
7477 7478 7479 7480

	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
	lockdep_assert_held(&fs_info->buffer_lock);

7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501
	while (cur < page_start + PAGE_SIZE) {
		int ret;
		int i;

		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
				(void **)gang, cur >> fs_info->sectorsize_bits,
				min_t(unsigned int, GANG_LOOKUP_SIZE,
				      PAGE_SIZE / fs_info->nodesize));
		if (ret == 0)
			goto out;
		for (i = 0; i < ret; i++) {
			/* Already beyond page end */
			if (gang[i]->start >= page_start + PAGE_SIZE)
				goto out;
			/* Found one */
			if (gang[i]->start >= bytenr) {
				found = gang[i];
				goto out;
			}
		}
		cur = gang[ret - 1]->start + gang[ret - 1]->len;
7502
	}
7503 7504
out:
	return found;
7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576
}

static int try_release_subpage_extent_buffer(struct page *page)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	u64 cur = page_offset(page);
	const u64 end = page_offset(page) + PAGE_SIZE;
	int ret;

	while (cur < end) {
		struct extent_buffer *eb = NULL;

		/*
		 * Unlike try_release_extent_buffer() which uses page->private
		 * to grab buffer, for subpage case we rely on radix tree, thus
		 * we need to ensure radix tree consistency.
		 *
		 * We also want an atomic snapshot of the radix tree, thus go
		 * with spinlock rather than RCU.
		 */
		spin_lock(&fs_info->buffer_lock);
		eb = get_next_extent_buffer(fs_info, page, cur);
		if (!eb) {
			/* No more eb in the page range after or at cur */
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		cur = eb->start + eb->len;

		/*
		 * The same as try_release_extent_buffer(), to ensure the eb
		 * won't disappear out from under us.
		 */
		spin_lock(&eb->refs_lock);
		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
			spin_unlock(&eb->refs_lock);
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		spin_unlock(&fs_info->buffer_lock);

		/*
		 * If tree ref isn't set then we know the ref on this eb is a
		 * real ref, so just return, this eb will likely be freed soon
		 * anyway.
		 */
		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
			spin_unlock(&eb->refs_lock);
			break;
		}

		/*
		 * Here we don't care about the return value, we will always
		 * check the page private at the end.  And
		 * release_extent_buffer() will release the refs_lock.
		 */
		release_extent_buffer(eb);
	}
	/*
	 * Finally to check if we have cleared page private, as if we have
	 * released all ebs in the page, the page private should be cleared now.
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page))
		ret = 1;
	else
		ret = 0;
	spin_unlock(&page->mapping->private_lock);
	return ret;

}

7577
int try_release_extent_buffer(struct page *page)
7578
{
7579 7580
	struct extent_buffer *eb;

7581
	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
7582 7583
		return try_release_subpage_extent_buffer(page);

7584
	/*
7585 7586
	 * We need to make sure nobody is changing page->private, as we rely on
	 * page->private as the pointer to extent buffer.
7587 7588 7589 7590
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&page->mapping->private_lock);
J
Josef Bacik 已提交
7591
		return 1;
7592
	}
7593

7594 7595
	eb = (struct extent_buffer *)page->private;
	BUG_ON(!eb);
7596 7597

	/*
7598 7599 7600
	 * This is a little awful but should be ok, we need to make sure that
	 * the eb doesn't disappear out from under us while we're looking at
	 * this page.
7601
	 */
7602
	spin_lock(&eb->refs_lock);
7603
	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7604 7605 7606
		spin_unlock(&eb->refs_lock);
		spin_unlock(&page->mapping->private_lock);
		return 0;
7607
	}
7608
	spin_unlock(&page->mapping->private_lock);
7609

7610
	/*
7611 7612
	 * If tree ref isn't set then we know the ref on this eb is a real ref,
	 * so just return, this page will likely be freed soon anyway.
7613
	 */
7614 7615 7616
	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
		spin_unlock(&eb->refs_lock);
		return 0;
7617
	}
7618

7619
	return release_extent_buffer(eb);
7620
}
7621 7622 7623 7624 7625

/*
 * btrfs_readahead_tree_block - attempt to readahead a child block
 * @fs_info:	the fs_info
 * @bytenr:	bytenr to read
7626
 * @owner_root: objectid of the root that owns this eb
7627
 * @gen:	generation for the uptodate check, can be 0
7628
 * @level:	level for the eb
7629 7630 7631 7632 7633 7634
 *
 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
 * normal uptodate check of the eb, without checking the generation.  If we have
 * to read the block we will not block on anything.
 */
void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7635
				u64 bytenr, u64 owner_root, u64 gen, int level)
7636 7637 7638 7639
{
	struct extent_buffer *eb;
	int ret;

7640
	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667
	if (IS_ERR(eb))
		return;

	if (btrfs_buffer_uptodate(eb, gen, 1)) {
		free_extent_buffer(eb);
		return;
	}

	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
	if (ret < 0)
		free_extent_buffer_stale(eb);
	else
		free_extent_buffer(eb);
}

/*
 * btrfs_readahead_node_child - readahead a node's child block
 * @node:	parent node we're reading from
 * @slot:	slot in the parent node for the child we want to read
 *
 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
 * the slot in the node provided.
 */
void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
{
	btrfs_readahead_tree_block(node->fs_info,
				   btrfs_node_blockptr(node, slot),
7668 7669 7670
				   btrfs_header_owner(node),
				   btrfs_node_ptr_generation(node, slot),
				   btrfs_header_level(node) - 1);
7671
}